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ABSTRACT
This paper studies control approaches to advance the qual-

ity of repetitive energy deposition in powder bed fusion (PBF)
additive manufacturing. A key pattern in the nascent manu-
facturing process, the repetitive scanning of the laser or elec-
tron beam can be fundamentally improved by repetitive control
(RC) algorithms. An intrinsic limitation, however, appears in
discrete-time RC when the exogenous signal frequency cannot
divide the sampling frequency. In other words, N in the internal
model 1/

(
1− z−N

)
is not an integer. Such a challenge hampers

high-performance applications of RC to PBF because periodic-
ity of the exogenous signal has no guarantees to comply with
the sampling rate of molten-pool sensors. This paper develops a
new multirate RC and a closed-loop analysis method to address
such fractional-order RC cases by generating high-gain control
signals exactly at the fundamental and harmonic frequencies.
The proposed analysis method exhibits the detailed disturbance-
attenuation properties of the multirate RC in a new design space.
Numerical verification on a galvo scanner in laser PBF reveals
fundamental benefits of the proposed multirate RC.

1 Introduction

Repetitive control (RC) [1] is a key feedback control method
for tracking/rejecting periodic exogenous signals. By learning
from previous iterations, RC can greatly enhance control perfor-
mance of the current iteration in a repetitive task space. This
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principal property has benefited various application domains, in-
cluding, for instance, tracking controls in robotic manipulators
[2], wafer scanners [3], and optical disk drives [4], as well as
regulation controls in unmanned aerial vehicles [5], power con-
verters [6], and wind turbines [7].

This paper studies RC in powder bed fusion (PBF) additive
manufacturing (AM) processes that apply laser or electron beams
to melt and join powder materials. In this AM family, thousands
of thin layers build up a typical workpiece. Within each layer,
the molten pool is controlled to follow trajectories predefined
by a “slicing” step. This process contains highly repetitive ther-
momechanical interactions [8]. As a result, periodic errors are
introduced by the beam-material interaction and path planning.
Indeed, other AM technologies [9] have validated and leveraged
such periodicity to enhance servo performances.

To fully release the capability of RC to fundamentally im-
prove the repetitive beam scanning in PBF, the internal model
principle [10] must be carefully configured in the control de-
sign. More specially, digital RC implements an internal model
1/(1− z−N), where z is the complex indeterminate in the z-
transform and N, the period of the disturbance/reference, equals
the sampling frequency (1/Ts or fs) divided by the fundamental
signal frequency ( f0). For N being a non-integer, that is, f0 can-
not divide fs, RC with the approximated N can no longer aim at
the fundamental and harmonic frequencies, resulting in degraded
servo performances.

Several strategies exist to potentially address such
fractional-order RC cases. [11] employs spatial RC to ob-



tain time-invariant disturbance periods in a spatial domain. [12]
and [13] propose adaptive RC to adjust the sampling rate to
get an integer N. [14] and [15] introduce high-order RC with
delay elements to widen the high-gain regions near the harmonic
frequencies. [16] presents a delay-varying RC that uses the repet-
itive variable to continuously adjust the time-varying delay. [6]
and [17] design different filters to approximate the fractional-
order delays. [18] uses a correction factor to correct the deviated
poles of the fractional-order repetitive controller. [19] introduces
two wide-band and quasi RCs together with a multirate RC in a
plug-in configuration; the full closed-loop properties, however,
are not investigated.

Despite the existing literature, it remains not well under-
stood how to create RC exactly at the harmonic frequencies in the
presence of fractional-order periods and how to systematically
analyze the closed-loop performances. To bridge this knowledge
gap, the proposed multirate RC algorithm introduces a second di-
visible sampling frequency f

′
s such that N = f

′
s/ f0 is an integer,

and embeds a new zero-phase low-pass filter design to address
multirate closed-loop robustness. Along the course of formulat-
ing the algorithm, an unexpected selective loop-shape modula-
tion is discovered in the multirate digital control design. This
fundamental behavior, prone to be neglected in the design phase,
inspires in the first instance a closed-loop analysis method that
exhibits the complete disturbance-attenuation properties of the
multirate RC. This analysis method also enables a new design
space for applying RC to general systems with the mismatched
sampling and task periodicity. This paper will discuss the per-
formance benefit and implementation guidance of the proposed
algorithm. A case study on a galvo scanner in laser PBF verifies
the theoretical analyses.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews a conventional RC design. Two examples in Sec-
tion 3 elucidate the existence of fractional-order disturbances in
PBF. Section 4 builds the proposed multirate fractional-order RC
algorithm. Section 5 provides the numerical verification of the
algorithm. Section 6 concludes the paper.

2 Preliminaries of repetitive control

The proposed multirate RC algorithm is based on a plug-
in RC design in Fig. 1 [3]. The baseline feedback system here
consists of the plant P(z) and the baseline controller C(z) (Fig.
1 without the plug-in compensator). Common servo algorithms,
such as PID, H∞, and lead-lag compensation, can apply to the
baseline controller design. Throughout this paper, we assume
1) coefficients of all transfer functions are real; 2) the baseline
feedback loop including P(z) and C(z) is stable; and 3) P(z) and
C(z) are proper, linear, rational, and time-invariant.

Let m denote the relative degree of P(z), whose nominal
model is P̂(z). With the plug-in compensator, the overall con-

C(z) P(z)

Q(z)

z−mP̂−1(z) z−m

d(k)

+r(k) + e(k)
+ ud(k)

+

yd(k)
−

+

w(k)
+

+

Plug-in compensator

FIGURE 1. Block diagram of a plug-in RC design.

troller from e(k) to ud(k) is

Call(z) =
C(z)+ z−mP̂−1(z)Q(z)

1− z−mQ(z)
. (1)

If Q = (1− αN)zm−N/(1− αNz−N), 1− z−mQ(z) = (1−
z−N)/(1− αNz−N), where α ∈ [0, 1) determines the attenua-
tion bandwidth of 1− z−mQ(z). At the harmonic frequencies
(ωk = k2π f0Ts, k ∈ Z+, the set of positive integers), the mag-
nitude responses of 1− z−mQ(z) are zero because 1− e− jωkN =
1− e− jk2π f0Ts/( f0Ts) = 1− e− jk2π = 0. Hence, |Call(z)| → ∞

and Gd→yd (z) = P(z)[1− z−mQ(z)]/[1 + P(z)C(z)] = 0 when
z = e jωk . At the intermediate frequencies, Q(e jω) ≈ 0, and
|1− z−mQ(z)|z=e jω ≈ 1 when α is close to 1; thus Call(z)≈C(z),
and the original loop shape is maintained. Choosing a smaller α

can yield a wider attenuation bandwidth, at the cost of deviating
from the baseline loop shape.

For robustness against high-frequency plant uncertain-
ties, Q(z) is additionally designed to contain zero-phase pairs
q j(z−1)q j(z) ( j ∈ Z):

Q(z) =
(1−αN)z−(N−m)

1−αNz−N

M

∏
j=0

q j(z−1)q j(z), (2)

where M ∈Z is determined according to the design requirements.
For instance, qi(z) (i ∈ Z+) in the first line of (3) places four ze-

ros of Q(z) at e± jΩiT
′
s to make its frequency response equal zero

at Ωi, and q0(z−1)q0(z) adds n0(∈ Z) zero pairs at the Nyquist
frequency:

qi(z) =

{
1−2cos(ΩiTs)z+z2

2−2cos(ΩiTs)
, i ∈ Z+

(1+z)n0

2n0 , i = 0
. (3)

Note the Q-filter in (2) and (3) is designed assuming an integer
N under the sampling time of Ts.

3 Fractional-order disturbances in PBF

This section introduces two examples regarding the fun-
damental applicability of fractional-order RC to PBF. The first
example, a numerical simulation, verifies the existence of the
fractional-order periodic disturbances in the PBF process. The
second example shows the intrinsic fractional-order disturbances
in the beam scanning mechanism used in laser PBF.



3.1 Example one: periodic thermal cycles in PBF

The PBF is built upon repeated scanning of high-energy
beam on a bed of powder feedstock. The scan trajectories deter-
mine the periodicity of the beam-material interactions (see, e.g.,
Fig. 2). Here, the laser or electron beam melts the powder mate-
rial following predefined tracks, and monitoring sensors, such as
cameras and imaging systems, are applied to obtain the molten
pool information. To get a uniform part quality, the molten pool
width is desired to be kept at a user-defined reference value [20].

To quantitatively demonstrate the periodic thermal cycles,
the COMSOL Multiphysics 5.3 software is used to stimulate a
proof-of-concept benchmark problem. The process parameters,
governing equation, initial condition, and boundary conditions
used in the simulation are listed in the Appendix. The physics-
controlled meshing method is used in the finite element model.
The time step Ts is 2ms, that is, the sampling frequency of the
camera is simulated to be fs = 1/Ts = 500Hz. Eight tracks are
sintered bidirectionally with transitions. The path planning of the
first five tracks is shown in the left plot of Fig. 2. The right plot of
Fig. 2 illustrates the simulation result of the surface temperature
distribution of the powder bed at t = 0.834s.
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FIGURE 2. Schematic of path planning and thermal simulation result
at t = 0.834s.

After a short transient, the average molten pool width
reaches a steady state as a result of balanced heat influx and dif-
fusion. The molten pool width varies over time and fluctuates
around the average value (0.25 mm in the top plot of Fig. 3). In
the bidirectional scanning (Fig. 2), when the energy source ap-
proaches the end of one track, the large latent heat does not have
enough time to dissipate out before the next track starts. This ac-
cumulated heat effect results in a higher initial temperature at the
beginning of the track to be sintered. Therefore, the molten pool
width, directly associated with the initial temperature, generates
a periodic increasing spike at the beginning of each track (the top
plot of Fig. 3) when the input heat flux keeps constant. Those
undesired increasing spikes in the time domain form a periodic
disturbance with a repetitive spectrum in the frequency domain
(the bottom plot of Fig. 3). The fundamental frequency f0 of the
disturbance is defined by the time taken to scan one single track
t0: f0 = 1/t0 = v/L, where v is the scan speed and L is the track
length. In this example, f0 = 100/10 = 10Hz, and frequency
spikes at {n f0} (n ∈ Z+) appear in the fast Fourier transform
(FFT) of the disturbance.

In this sample simulation, period N(= fs/ f0 = 50) is an inte-
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FIGURE 3. Simulated example molten pool width in the time domain
and the disturbance in the frequency domain.

ger because v/L divides 1/Ts. However, the scan speed v and the
track length L are tailored to the required energy density but not
the speed of the monitoring sensors (which is restricted for cam-
eras and general integrated imaging systems). For instance, if
Ts = 3ms, N = 100/3 will become a non-integer. Therefore, the
disturbance periodicity—defined by the scan speed, part geome-
try, and path planning—has no guarantees to be an integer mul-
tiple of the sampling time of the molten pool sensors. It is also
important to recognize that besides the proof-of-concept bidirec-
tional trajectory, other scanning patterns yield repetitive distur-
bance components in a similar fashion (see, e.g., experimental
results in [21]). These fractional-order disturbances challenge
conventional RC and demand new theoretical designs for RC to
maximize performance in PBF.

3.2 Example two: collaborative control in galvo scan-
ner

As a key component in laser PBF, the dual-axis galvo scan-
ner (Fig. 4) consists of two sets of motors, mirrors, and control
systems, here referred to as the X channel and the Y channel, re-
spectively. The two rotating mirrors reflect the input laser beam
to follow a scanning trajectory at high speed with high precision.
Encoders, mounted coaxially with the motor shaft, measure the
mirror rotation angles.
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FIGURE 4. Schematic of the hardware platform.



In practice, periodic disturbances appear in the dual-axis
galvo sets. First, we examine one single channel (e.g., Y chan-
nel) with a simple harmonic signal Asin(2π f0t +φ). Frequency
spikes at odd multiples of f0, instead of a single spike at f0, show
up in the FFT of the channel output (Fig. 5). This is because
signal conditioning boards in the servo driver limit the rate of
change in the output signal when the slope of the input signal
is faster than the predefined slew rate [22]. The slewed output
waveform is thus not a pure sine waveform and results in har-
monics at odd multiples of the fundamental frequency.
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FIGURE 5. (Experimental result) FFT of the Y output with a simple
harmonic input.

Second, the collaborative control of the two channels also
introduces periodic disturbances. The mechanical motion of one
rotating mirror can transmit to the other mirror as disturbances.
High currents in the ground lines of the two servo drivers can
also cause the channels to crosstalk [23]. When one channel
is actuated with a simple harmonic signal at f0, the FFT of the
non-actuated channel output was observed to contain a frequency
spike at f0 caused by mechanical vibrations and frequency spikes
at 2n f0 (n ∈ Z+) due to crosstalk. The crosstalk is more obvious
with increased amplitudes and frequencies of the input signals.

For both single- and cross-channel disturbances, the dis-
turbance frequencies vary with the input signal frequencies
and are not guaranteed to divide the sampling frequency of
the galvo scanner. For instance, when Ts = 1/16ms, conven-
tional RC fails in eliminating the crosstalk-induced harmonics at
{1200iHz} (i∈Z+) since N = 16000/1200 in the internal model
is not an integer. Without loss of generality, in this paper, the pro-
posed multirate RC algorithm is evaluated on the dual-axis galvo
scanner as a case study to reduce the crosstalk.

4 Proposed multirate fractional-order RC algorithm

The new multirate RC is proposed to tackle a non-integer
N in the internal model. For concreteness, we will use the col-
laborative control example in Sections 3.2 and 5 throughout the
discussions and generalize the algorithm along the course of de-
sign and analysis.

The proposed multirate RC addresses the fractional-order
period by introducing a second divisible sampling frequency f

′
s

that equals the least common multiple (LCM) of the sampling

and fundamental frequencies, namely, f
′
s = LCM( fs, f0). With-

out changing the sampling frequency of the plant, we design the
repetitive controller under the newly introduced sampling fre-
quency. Since N = f

′
s/ f0 is now an integer, the multirate repeti-

tive controller can thus generate high-gain control signals exactly
at the fundamental frequency and its harmonics.

Cdh(z) ↓ F P(z) ↑ F

Q(z)

z−mP̂−1(z) z−m

d(k)

+r(k) + e
+

udh(k) ud
+

yd

ydh(k)

−

+

w(k)
+

+

Call(z)

FIGURE 6. Block diagram for multirate RC.
More specially, the proposed multirate RC (Fig. 6) adds the

upsampler and downsampler into Fig. 1 before and after the over-
all controller. In Fig. 6, the solid and dashed lines stand for the
slow and fast signals sampled by Ts and T

′
s (, 1/ f

′
s), respectively.

T
′

s = Ts/F (F > 1 and F ∈ Z+). Note that the transfer func-
tions inside the Call(z) block are all implemented at T

′
s . Base on

multirate signal processing [19], the frequency response of the
open-loop transfer function from yd to the summing junction be-
fore P(z) is C̃(e jΩTs)= 1

F ∑
F−1
k=0 Call(e j(ΩT

′
s − 2πk

F )). Thus, when the
reference r(k) is zero (i.e., in regulation problems), the Fourier
transform of the plant output yd(k) is

Yd(e jΩTs) =
P(e jΩTs)D(e jΩTs)

1+ 1
F P(e jΩTs)∑

F−1
k=0 Call(e j(ΩT ′s − 2πk

F ))

=
P(e jΩTs)D(e jΩTs)

1+P(e jΩTs)C̃(e jΩTs)
. (4)

Before discussing the detailed full multirate closed-loop
properties, we provide a conceptual example and an overall
disturbance-attenuation principle. Consider Ts = 1/16ms and
f0 = 1200Hz. Multirate RC gives T

′
s = 1/LCM(16000, 1200) =

1/48ms. The plug-in compensator is designed under T
′

s such
that small gains of 1− z−mQ(z) are generated at Ω0 = 2πn×
1200rad/s (n ∈ Z+) (Fig. 7). Since the Q-filter design in Section
2 yields Call(e jΩ0T

′
s )→ ∞, C̃(e jΩTs) in the summation form of

Call also goes to infinity. Thus, in (4), Yd(e jΩ0Ts)→ 0, yielding
yd(kTs) = 0 at Ω0.

4.1 Multirate closed-loop analysis

In Fig. 6, the transfer function from the disturbance d(k)
to the output yd(k) equals S(z) = S0(z)P(z), where S0(z) is the
closed-loop sensitivity function with S0(e jΩTs) = 1/G(e jΩTs) and

G(e jΩTs) = 1+
1
F

P(e jΩTs)
F−1

∑
k=0

Call(e j(ΩT
′
s − 2πk

F )). (5)

To reject disturbances at Ω0, when the plant dynamics is
fixed, |S0(e jΩ0Ts)| in the multirate RC is desired to be small at
Ω0, that is, |G(e jΩ0Ts)| → ∞. With the direct Q-filter design un-
der the sampling time of T

′
s (Fig. 7), |S0(e jΩTs)| has the desired
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FIGURE 7. Magnitude responses of 1− z−mQ(z) and Q(z) in multi-
rate RC.
small gains at the target frequencies, as discussed in the para-
graph after (4). However, small spikes also appear in |S0(e jΩTs)|,
that is, decreasing notches show up in |G(e jΩTs)| (Fig. 8). The
undesired selective small gains imply potential amplification of
other error sources. The complete disturbance-attenuation prop-
erties of the proposed multirate RC will be deciphered next to
assist in eliminating those error amplifications.
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with Ts = 1/16ms, T

′
s = 1/48ms, F = 3, and f0 = 1200Hz.

Note that G(e jΩTs) in (5) contains hybrid frequency re-
sponses of P(z) under the sampling time of Ts and Call(z) under
T
′

s , and the frequency index satisfies the periodicity property:

e j(ΩT
′
s − 2πk

F ) = e j(Ω− 2πk
Ts )T

′
s = e j2π( f− k

Ts )T
′
s , (6)

where f = Ω/(2π) is in Hz. Take the previous example (Ts =

1/16ms, T
′

s = 1/48ms, and F = Ts/T
′

s = 3). Then

G(e j2π f Ts) = 1+
1
3

P(e j2π f Ts)
2

∑
k=0

Call(e
j2π( f− k

Ts )T
′
s ). (7)

Let Gk(e j2π f T
′
s ) = 1 + P(e j2π f Ts)Call(e

j2π( f− k
Ts )T

′
s ). Then

(7) is decomposed to

G(e j2π f Ts) =
1
3

[
G0(e j2π f T

′
s )+G1(e j2π f T

′
s )+G2(e j2π f T

′
s )
]
. (8)

With e j2π f Ts = e j2π( f− k
Ts )Ts , the relationship between G0

and G1 is G1(e j2π f T
′
s ) = G0(e

j2π( f− 1
Ts )T

′
s ), and similarly

G2(e j2π f T
′
s ) = G0(e

j2π( f+ 1
Ts )T

′
s ).

G1(e j2π f T
′
s ) and G2(e j2π f T

′
s ) are thus shifted versions of

G0(e j2π f T
′
s ). Note S0(e j2π f Ts) and G(e j2π f Ts) in (5) are evalu-

ated from 0 to the slower Nyquist frequency corresponding to
Ts, namely, f ∈ [0, 8kHz] in this example. G1(e j2π f T

′
s ) at f ∈

[0, 8] kHz thus maps to G0(e j2π f T
′
s ) at f ∈ [−16,−8] kHz, which

is symmetric to G0(e j2π f T
′
s ) at f ∈ [8, 16] kHz with respect to

the line f = 0. Similarly, G2(e j2π f T
′
s ) with f ∈ [0, 8] kHz maps

to G0(e j2π f T
′
s ) with f ∈ [16, 24] kHz. Therefore, G0(e j2π f T

′
s )

evaluated at f ∈ [0, 24] kHz (0 to 0.5/T
′

s , the faster Nyquist fre-
quency corresponding to T

′
s ) includes all the desired informa-

tion of G0(e j2π f T
′
s ), G1(e j2π f T

′
s ), and G2(e j2π f T

′
s ) under f ∈

[0, 8kHz], as shown in Fig. 9.
It can now be understood that because G(e j2π f Ts) in (8) is

the average of G0(e j2π f T
′
s ), G1(e j2π f T

′
s ), and G2(e j2π f T

′
s ), the

undesired small gains of G(e j2π f Ts) in the bottom plot of Fig. 8

are inherited from G1(e j2π f T
′
s ) and G2(e j2π f T

′
s ) or, equivalently,

from G0(e j2π f T
′
s ) at frequencies larger than 8kHz (Fig. 9).
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4.2 Implicit model mismatch

We show in this subsection that the undesired magnitude
characteristics of G0(e j2π f T

′
s ) at high frequencies arise from an



implicit model mismatch. Recall that

G0(e j2π f T
′
s ) = 1+P(e j2π f Ts)Call(e j2π f T

′
s ). (9)

Substituting the frequency response of (1) into (9) gives

G0(e jΩT
′

s ) =
[P(e jΩTs )P̂−1(e jΩT

′
s )−1]e− jmΩT

′
s Q(e jΩT

′
s )

1−e− jmΩT
′
s Q(e jΩT

′
s )

+
1+P(e jΩTs )Cdh(e jΩT

′
s )

1−e− jmΩT
′
s Q(e jΩT

′
s )

.

(10)
Fig. 10 presents the frequency responses of P(e jΩTs) and

P̂(e jΩT
′
s ). At low frequencies, P(e jΩTs) ≈ P(e jΩT

′
s ) ≈ P̂(e jΩT

′
s ),

and (10) reduces to

G0(e jΩT
′
s ) =

1+P(e jΩTs)Cdh(e jΩT
′
s )

1− e− jmΩT ′s Q(e jΩT ′s )
. (11)

G0(e jΩT
′
s ) thus generates high gains where the magnitude

responses of the denominator 1− z−mQ(z) are designed to be
small (Fig. 7). At high frequencies, intrinsic model mis-
matches exist between P(e jΩTs) and P̂(e jΩT

′
s ) due to different

sampling frequencies. Even though the magnitude response of
1− e− jmω Q(e jω)

∣∣
ω=ΩT ′s

is small, the first term of (10) must
be carefully considered. To eliminate the undesired magni-
tude shapes, Q(e jΩT

′
s ) should be designed small enough at high

frequencies to reduce the effect of the model mismatches in
[P(e jΩTs)P̂−1(e jΩT

′
s )−1]e− jmΩT

′
s Q(e jΩT

′
s ).
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FIGURE 11. Magnitude responses of the second Q-filter design.

Compared with the original Q-filter design used in Fig. 8,
the multirate RC thus demands an enhanced design with re-
duced Q(e jΩT

′
s ) at high frequencies (the top plot in Fig. 11).

This second Q-filter is designed with α = 0.999, n0 = 2, Ω1 =
2π × (12kHz), and Ω2 = 2π × (22kHz) (see Section 2). As a
result, in the multirate RC using the second Q-filter design, the
undesired selective small gains of |G0(e j2π f T

′
s )| disappear (the

bottom plot of Fig. 12), which yields a clear magnitude response
of the closed-loop sensitivity function with no visible error am-
plifications, as shown in the bottom plot in Fig. 11.

For more general cases of the multirate RC, the analysis
steps are:
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FIGURE 12. G0(e j2π f T
′

s ), G1(e j2π f T
′

s ), and G2(e j2π f T
′

s ) of the sec-
ond Q-filter design.

1. Given fs and f0, identify the second sampling frequency
f
′
s = LCM( fs, f0) for multirate RC design. Let F = Ts/T

′
s =

f
′
s/ fs.

2. Design the repetitive controller in (1) under the deviated
sampling frequency to get desired disturbance-attenuation
properties.

3. Calculate and plot the closed-loop sensitivity function
S0(e jΩTs) and G(e jΩTs) in (9) to check if undesired selective
small gains show up.

4. Look into Gk(e j2π f T
′
s ) (k = 0, 1, 2, · · · , F − 1) with f ∈

[0, fs/2] to disentangle G(e jΩTs) in the summation form.

Since all Gk(e j2π f T
′
s )’s map into G0(e j2π f T

′
s ), it suffices to

analyze G0(e j2π f T
′
s ) under f ∈ [0, f

′
s/2] to identify the fre-

quencies of the undesired notches.
5. Redesign the Q-filter in the repetitive controller, and repeat

steps 2–4 to reduce the undesired selective small gains until
the design requirements are satisfied.

5 Numerical verification in a dual-axis galvo scanner

This section provides the implementation guidance and nu-
merical verification of the theoretical analyses. As a case study,
we employ the multirate RC algorithm to reduce the crosstalk in
the collaborative control of the galvo scanner (see Section 3.2).
In the following Q-filter designs, n0 in (3) is chosen to be 3, and
M in (2) equals zero.

In the X channel, the conventional RC in Section 2 and the
multirate RC in Section 4 are implemented on top of the base-
line controller to attenuate crosstalk-induced disturbances with
fractional-order periods. The same periodic disturbances with
five frequency components are introduced into the X-channel
loop (Figs. 1 and 6): d(k) = A∑

5
n=1 sin(2πn f0Tsk) with A =

4mV (corresponding to 3◦ of the Y-channel mirror rotation) and
f0 = 1200Hz.
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The identified plant model (Fig. 13) with T
′

s = 1/48ms is

P
′
(z) =

0.061z2 +0.103z+0.061
z5−1.485z4 +1.032z3−0.433z2−0.057z−0.061

. (12)

The stable plant model under Ts = 1/16ms is:

P(z) =
0.061z4 +0.737z3 +0.351z2 +0.034z+0.0001

z5 +0.144z4−0.773z3−0.359z2−0.034z−0.0001
. (13)

A factory-set PID-type controller is already embedded in the
plant models. Thus, we design the baseline feedback loop (Fig.
1 without the plug-in compensator) under Ts = 1/16ms by ap-
plying P(z) in (13) and C(z) = 1. Such a design provides a band-
width of 4400Hz in the complementary sensitivity function T (z).
However, because the PID controller is generic and not tailored
to the repetitive disturbance, the frequency-domain result in Fig.
14 shows that the baseline controller barely attenuates the fre-
quency spike at 1200Hz and provides limited attenuation to the
other four spikes.
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FIGURE 14. FFT of plant output sampled at Ts.

The conventional RC algorithm is also implemented at Ts =
1/16ms, i.e. fs = 16kHz. N = fs/ f0 = 16000/1200 ≈ 13. The

relative degree of P(z) in (13), namely m, is 1. The Q-filter tar-
gets frequency spikes at fs/N = 1230.77Hz and its integer mul-
tiples. A wider attenuation width is demanded in 1− z−mQ(z) to
cover the adjacent harmonics at 1200Hz, 2400Hz, 3600Hz, etc.
To achieve this goal, α in (2) is set as 0.8.
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FIGURE 15. Plant outputs under baseline control, conventional RC,
and multirate RC.

In the proposed multirate RC, the plug-in compensator is
designed at T

′
s = 1/48ms ( f

′
s = 48kHz) with F = Ts/T

′
s = 3. The

relative degree of P
′
(z) in (12) is 3 (m = 3). α is chosen to be

0.999 to reduce the waterbed effect. N = f
′
s/ f0 = 48000/1200 =

40. In Fig. 7, small gains of 1− z−mQ(z) are generated exactly
at 1200Hz and its integer multiples.

The numerical results of the three control systems are com-
pared in Fig. 14. As a performance metric, the 3σ value of the
time-domain result in each control system is provided, where σ

represents the standard deviation. The performance gains of the
conventional and multirate RCs are 35% and 64%, respectively.
The output signals yd(t) in Fig. 15 show the clear performance
difference of multirate RC>conventional RC>baseline control.
Indeed, frequency-domain analysis reveals that the conventional
RC method can reduce the first two but not other high-frequency
spikes above 3600Hz. The multirate RC algorithm, on the other
hand, can effectively attenuate the periodic frequency spikes by
generating frequency notches in 1− z−mQ(z) and enhanced con-
trol efforts exactly at those frequencies.

6 Conclusion

This paper proposes a new multirate repetitive control (RC)
algorithm to overcome the intrinsic limitation of the RC inter-
nal model 1/(1− z−N) under fractional-order situations. Illus-
trative examples in this paper demonstrate the applicability of
the fractional-order RC to powder bed fusion additive manufac-
turing. To apply repetitive error rejection when the fundamental
disturbance frequency does not divide the sampling frequency,
the multirate RC applies a new fast sampling frequency that al-
lows for exact attenuation at the desired periodic frequencies.
A new closed-loop analysis method reveals the full disturbance-
attenuation properties of the multirate RC. Numerical results ver-
ify that the multirate RC outperforms the conventional RC by
providing more systematic, precise servo enhancement, particu-
larly at high frequencies.
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Appendix

Finite element model of PBF

The governing equation for heat flow in PBF is

ρcp
dT (x, y, z, t)

dt
= ∇ · (k∇T (x, y, z, t))+qs, (14)

where ρ is the density of the material being sintered, cp is the
specific heat, T is the temperature, t is the time, k is the thermal
conductivity, and qs is the rate of local internal energy generated
per unit volume [24]. ρ , cp, and k are assumed to be temperature-
dependent (see Table 5.3 in [25]).

The initial condition is specified as T (x, y, z, 0) = T0, where
T0 is the initial temperature. The timescale of sintering one layer
is orders of magnitude faster than the heat transfer in the building
(z) direction. The bottom is thus assumed to have no heat loss,
and one boundary condition is −k ∂T

∂ z

∣∣∣
z=−h

= 0, where h is the

height of the powder bed.
Considering surface conduction, convection and radiation,

apply another boundary condition [26]:

−k
∂T
∂ z

∣∣∣∣
z=0

=−Q+hc(T −Ta)+ εσ(T 4−T 4
a ), (15)

where ε is the powder bed emissivity, σ is the Stefan-Boltzmann
constant, hc is the convection heat transfer coefficient, and Ta is
the ambient temperature. Q is the input heat flux (assuming a

Gaussian laser beam profile): Q ≈ 2Pe−
2r2

R2 /(πR2), where P is
the laser power, R denotes the effective laser beam radius, and r
is the radial distance from the center of the laser spot.

Parameters for numerical simulation of PBF

Dimensions of powder bed 10 mm × 10 mm × 100 µm
Powder material Ti–6Al–4V
Laser power 30 W
Scan speed 100 mm/s
Laser spot diameter 35 µm
Emissivity 0.35
Ambient and initial temperature 23 °C
Convection heat transfer coefficient 12.7 W/(m2·K)
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