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ABSTRACT: Interlayer rotational alignment in vdW structures of two-dimensional
materials couples strongly to electronic properties and, therefore, has significant
technological implications. Nevertheless, controlling rotation of an arbitrary two-
dimensional material flake remains a challenge in the development of rotation-tunable
electronics, for the emerging field of twistronics. In this article, we reveal a general
moiré-driven mechanism that governs the interlayer rotation. Controlling the moiré can
therefore hold promise for controlling interlayer rotation. We further demonstrate
mismatch strain engineering as a useful tool to design the interlayer rotation via changing
the energy landscape of moiré within a finite-sized region. The robustness and
programmable nature of our approach arise from moiré symmetry, energetics, and
mechanics. Our approach provides another possibilities to the on-demand design of

rotation-tunable electronics.
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Van der Waals (vdW) structures of two-dimensional (2D) materials possess significant
potential for studying fundamental properties and developing exotic nanoscale
technologies."* In such material systems, the relative interlayer rotation between layers
of 2D materials is a commonly observed feature. For example, the triangle-shaped
nucleated domains of MoS, bilayers grown by chemical vapour deposition (CVD)
usually have several discrete interlayer rotation angles (Figure 1(a));> * a similar
observation has been made in other 2D material bilayer systems.” It is well known that
the interlayer rotation changes interlayer coupling, leading to modulation of electronic
structures, and tremendous potential for tuning the electronic properties.*'® For example,
the photoluminescence spectra of MoS; bilayers grown by CVD are clearly shown to be
dependent on rotation.™* In fact, a small variation in interlayer rotation is able to induce
huge variation in electronic structures. For example, superconducting states in bilayer
graphene have been observed after imposing a small interlayer rotation of 1.1 degree.’®
Recently, a dynamically rotatable electronic device architecture was used to demonstrate
significant electronic property variations due to rotations of just a few degrees.” Until
now, a fundamental understanding of interlayer rotation effects has remained elusive,
posing significant challenges to realizing the full potential of electronic applications in
2D materials. For example, it has not been explained why, during CVD growth of 2D
layers, there is such a wide range of rotation angles of nucleated domains, leading to
significant grain boundary formation. This limited understanding also adds to the
difficulty of rational design of functional structures and devices at extreme length scales.
For example, existing methods of fine tuning of interlayer rotation (e.g., using an AFM

tip’ to push) inevitably suffer from experimental limitations in the nanoscale regime (e.g.,



in fabricating nanoscale devices and manipulating nanoscale objects). Such lack of
control is undesirable for nanoscale twistronics.* ° So how can one design rotatable
electronics at the nanoscale? How can interlayer rotation of nanoscale nucleated domains
be manipulated during CVD growth? The answers to these questions depend upon a

mechanistic understanding of the driving force behind interlayer rotation in 2D layers.

In this article, we reveal a general moiré-driven mechanism that governs the interlayer
rotation in 2D layers, using bilayer MoS; and graphene as examples. This moiré-driven
mechanism extends our moiré engineering concept'’ and is generalizable to various 2D
materials, in which interlayer rotation between the layers is governed by a periodic
variation of atomic registry at the interface, giving rise to a moiré pattern with a well-
defined periodicity.'"® We find that it is the interface lattice moiré that governs the
interlayer rotation. Given the significance of the coupling between electronic structure
and interlayer rotation in 2D layers, our findings offer another possibilities to the on-

demand design of rotation-tunable electronics.
RESULTS AND DISCUSSION

Figure 1(b) describes the central question of interest in this article. In a 2D bilayer system
in which the top layer takes the shape of an equilateral triangle (motivated by
experimental observations such as those in Figure 1(a)), what is the relationship between

the preferred rotational orientation and the flake size?
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Figure 1. (a) Triangle-shaped nucleated domains of MoS, bilayers grown by chemical
vapour deposition (CVD). Many interlayer rotation angles can be observed.” This imaged
is adapted with permission from ref 4. Copyright 2014 American Chemical Society. (b)
In a 2D bilayer system, how does the preferred rotational orientation relate to the flake

size?

We first use molecular dynamics (MD) simulations to demonstrate rotational behavior
with atomistic resolution. Figure 2(a) and Figure 2(b) describe the MD model, which
consists of two MoS, layers. For the purpose of demonstration, the top layer is modeled
as a triangular flake with side length 10.825 nm (Figure 2(b)). To stack these two layer
together (Figure 2(a)), one must specify a certain initial stacking pattern. Here three
representative initial stacking patterns are considered, namely AA, 3R and 2H, following
the conventional notation of high-symmetry stacking in bilayer MoS,."” These stacking
patterns are chosen since they cover both the highest energy stacking (AA) and the lowest

energy stacking (3R and 2H). The MD simulation proceeds as follows: for a given initial



stacking pattern, an initial rotation is first imposed counterclockwise (Figure 2(c)), and
then changes in the rotation angle are monitored during structural relaxation (See Section
1 in supporting information). The MoS; MD simulation is carried out in LAMMPS*’
using the ReaxFF reactive force field,” which is based on quantum mechanical
simulations and has shown favorable comparison with first-principles data in terms of
mechanical and morphological properties.”’ The energy in ReaxFF includes the
nonbonded van der Waals (vdW) interaction in the form of a distance-corrected Morse-

potential. > >

Figure 2(c) shows the MD simulation results. The top row shows the initial
stacked and rotated, unrelaxed configurations; the bottom row shows the relaxed
configurations from MD simulations. All of the atoms in the top layer triangular flake are
colored white for visual clarity. Quantitative assessment of the rotation angle in Figure
2(c) is done in the framework of continuum mechanics (See Section 1 in supporting
information). For the AA stacking, we find that, if the initial unrelaxed rotation angle is 1
degree, for example, the relaxed rotation angle appears to be more than 1 degree; in other
words, the rotation in the counterclockwise direction continues during relaxation. If the
initial unrelaxed rotation angle is 6 degrees, for example, the relaxed rotation angle
appears to be unchanged. By comparison, we can see that the initial rotation angle
matters. For the 3R stacking, if the initial unrelaxed rotation angle is 2 degrees, for
example, the relaxation does not show the same rotation direction as seen in AA stacking.
The rotation direction reverses, and the relaxed rotation angle is zero, completely back to
the initial 3R stacking. If the initial unrelaxed rotation angle is 3.5 degrees, however, the

relaxed rotation angle appears to be unchanged. The rotation behavior for the 2H stacking

is almost the same as that of the 3R stacking. For example, for 2 degree initial unrelaxed



rotation angle, the relaxed rotation angle is zero. For 3 degree initial unrelaxed rotation
angle, the relaxed rotation angle appears to be unchanged. In view of all these results, it is

apparent that both the initial stacking and initial rotation angle play a role, and that there

might be multiple stable minimum energy configurations.
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Figure 2. (a) schematic showing the MD simulation model, in which a triangular top layer
is placed on a large bottom layer. Three initial stacking patterns of MoS, are studied in
MD simulations. (b) perspective view of the atomistic model of the MoS, bilayer. (¢) MD
simulation results. The top row shows the initial stacked and rotated, unrelaxed

configurations; the bottom row shows the relaxed configurations from MD simulations.

In order to develop a simple understanding of interlayer rotation that can be applied even
at the largest scales, we adopt a generic model that we have described in recent work,'®
and which we refer to here as the interface lattice model (ILM) (Figure 3(a)). The

assumption of this model, motivated by the results of the MD simulations (Figure 2(c)), is



that interfacial interactions dominate, so only the two atomic layers at the interface are
considered, while neglecting all other atoms. The nature of the ILM requires identifying
the interfacial stacking pattern in the full atomistic model (See Section 2 in supporting
information). In our case, the AA stacking in the full atomistic model corresponds to a
unique interfacial stacking, while both 3R and 2H stacking share the same interfacial
stacking type, which is equivalent to AB stacking. Indeed, because the same interfacial
stacking is shared for both 3R and 2H stacking, the ILM predicts that the same rotation
behavior is shared for both 3R and 2H stacking. We then consider the relationship
between interfacial energy and imposed rotation angle using ILM; the calculation results
are shown in Figure 3(b). In addition to the flake size as shown in Figure 2, in order to
explore the effect of flake size, larger and smaller flake sizes (2x and 0.5x, respectively)
are also considered. The horizontal axis is the rotation angle, the vertical axis is the
energy. An immediate observation is that the stacking and size are related. In the case of
AA stacking, the energy is maximum at zero rotation, while in the AB stacking, the
energy is minimum at zero rotation. In addition, increasing the flake size shifts the
location of each of the multiple energy minima or maxima toward zero. This observation
explains growth processes in which interlayer rotation of flakes are seen to have a diverse
distribution, because the energy landscape continually changes with respect to flake size.
To allow a direct comparison between the ILM calculation results and the full MD
simulations, we label the rotation angles on the curve corresponding to the case shown in
Figure 2(c). Examining the location of the nearest local energy minimum for each angle
explains the fully atomistic simulation results. For example, for AA stacking, the initial

one degree rotation angle would relax to 2.83 degrees in the MD simulation, which



corresponds to the first local energy minimum predicted from the ILM. For 3R and 2H
stacking, the initial 3.5 degree rotation angle is already near to the region of the first local
energy minimum, and therefore no significant global rotation is observed. The good
agreement between ILM and full MD confirms that the interface interaction dominates

the rotation behavior.
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Figure 3. (a) schematic showing the interface lattice model (ILM), where only the atomic
layers at the interface are considered. (b) energy-angle curves from the ILM calculation,
for three flake sizes and two interface stacking variants. The labeled angles correspond to

the MD simulation shown in Figure 2.

Although the ILM can explain well the rotation behavior, it does not offer a clear
physical explanation for the energy landscape during rotation. However, the MD
simulation reveals that the moiré patterns are rotation-dependent (see Figure 2), which
motivates us to further investigate the correlation of rotation behavior to the interface
lattice moiré pattern. Figure 4(a) and 4(b) show the obtained interface lattice moiré¢

pattern (See Section 3 in supporting information) for the sets of angles investigated above.



The red colored region corresponds to the high energy stacking domain, while the blue
colored region denotes the low energy stacking domain. Obviously, the interface lattice
moiré is dependent on the interlayer rotation (e.g., the spacing between the high energy
domains decreases as rotation angle increases). In fact, both the orientation and
wavelength of the moiré are dependent on the rotation.” Close inspection shows that
each high energy domain is surrounded by six low energy domains, and each low energy
domain is surrounded by three high energy domains. There are also transitional domains
between high energy domains and low energy domains.'® In addition, whether the high
energy domain or the low energy domain occupies the center of the triangle depends on
the initial stacking. The interfacial AA stacking is associated with the high energy center

(Figure 4(a)) while the AB stacking is associated with the low energy center (Figure 4(b)).

We find that the addition of rows of moiré spots, as rotation increases, is responsible for
the quasi-periodic nature of the energy curve (separating energy minima or maxima).
Taking the interfacial AA stacking as an example, the local minima are reached when the
edges of the triangular shape cut through the centers of the high-energy domains (colored
in red in Figure 4(a)). In such configurations, the area percentage of the low-energy
domains (colored in blue in Figure 4(a)) is maximized. The observation is slightly
different in the case of the interfacial AB stacking. The local maxima are reached when
the edges of the triangular shape cut through the centers of the high-energy domains
(colored in red in Figure 4(b)). In such configurations, the area percentage of the low-
energy domains (colored in blue in Figure 4(b)) is minimized. The above contrast in
energy evolution is apparently related to the type of energy domain at the center of the

triangle.



These observations further motivate us to correlate the interface lattice moiré patterns to
the energy landscape during the rotation. We introduce another level of description that
we describe as a moiré domain model (MDM) (Figure 4(c)) (See Section 4 in supporting
information). Both high energy domains and low energy domains are represented by
circular disks tangential to each other. For a given triangle (representing the top triangle
flake), the MDM energy landscape is calculated by summing up the energies of evolving
regions of the disks within that triangle at a given flake rotation. The geometrical
distribution of these disks at a given rotation can be predetermined.” For example, the
spacing between the centers of high energy domains is a function of the rotation (Figure
4(c)). Figure 4(d) shows good agreement between the angles of the local energy maxima
or minima computed via ILM or MDM, for one triangle size (See Section 5 in supporting
information for other sizes). The extremum index is counted in the angle ascending
direction (excluding zero). For example, for the interfacial AA stacking, the first
extremum corresponds to the first local energy minimum, while for the interfacial AB
stacking, the first extremum corresponds to the first local energy maximum. The striking
agreement of the MDM location of the energy extrema with those from the ILM (Figure

3(b)), indicates that the rotation is fundamentally driven by interface lattice moir¢.
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Figure 4. (a) evolution of interface lattice moiré for interfacial AA stacking from the ILM
calculation. Three sequential local extremum configurations are displayed. Their
corresponding locations on the energy-angle curve are indicated by arrows. Color coding
highlights the domain energy difference. The flake size is the same as in Figure 2. (b)
similar to (a) but for interfacial AB stacking. (¢) Schematic of the moiré domain model
(MDM). For a given triangle (representing the top triangle flake), the MDM energy
landscape is calculated by summing up the energies of evolving regions of the disks
within that triangle at a given rotation. The center of the triangle for AA stacking is high
energy while that for AB stacking is low energy. (d) Agreement between MDM and ILM

in terms of the angles of local maximum or minimum.
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The analysis above establishes that the interlayer rotation is driven by the interface lattice
moiré. This fundamental principle is universal for all types and all sizes of 2D layers
because the interface lattice moiré is intrinsic to any Van der Waals heterostructure. The
general applicability is purely based on geometry. As long as moiré patterns are formed
between two layers of 2D materials with the hexagonal lattice, the high-energy stacking
domains will be in a triangular array, and the low-energy domains will be in a hexagonal
array (See Figure S6 in supporting information). This geometrical similarity of the moiré¢
patterns formed between 2D materials guarantees the general applicability of our theory.
We can expect that, although the sets of data shown so far are calculated for triangular
MoS,; flakes, the same data are quantitatively valid for any triangular 2D material flakes
if the geometrical similarity is met. That is, for different 2D material systems where the
ratio of the triangular flake size to its lattice constant is the same, the rotation behavior
will be, in general, the same. To concretely demonstrate this point, we performed parallel
simulations for bilayer graphene (See Figure S7 and S8 in supporting information). It is
found that the rotation behavior of geometrically-similar graphene systems displays
stunning quantitative agreement with that of the MoS, system. As a result of such general
applicability, it can be further deduced that for 2D material systems where the ratio of the
triangular flake size to its lattice constant is the same, the set of rotation angles for local

energy extremes will be, in general, the same.

Therefore, controlling the interface lattice moiré could lead to control of the interlayer
rotation, offering another possibilities for rotation-tunable electronics, or twistronics. In
principle, the moiré might be controlled using strain (Figure 5(a)) as a control parameter,

since mismatch strain between layers also induces a moiré pattern. Thanks to techniques

12



for applying large elastic deformation, and the capacity of substrate materials to sustain
large elastic deformation, strain engineering is an effective tool to tune the electronic
signatures of 2D materials. For example, elastic tensile strains as large as 10% have
shown promising applications in engineering band gaps in graphene and transition-
metal dichalcogenides (TMDs).”” By manipulating the relative mismatch between layers,
the moiré pattern could be changed, which could lead to spontaneous rotations in
response to the energy landscapes described above. We consider a bilayer system placed
(or grown) on a stretchable substrate, and we consider the possibility that by straining the
bottom layer along with the substrate, one may guide the rotation of the top flake. We
assume that the isolated top flake is not subjected to significant strain due to the
interaction with the substrate. This may be justified in several ways: first, the in-plane
stiffness of the 2D material (resulting from covalent bonding) is typically orders of
magnitude larger than that associated with the non-bonding interaction. Furthermore, the
existence of the bottom layer itself separates the top layer from the substrate by a distance
of more than 0.7 nm, where the non-bonding interactions are expected to have decayed to
near zero. Second, one may intentionally place the top flake on a portion of the bottom
layer that is suspended over pits or channels in the substrate, so that the top flake does not
interact with the substrate at all, but instead with only the strained bottom layer. In either
scenario, we assume that our proposed principles apply, just as if the bottom layer was
stretched by gripping it at its remote edges, far from the top flake. We also want to
emphasize that this scenario of imposing mismatch strain naturally extends to van der

Waals hetero-layers, where the intrinsic lattice mismatch plays the role of strain. Next we
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examine the energy landscape in the parameter space of strain and interlayer rotation

using our computational framework and atomistic simulations.
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Figure 5. (a) schematic showing the concept of strain-induced interlayer rotation, and the
energy map in the space of imposed strain and rotation angle that can guide the rational
design. (b) energy map for biaxial tensile strain, acting on the bottom layer. This is for
flake size that is twice that of Figure 2. Zoomed energy map showing five labeled states
that are connected by an imposed strain path (dashed white arrow) and relaxation path
(dashed gray arrow). The imposed strain path drives state #1 to state #2, and state #3 to
state #4. The system relaxes spontaneously from state #2 to state #3, and from state #4 to
state #5. (c) energy map and paths to tune rotation angle in uniaxial strain condition for

the same system of Figure 5(b). The strain is along the (i) direction in Figure 5(a).
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Figure 5(b) shows an energy map for biaxial tensile strain applied to the bottom layer.
This map is computed using the ILM for bilayer MoS,, while it is also quantitatively
valid for a geometrically-similar bilayer graphene (see Section 7 in supporting
information), further demonstrating the robustness of our theory. The vertical axis
denotes the imposed biaxial strain (up to 10%) on the bottom layer, while the horizontal
axis denotes the interlayer rotation angle (up to 10 degrees). Thus, for imposed biaxial
strain as a tuning input, the map shows the energy of the bilayer system at any interlayer
rotation, which allows us to identify the paths to achieve interlayer rotation that renders
the minimum energy of the system. For example, in the magnified energy map there are
five states labeled. If the bilayer system starts from state #1, reducing the biaxial strain
under fixed rotation drives up the energy of the system as it approaches state #2. If
allowed to rotate, the system would then spontaneously relax to state #3. At this stage,
increasing the biaxial strain then increases the energy of the system to state #4, from
which it can spontaneously rotate and relax to state #5. At this point, by controlling only
the strain in the substrate, the interlayer rotation angle has increased about 2 degrees (see
Figure S11 in supporting information). Figure 5(c) shows the energy map for the same
system that is studied in Figure 5(b) using only uniaxial strain along the (i) direction
(shown in Figure 5(a)), since under certain conditions uniaxial strain might be easier to
implement. In this case it is also possible to identify a seven-state path that can be
connected via strain tuning and rotational relaxation. In this case, the interlayer rotation
angle changes more than 3 degrees (see Figure S12 in supporting information). These
changes of a few degree in interlayer rotation would already be sufficient to induce

significant changes in electronic structure.”® To best interpret the paths, one can think of
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a combined transition vector that is the sum of an applied strain path vector (white dashed
arrow) and a relaxation angle path vector (grey dashed arrow). This combined transition
vector tells the location of the final state of the relaxed system after a particular
magnitude of strain change is imposed. For practical applications, we note that the range
of possible experimental strain rates is typically many orders of magnitudes lower than is
accessible in atomistic simulations. Thus, the quasi-static strain change is more relevant,
which would correspond to the infinite-state path with infinitesimal straining-relaxation
step, best characterized by the concept of the combined transition vector. The sequential
path of applied strain followed by relaxation angle would apply strictly only in the limit

of very high strain rate.

We note a few other interesting implications of these energy maps. For example, we find
that the energy map evolves as the size of the triangular flake increases (see Section 9 in
supporting information), which has implications for the growth process. A state which is
at a local energy minimum for a certain size may not remain stable if the size increases
(e.g., by growth). As a result, the growing flake might rotate to new stable configurations
according to gradients in the energy map. Given that the growth speed of different
nucleated domains may vary considerably due to local conditions, the distribution of
triangular domain sizes might not be expected to remain uniform (e.g., Figure 1(a)), and
therefore their varying rates of interlayer rotation eventually could lead to orientation
mismatch®® and the formation of grain boundaries.””** Such an argument should be in
principle applicable in other 2D material bilayer systems. In fact, a quantitative
calculation (Figure S16) using our current analysis can explain very well the

experimental observed distribution of rotation angle of MoSe, grown on graphene in a
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recent report,” further demonstrating the interest of the method described in current

study for growth processes.

Another interesting possibility is that while strain may be used to tune the interlayer
rotation angle, it may also be possible to use the interlayer rotation to tune the mismatch
strain. In this case, the tuning pathways in Figure 5(b) are reversed. For example, if the
system is at state #3, reducing the interlayer rotation will drive the system up to state #2,
and then the strain relaxation path would lead the system spontaneously to state #1, by
either inducing tensile strain in the bottom layer, or by inducing compressive strain in the
top triangle layer, in order to achieve the corresponding mismatch strain (about 0.03 for
the state #1 as shown in Figure 5(b)). We suggest that imposing the interlayer rotation of

the top flake might be possible using an AFM tip’ on a micrometer-sized system.
CONCLUSION

In conclusion, in this article we reveal a fundamental mechanical principle of interlayer
rotation in layered systems of 2D materials. We find that the moiré is the governing
factor for the interlayer rotation. The preferred interlayer rotation minimizes the total
energy of the moiré domains confined in a finite-sized region. Thus, controlling the moiré
will make it possible to control interlayer rotation. We further demonstrate that strain can
be used to control the interlayer rotation. Our findings add to the fundamental
understanding of interface mechanics in 2D material systems and suggest a strategy for

designing nanoscale rotation-tunable electronics.

METHOD/EXPERIMENTAL SECTION
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The structural relaxation in MD simulation (Figure 2) as well as in interface lattice model
(ILM, Figure 3) is carried out using the conjugate gradient (CG) algorithm followed by
Hessian-free truncated Newton algorithm until either the total energy change between
successive iterations divided by the energy magnitude is less than or equal to 10?° or the
total force is less than 107" eVA™'. The moiré domain model (Figure 4) is a pure
geometry model. The total energy within the area of the triangle is calculated by
summing up the energies of the evolving area of the circles within that triangle boundary
(including partial circles that are cut by the boundary, and the transitional area) at a given
flake rotation. Further detailed description of computational methods can be found in

Supporting Information.
SUPPORTING INFORMATION

The Supporting Information is available free of charge on the ACS Publications website

at DOI:

Additional figures are included in the following sections of the Supporting Information.
Section 1 describes the MD relaxation process and the characterization of rotation angle;
Section 2 describes interfacial stacking of the atomistic structure; Section 3 describes the
interfacial lattice model set up; Section 4 describes the moiré domain model set up;
Section 5 compares the interfacial lattice model and the moiré domain model; Section 6
addresses the general applicability of the model; Section 7 presents energy maps; Section
8 compares the MoSe,/graphene system with experimental data; Section 9 describes

evolving energy landscapes during growth.
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