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ABSTRACT: Interlayer rotational alignment in vdW structures of two-dimensional 

materials couples strongly to electronic properties and, therefore, has significant 

technological implications. Nevertheless, controlling rotation of an arbitrary two-

dimensional material flake remains a challenge in the development of rotation-tunable 

electronics, for the emerging field of twistronics. In this article, we reveal a general 

moiré-driven mechanism that governs the interlayer rotation. Controlling the moiré can 

therefore hold promise for controlling interlayer rotation. We further demonstrate 

mismatch strain engineering as a useful tool to design the interlayer rotation via changing 

the energy landscape of moiré within a finite-sized region. The robustness and 

programmable nature of our approach arise from moiré symmetry, energetics, and 

mechanics. Our approach provides another possibilities to the on-demand design of 

rotation-tunable electronics. 
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Van der Waals (vdW) structures of two-dimensional (2D) materials possess significant 

potential for studying fundamental properties and developing exotic nanoscale 

technologies.1, 2 In such material systems, the relative interlayer rotation between layers 

of 2D materials is a commonly observed feature. For example, the triangle-shaped 

nucleated domains of MoS2 bilayers grown by chemical vapour deposition (CVD) 

usually have several discrete interlayer rotation angles (Figure 1(a));3, 4 a similar 

observation has been made in other 2D material bilayer systems.2 It is well known that 

the interlayer rotation changes interlayer coupling, leading to modulation of electronic 

structures, and tremendous potential for tuning the electronic properties.4-16 For example, 

the photoluminescence spectra of MoS2 bilayers grown by CVD are clearly shown to be 

dependent on rotation.3, 4  In fact, a small variation in interlayer rotation is able to induce 

huge variation in electronic structures. For example, superconducting states in bilayer 

graphene have been observed after imposing a small interlayer rotation of 1.1 degree.6 

Recently, a dynamically rotatable electronic device architecture was used to demonstrate 

significant electronic property variations due to rotations of just a few degrees.9 Until 

now, a fundamental understanding of interlayer rotation effects has remained elusive, 

posing significant challenges to realizing the full potential of electronic applications in 

2D materials. For example, it has not been explained why, during CVD growth of 2D 

layers, there is such a wide range of rotation angles of nucleated domains, leading to 

significant grain boundary formation. This limited understanding also adds to the 

difficulty of rational design of functional structures and devices at extreme length scales. 

For example, existing methods of fine tuning of interlayer rotation (e.g., using an AFM 

tip9 to push) inevitably suffer from experimental limitations in the nanoscale regime (e.g., 
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in fabricating nanoscale devices and manipulating nanoscale objects). Such lack of 

control is undesirable for nanoscale twistronics.8, 9 So how can one design rotatable 

electronics at the nanoscale? How can interlayer rotation of nanoscale nucleated domains 

be manipulated during CVD growth? The answers to these questions depend upon a 

mechanistic understanding of the driving force behind interlayer rotation in 2D layers.  

In this article, we reveal a general moiré-driven mechanism that governs the interlayer 

rotation in 2D layers, using bilayer MoS2 and graphene as examples. This moiré-driven 

mechanism extends our moiré engineering concept17 and is generalizable to various 2D 

materials, in which interlayer rotation between the layers is governed by a periodic 

variation of atomic registry at the interface, giving rise to a moiré pattern with a well-

defined periodicity.18 We find that it is the interface lattice moiré that governs the 

interlayer rotation. Given the significance of the coupling between electronic structure 

and interlayer rotation in 2D layers, our findings offer another possibilities to the on-

demand design of rotation-tunable electronics.  

RESULTS AND DISCUSSION 

Figure 1(b) describes the central question of interest in this article. In a 2D bilayer system 

in which the top layer takes the shape of an equilateral triangle (motivated by 

experimental observations such as those in Figure 1(a)), what is the relationship between 

the preferred rotational orientation and the flake size?  
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Figure 1. (a) Triangle-shaped nucleated domains of MoS2 bilayers grown by chemical 

vapour deposition (CVD). Many interlayer rotation angles can be observed.4 This imaged 

is adapted with permission from ref 4. Copyright 2014 American Chemical Society. (b) 

In a 2D bilayer system, how does the preferred rotational orientation relate to the flake 

size? 

 

We first use molecular dynamics (MD) simulations to demonstrate rotational behavior 

with atomistic resolution. Figure 2(a) and Figure 2(b) describe the MD model, which 

consists of two MoS2 layers. For the purpose of demonstration, the top layer is modeled 

as a triangular flake with side length 10.825 nm (Figure 2(b)). To stack these two layer 

together (Figure 2(a)), one must specify a certain initial stacking pattern. Here three 

representative initial stacking patterns are considered, namely AA, 3R and 2H, following 

the conventional notation of high-symmetry stacking in bilayer MoS2.19 These stacking 

patterns are chosen since they cover both the highest energy stacking (AA) and the lowest 

energy stacking (3R and 2H). The MD simulation proceeds as follows: for a given initial 

Top layer

Bottom layer

Preferred 
rotation?

𝜃′

(b)(a)



 

5	
	

stacking pattern, an initial rotation is first imposed counterclockwise (Figure 2(c)), and 

then changes in the rotation angle are monitored during structural relaxation (See Section 

1 in supporting information). The MoS2 MD simulation is carried out in LAMMPS20 

using the ReaxFF reactive force field,21 which is based on quantum mechanical 

simulations and has shown favorable comparison with first-principles data in terms of 

mechanical and morphological properties.21 The energy in ReaxFF includes the 

nonbonded van der Waals (vdW) interaction in the form of a distance-corrected Morse-

potential.21, 22 Figure 2(c) shows the MD simulation results. The top row shows the initial 

stacked and rotated, unrelaxed configurations; the bottom row shows the relaxed 

configurations from MD simulations. All of the atoms in the top layer triangular flake are 

colored white for visual clarity. Quantitative assessment of the rotation angle in Figure 

2(c) is done in the framework of continuum mechanics (See Section 1 in supporting 

information). For the AA stacking, we find that, if the initial unrelaxed rotation angle is 1 

degree, for example, the relaxed rotation angle appears to be more than 1 degree; in other 

words, the rotation in the counterclockwise direction continues during relaxation. If the 

initial unrelaxed rotation angle is 6 degrees, for example, the relaxed rotation angle 

appears to be unchanged. By comparison, we can see that the initial rotation angle 

matters. For the 3R stacking, if the initial unrelaxed rotation angle is 2 degrees, for 

example, the relaxation does not show the same rotation direction as seen in AA stacking. 

The rotation direction reverses, and the relaxed rotation angle is zero, completely back to 

the initial 3R stacking. If the initial unrelaxed rotation angle is 3.5 degrees, however, the 

relaxed rotation angle appears to be unchanged. The rotation behavior for the 2H stacking 

is almost the same as that of the 3R stacking. For example, for 2 degree initial unrelaxed 
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rotation angle, the relaxed rotation angle is zero. For 3 degree initial unrelaxed rotation 

angle, the relaxed rotation angle appears to be unchanged. In view of all these results, it is 

apparent that both the initial stacking and initial rotation angle play a role, and that there 

might be multiple stable minimum energy configurations.  

 

Figure 2. (a) schematic showing the MD simulation model, in which a triangular top layer 

is placed on a large bottom layer. Three initial stacking patterns of MoS2 are studied in 

MD simulations. (b) perspective view of the atomistic model of the MoS2 bilayer. (c) MD 

simulation results. The top row shows the initial stacked and rotated, unrelaxed 

configurations; the bottom row shows the relaxed configurations from MD simulations. 

 

In order to develop a simple understanding of interlayer rotation that can be applied even 

at the largest scales, we adopt a generic model that we have described in recent work,18 

and which we refer to here as the interface lattice model (ILM) (Figure 3(a)). The 

assumption of this model, motivated by the results of the MD simulations (Figure 2(c)), is 
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that interfacial interactions dominate, so only the two atomic layers at the interface are 

considered, while neglecting all other atoms. The nature of the ILM requires identifying 

the interfacial stacking pattern in the full atomistic model (See Section 2 in supporting 

information). In our case, the AA stacking in the full atomistic model corresponds to a 

unique interfacial stacking, while both 3R and 2H stacking share the same interfacial 

stacking type, which is equivalent to AB stacking. Indeed, because the same interfacial 

stacking is shared for both 3R and 2H stacking, the ILM predicts that the same rotation 

behavior is shared for both 3R and 2H stacking. We then consider the relationship 

between interfacial energy and imposed rotation angle using ILM; the calculation results 

are shown in Figure 3(b). In addition to the flake size as shown in Figure 2, in order to 

explore the effect of flake size, larger and smaller flake sizes (2x and 0.5x, respectively) 

are also considered. The horizontal axis is the rotation angle, the vertical axis is the 

energy. An immediate observation is that the stacking and size are related. In the case of 

AA stacking, the energy is maximum at zero rotation, while in the AB stacking, the 

energy is minimum at zero rotation. In addition, increasing the flake size shifts the 

location of each of the multiple energy minima or maxima toward zero. This observation 

explains growth processes in which interlayer rotation of flakes are seen to have a diverse 

distribution, because the energy landscape continually changes with respect to flake size. 

To allow a direct comparison between the ILM calculation results and the full MD 

simulations, we label the rotation angles on the curve corresponding to the case shown in 

Figure 2(c). Examining the location of the nearest local energy minimum for each angle 

explains the fully atomistic simulation results. For example, for AA stacking, the initial 

one degree rotation angle would relax to 2.83 degrees in the MD simulation, which 
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corresponds to the first local energy minimum predicted from the ILM. For 3R and 2H 

stacking, the initial 3.5 degree rotation angle is already near to the region of the first local 

energy minimum, and therefore no significant global rotation is observed. The good 

agreement between ILM and full MD confirms that the interface interaction dominates 

the rotation behavior.  

 

Figure 3. (a) schematic showing the interface lattice model (ILM), where only the atomic 

layers at the interface are considered. (b) energy-angle curves from the ILM calculation, 

for three flake sizes and two interface stacking variants. The labeled angles correspond to 

the MD simulation shown in Figure 2. 

 

Although the ILM can explain well the rotation behavior, it does not offer a clear 

physical explanation for the energy landscape during rotation. However, the MD 

simulation reveals that the moiré patterns are rotation-dependent (see Figure 2), which 

motivates us to further investigate the correlation of rotation behavior to the interface 

lattice moiré pattern. Figure 4(a) and 4(b) show the obtained interface lattice moiré 

pattern (See Section 3 in supporting information) for the sets of angles investigated above. 
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The red colored region corresponds to the high energy stacking domain, while the blue 

colored region denotes the low energy stacking domain. Obviously, the interface lattice 

moiré is dependent on the interlayer rotation (e.g., the spacing between the high energy 

domains decreases as rotation angle increases). In fact, both the orientation and 

wavelength of the moiré are dependent on the rotation.23 Close inspection shows that 

each high energy domain is surrounded by six low energy domains, and each low energy 

domain is surrounded by three high energy domains. There are also transitional domains 

between high energy domains and low energy domains.18 In addition, whether the high 

energy domain or the low energy domain occupies the center of the triangle depends on 

the initial stacking. The interfacial AA stacking is associated with the high energy center 

(Figure 4(a)) while the AB stacking is associated with the low energy center (Figure 4(b)).  

We find that the addition of rows of moiré spots, as rotation increases, is responsible for 

the quasi-periodic nature of the energy curve (separating energy minima or maxima). 

Taking the interfacial AA stacking as an example, the local minima are reached when the 

edges of the triangular shape cut through the centers of the high-energy domains (colored 

in red in Figure 4(a)). In such configurations, the area percentage of the low-energy 

domains (colored in blue in Figure 4(a)) is maximized. The observation is slightly 

different in the case of the interfacial AB stacking. The local maxima are reached when 

the edges of the triangular shape cut through the centers of the high-energy domains 

(colored in red in Figure 4(b)). In such configurations, the area percentage of the low-

energy domains (colored in blue in Figure 4(b)) is minimized. The above contrast in 

energy evolution is apparently related to the type of energy domain at the center of the 

triangle. 
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These observations further motivate us to correlate the interface lattice moiré patterns to 

the energy landscape during the rotation. We introduce another level of description that 

we describe as a moiré domain model (MDM) (Figure 4(c)) (See Section 4 in supporting 

information). Both high energy domains and low energy domains are represented by 

circular disks tangential to each other. For a given triangle (representing the top triangle 

flake), the MDM energy landscape is calculated by summing up the energies of evolving 

regions of the disks within that triangle at a given flake rotation. The geometrical 

distribution of these disks at a given rotation can be predetermined.23 For example, the 

spacing between the centers of high energy domains is a function of the rotation (Figure 

4(c)). Figure 4(d) shows good agreement between the angles of the local energy maxima 

or minima computed via ILM or MDM, for one triangle size (See Section 5 in supporting 

information for other sizes). The extremum index is counted in the angle ascending 

direction (excluding zero). For example, for the interfacial AA stacking, the first 

extremum corresponds to the first local energy minimum, while for the interfacial AB 

stacking, the first extremum corresponds to the first local energy maximum. The striking 

agreement of the MDM location of the energy extrema with those from the ILM (Figure 

3(b)), indicates that the rotation is fundamentally driven by interface lattice moiré. 
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Figure 4. (a) evolution of interface lattice moiré for interfacial AA stacking from the ILM 

calculation. Three sequential local extremum configurations are displayed. Their 

corresponding locations on the energy-angle curve are indicated by arrows. Color coding 

highlights the domain energy difference. The flake size is the same as in Figure 2. (b) 

similar to (a) but for interfacial AB stacking. (c) Schematic of the moiré domain model 

(MDM). For a given triangle (representing the top triangle flake), the MDM energy 

landscape is calculated by summing up the energies of evolving regions of the disks 

within that triangle at a given rotation. The center of the triangle for AA stacking is high 

energy while that for AB stacking is low energy. (d) Agreement between MDM and ILM 

in terms of the angles of local maximum or minimum. 
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The analysis above establishes that the interlayer rotation is driven by the interface lattice 

moiré. This fundamental principle is universal for all types and all sizes of 2D layers 

because the interface lattice moiré is intrinsic to any Van der Waals heterostructure. The 

general applicability is purely based on geometry. As long as moiré patterns are formed 

between two layers of 2D materials with the hexagonal lattice, the high-energy stacking 

domains will be in a triangular array, and the low-energy domains will be in a hexagonal 

array (See Figure S6 in supporting information). This geometrical similarity of the moiré 

patterns formed between 2D materials guarantees the general applicability of our theory. 

We can expect that, although the sets of data shown so far are calculated for triangular 

MoS2 flakes, the same data are quantitatively valid for any triangular 2D material flakes 

if the geometrical similarity is met. That is, for different 2D material systems where the 

ratio of the triangular flake size to its lattice constant is the same, the rotation behavior 

will be, in general, the same. To concretely demonstrate this point, we performed parallel 

simulations for bilayer graphene (See Figure S7 and S8 in supporting information). It is 

found that the rotation behavior of geometrically-similar graphene systems displays 

stunning quantitative agreement with that of the MoS2 system. As a result of such general 

applicability, it can be further deduced that for 2D material systems where the ratio of the 

triangular flake size to its lattice constant is the same, the set of rotation angles for local 

energy extremes will be, in general, the same. 

Therefore, controlling the interface lattice moiré could lead to control of the interlayer 

rotation, offering another possibilities for rotation-tunable electronics, or twistronics. In 

principle, the moiré might be controlled using strain (Figure 5(a)) as a control parameter, 

since mismatch strain between layers also induces a moiré pattern. Thanks to techniques 
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for applying large elastic deformation, and the capacity of substrate materials to sustain 

large elastic deformation, strain engineering is an effective tool to tune the electronic 

signatures of 2D materials. For example, elastic tensile strains as large as 10% have 

shown promising applications in engineering band gaps in graphene24 and transition-

metal dichalcogenides (TMDs).25 By manipulating the relative mismatch between layers, 

the moiré pattern could be changed, which could lead to spontaneous rotations in 

response to the energy landscapes described above. We consider a bilayer system placed 

(or grown) on a stretchable substrate, and we consider the possibility that by straining the 

bottom layer along with the substrate, one may guide the rotation of the top flake. We 

assume that the isolated top flake is not subjected to significant strain due to the 

interaction with the substrate. This may be justified in several ways: first, the in-plane 

stiffness of the 2D material (resulting from covalent bonding) is typically orders of 

magnitude larger than that associated with the non-bonding interaction. Furthermore, the 

existence of the bottom layer itself separates the top layer from the substrate by a distance 

of more than 0.7 nm, where the non-bonding interactions are expected to have decayed to 

near zero. Second, one may intentionally place the top flake on a portion of the bottom 

layer that is suspended over pits or channels in the substrate, so that the top flake does not 

interact with the substrate at all, but instead with only the strained bottom layer. In either 

scenario, we assume that our proposed principles apply, just as if the bottom layer was 

stretched by gripping it at its remote edges, far from the top flake. We also want to 

emphasize that this scenario of imposing mismatch strain naturally extends to van der 

Waals hetero-layers, where the intrinsic lattice mismatch plays the role of strain. Next we 
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examine the energy landscape in the parameter space of strain and interlayer rotation 

using our computational framework and atomistic simulations.  

 

Figure 5. (a) schematic showing the concept of strain-induced interlayer rotation, and the 

energy map in the space of imposed strain and rotation angle that can guide the rational 

design. (b) energy map for biaxial tensile strain, acting on the bottom layer. This is for 

flake size that is twice that of Figure 2. Zoomed energy map showing five labeled states 

that are connected by an imposed strain path (dashed white arrow) and relaxation path 

(dashed gray arrow). The imposed strain path drives state #1 to state #2, and state #3 to 

state #4. The system relaxes spontaneously from state #2 to state #3, and from state #4 to 

state #5.  (c) energy map and paths to tune rotation angle in uniaxial strain condition for 

the same system of Figure 5(b). The strain is along the (i) direction in Figure 5(a).  
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Figure 5(b) shows an energy map for biaxial tensile strain applied to the bottom layer. 

This map is computed using the ILM for bilayer MoS2, while it is also quantitatively 

valid for a geometrically-similar bilayer graphene (see Section 7 in supporting 

information), further demonstrating the robustness of our theory. The vertical axis 

denotes the imposed biaxial strain (up to 10%) on the bottom layer, while the horizontal 

axis denotes the interlayer rotation angle (up to 10 degrees). Thus, for imposed biaxial 

strain as a tuning input, the map shows the energy of the bilayer system at any interlayer 

rotation, which allows us to identify the paths to achieve interlayer rotation that renders 

the minimum energy of the system. For example, in the magnified energy map there are 

five states labeled. If the bilayer system starts from state #1, reducing the biaxial strain 

under fixed rotation drives up the energy of the system as it approaches state #2. If 

allowed to rotate, the system would then spontaneously relax to state #3. At this stage, 

increasing the biaxial strain then increases the energy of the system to state #4, from 

which it can spontaneously rotate and relax to state #5. At this point, by controlling only 

the strain in the substrate, the interlayer rotation angle has increased about 2 degrees (see 

Figure S11 in supporting information). Figure 5(c) shows the energy map for the same 

system that is studied in Figure 5(b) using only uniaxial strain along the (i) direction 

(shown in Figure 5(a)), since under certain conditions uniaxial strain might be easier to 

implement. In this case it is also possible to identify a seven-state path that can be 

connected via strain tuning and rotational relaxation. In this case, the interlayer rotation 

angle changes more than 3 degrees (see Figure S12 in supporting information). These 

changes of a few degree in interlayer rotation would already be sufficient to induce 

significant changes in electronic structure.6, 9 To best interpret the paths, one can think of 
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a combined transition vector that is the sum of an applied strain path vector (white dashed 

arrow) and a relaxation angle path vector (grey dashed arrow). This combined transition 

vector tells the location of the final state of the relaxed system after a particular 

magnitude of strain change is imposed. For practical applications, we note that the range 

of possible experimental strain rates is typically many orders of magnitudes lower than is 

accessible in atomistic simulations. Thus, the quasi-static strain change is more relevant, 

which would correspond to the infinite-state path with infinitesimal straining-relaxation 

step, best characterized by the concept of the combined transition vector. The sequential 

path of applied strain followed by relaxation angle would apply strictly only in the limit 

of very high strain rate. 

We note a few other interesting implications of these energy maps. For example, we find 

that the energy map evolves as the size of the triangular flake increases (see Section 9 in 

supporting information), which has implications for the growth process. A state which is 

at a local energy minimum for a certain size may not remain stable if the size increases 

(e.g., by growth). As a result, the growing flake might rotate to new stable configurations 

according to gradients in the energy map. Given that the growth speed of different 

nucleated domains may vary considerably due to local conditions, the distribution of 

triangular domain sizes might not be expected to remain uniform (e.g., Figure 1(a)), and 

therefore their varying rates of interlayer rotation eventually could lead to orientation 

mismatch26 and the formation of grain boundaries.27, 28 Such an argument should be in 

principle applicable in other 2D material bilayer systems. In fact, a quantitative 

calculation (Figure S16) using our current analysis can explain very well the 

experimental observed distribution of rotation angle of MoSe2 grown on graphene in a 
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recent report,29 further demonstrating the interest of the method described in current 

study for growth processes.  

Another interesting possibility is that while strain may be used to tune the interlayer 

rotation angle, it may also be possible to use the interlayer rotation to tune the mismatch 

strain. In this case, the tuning pathways in Figure 5(b) are reversed. For example, if the 

system is at state #3, reducing the interlayer rotation will drive the system up to state #2, 

and then the strain relaxation path would lead the system spontaneously to state #1, by 

either inducing tensile strain in the bottom layer, or by inducing compressive strain in the 

top triangle layer, in order to achieve the corresponding mismatch strain (about 0.03 for 

the state #1 as shown in Figure 5(b)). We suggest that imposing the interlayer rotation of 

the top flake might be possible using an AFM tip9 on a micrometer-sized system.  

CONCLUSION  

In conclusion, in this article we reveal a fundamental mechanical principle of interlayer 

rotation in layered systems of 2D materials. We find that the moiré is the governing 

factor for the interlayer rotation. The preferred interlayer rotation minimizes the total 

energy of the moiré domains confined in a finite-sized region. Thus, controlling the moiré 

will make it possible to control interlayer rotation. We further demonstrate that strain can 

be used to control the interlayer rotation. Our findings add to the fundamental 

understanding of interface mechanics in 2D material systems and suggest a strategy for 

designing nanoscale rotation-tunable electronics.  

METHOD/EXPERIMENTAL SECTION 
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The structural relaxation in MD simulation (Figure 2) as well as in interface lattice model 

(ILM, Figure 3) is carried out using the conjugate gradient (CG) algorithm followed by 

Hessian-free truncated Newton algorithm until either the total energy change between 

successive iterations divided by the energy magnitude is less than or equal to 10-20 or the 

total force is less than 10−15 eVÅ−1. The moiré domain model (Figure 4) is a pure 

geometry model. The total energy within the area of the triangle is calculated by 

summing up the energies of the evolving area of the circles within that triangle boundary 

(including partial circles that are cut by the boundary, and the transitional area) at a given 

flake rotation. Further detailed description of computational methods can be found in 

Supporting Information. 

SUPPORTING INFORMATION 

The Supporting Information is available free of charge on the ACS Publications website 

at DOI: 

Additional figures are included in the following sections of the Supporting Information. 

Section 1 describes the MD relaxation process and the characterization of rotation angle; 

Section 2 describes interfacial stacking of the atomistic structure; Section 3 describes the 

interfacial lattice model set up; Section 4 describes the moiré domain model set up; 

Section 5 compares the interfacial lattice model and the moiré domain model; Section 6 

addresses the general applicability of the model; Section 7 presents energy maps; Section 

8 compares the MoSe2/graphene system with experimental data; Section 9 describes 

evolving energy landscapes during growth. 
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