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In recent years, the proliferation of online resumes and the need to evaluate large populations of candi- 

dates for on-site and virtual teams have led to a growing interest in automated team-formation. Given 

a large pool of candidates, the general problem requires the selection of a team of experts to complete 

a given task. Surprisingly, while ongoing research has studied numerous variations with different con- 

straints, it has overlooked a factor with a well-documented impact on team cohesion and performance: 

team faultlines. Addressing this gap is challenging, as the available measures for faultlines in existing 

teams cannot be efficiently applied to faultline optimization. In this work, we meet this challenge with 

a new measure that can be efficiently used for both faultline measurement and minimization. We then 

use the measure to solve the problem of automatically partitioning a large population into low-faultline 

teams. By introducing faultlines to the team-formation literature, our work creates exciting opportuni- 

ties for algorithmic work on faultline optimization, as well as on work that combines and studies the 

connection of faultlines with other influential team characteristics. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The problem of organizing the individuals in a given popula-

ion into teams emerges in multiple domains. In a business setting,

he workforce of a firm is organized in groups, with each group

edicated to a different project ( Mohrman, Cohen, & Morhman Jr,

995 ). In an educational context, it is common for the instruc-

or to partition the students in her class into small teams, with

eam members collaborating to complete different types of as-

ignments ( Agrawal, Golshan, & Terzi, 2014a, 2014b; Bahargam,

rdos, Bestavros, & Terzi, 2017; Webb, 1982 ). In a government

etting, elected officials are organized in committees that design

nd implement policies for a wide spectrum of critical issues

 Fenno, 1973 ). 

In recent years, the proliferation of online resumes and the

eed to evaluate large populations of candidates for on-site and

irtual teams have led to a growing interest in automated team-

ormation ( Agrawal, Golshan, & Terzi, 2014b; An, Kargar, & ZiHayat,

013; Anagnostopoulos, Becchetti, Castillo, Gionis, & Leonardi,

012; Bahargam, Erdos, Bestavros, & Terzi, 2015; Dorn & Dustdar,

010; Gajewar & Sarma, 2012; Golshan, Lappas, & Terzi, 2014; Kar-

ar & An, 2011; Lappas, Liu, & Terzi, 2009; Li & Shan, 2010; Sozio
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 Gionis, 2010 ). Given a large pool of candidates, the general prob-

em requires the selection of a team of experts to complete a given

ask. The ongoing literature has studied numerous problem vari-

tions with different constraints and optimization criteria. Exam-

les include the coverage of all the skills required to achieve a set

f goals ( Gajewar & Sarma, 2012; Lappas et al., 2009; Li & Shan,

010 ), smooth communication among the members of the team

 Anagnostopoulos et al., 2012; Kargar, An, & Zihayat, 2012; Lap-

as et al., 2009; Rangapuram, Bühler, & Hein, 2013 ), the minimiza-

ion of the cost of recruiting promising candidates ( Golshan et al.,

014; Kargar et al., 2012 ), scheduling constraints ( Durfee, Boerkoel,

 Sleight, 2014 ), the balancing of the workload assigned to each

ember ( Anagnostopoulos et al., 2012 ), and the need for effective

eadership ( Kargar & An, 2011 ). 

Surprisingly, while ongoing research on team formation has

tudied numerous variations with different constraints, it has over-

ooked a factor with a well-documented impact on a team cohe-

ion and performance: team faultlines . The faultline concept was in-

roduced in the seminal work by Lau and Murnighan (1998) . Fault-

ines manifest as hypothetical dividing lines that split a group into

elatively homogeneous subgroups based on multiple attributes

 Lau & Murnighan, 1998; Meyer & Glenz, 2013 ). The considera-

ion of multiple attributes is critical, as it distinguishes relevant

ork from the study on single-attribute faultlines, referred to as a

separation” ( Harrison & Klein, 2007 ). The team-formation frame- 

ork that we describe in this work focused on the general multi-

https://doi.org/10.1016/j.eswa.2018.10.046
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.10.046&domain=pdf
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attribute paradigm. Faultline-caused subgroups are in risk of col-

liding, leading to costly conflicts, poor communication, and disin-

tegration ( Bezrukova, Jehn, Zanutto, & Thatcher, 2009; Choi & Sy,

2010; Gratton, Voigt, & Erickson, 2011; Jehn & Bezrukova, 2010;

Li & Hambrick, 2005; Molleman, 2005; Polzer, Crisp, Jarvenpaa, &

Kim, 2006; Shaw, 2004; Thatcher, Jehn, & Zanutto, 2003 ). 

Bridging the faultline literature with automated team-formation

is challenging, as the available measures for faultlines in exist-

ing teams cannot be efficiently used for faultline optimization.

For instance, many faultline measures utilize clustering algorithms

to identify the large homogenous groups that create faultlines

within a team ( Barkema & Shvyrkov, 2007; Jehn & Bezrukova,

2010; Lawrence & Zyphur, 2011; Meyer & Glenz, 2013; Meyer,

Glenz, Antino, Rico, & González-Romá, 2014 ). While such mea-

sures have emerged as the state-of-the-art, their clustering step

requires a pre-existing team. Therefore, in a team-formation set-

ting, a clustering-based measure would need to naively consider

all (or an exponential number) of possible teams in order to find a

faultline-minimizing solution. This brute-force approach is not ap-

plicable to even moderately-sized populations. Similarly, we can-

not use any of the existing measures based on expensive (and of-

ten exponential) computations to identify the subgroups within a

team ( Bezrukova et al., 20 09; Shaw, 20 04; Thatcher et al., 20 03;

Trezzini, 2008; Van Knippenberg, Dawson, West, & Homan, 2011;

Zanutto, Bezrukova, & Jehn, 2011 ). 

In this work, we describe the fundamental efficiency principles

that a faultline measure needs to follow in order to be applica-

ble to the automated formation of faultline-minimizing teams. We

then introduce Conflict Triangles ( CT ): a new measure that follows

these principles. The CT measure is consistent with the principles

of faultline theory ( Lau & Murnighan, 1998 ) and is founded on the

extensive work on the balance of social structures ( Cartwright &

Harary, 1956; Easley & Kleinberg, 2010; Heider, 1958; Morrissette

& Jahnke, 1967 ). We then use this measure as the objective func-

tion for the problem of partitioning a given population into teams,

such that the average faultline score per team is minimized. We re-

fer to this as the Faultline-Partitioning problem and for-

mally define it in Section 4 . Our work thus makes the following

contributions: 

1. We initiate research on the unexplored overlap between the

decades of work on team faultlines and the rapidly emerging

field of automated team formation. 

2. We describe the fundamental efficiency principles that a fault-

line measure has to satisfy to be applicable to faultline-aware

team-formation. 

3. We present a new measure that follows these principles can

thus be used for both faultline measurement and minimiza-

tion. Our evaluation demonstrates the measure’s effectiveness

in both tasks. 

4. We formally define the Faultline-Partitioning prob-

lem, analyze its complexity, and present an efficient algorithmic

framework for its solution. 

By introducing faultlines to automated team-formation, our

work creates exciting opportunities for algorithmic work on fault-

line optimization, as well as on work that combines and studies

the connection of faultlines with other influential team character-

istics. In Section 8 , we discuss the implications of our work for

practitioners in both organizational and educational settings and

discuss potential directions for future work. 

2. Background and motivation 

To the best of our knowledge, our work is the first to incorpo-

rate faultlines in an algorithmic framework for automated team-

formation. However, our work is related to three types of research:
 i ) algorithmic frameworks for optimizing various factors that af-

ect the performance of a team. ( ii ) management, psychology and

ociology studies on faultlines and their effects on team outcomes,

nd ( iii ) effort s measure faultlines in existing teams. Next, we dis-

uss each of these categories in more detail. 

.1. Algorithmic work on team formation 

Our previous work ( Lappas et al., 2009 ) studied the problem of

utomated team-formation in the context of social networks. Given

 pool of experts and a set of skills that needed to be covered, the

oal there is to select a team of experts that can collectively cover

ll the required skills, while ensuring efficient intra-team commu-

ication. Over the last years, this work has been extended to iden-

ify a single team or a collection of teams that optimize different

actors that influence a team’s performance. For example, a signif-

cant body of work has focused on incorporating different defini-

ions of the communication cost among experts ( An et al., 2013;

nagnostopoulos et al., 2012; Dorn & Dustdar, 2010; Gajewar &

arma, 2012; Galbrun, Golshan, Gionis, & Terzi, 2017; Kargar & An,

011; Li & Shan, 2010; Sozio & Gionis, 2010 ). Other work has also

ocused on optimizing the cost of recruiting promising candidates

 An et al., 2013; Golshan et al., 2014 ), minimizing the workload

ssigned to each individual team member ( Anagnostopoulos, Bec-

hetti, Castillo, Gionis, & Leonardi, 2010; 2012 ), satisfying schedul-

ng constraints ( Durfee et al., 2014 ), identifying effective leaders

 Kargar & An, 2011 ), and optimizing the individual’s benefit from

eam participation ( Agrawal et al., 2014b; Bahargam et al., 2015 ).

lthough all these effort s f ocus on optimizing various teams as-

ects, the work that we describe in this paper is the first to ad-

ress faultline optimization. As we describe in our work, minimiz-

ng faultline potential raises new algorithmic challenges that can-

ot be addressed by extant algorithmic solutions. 

.2. Studies on the effects of team faultlines 

For decades, researchers from various disciplines have stud-

ed the creation, operation, and performance of teams in dif-

erent settings. Faultline theory was introduced by Lau and

urnighan (1998) . It has since been the focus of numerous follow-

p works. A number of papers have studied how the existence of

aultlines within a team can lead to conflict ( Choi & Sy, 2010; Li

 Hambrick, 2005; Thatcher et al., 2003 ) and affect functionality

 Molleman, 2005; Polzer et al., 2006 ) and performance ( Bezrukova

t al., 2009; Thatcher et al., 2003 ). Motivated by the observation

hat the existence of faultlines does not guarantee the formation of

olliding subgroups, researchers have also studied the factors that

an lead to faultline activation ( Jehn & Bezrukova, 2010; Pearsall,

llis, & Evans, 2008 ). Further, Gratton et al. (2011) explored strate-

ies that a leader or manager can follow to effectively handle or

void the emergence of faultlines within a team. 

.3. Operationalizing faultline strength 

Previous work has suggested various methods for evaluating

aultlines in teams. Even though the original faultline paper by

au and Murnighan (1998) serves as the foundation of the long

ine of relevant literature and introduces principles that we also

dopt in our work, it does not define a faultline measure. Instead,

he authors lay out fundamental principles that a measure needs

o follow in order to accurately evaluate the faultline strength in

 given team. While these principles are appropriate for faultline

easurement, they are not sufficient to ensure that a qualifying

easure will also have the computational efficiency required to

erve as the objective function of a scalable algorithm that has to
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rocess large populations of candidates to create teams with mini-

al faultlines. Computational efficiency is critical in this setting, as

ach of the hundreds or thousands of individuals in the given pop-

lation can be represented by a point in a multidimensional space

f attributes (e.g. demographics, resume information). Any team-

ormation algorithm would then have to efficiently navigate this

pace and quickly evaluate the faultline strength of many differ-

nt combinations in order to identify faultline-minimizing teams.

herefore, in order to be efficiently applicable to faultline mini-

ization, a faultline measure should follow the following two effi-

iency principles: 

• Linear Computation: The measure should be easy to compute

for a given team in polynomial time. 
• Constant Updates: The measure should be easy to update in

constant time if one person joins or leaves the team. 

In Section 3 , we introduce Conflict Triangles ( CT ): a new

easure that provides these two characteristics. The CT mea-

ure is consistent with the principles of faultline theory ( Lau &

urnighan, 1998 ) and is founded on the extensive work on the

alance of social structures ( Cartwright & Harary, 1956; Easley &

leinberg, 2010; Heider, 1958; Morrissette & Jahnke, 1967 ). Next,

e review the extensive literature on faultline measurement and

iscuss the shortcomings of extant measures in the context of the

wo efficiency principles that are necessary for automated team-

ormation. 

.3.1. State of the art in faultline measurement 

A long line of literature has focused on identifying and mea-

uring the strength of faultlines in existing teams. In recent years,

lustering-based algorithms have emerged as the state of the art

or this purpose ( Barkema & Shvyrkov, 2007; Jehn & Bezrukova,

010; Lawrence & Zyphur, 2011; Meyer & Glenz, 2013; Meyer

t al., 2014 ). This line of work is exemplified by the 3-step Av-

rage Silhouette Width ( ASW ) approach proposed by Meyer and

lenz (2013) . Given a team of individuals, the first step includes

pplying an agglomerative-clustering algorithm for pre-clustering

he team’s members. Agglomerative clustering begins by assigning

ach member to its own cluster. The two most similar clusters are

hen iteratively joined until all points belong to the same cluster.

he authors of the original paper experiment with the two most

opular merging criteria: Ward’s algorithm and Average Linkage

AL). Thus, for a team with n members, the joint set of results from

he two alternatives yields a total of 2 ×n possible configurations

2 for each possible number of clusters). 

The second step focuses on computing the ASW of each possi-

le configuration ( Rousseeuw, 1987 ). The silhouette s ( i ) of an indi-

idual i quantifies how well a team member i fits into its cluster

n comparison to all other clusters and is formally defined as: 

 (i ) = 

b i − αi 

max (αi , b i ) 
, 

here a i is the average distance of i to all other point in its cluster

nd b i is the lowest average distance of i to all points in any other

luster of which i is not a member. The silhouette ranges from −1

o +1 , where a high value indicates that the object is well matched

o its own cluster and poorly matched to others. The ASW is the

verage silhouette of all the team’s members. 

The third step employs a post-processing method to maximize

he ASW of each configuration, by temporarily moving individuals

cross subgroups and recomputing the ASW after each move. The

ove that leads to the highest increase is made permanent. The

rocess continues until no further improvement is possible. Finally,

he maximum ASW score over all configurations is reported as the

trength of the team’s faultline structure. 
Using ASW in automated team-formation: Previous work has

epeatedly verified the advantage of the ASW measure over al-

ernative approaches ( Meyer & Glenz, 2013; Meyer et al., 2014 ).

owever, the measure cannot be efficiently used as the objective

unction for team-formation algorithms, as it is designed to evalu-

te faultline strength in existing teams and assumes that the com-

osition of a team is part of the input. As stated earlier in this

ection, an appropriate measure for faultline minimization should

e easy to compute in linear time and easy to update in constant

ime. However, Given a team of n individuals, the complexity of the

gglomerative-clustering step alone is O ( n 2 logn ) ( Rokach & Mai-

on, 2005 ). There is then no guarantee on the number of reassign-

ents that it will take for the ASW score to converge. In addition,

he score cannot be updated in constant time. Instead, the dele-

ion or addition of a member would require the new team to be

e-evaluated from scratch, in order to compute the optimal ASW

core. 

In theory, a practitioner could consider all possible teams, eval-

ate their respective faultline strengths, and choose the optimum.

n practice, however, this brute-force approach is not scalable and

an only be applied to populations of trivial size. It can cer-

ainly not be applied to populations of hundreds or thousands

f individuals, which are common in the team-formation litera-

ure ( Anagnostopoulos et al., 2010; 2012; Lappas et al., 2009 ). The

eam-partitioning task that we address in this work is consider-

bly more computationally challenging than single-team formation.

n order to use the ASW measure for this task, a practitioner

ould have to consider all possible partitionings of a population

nto fixed-size, non-overlapping teams. This is a computationally

ntractable process that would have to consider O ( N !) alternatives.

imilar to the ASW measure, other clustering-based approaches

re also excluded from automated team-formation due to compu-

ational efficiency ( Barkema & Shvyrkov, 2007; Lawrence & Zyphur,

011 ). 

.3.2. Other faultline measures 

Similar to clustering-based approaches, most existing fault-

ine measures are not applicable to team-formation tasks due

o computational efficiency. For instance, the cost to compute

he Index of Polarized Multi-Dimensional Diversity proposed by

rezzini (2008) grows exponentially with the number of attributes.

he SGA measure by Carton and Cummings (2013) depends on

he exhaustive evaluation of every possible partition of a given

roup with two or more subgroups. Similarly, the FLS measure

y Shaw (2004) depends on the computation and averaging of all

ossible internal alignments and cross-product alignments of every

eature with respect to the subgroups of every other feature. Given

hat each of these constructs has to be updated every time a per-

on is added to or removed from a team, the FLS formula cannot

e updated in constant time. The measure proposed by Van Knip-

enberg et al. (2011) uses regression analysis to measure the vari-

nce of each attribute that is explained by all other attributes. De-

pite its advantages in a measurement setting, running multiple

egressions for every candidate team is not a realistic option in a

eam-formation setting. 

Thatcher et al. (2003) propose a formula for computing the por-

ion of the total variance explained by a given segmentation of

 team into subgroups. Their final faultline measure Fau g is then

efined as the score of the segmentation that maximizes the for-

ula. However, the measure can only be applied for segmenta-

ions of two subgroups due to (i) the exhaustive nature of the

earch for the best split that makes the cost prohibitive in a team-

ormation setting, and (ii) the fact that, if we allow the number

f subgroups to vary arbitrarily, the solution that maximizes the

ormula is to trivially assign each individual to its own subgroup.

ence, an algorithm that uses this measure to create low-faultline
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Fig. 1. Triangles associated with the country of origin, gender, and educational 

background. 
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teams would never choose to create highly diverse teams, despite

the fact that high diversity is associated with low faultlines ( Lau

& Murnighan, 1998 ). These limitations are inherited by follow up

effort s that extend this measure ( Bezrukova et al., 2009; Zanutto

et al., 2011 ). The measure by Li and Hambrick (2005) assumes a

specific attribute of interest and is not suitable for evaluating team

faultlines across attributes. This is also the reason that the mea-

sure has been excluded by comparative studies of faultline mea-

sures ( Meyer & Glenz, 2013 ). 

Another relevant construct is the Subgroup Strength measure

proposed by Gibson and Vermeulen (2003) . While this measure is

not designed for faultline measurement, it is relevant due to its

focus on subgroups. Its creators posit that strong subgroups exist

if there is high variability in the extent to which attributes over-

lap in the dyads within a team. Their measure is thus based on

computing the pairwise similarities between the team’s members

across all attributes. The team’s subgroup strength is then com-

puted as the standard deviation over all possible member pairs.

Even though this measure is not specifically designed for faultline

measurement, it is easy to compute and to update, as required by

the team-formation paradigm. Hence, we include this measure in

our experimental evaluation in Section 5 . 

3. Operationalizing a team’s faultline potential 

We consider a pool W of n individual workers. Each worker

i ∈ W is associated with an m -dimensional feature vector w i , such

that w i ( f ) returns the value of feature f for worker i . For each fea-

ture f , we create a complete signed graph G f that includes one node

for each worker in W . The sign of the edge between two nodes

(workers) ( i, i ′ ) is positive if they have the same value for feature

f (i.e. w i ( f ) = w i ′ ( f ) ) and negative otherwise. Consider the follow-

ing example: 

Example 1. We are given a pool of 3 workers, where each worker

is described by 3 features: country of origin, gender , and undergrad-

uate major . Our data thus consists of the following feature vec-

tors: 

w 1 = [ India , Male , Computer Science ] 

w 2 = [ India , Male , Business ] 

w 3 = [ China , Male , Chemistry ] 

Fig. 1 shows the graphs for the three features. 

A long line of relevant literature has established the use of

triangles to model social structures ( Cartwright & Harary, 1956;

Easley & Kleinberg, 2010; Heider, 1958; Morrissette & Jahnke,

1967 ). In our own setting, the triangle represents the fundamen-

tal building block of our faultline measure, as any structure that

includes more members (e.g. a rectangle) can be trivially modeled

via (or broken down to) triangles. The figure reveals the existence

of 3 possible types of triangles among the members of the team,

according to the signs on their edges: (+ , + , +) , (−, −, −) , and
(−, −, +) . By definition, (+ , + , −) triangles cannot exist as they

ould imply that 2 individuals have the same value as the third

ne but not the same as each other. We observe that faultlines

an only appear in the presence of (+ , −, −) triangles that con-

ist of one positive and two negative edges, such as the one for

he country of origin feature shown in Fig 1 (a). Given that fault-

ines can only emerge in the presence of (+ , −, −) triangles, we

efer to these as Conflict Triangles . 

A conflict triangle captures the intuition that two people from

he same country are more likely to interact with each other than

o the third person, thus enabling the creation of a potential fault-

ine. On the other hand, A faultline could never occur for the gen-

er feature ( Fig 1 (b)), as all three authors have the same value

 Male ). Similarly, since all three authors have a different value for

he undergraduate major feature ( Fig 1 (c)), there is no faultline po-

ential. This is consistent with faultline theory, which states that

aultlines cannot emerge in the presence of perfect homogeneity

r perfect diversity ( Gratton et al., 2011; Lau & Murnighan, 1998 ). 

The ability of triadic relationships to capture the perfect homo-

eneity/diversity principles that are mandated by faultline theory

aintaints its usefulenes in a team-formation setting. Consider the

xample in Fig. 2 a. The team in the figure represents the worst-

ase scenario in terms of faultline potential for the gender feature:

 50–50 split between two large homogeneous groups of males

M) and females (F). Fig. 2 b shows an example of a team with

o faultline potential for gender, as it consists exclusively of fe-

ale members. Even though increased homogeneity is indeed one

f the ways to reduce faultline potential, it is wrong to equate di-

ersity with the emergence of faultlines. We demonstrate this in

ig. 2 c. All the members of the teams in this figure have different

alues with respect to the feature country of origin . We observe

hat, as in cases of perfect homogeneity, faultlines cannot exist in

he presence of perfect diversity. This observation reveals that the

ask of measuring a team’s faultlines goes beyond simply measur-

ng its diversity with respect to different features. Similarly, a team

ormation algorithm has to carefully balance the two states of ho-

ogeneity and diversity within a team in order to achieve a low

otential for faultlines. 

.1. Feature alignment: 

The next essential step toward the design of a triangle-based

aultline measure is the consideration of the alignment of conflict

riangles across multiple features ( Meyer & Glenz, 2013 ). Consider

hree individuals ( i, j, k ) defined within a space of features F T .
iven a feature f ∈ F T , let τ = < (i, j) , k > be a conflict triangle

uch that w i ( f ) = w j ( f ) and w i ( f ), w j ( f ) � = w k ( f ). Let iscon ( τ , f ) be a
unction that returns 1 if τ is a conflict triangle for f and 0 other-

ise. 

If the same conflict triangle emerges for a second feature f ′ ,
e say that τ is aligned across the two features f and f ′ (i.e.

scon (τ, f ) = iscon (τ, f ′ ) = 1 ). Let p ( τ , T ) return the percentage of
ll available features of team T for which τ is aligned (i.e. for which

appears as a conflict triangle). Formally: 

p(τ, T ) = 

|{ f ∈ F T : iscon (τ, f ) = 1 }| 
|F T | 

We say that a triangle τ from team T is fully aligned if it is

ligned across all team features (i.e. p(τ, T ) = 1 ). Then, we define

he faultline potential of a given team T as follows: 

T (T ) = 

∑ 

τ∈D T 
p(τ, T ) (1)

here D T is the set of all distinct conflict triangles < ( i, j ), k > that

ppear across any of the features in T . Our measure has a proba-

ilistic interpretation, as it encodes the expected number of suc-

esses (conflict triangles) that we would get after |D | Bernoulli
T 
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Fig. 2. Examples of teams with high and low faultline potential. 
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rials, where each trial corresponds to a different τ ∈ D T and has

 success probability equal to p ( τ , T ). The trial for conflict trian-
le τ involves sampling)(uniformly at random) a feature f from F T 
nd is successful if τ is a conflict triangle for f . Hence, a perfectly

ligned triangle would succeed for any sampled feature and would

ncrement the team’s score by 1. Similarly, the trial for a triangle τ
hat is aligned over half of the team’s features would have a 50%

f success and would increment the team’s score by 0.5. 

The penalty that Eq. (1) assigns to each conflict triangle in the

eam is directly proportional to the triangle’s alignment across the

eam’s features. 

Under this definition, the minimum faultline potential is as-

igned to perfectly homogeneous or perfectly diverse teams, as

hey both include zero conflict triangles. On the other hand, in ac-

ordance with faultline theory ( Lau & Murnighan, 1998 ), the maxi-

um faultline potential is assigned to teams that can be split into

wo perfectly homogeneous subgroups of equal size. 

Learning the appropriate penalization scheme from real

ata: The definition given in Eq. (1) intuitively applies, for each

onflict triangle, a penalty that is directly proportional to the trian-

le’s alignment across the team’s features. We thus expect it to be

 reasonable modeling choice for many domains. However, in prac-

ice, this penalization scheme may not be appropriate for a specific

omain or application. Therefore, we extend our framework via by

escribing a methodology that allows practitioners to learn the ap-

ropriate penalization on function for their domain, based on in-

ormation from existing teams in the same domain. We present the

etails of our technique for learning the penalization parameters in

ection 6 . 

.2. Efficiently computing a team’s faultline potential 

The computation requires us to count the total number of con-

ict triangles across all features. Thus, for T ⊆ W, CT ( T ) can be com-

uted in polynomial time. For this, one has to consider all trian-

les appearing in the feature graphs and count how many of those

re conflict triangles. The running time of the naive computation is

 ( m | T | 3 ) where | T | is the size of the team and m is the number of

eatures. Next, we present a method for significantly speeding up

his computation. 

Given a set of workers T ⊆W , and a feature f that takes values

 1 , . . . , v L , we summarize the values of f observed among the work-

rs in T via the aggregate feature vectorr ( T, f ) such that r ( T, f )[ v j ]

ives the number of workers in T that have a value equal to v j . We

bserve that these aggregate vectors can be computed in O ( m | T |)

ime by simply counting all feature values of all workers. Once the

ggregate feature values have been computed, the faultline poten-

ial for each feature f that takes values v 1 , . . . , v L can be written as

ollows: 

T (T , f ) = 

N ∑ 

j=1 

(
r(T , f )[ v j ] 

2 

)(| T | − r(T , f )[ v j ] 
)

(2)
We observe that, for any feature f with L different possible val-

es, the faultline potential with respect to f can be computed in

 ( L ) time using the above equation. Thus, the overall faultline po-

ential CT ( T ) can be computed in O ( mL ). Given that both the num-

er of features m and the number of possible values for each fea-

ure L are usually small constants, this computational cost is negli-

ible compared to the time required to create the aggregate feature

alues. The use of the aggregate feature vectors also allows us to

pdate the score in constant time, as required by the second ef-

ciency principle of faultline-aware team-formation. Specifically, if

n individual i joins or leaves the team, we only need to update

in O ( m )) the number of conflict triangles that are due to the ag-

regate counts that change due to the addition or removal of i . 

. The Faultline-Partitioning problem 

In this section, we formally define the

aultline-Partitioning problem, i.e., the problem of

artitioning a set of workers W into � teams of equal size such

hat the total faultline potential score across teams is minimized.

e show that this problem is not only NP-hard to solve, but

lso NP-hard to approximate within any bounded approximation

actor, unless P = NP . Then, in Section 4.1 , we present an efficient

euristic algorithm for its solution. 

First, we extend the notion of faultline potential to a collection

f teams. For any partitioning T = { T 1 , T 2 , · · · , T � } of workers into �

eams, we use CT ( T ) to denote the total faultline potential of all

eams in T . Formally: 

T (T ) = 

� ∑ 

i =1 

CT (T i ) . (3)

We can thus define the Faultline-Partitioning problem

s follows: 

roblem 1. ( Faultline-Partitioning ) Given a pool of work-

rs W (with | W | = � × k ), find a partitioning T = { T 1 , T 2 , · · · , T � } of
he workers W into � teams of size k such that CT ( T ) is minimized.

Next, we proceed to analyze the hardness of the

aultline-Partitioning problem. Our results apply for

he more general problem of partitioning a population into teams

ith specific but possibly different sizes. 

heorem 1. The Faultline-Partitioning problem is NP-hard

o solve. 

Theorem 1 implies that the Faultline-Partitioning 

roblem cannot be optimally solved in polynomial time unless

P = P . Next, we provide a formal proof of this theorem. 

roof. We present a polynomial-time reduction from

he NP-Complete k-Clique Partitioning problem to our

aultline-Partitioning problem ( Gary & Johnson, 1979;

osgen & Stewart, 2007 ). The k-Clique Partitioning is a deci-

ion problem which asks the following question: Given a graph
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Fig. 3. Graph ̂ H (in gray) and its feature graphs for the corresponding 

Faultline-Partitioning problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 The FaultlineSplitter algorithm. 

Input: Set of workers W with m features and the number ofde- 

sired partitions � . 

Output: Partitioning T = { T 1 , T 2 , . . . , T � } 
1: Randomly partition W into T = { T 1 , . . . , T � } 
2: while CT (T ) has not converged do 

3: c = AssignCosts (W, T ) 

4: T = ReassignTeams ( T , c ) 
5: return T 
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1 https://github.com/sanazb/Faultline. 
H = (V, X ) , is it possible to partition the nodes of the graph into

disjoint cliques of size k ? 

Given a graph H = (V, X ) (with V nodes and X edges), we first

create the complement of H denoted by H 
′ = (V, X ′ ) . Clearly, any

clique of size k in the original graph H corresponds to a set of k

nodes with no edges among them in H 
′ . 

For our reduction, every node i ∈ V will correspond to a worker

for our problem. Also, we will interpret each edge in H 
′ as an

agreement (“+”) and each missing edge as a disagreement (“−”).

Then, for every edge ( i, i ′ ) in H 
′ , we create a feature f (i,i ′ ) and then

construct the corresponding feature graph G f 
(i,i ′ ) that contains one

positive edge connecting nodes i and i ′ , while all other edges, con-

necting all pairs of nodes, are negative. Fig 3 shows how an ex-

ample graph H with three edges is transformed into three feature

graphs. 

Now consider the optimal solution to this instance of the

Faultline-Partitioning problem. Since the size of each

team is fixed ( k ), it is easy to see that each edge of H 
′ that falls

within one team creates (k − 2) conflict triangles. This implies that

the optimal solution is the one that minimizes the total number of

edges that fall within the partitions. More specifically, the optimal

solution has a faultline potential equal to zero if and only if there

exists a partitioning of the nodes in H 
′ with no edge inside the

partitions which further corresponds to a partitioning of the nodes

in H into cliques. �

Corollary 1. The Faultline-Partitioning problem is NP-hard

to approximate within any factor. 

Proof. We will prove the hardness of approximation

of Faultline-Partitioning by contradiction. As-

sume that there exists an α-approximation algorithm

for the Faultline-Partitioning problem. Then if

T ∗ = { T ∗
1 
, T ∗

2 
, · · · , T ∗� } is the partitioning with lowest faultline

potential and T A = { T A 
1 

, T A 
2 

, · · · , T A � } is the solution output by this
approximation algorithm, it will hold that CT (T A ) ≤ αCT (T ∗) . If
such an approximation algorithm exists, then this algorithm can

be used to decide the instances of the k-Clique Partitioning

problem, for which the optimal solution has a faultline potential

equal to 0. However, this contradicts the proof of Theorem 1 ,

which indicates that these problems are also NP-hard. Thus, such

an approximation algorithm does not exist. �

4.1. The FaultlineSplitter algorithm 

In this section, we present an algorithm for the

Faultline-Partitioning problem. We refer to the algo-

rithm as FaultlineSplitter and provide the pseudocode in
lgorithm 1 . The Python implementation of the algorithm is

vailable online. 1 

The algorithm starts with a random partitioning of the input

opulation into � equal-size groups and then reassigns individuals

o teams in an iterative fashion until the faultline potential of the

btained partitions does not improve across iterations. 

In each iteration, the algorithm starts with a partitioning of the

et W into � groups and forms a new assignment with (ideally) a

ower faultline potential score. This is done by executing two func-

ions: AssignCosts and ReassignTeams . The AssignCosts function
eturns a cost associated with the assignment of every individual

o every team; i.e., c ( i, T j ) is the cost of assigning individual i into

eam T j . These costs are used by ReassignTeams to produce a new
ssignment of individuals to teams – always guaranteeing that the

eams are of equal size. Next, we describe the details of these the

wo main routines of FaultlineSplitter . 
The AssignCosts routine: This routine, assigns to every worker

 and team T j cost c ( i, T j ), which is the cost of assigning worker i

o team T j . In order to compute these costs, AssignCosts considers
he current teams in T as a baseline to evaluate if the assignment

f worker i to team T j can lead to fewer conflict triangles. Thus, an

ntuitive definition of cost is the number of conflict triangles that

 incurs when he joins T j . This is equal to CT ( T j ∪ { i }) if i �∈ T j and

T ( T j ) if i ∈ T j . 

We observe that, if worker i already belongs to team T j , the re-

ssignment is not going to change the size of the resulting team.

owever, if i �∈ T j the assigning i to T j creates a team of size (k + 1) .

his is problematic, since the number of conflict triangles in teams

f size k is not comparable to that in teams of size (k + 1) . This

an be resolved by introducing a normalization factor which mea-

ures the maximum possible number of conflict triangles in a team

f a fixed size. Formally, for a team of size k , we use �k to de-

ote the maximum possible number of conflict triangles that can

merge in the team across all features. Now, we compute the cost

unction as follows: 

 (i, T j ) = 

{
CT (T j ∪ { i } ) / �k if i �∈ T j 
CT (T j ) / �k +1 if i ∈ T j 

(4)

Running time: Note that computing all three cost functions can

e done in O ( m | W |) using the aggregate feature vectors as dis-

ussed in Section 3.2 . 

The ReassignTeams routine: ReassignTeams takes as input a cur-
ent a cost of assigning each one of the n individuals into each one

f the � teams and outputs a new partition of the individuals into

 equal-size groups. The algorithm, views this partitioning problem

s a minimum weight b -matching problem ( Burkard, Dell’Amico,

 Martello, 2012 ) in a bipartite graph, where the nodes on the

ne side correspond to n individuals and the nodes on the other

ide correspond to � teams. In this graph, there is an edge be-

ween every individual i and team T j . The weight/cost of this edge

s, for example, c ( i, T j ) – computed as described above. Finding a

ood partition then translates into picking a subset of the edges of
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A  
he bipartite graph, such that the selected edges have a minimum

eight sum, every individual in the subgraph defined by the se-

ected edges has degree 1, and each team has degree k . This would

ean that every worker is assigned to exactly one cluster and ev-

ry cluster has exactly k members. This is a classical b -matching

roblem that can be solved in polynomial time using the Hungar-

an algorithm ( Burkard et al., 2012; Kuhn, 1955 ). 

Variable-size partitioning: It is important to point out that our

lgorithm can be easily modified to partition a population into

eams of fixed but possibly different sizes. The ReassignTeams rou-
ine in our algorithm computes a new assignment of individuals to

eams by solving a minimum weight b-matching problem in a bi-

artite graph where nodes on the right represent individuals and

odes on the left represent the available spots/positions in each

eam. This setup gives us the flexibility to choose the number of

vailable spots in each team. In fact, this is how the algorithm en-

orces equal-size teams in our current implementation. 

Computational speedups: Computing the new partition using

he Hungarian algorithm, requires O ( n 3 ) time. This is a compu-

ationally expensive operation, especially since this step needs to

e completed in each iteration of FaultlineSplitter . In order to
void this computational cost, we solve the bipartite b -matching

roblem approximately using a greedy heuristic that works as fol-

ows: in each iteration the edge ( i, T j ) with the lowest cost c ( i, T j )

s selected, and worker i is assigned to the j -th team T j ; this as-

ignment only takes place if: (1) worker i is not assigned to any

eam in an earlier iteration, and (2) the j -th team has less than

 workers so far (i.e., if it has not reached the desired team size).

his is repeated until all the workers are assigned to a team. 

To find the minimum cost edge in each iteration we need to

ort all edges with respect to their costs and then traverse them

n this order. Since there are O ( n � ) edges, the running time of this

reedy alternative is O ( n � log ( n � )) per iteration. 

. Experiments 

In this section, we describe the experiments that we performed

o evaluate our methodology. 

.1. Datasets 

Adult : The Adult dataset is a census dataset from UCI’s ma-

hine learning repository. It contains information on 32,561 indi-

iduals; the features in the data are age, work class, education, mar-

tal status, occupation, relationship, race, sex, capital-gain, capital-loss,

ours-per-week, and native country . 2 We convert non-categorical

eatures to categorical features as follows: for age and hours-per-

eek we bin their values into buckets of size 10. Also, we con-

ert both capital-gain and capital-loss into binary features depend-

ng whether their value is equal to zero or not. 

Census : The Census dataset is extracted from the US govern-

ent’s ”Current Population Survey”. 3 We focused on the most re-

ent collected data from the year 2014. Our dataset contains cen-

us information on 200,469 individuals. The dataset includes the

ollowing features: marital status, gender, education, race, country,

itizen, and army . 

DBLP : The DBLP dataset is created by using the latest snap-

hot of the DBLP website and filtering only authors that published

apers on tier-1 and tier-2 computer science (NLP, IR, DM, DB, AI,

heory, Networks) conferences and journals. 4 Although the only

nown attribute in the raw dataset is the country of origin , we ex-

racted the following features for each of the 57,972 authors, based
2 https://archive.ics.uci.edu/ml/datasets/Adult . 
3 http://thedataweb.rm.census.gov/ftp/cps _ ftp.html . 
4 http://webdocs.cs.ualberta.ca/ ∼zaiane/htmldocs/ConfRanking.html . 

t  

s  

w  

i  

C  
n their publications: number of years active, primary area of focus

based on number of publications), average number of publications

n ten years , and total number of publications . We also computed

 quality feature for each author, by giving her 2 points for each

aper published in a top-tier conference and 1 point for all other

apers. We bin both the total number of publications and the av-

rage number of publications into buckets of size 10, and bin the

uality score into buckets of size 5. 

BIA660 : This dataset is collected from entry surveys taken by

ll students who take the Analytics course offered by one of the

uthors of this paper. The data was collected during 6 different

emesters and includes data from 502 graduate students. It con-

ists of 85 teams, with an average of 5.9 students per team. For

ach student, the dataset includes the major of the degree they

ere pursuing at the time of the data collection, the major of

heir bachelor’s degree, gender, country, and a self-assessment of

er level with respect to machine learning, analytics, programming,

nd experience with team projects. The assessments are given on

 scale from 0 (no experience) to 3 (very experienced). For each

eam, we also have its performance (on a scale of 0 to 100) on

 collaborative, semester-long project that accounts for 70% of the

ntire grade, as well as the average satisfaction level (on a scale of

 to 7) of the team’s members with the way the team operated.

or each team we computed tension (bad triangles) for each team

cross all features. 

Synthetic-1 : In order to control the number of conflict trian-

les in our data, we have developed a method to create synthetic

atasets given a target percentage of conflict triangles. First, we as-

ume that our pool of workers W is going to consist of a single fea-

ure which can only take 3 different values X, Y , and Z . Let’s define

, y, z to be the number of data points with these values respec-

ively. Now, it is clear that N (W ) = x × y × z. On the other hand,

iven that total number of workers is n we have x + y + z = n . Note

hat if the value of x is given, we can use these equations to com-

ute the value of y and z as well. To create our datasets, we try

ifferent values of x and then we solve for variables y and z . Then,

e randomly partition workers into three groups of size x, y , and

 and assign the value X, Y , and Z to them respectively. 

Synthetic-2 : In order to compare different faultline measures –

SW , Subgroup Strength ( SS ), and our CT measure– we generate

 dataset as follows. We consider three features: Race (Asian, White,

lack, Native American), Country (USA, China, England, France) , and

ducation (High-school, Undergraduate, Graduate) . Then, given a

eam size TS and a number of subgroups SN , we generate 100

eams that include TS individuals divided into SN completely ho-

ogeneous subgroups. Within each subgroup, all individuals have

he same value for each feature F . This value V is selected with

 probability that is inversely proportional to the number of sub-

roups in the team that has already been assigned V for this fea-

ure. This process allows us to create perfectly homogenous groups

hat are highly dissimilar from each other. We repeat the pro-

ess for TS ∈ {4, 8, 16, 32, 64}. Given a value for TS , we start with

N = 1 (a perfectly homogeneous team) and double the value until

N = T S (one individual per subgroup). For instance, for T S = 16 ,

e consider SN ∈ {1, 2, 4, 8, 16}. This process generates a total of

100 teams. Controlling the number of perfectly homogenous sub-

roups allows us to control diversity and simulate multiple sce-

arios of conflict between different types of subgroups within the

eam. 

Discussion: Table 1 shows some basic statistics for our datasets.

s mentioned earlier, the Synthetic-1 dataset allows us to tune

he percentage of different types of triangles. The synthetic in-

tance reported in Table 1 corresponds to a dataset of size 400

ith 8 features where we set the percentage of negative and pos-

tive triangles to 8% and 25% respectively. Fig 4 illustrates the

ramer’s V values for all pairs of features in all datasets. Cramer’s V

https://archive.ics.uci.edu/ml/datasets/Adult
http://thedataweb.rm.census.gov/ftp/cps_ftp.html
http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html
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Fig. 4. The Cramer’s V values for all pairs of features for all datasets. 

Table 1 

Statistics for the real datasets. 

Dataset Size Features % of conflict triangles 

DBLP 57,972 6 35% 

Adult 32,561 12 41% 

Census 200,469 7 44% 

DBLP-Aug 155 9 47% 

BIA660 502 8 62% 

Synthetic-1 400 8 8% 
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value is a standard measure the correlation between two categori-

cal variables ( Cramér, 2016 ). It has a value of 1 when two variables

are perfectly correlated and 0 if there is absolutely no correlation.

The figure illustrates that Adult and Census are similar in terms

of feature correlation. Specifically, we observe a small correlation

for the majority of the features and only a couple of them with

high correlations. On the other hand, DBLP exhibits significantly

higher correlation patterns. 

5.2. Evaluation on the Faultline-Partitioning problem 

In this section, we evaluate the performance of our algorithms

for the 

Faultline-Partitioning problem. 

Baselines: We compare our FaultlineSplitter algorithm with

two baselines: Greedy and Clustering . The Greedy algorithm

takes an iterative approach that creates a single team in each it-

eration and thus it requires � iterations to create all � teams.

Each team is constructed as follows. First, the algorithm selects

two random workers. It then continues by greedily adding the

worker that minimizes the faultline score of the team. Once the

size of team reaches k , the algorithm removes the selected mem-

bers from the pool of experts and moves on to build the next team.

Finally, Clustering is a clustering algorithm that tries to cre-

ate equal-size partitions such that the number of positive (nega-

tive) edges within the teams is maximized (minimized) ( Malinen

& Fränti, 2014 ). 

Evaluation metric: for every algorithm, we measure its perfor-

mance via the faultline potential of the set of teams that it creates,

as per Eq. (3) . Because some of our comparisons require plotting

results obtained from datasets of different sizes in the same fig-

ure, we apply the following dataset-specific normalization. For a

dataset of size n , we divide the faultline potential of a partitioning

obtained for this dataset with the total number of triangles that

can be encountered in datasets of this size, i.e., 
(
n 
3 

)
. Thus, the y -

axis of all our plots is in [0,1]. 
.2.1. Varying the population size 

For each dataset, we randomly select, with replacement, 100

ets of n individuals, for n ∈ {10 0, 20 0, 40 0, 80 0, 160 0}. We then

se the algorithms to partition each set into teams of size 5. For

ach algorithm, we report the average faultline potential achieved

ver all sets for every value of n , along with the corresponding 90%

onfidence intervals. The results for all three datasets are shown in

ig. 5 . We also report the computational time (in seconds) of each

lgorithm for each value of n in Fig. 6 . 

The first observation is that all the algorithms perform better

s the size of the population increases, with the achieved normal-

zed faultline potential values ultimately converging to a low value

round 0.1, for all datasets. An examination of the data reveals that

e can confidently attribute this trend to the fact that increasing

he size of the population leads to the introduction of identical or

ighly similar individuals (i.e. in terms of their feature values). This

akes it easier to form low-faultline teams. This is not a surpris-

ng finding in real datasets, which tend to include large clusters

f similar points, rather than points that are uniformly distributed

ithin the multi-dimensional space defined by their features. 

We observe that The FaultlineSplitter algorithm consistently

chieves the best results across datasets, while the Greedy al-

orithm outperforms Clustering in two of the three datasets

BLP and Adult . This reveals a weakness of Clustering : its in-

bility to consistently deliver low-faultline solutions as the popu-

ation becomes larger. On the other hand, the FaultlineSplitter
lgorithm does not exhibit this weakness, emerging as both the

ost stable and effective approach. Finally, as in the previous ex-

eriment, the algorithms exhibit a negligible variation over the dif-

erent samples that we considered for each value of the parameter.

With respect to computational time, Fig. 6 verifies that

aultlineSplitter can scale to large population sizes. Using the
ensus dataset, we observe that, even for the largest popula-

ion of 1600 individuals, the algorithm computed the solution in

ess 2 minutes. In fact, its speed was nearly identical to that of

he greedy heuristic. Finally, while the Clustering algorithm

merges as the fastest option, this comes at the cost of inferior

olutions (i.e. teams with higher faultline potential), as we demon-

trated in Fig. 5 . 

.2.2. Varying the team size 

For this experiment, we set the size of the population of in-

ividuals to | W | = 800 . For each real dataset, we randomly select

0 0 populations, of 80 0 individuals each, with replacement. We

hen use the algorithms to partition each population into teams

f size k , for k ∈ {3, 4, 5, ���, 20}. For each algorithm, we report

he average normalized faultline potential achieved over all popu-

ation for every value of k , along with the corresponding 90% confi-
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Fig. 5. Faultline results for different population sizes (parameter n ). 

Fig. 6. Running times for different population sizes (parameter n ). 
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ence intervals. The results for Adult , Census and DBLP datasets

re shown in Fig 7 . 

We observe that the FaultlineSplitter algorithm had the

verall best performance across datasets. We observe that its

dvantage wanes as the value of k increases. This can be ex-

lained by the fact that asking for larger teams makes the prob-

em harder, as it requires the inclusion of additional individu-

ls and thus makes it harder to avoid the introduction of con-

ict triangles into the team. This explanation is also consis-

ent with the fact that the performance of the two algorithms

ends to decrease as k becomes larger. A second observation is

hat the Greedy algorithm is consistently outperformed by both

aultlineSplitter and Clustering . This demonstrates the dif-

culty of the Faultline-Partitioning problem and the need

or sophisticated partitioning algorithms that go beyond greedy

euristics. Finally, as shown in the figure, we observe that the stan-

ard deviations for all algorithms were consistently negligible, bol-

tering our confidence in the reported findings. 

.2.3. Varying the number of conflict triangles 

The purpose of this experiment is to evaluate the algorithm

n populations with different potential for faultlines. While ran-

om samples obtained from our real-world datasets differ trivially

n terms of the percentage of conflict triangles, we can engineer

ynthetic data to obtain datasets with different number of con-

ict triangles. To conduct this experiment, we use the Synthetic-1

ataset described in Section 5.1 . We consider populations of 400

ndividuals and set the team size equal to 5. The results are shown

n Fig 8 . The plot verifies that finding low-faultline teams be-

omes harder as the population’s inherent potential for such fault-

ines increases. However, the FaultlineSplitter algorithm consis-

ently outperforms the other methods. In fact, the gap between

he two algorithms increases as the number of conflict triangles in

he population increases. This demonstrates the superiority of the

aultlineSplitter algorithm over the other approaches in terms
f searching the increasingly smaller space of low-faultline solu-

ions. 

.3. Faultline measurement in existing teams 

In this section, we compare three alternative options for fault-

ine measurement in existing teams: the proposed CT measure,

he ASW by Meyer and Glenz (2013) , and the Subgroup Strength

 SS ) measure by Gibson and Vermeulen (2003) . We select the

SW due to its status as the state-of-the-art, even though, as

e discussed in detail in Section 2 , it is not appropriate for

he Faultline-Partitioning problem that is the main fo-

us of our work. We select the SS measure because it com-

ines the simplicity and computational efficiency required for the

aultline-Partitioning problem with competitive results in

revious benchmarks ( Meyer & Glenz, 2013 ). 

.3.1. A comparison on synthetic teams 

For this study, we use the Synthetic-2 dataset which, as we

escribe in Section 5.1 , includes teams of various sizes and sub-

roup composition. First, we group the teams according to size.

e then use each of the three faultline measure to evaluate the

eams in each group. Finally, we compute the Pearson Correlation

oefficient (PCC) between every pair of measures. We present the

esults in Fig. 9 a. Then, in Fig. 9 b we report the average computa-

ional time needed to compute the score of each team for each of

he three measures. 

The first observation from Fig. 9 a is that all three measures re-

ort similar scores across team sizes, with the pairwise PCC over

.65. Hence, while the three measures follow different measure-

ent paradigms, their results tend to be consistent. However, the

ars also reveal that the correlation between SS and CT measures

as the highest among all possible measure-pairs. In fact, the ob-

erved PCC value for this pair was consistently around 0.9, reveal-

ng near-perfect correlation. This is intuitive if we consider the na-

ure of the two measures: the conflict triangles counted by the CT

easure include, by definition, a pair of team members that are

lso identified as “overlapping” by the SS measure. A key differ-

nce between the two measures is that CT does not consider all-

ositive triangles (i.e. a triplet of team members with the same

alue for a feature, see Fig. 1 b), while SS would consider all 3

yads in such a triangle as overlaps. However, the results reveal

hat this difference does not significantly differentiate the results

f the two measures, possibly due to the fact that SS does not fol-

ow the CT ’s counting paradigm and, instead, aggregates overlap

ums via the standard deviation. 

With respect to computational time, Fig. 9 b verifies the theoret-

cal analysis that we presented in Section 2 . The y-axis represents

he average time (in seconds) required to compute the score for

 team, in log scale . As we discussed in detail in Section 4 , any
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Fig. 7. Faultline results for different team sizes (parameter k ). 

Fig. 8. Performance of all algorithms for synthetic datasets with different number 

of bad triangles (400 workers, teams of size 5 and 10 features). 
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algorithm for the Faultline-Partitioning problem has to

quickly consider a large number of candidate teams in order to ef-

ficiently locate (or approximate) the best possible partitioning. We

observe that ASW is orders of magnitude slower than the other

two measures, with the gap growing rapidly with the size of the

teams. In addition, while the SS and CT measures can be easily

updated in constant time as the algorithm makes small changes

to the team’s roster, this is not the case for ASW . In short, while

ASW may indeed be a competitive option for faultline measure-

ment, our analysis and experiments verify that it is not a good

candidate for faultline-optimization problems, such as the one that

we study in this work. Out of two fastest measures, CT displays
Fig. 9. A comparison of the ASW , Conflict Triangles ( CT ), and Subgrou
 clear advantage over SS . We observe that it is several times

aster and, as in the case of ASW , the gap grows rapidly with

he size of the population. The results verify the effectiveness of

ur methodology for computing CT , which we discuss in detail

n Section 3.2 . They also demonstrate that, while two measures

ight satisfy the efficiency principles that are necessary for effi-

ient faultline-minimization in teams, one of the two can still have

 significant computational advantage that makes it more appro-

riate for large populations. 

.3.2. A comparison on real teams 

For this study we use the BIA660 dataset, which includes two

utcomes: (i) the team’s performance (represented by its grade)

nd (ii) the average satisfaction of the team’s members with their

verall collaborative experience. In Figs. 10 a and b we visualize the

erformance of each team against its corresponding CT , SS , and

SW scores. We observe that performance has a strong negative

ssociation with the CT and SS scores, as demonstrated by the

lope of the line. In contrast, the corresponding line for the ASW

easure is nearly parallel to the x-axis, suggesting a lack of cor-

elation. This finding is verified by the Pearson Correlation Coeffi-

ient (PCC) values for the CT , SS , and ASW measures, which were

0 . 21 , −0 . 23 and −0 . 04 , respectively. Note that a negative corre-

ation is intuitive, as it means that lower faultlines are associated

ith higher performance. 

In Figs. 10 c and d we visualize the satisfaction of each team

gainst its corresponding CT , SS , and ASW scores. The results

re consistent with the performance analysis: satisfaction exhibits
p Strength ( SS ) faultline measures on the Synthetic-2 dataset. 
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Fig. 10. The association of the CT , SS , and ASW measures with team performance and satisfaction. 
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 strong negative association the CT measure, while its association

ith ASW is very weak. In fact, the correlation of satisfaction with

T and SS appears to be even stronger than that of the team’s

erformance. Again, these findings are verified by the PCC values

or the CT , SS , and ASW measures, which were −0 . 26 , −0 . 34 and

.02, respectively. 

The results verify that the teams’ overall faultline-strength, as

easured by the CT measure, has a strong negative association

ith meaningful outcomes. Next, we demonstrate how a practi-

ioner can examine feature-specific faultlines to identify specific

eatures that are associated with each outcome. 

Each of the two outcomes (performance and satisfaction) serves

s the dependent variable in a separate regression that also in-

ludes the team’s faultline potential with respect to different fea-

ures, according to the CT measure. We also consider multiple con-

rol variables that could account for part of the variance in the

ependent variable. We present the results of both regressions in

able 2 . 

The table reveals strong negative correlations of the faultline

cores for the features country, BS major , and current degree with

erformance. This implies that the existence of potentially con-

icting groups in these features can be detrimental to the team’s

rade. We observe similar trends for the country and current degree

eatures in the context of team satisfaction. Such findings can in-

orm the instructor about the existence of potentially problematic

imensions and guide his effort s to strategically design the teams.

s

n practice, this type of regression can be used before solving an

nstance of the Faultline-Partitioning problem, in order to

dentify the dimensions that need to be considered during the op-

imization. This is a critical step, as trying to solve for all possi-

le dimensions is likely to limit the solution space and eliminate

igh-quality teams due to the existence of faultlines in trivial (non-

nfluential) dimensions. 

. Generalizing the penalization scheme of aligned conflict 

riangles 

As mentioned earlier our definition of faultline potential (sum-

arized in Eq. (1) ) applies, for each conflict triangle, a penalty that

s directly proportional to the triangle’s alignment across the fea-

ures. Our experimental results presented in Section 5.3.2 demon-

trate that this penalization scheme yields a metric that is a strong

redictor of a team’s success. However, one might argue that in

 specific domain or application, different degrees of alignment

hould be penalized using a different scheme. In this section, we

xtend our framework by (1) demonstrating how different penal-

zation scheme of aligned conflict triangles can be implemented,

2) describing a methodology that allows practitioners to learn the

ppropriate penalization scheme for their domain based on infor-

ation from existing teams in the same domain, (3) studying the

aultline-Partitioning problem under a given penalization

cheme. 
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Table 2 

Regression results. 

Dependent variable: 

Grade Satisfaction 

(1) (2) 

Degree −10.887 ∗∗∗ −1.195 ∗∗∗

( −3.793) ( −4.937) 

BS Major −12.821 ∗∗ −0.676 

( −2.580) ( −1.612) 

Gender 0.106 0.147 

(0.028) (0.457) 

Country −8.010 ∗∗∗ −1.121 ∗∗∗

( −3.001) ( −4.977) 

ML Exp −5.428 −1.029 ∗

( −0.841) ( −1.889) 

Analytics Exp 5.233 −0.063 

(1.082) ( −0.155) 

Programming Exp −4.464 0.336 

( −0.926) (0.827) 

Team Exp 1.344 −0.188 

(0.323) ( −0.535) 

Average ML Exp 0.219 −0.105 

(0.185) ( −1.052) 

Average Analytics Exp −0.241 −0.143 

( −0.205) ( −1.438) 

Average Prog Exp −1.820 ∗ 0.014 

( −1.758) (0.155) 

Average Team Exp 0.898 0.040 

(0.772) (0.405) 

Constant 97.821 7.308 ∗∗∗

(10.586) (9.374) 

Observations 86 86 

R 2 0.313 0.467 

Adjusted R 2 0.200 0.379 

Residual Std. Error (df = 73) 8.126 0.686 

F Statistic (df = 12; 73) 2.766 ∗∗∗ 5.327 ∗∗∗

Note: The dependent variable are grade and satisfaction. t- 

statistics are shown in parentheses. Significance levels: 
∗p < 0.1; ∗∗p < 0.05; 
∗∗∗p < 0.01 
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6.1. Faultine potential with a generalized penalization scheme 

Given a team T with a set of features F T , we define the faultline

potential of a team given a penalization scheme g (.) as: 

P CT (T , g) = 

|F T | ∑ 

x =1 

g(x ) × aligned(x, T ) , (5)

where aligned ( i, T ) returns the number of conflict triangles that are

aligned across exactly x features in F T . The above formulation al-

lows us to flexibly penalize the existence of aligned conflict trian-

gles by selecting the appropriate g ( x ) penalty for each value of x .

Naturally, it makes sense to define g ( x ) as an ascending function to

reflect the fact that higher alignment should translate to a higher

faultline potential. Note that if define g(x ) = x, then the obtained

faultine potential is equivalent to our original definition of CT ( t )

presented in Eq. (1) (module some constant). 

6.2. Learning the penalization scheme 

The task of learning the appropriate penalty parameters can be

modeled as a supervised learning task. Each team serves as a data

point in the training set. More specifically, the predictive variables

are the aligned ( x, T ) values for increasing values of x . The depen-

dent variable should reflect the degree to which a team’s perfor-

mance is influenced by faultlines. We compute the dependent vari-

ables using the following technique. Given a set of teams along

with any success metric that encodes their outcome in a partic-

ular domain (e.g. performance, satisfaction, cohesion), we obtain
he dependent variables by negating the success scores and nor-

alizing them to have a mean equal to 0 and a standard devia-

ion equal to 1. The goal is then to learn the penalty-parameters

 ( x ) that best fit the data. To achieve this, we train a linear re-

ression to obtain the best g ( x ) values. It is important to mention

hat fitting the linear regression may lead to negative g ( x ) values.

his does not create any issues, but if practitioners desire to obtain

aultline potential values that are always positive, they can sim-

ly add a constant to all g ( x ) values. This is a safe operation as it

imply adds a constant value to all fautline potential values and

oes not affect the difference between teams’ faultline potentials.

n fact, in our experiments we always add a constant value to all

 ( x ) parameters to ensure that g (0) is equal to 0. This makes the

enalization scheme more interpretable as we expect the penalty

f conflict-free triangles to be 0. 

If the practitioner has no access to numeric outcomes variables,

e can still learn g ( x ) as follows. The learning task can be modeled

s a classification task with a binary variable that is equal 1 for all

ctual teams in the data. The training data is then complemented

y randomly-populated “noise” groups that do not represent actual

eams. The binary dependent variable for these fake teams is 0. In

his case, the goal is to find the penalty-parameters that best dif-

erentiate between actual and noise teams. This technique builds

pon the fact that in most cases, individuals (and managers) tend

o form teams that have a lot degree of conflict and faultline po-

ential. 

To demonstrate the effectiveness of our proposed learning pro-

edure, we use the BIA660 dataset as it consists of a set of teams

long with two outcome scores, namely “grade” and “satisfaction”.

able 3 summarizes the g ( x ) values we obtained using the tech-

iques described above. The first two rows correspond to the g ( x )

alues obtained from the grade and satisfaction metrics. The third

ow corresponds to g ( x ) values calculated from our binary classi-

cation task (without using any outcome scores). The fourth rows

orresponds to g ( x ) values obtained on a version of BIA660 dataset

n which outcome score of each team is randomly sampled from

he set {0, 1}. This row helps verify that the results of the other

ows is significant and not due to chance. 

Note that the first three rows in Table 3 share a similar trend

and for the most part) the numbers are ascending representing

hat the higher degrees of alignment should be penalized more.

n the other hand, we can see that the values in the last row are

ignificantly different and do not exhibit any meaningful pattern.

e can observe that the g ( x ) values reported in the first 3 rows,

hile following the expected trend, sometimes fluctuate. For ex-

mple, the values of g (8) are smaller than g (7). This can be ex-

lained using the last row of the table which summarizes the fre-

uencies of each degree of the alignment in the entire dataset. For

nstance, we can see that in the entire dataset, there are only 0.7%

f triangles that can form 8 aligned conflicts. This means, that in

ur learning task this value is in almost all cases set to 0 for both

uccessful and unsuccessful teams. Thus, the parameters learned

sing the linear regression are more subject to noise. In fact, if we

ocus only on degrees of alignments that have at least 5% presence

n the data, we can see that the g ( x ) values are more robust and

onform to our expected behaviour. 

.3. Team-formation under the generalized penalization scheme 

As we discussed in Section 2.3 , solving the

aultline-Partitioning problem for a large group of

ndividuals requires an operationalized notion of faultline that

an be (1) computed in linear time and (2) updated in constant

ime when a member joins or leaves the team. Unfortunately,

hese two criteria may not hold for a given penalization scheme.

n fact given a team T , computing the PCT ( T, g ) requires a run-
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Table 3 

Obtained penalization schemes using the BIA660 dataset. 

g (1) g (2) g (3) g (4) g (5) g (6) g (7) g (8) 

Grade 0.091 0.064 0.053 0.112 0.165 0.233 0.171 0.111 

Satisfaction 0.088 0.07 0.028 0.141 0.079 0.253 0.208 0.133 

Real Vs. Fake 0.068 0.099 0.079 0.061 0.115 0.184 0.223 0.171 

Random −0.063 0.021 0.428 −0.041 −0.153 0.053 0.142 0.098 

Frequencies 0.2% 1.5% 6.8% 12.9% 17.0% 11.6% 4.5% 0.7% 

Fig. 11. Comparing the faultline potential using different penalization schemes. 
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ing time of O ( m | T | 3 ). This is because our speed-up technique

escribed in Section 3.2 can not be applied to any penalization

cheme. This makes the Faultline-Partitioning problem

ven more challenging to solve as it becomes computationally

xpensive. The FaultlineSplitter algorithm can still be used

o solve the Faultline-Partitioning problem given any

enalization scheme, but the solution does not scale up to large

opulation of individuals. Given that, we present some theo-

etical and experimental evidence to demonstrate that solving

he Faultline-Partitioning problem with our original

enalization scheme produces teams that are of high-quality

nder different penalization schemes as well. Of course, directly

olving the Faultline-Partitioning problem with a given

enalization scheme can produce better results, but in most

ases the slight improvement can not justify the huge required

omputational cost. 

Let us use CT ( T ) and PCT ( T, g ) to refer to the definition of

aultline potential (according to Eq. (1) ) and the faultline poten-

ial given a penalization scheme (according to Eq. (5) ) respectively.

ow, it is easy to show that 

T (T ) ∗ max (g(x )) ∗ m ≥ P CT (T , g) . 

he above equation simply states that in the worst-case scenario

ll m features of conflicting individuals form a conflicting triangle.

his is an strict upper bound for PCT ( T, g ). Although this may not

e a tight bound, it suggest that optimizing CT ( T ) directly might be

n efficient strategy for solving the Faultline-Partitioning 

roblem under any penalization scheme. 

The following experiment further demonstrates that opti-

izing the original faultline potential (presented in Eq. (1) is

uite aligned with optimizing faultline potential under a given

enalization scheme. In this experiment, we have solved the

aultline-Partitioning problem on the BIA660 dataset us-

ng the penalization scheme from the first row of Table 3 . More

recisely, we ran the FaultlineSplitter algorithm to create 50

eams of equal size. In each iteration of the algorithm, we recorded

he faultline potential according to Eq. (1) . Fig. 11 illustrates how

he value of CT ( T ) and PCT ( T, g ) compare as the optimization pro-

eeds. We can see that the PCT ( T, g ) has an almost linear rela-
ionship with our original definition of faultline potential. This im-

lies that by solving the Faultline-Partitioning problem

sing our original penalization scheme, we can benefit from the

peed-up techniques we introduced in Section 3.2 without sacri-

cing the quality of the obtained teams even if a different penal-

zation scheme is desired. 

. Handling numeric attributes 

One of the limitations of CT is that it is primarily designed

or nominal attributes. Thus, numerical attributes need to be dis-

retized into bins prior to computing the faultline score. The ability

o handle multimodal data is a well-known challenge in faultline

easurement. For instance, the popular ASW approach has to pre-

rocess the data by using dummy variables to encode categorical

ariables as numeric. Next, we present two techniques to extend

ur basic CT model to deal with numerical attributes. 

The first technique is based on binning, but aims to creates

ins of variable length that can accurately capture the distri-

ution of the underlying data. More precisely, a pre-processing

odule based on Kernel Density Estimation (KDE) could auto-

ate the discretization process and deliver dynamic segmenta-

ions that accurately capture the distribution of numeric variables

 Rudemo, 1982 ). The resulting bins would then represent the natu-

al groups of numeric values that are present in the given dataset. 

An alternative technique that departs from the standard bin-

ing paradigm would be to use a threshold γ to define agreement

nd disagreement between team members. Specifically, given a nu-

eric feature f , we say two individuals i and i ′ are in agreement

ff | w i ( f ) − w i ′ ( f ) | ≤ γ . Otherwise, the two individuals are consid-

red to be in a disagreement. As before, a triangle is identified as

 conflict triangle with respect to feature f if two of each mem-

ers agree on feature f and disagree with the third individual in

he triangle. The problem then translates into the task of select-

ng an appropriate value for γ . Domain knowledge is a key factor

n this effort, as each feature is likely to have its own threshold.

or instance, while a difference of 2 years for the age feature is

enerally considered small, a difference of 2 stars in the context of

he popular 5-star rating scale is far more significant. An intuitive

ay to set feature-specific thresholds would be to assume that two

embers agree on feature f if the difference of their corresponding

alues is within 1 standard deviation of the same feature (as com-

uted across the entire population that we want to partition into

eams). A second way to tune the feature-specific thresholds is to

se a validation set that includes the scores of teams for meaning-

ul team outcomes, such as performance or satisfaction. We used

uch a dataset in Section 5.3.2 . We can then choose the threshold

alues that maximize the correlation between the resulting fault-

ine and outcomes scores. 

While the above methods allow us to flexibly model

dis)agreements and address numeric attributes during the compu-

ation of conflict triangles, they do not directly model the degree of

isagreement between two team members in the context of a nu-

eric feature. For instance, a conflict triangle with two members

n their 20s and one in their 30s tends to be less problematic than

 triangle with two member in their 20s and one in their 60s. To
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address this issue, we can weigh (the disagreement in) a conflict

triangle by directly using the numeric values of its members. In

practice, the weight of a conflict triangle with respect to feature

f would then be equal to the average absolute difference between

the values of feature f for the two individuals in disagreement. The

CT measure would then be expressed as a weighted sum, rather

than the pure number of conflict triangles in the given team. Com-

bining this method with the two techniques that we discussed

above (or with any techniques based on binning or definitions of

disagreement) enables us to comprehensively extend our approach

to handle numeric attributes. 

8. Discussion 

Our work focuses on the previously unexplored overlap be-

tween the decades of work on team faultlines and the rapidly

growing literature on automated team-formation. We formally

define the Faultline-Partitioning problem, which is the

first problem definition that asks for the formation of teams

with minimized faultlines from a large population of candidates.

We present a detailed complexity analysis and introduce a new

faultline-minimization algorithm ( FaultlineSplitter ) that outper-
forms competitive baselines in an experimental evaluation on both

real and synthetic data. 

One of the major challenges that we address in this work is

finding a faultline measure that can be efficiently applied to fault-

line optimization. As we highlight in this paper, computational ef-

ficiency (in a practical team-formation setting) translates into two

requirements that an appropriate measure should satisfy: (i) the

ability to compute the faultline score of a team in linear time,

and (ii) the ability to update a team’s score in constant time after

small changes to the team (e.g. the removal or addition of a mem-

ber). The relevant literature has described multiple operationaliza-

tions of the faultline concept. However, as we discuss in detail in

Section 2 , these operationalizations do not satisfy these require-

ments and are only appropriate for measuring faultline strength

in existing teams. As such, they are not scalable enough to serve

as the objective function of a combinatorial algorithm that has

to process a large population and evaluate very large numbers of

candidate-teams in order to find a faultline-minimizing solution.

Therefore, we introduce a new measure that we refer to as Conflict

Triangles ( CT ). The CT measure is based on the extensive literature

on modeling social structures and is consistent with the funda-

mental principles of faultline theory by Lau and Murnighan (1998) .

In addition, CT satisfies the two efficiency requirements and is ap-

propriate for faultline-optimization algorithms. 

8.1. Implications 

Our work is the first to incorporate the faultline concept into

an algorithmic framework for automated team-formation. From a

team-builder’s perspective, the ability to control the faultlines of

teams that are automatically sampled from a large population of

candidates has multiple uses. First, it allows the team builder to

proactively reduce the risk of undesirable outcomes that have been

consistently linked with faultlines, such as conflicts, polarization,

and disintegration. Second, it provides an effective way to man-

age the diversity within a team. A trivial way to eliminate fault-

lines is to create highly homogeneous teams. However, this ap-

proach would also lead to teams that are unable to benefit from

the well-documented benefits of diversity, such as innovation and

increased performance ( Kearney, Gebert, & Voelpel, 2009; Roberge

& Van Dick, 2010; Van der Vegt & Janssen, 2003 ). In order to

avoid such shortcomings, a team-builder can utilize our algorith-

mic framework to strategically engineer low-faultline teams with-

out over-penalizing diversity. A characteristic example is a team
hat is maximally diverse; a team in which no two individuals

hare a common attribute. Consistent with the faultline theory by

au and Murnighan (1998) , our framework would recognize this as

 team with the same faultline potential as a perfectly homoge-

eous team. We demonstrate this via examples in Figs. 1 and 2 . 

Our team-partitioning paradigm has applications in both an or-

anizational and educational setting. In a firm setting, the task

f partitioning a workforce into teams is common. By using

he proposed FaultlineSplitter algorithm, a manager can iden-

ify faultline-minimizing partitionings within the multidimensional

pace defined by various employee features. A regression analysis,

uch as the one we described in Section 5.3.2 , can guide the man-

ger’s team-building effort s by selecting specific features with po-

entially problematic faultlines. In a classroom setting, instructors

ften face the task of partitioning their students into teams for as-

ignments and projects. As we demonstrated in our experiments,

aultlines in student teams can have a strong association with

eaningful outcomes, such as performance and member satisfac-

ion. By releasing our team-partitioning software, we hope that we

an automate this team-formation task and benefit both students

nd instructors. 

.2. Directions for future work 

Future work could focus on algorithms that combine faultlines

inimization (either as an objective function or via constraints)

ith other factors, such as intra-team communication, skill cov-

rage, and recruitment cost. Such work would add to the rapidly

rowing literature on automated team formation, which we review

n Section 2.1 . We expect this to be a challenging task from an

ptimization perspective, as additional constraints can be hard to

atisfy while trying to avoid the creation of faultlines. For instance,

f the distribution of skills is strongly correlated with the popu-

ation’s demographics, a homogenous team is unlikely to exhibit

 diverse skillset. Hence, the ability to leverage both homogeneity

nd diversity will be an asset for such efforts. 

The proposed FaultlineSplitter algorithm can be combined

ith any faultline measure that follows the efficiency principles

hat we describe in this work (i.e. linear computation and constant

pdates). Future work on such measures is essential, as existing

easures are not scalable enough for optimization purposes. We

ake our own contribution in this direction via The CT measure

hat we propose in this work. 

In conclusion, we hope that future effort s will be able to build

n our work to address challenging problems that combine effi-

ient algorithmic constructs for automated team-formation with

he rich findings on the causes and effects of teams faultlines. 
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