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1. Introduction

The problem of organizing the individuals in a given popula-
tion into teams emerges in multiple domains. In a business setting,
the workforce of a firm is organized in groups, with each group
dedicated to a different project (Mohrman, Cohen, & Morhman Jr,
1995). In an educational context, it is common for the instruc-
tor to partition the students in her class into small teams, with
team members collaborating to complete different types of as-
signments (Agrawal, Golshan, & Terzi, 2014a, 2014b; Bahargam,
Erdos, Bestavros, & Terzi, 2017; Webb, 1982). In a government
setting, elected officials are organized in committees that design
and implement policies for a wide spectrum of critical issues
(Fenno, 1973).

In recent years, the proliferation of online resumes and the
need to evaluate large populations of candidates for on-site and
virtual teams have led to a growing interest in automated team-
formation (Agrawal, Golshan, & Terzi, 2014b; An, Kargar, & ZiHayat,
2013; Anagnostopoulos, Becchetti, Castillo, Gionis, & Leonardi,
2012; Bahargam, Erdos, Bestavros, & Terzi, 2015; Dorn & Dustdar,
2010; Gajewar & Sarma, 2012; Golshan, Lappas, & Terzi, 2014; Kar-
gar & An, 2011; Lappas, Liu, & Terzi, 2009; Li & Shan, 2010; Sozio
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& Gionis, 2010). Given a large pool of candidates, the general prob-
lem requires the selection of a team of experts to complete a given
task. The ongoing literature has studied numerous problem vari-
ations with different constraints and optimization criteria. Exam-
ples include the coverage of all the skills required to achieve a set
of goals (Gajewar & Sarma, 2012; Lappas et al., 2009; Li & Shan,
2010), smooth communication among the members of the team
(Anagnostopoulos et al., 2012; Kargar, An, & Zihayat, 2012; Lap-
pas et al., 2009; Rangapuram, Biihler, & Hein, 2013), the minimiza-
tion of the cost of recruiting promising candidates (Golshan et al.,
2014; Kargar et al., 2012), scheduling constraints (Durfee, Boerkoel,
& Sleight, 2014), the balancing of the workload assigned to each
member (Anagnostopoulos et al., 2012), and the need for effective
leadership (Kargar & An, 2011).

Surprisingly, while ongoing research on team formation has
studied numerous variations with different constraints, it has over-
looked a factor with a well-documented impact on a team cohe-
sion and performance: team faultlines. The faultline concept was in-
troduced in the seminal work by Lau and Murnighan (1998). Fault-
lines manifest as hypothetical dividing lines that split a group into
relatively homogeneous subgroups based on multiple attributes
(Lau & Murnighan, 1998; Meyer & Glenz, 2013). The considera-
tion of multiple attributes is critical, as it distinguishes relevant
work from the study on single-attribute faultlines, referred to as a
“separation” (Harrison & Klein, 2007). The team-formation frame-
work that we describe in this work focused on the general multi-
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attribute paradigm. Faultline-caused subgroups are in risk of col-
liding, leading to costly conflicts, poor communication, and disin-
tegration (Bezrukova, Jehn, Zanutto, & Thatcher, 2009; Choi & Sy,
2010; Gratton, Voigt, & Erickson, 2011; Jehn & Bezrukova, 2010;
Li & Hambrick, 2005; Molleman, 2005; Polzer, Crisp, Jarvenpaa, &
Kim, 2006; Shaw, 2004; Thatcher, Jehn, & Zanutto, 2003).

Bridging the faultline literature with automated team-formation
is challenging, as the available measures for faultlines in exist-
ing teams cannot be efficiently used for faultline optimization.
For instance, many faultline measures utilize clustering algorithms
to identify the large homogenous groups that create faultlines
within a team (Barkema & Shvyrkov, 2007; Jehn & Bezrukova,
2010; Lawrence & Zyphur, 2011; Meyer & Glenz, 2013; Meyer,
Glenz, Antino, Rico, & Gonzalez-Roma, 2014). While such mea-
sures have emerged as the state-of-the-art, their clustering step
requires a pre-existing team. Therefore, in a team-formation set-
ting, a clustering-based measure would need to naively consider
all (or an exponential number) of possible teams in order to find a
faultline-minimizing solution. This brute-force approach is not ap-
plicable to even moderately-sized populations. Similarly, we can-
not use any of the existing measures based on expensive (and of-
ten exponential) computations to identify the subgroups within a
team (Bezrukova et al.,, 2009; Shaw, 2004; Thatcher et al., 2003;
Trezzini, 2008; Van Knippenberg, Dawson, West, & Homan, 2011;
Zanutto, Bezrukova, & Jehn, 2011).

In this work, we describe the fundamental efficiency principles
that a faultline measure needs to follow in order to be applica-
ble to the automated formation of faultline-minimizing teams. We
then introduce Conflict Triangles (CT): a new measure that follows
these principles. The CT measure is consistent with the principles
of faultline theory (Lau & Murnighan, 1998) and is founded on the
extensive work on the balance of social structures (Cartwright &
Harary, 1956; Easley & Kleinberg, 2010; Heider, 1958; Morrissette
& Jahnke, 1967). We then use this measure as the objective func-
tion for the problem of partitioning a given population into teams,
such that the average faultline score per team is minimized. We re-
fer to this as the Faultline-Partitioning problem and for-
mally define it in Section 4. Our work thus makes the following
contributions:

1. We initiate research on the unexplored overlap between the
decades of work on team faultlines and the rapidly emerging
field of automated team formation.

2. We describe the fundamental efficiency principles that a fault-
line measure has to satisfy to be applicable to faultline-aware
team-formation.

3. We present a new measure that follows these principles can
thus be used for both faultline measurement and minimiza-
tion. Our evaluation demonstrates the measure’s effectiveness
in both tasks.

4. We formally define the Faultline-Partitioning prob-
lem, analyze its complexity, and present an efficient algorithmic
framework for its solution.

By introducing faultlines to automated team-formation, our
work creates exciting opportunities for algorithmic work on fault-
line optimization, as well as on work that combines and studies
the connection of faultlines with other influential team character-
istics. In Section 8, we discuss the implications of our work for
practitioners in both organizational and educational settings and
discuss potential directions for future work.

2. Background and motivation
To the best of our knowledge, our work is the first to incorpo-

rate faultlines in an algorithmic framework for automated team-
formation. However, our work is related to three types of research:

(i) algorithmic frameworks for optimizing various factors that af-
fect the performance of a team. (ii) management, psychology and
sociology studies on faultlines and their effects on team outcomes,
and (iii) efforts measure faultlines in existing teams. Next, we dis-
cuss each of these categories in more detail.

2.1. Algorithmic work on team formation

Our previous work (Lappas et al., 2009) studied the problem of
automated team-formation in the context of social networks. Given
a pool of experts and a set of skills that needed to be covered, the
goal there is to select a team of experts that can collectively cover
all the required skills, while ensuring efficient intra-team commu-
nication. Over the last years, this work has been extended to iden-
tify a single team or a collection of teams that optimize different
factors that influence a team’s performance. For example, a signif-
icant body of work has focused on incorporating different defini-
tions of the communication cost among experts (An et al., 2013;
Anagnostopoulos et al., 2012; Dorn & Dustdar, 2010; Gajewar &
Sarma, 2012; Galbrun, Golshan, Gionis, & Terzi, 2017; Kargar & An,
2011; Li & Shan, 2010; Sozio & Gionis, 2010). Other work has also
focused on optimizing the cost of recruiting promising candidates
(An et al.,, 2013; Golshan et al., 2014), minimizing the workload
assigned to each individual team member (Anagnostopoulos, Bec-
chetti, Castillo, Gionis, & Leonardi, 2010; 2012), satisfying schedul-
ing constraints (Durfee et al., 2014), identifying effective leaders
(Kargar & An, 2011), and optimizing the individual’s benefit from
team participation (Agrawal et al., 2014b; Bahargam et al.,, 2015).
Although all these efforts focus on optimizing various teams as-
pects, the work that we describe in this paper is the first to ad-
dress faultline optimization. As we describe in our work, minimiz-
ing faultline potential raises new algorithmic challenges that can-
not be addressed by extant algorithmic solutions.

2.2. Studies on the effects of team faultlines

For decades, researchers from various disciplines have stud-
ied the creation, operation, and performance of teams in dif-
ferent settings. Faultline theory was introduced by Lau and
Murnighan (1998). It has since been the focus of numerous follow-
up works. A number of papers have studied how the existence of
faultlines within a team can lead to conflict (Choi & Sy, 2010; Li
& Hambrick, 2005; Thatcher et al., 2003) and affect functionality
(Molleman, 2005; Polzer et al., 2006) and performance (Bezrukova
et al., 2009; Thatcher et al., 2003). Motivated by the observation
that the existence of faultlines does not guarantee the formation of
colliding subgroups, researchers have also studied the factors that
can lead to faultline activation (Jehn & Bezrukova, 2010; Pearsall,
Ellis, & Evans, 2008). Further, Gratton et al. (2011) explored strate-
gies that a leader or manager can follow to effectively handle or
avoid the emergence of faultlines within a team.

2.3. Operationalizing faultline strength

Previous work has suggested various methods for evaluating
faultlines in teams. Even though the original faultline paper by
Lau and Murnighan (1998) serves as the foundation of the long
line of relevant literature and introduces principles that we also
adopt in our work, it does not define a faultline measure. Instead,
the authors lay out fundamental principles that a measure needs
to follow in order to accurately evaluate the faultline strength in
a given team. While these principles are appropriate for faultline
measurement, they are not sufficient to ensure that a qualifying
measure will also have the computational efficiency required to
serve as the objective function of a scalable algorithm that has to
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process large populations of candidates to create teams with mini-
mal faultlines. Computational efficiency is critical in this setting, as
each of the hundreds or thousands of individuals in the given pop-
ulation can be represented by a point in a multidimensional space
of attributes (e.g. demographics, resume information). Any team-
formation algorithm would then have to efficiently navigate this
space and quickly evaluate the faultline strength of many differ-
ent combinations in order to identify faultline-minimizing teams.
Therefore, in order to be efficiently applicable to faultline mini-
mization, a faultline measure should follow the following two effi-
ciency principles:

o Linear Computation: The measure should be easy to compute
for a given team in polynomial time.

o Constant Updates: The measure should be easy to update in
constant time if one person joins or leaves the team.

In Section 3, we introduce Conflict Triangles (CT): a new
measure that provides these two characteristics. The CT mea-
sure is consistent with the principles of faultline theory (Lau &
Murnighan, 1998) and is founded on the extensive work on the
balance of social structures (Cartwright & Harary, 1956; Easley &
Kleinberg, 2010; Heider, 1958; Morrissette & Jahnke, 1967). Next,
we review the extensive literature on faultline measurement and
discuss the shortcomings of extant measures in the context of the
two efficiency principles that are necessary for automated team-
formation.

2.3.1. State of the art in faultline measurement

A long line of literature has focused on identifying and mea-
suring the strength of faultlines in existing teams. In recent years,
clustering-based algorithms have emerged as the state of the art
for this purpose (Barkema & Shvyrkov, 2007; Jehn & Bezrukova,
2010; Lawrence & Zyphur, 2011; Meyer & Glenz, 2013; Meyer
et al., 2014). This line of work is exemplified by the 3-step Av-
erage Silhouette Width (ASW) approach proposed by Meyer and
Glenz (2013). Given a team of individuals, the first step includes
applying an agglomerative-clustering algorithm for pre-clustering
the team’s members. Agglomerative clustering begins by assigning
each member to its own cluster. The two most similar clusters are
then iteratively joined until all points belong to the same cluster.
The authors of the original paper experiment with the two most
popular merging criteria: Ward’s algorithm and Average Linkage
(AL). Thus, for a team with n members, the joint set of results from
the two alternatives yields a total of 2 x n possible configurations
(2 for each possible number of clusters).

The second step focuses on computing the ASW of each possi-
ble configuration (Rousseeuw, 1987). The silhouette s(i) of an indi-
vidual i quantifies how well a team member i fits into its cluster
in comparison to all other clusters and is formally defined as:

b,‘ —
max (o, b;)’

s(i) =

where q; is the average distance of i to all other point in its cluster
and b; is the lowest average distance of i to all points in any other
cluster of which i is not a member. The silhouette ranges from —1
to +1, where a high value indicates that the object is well matched
to its own cluster and poorly matched to others. The ASW is the
average silhouette of all the team’s members.

The third step employs a post-processing method to maximize
the ASW of each configuration, by temporarily moving individuals
across subgroups and recomputing the ASW after each move. The
move that leads to the highest increase is made permanent. The
process continues until no further improvement is possible. Finally,
the maximum ASW score over all configurations is reported as the
strength of the team’s faultline structure.

Using ASW in automated team-formation: Previous work has
repeatedly verified the advantage of the ASW measure over al-
ternative approaches (Meyer & Glenz, 2013; Meyer et al., 2014).
However, the measure cannot be efficiently used as the objective
function for team-formation algorithms, as it is designed to evalu-
ate faultline strength in existing teams and assumes that the com-
position of a team is part of the input. As stated earlier in this
section, an appropriate measure for faultline minimization should
be easy to compute in linear time and easy to update in constant
time. However, Given a team of n individuals, the complexity of the
agglomerative-clustering step alone is O(n2logn) (Rokach & Mai-
mon, 2005). There is then no guarantee on the number of reassign-
ments that it will take for the ASW score to converge. In addition,
the score cannot be updated in constant time. Instead, the dele-
tion or addition of a member would require the new team to be
re-evaluated from scratch, in order to compute the optimal ASW
score.

In theory, a practitioner could consider all possible teams, eval-
uate their respective faultline strengths, and choose the optimum.
In practice, however, this brute-force approach is not scalable and
can only be applied to populations of trivial size. It can cer-
tainly not be applied to populations of hundreds or thousands
of individuals, which are common in the team-formation litera-
ture (Anagnostopoulos et al., 2010; 2012; Lappas et al., 2009). The
team-partitioning task that we address in this work is consider-
ably more computationally challenging than single-team formation.
In order to use the ASW measure for this task, a practitioner
would have to consider all possible partitionings of a population
into fixed-size, non-overlapping teams. This is a computationally
intractable process that would have to consider O(N!) alternatives.
Similar to the ASW measure, other clustering-based approaches
are also excluded from automated team-formation due to compu-
tational efficiency (Barkema & Shvyrkov, 2007; Lawrence & Zyphur,
2011).

2.3.2. Other faultline measures

Similar to clustering-based approaches, most existing fault-
line measures are not applicable to team-formation tasks due
to computational efficiency. For instance, the cost to compute
the Index of Polarized Multi-Dimensional Diversity proposed by
Trezzini (2008) grows exponentially with the number of attributes.
The SGA measure by Carton and Cummings (2013) depends on
the exhaustive evaluation of every possible partition of a given
group with two or more subgroups. Similarly, the FLS measure
by Shaw (2004) depends on the computation and averaging of all
possible internal alignments and cross-product alignments of every
feature with respect to the subgroups of every other feature. Given
that each of these constructs has to be updated every time a per-
son is added to or removed from a team, the FLS formula cannot
be updated in constant time. The measure proposed by Van Knip-
penberg et al. (2011) uses regression analysis to measure the vari-
ance of each attribute that is explained by all other attributes. De-
spite its advantages in a measurement setting, running multiple
regressions for every candidate team is not a realistic option in a
team-formation setting.

Thatcher et al. (2003) propose a formula for computing the por-
tion of the total variance explained by a given segmentation of
a team into subgroups. Their final faultline measure Faug is then
defined as the score of the segmentation that maximizes the for-
mula. However, the measure can only be applied for segmenta-
tions of two subgroups due to (i) the exhaustive nature of the
search for the best split that makes the cost prohibitive in a team-
formation setting, and (ii) the fact that, if we allow the number
of subgroups to vary arbitrarily, the solution that maximizes the
formula is to trivially assign each individual to its own subgroup.
Hence, an algorithm that uses this measure to create low-faultline
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Fig. 1. Triangles associated with the country of origin, gender, and educational
background.

teams would never choose to create highly diverse teams, despite
the fact that high diversity is associated with low faultlines (Lau
& Murnighan, 1998). These limitations are inherited by follow up
efforts that extend this measure (Bezrukova et al., 2009; Zanutto
et al., 2011). The measure by Li and Hambrick (2005) assumes a
specific attribute of interest and is not suitable for evaluating team
faultlines across attributes. This is also the reason that the mea-
sure has been excluded by comparative studies of faultline mea-
sures (Meyer & Glenz, 2013).

Another relevant construct is the Subgroup Strength measure
proposed by Gibson and Vermeulen (2003). While this measure is
not designed for faultline measurement, it is relevant due to its
focus on subgroups. Its creators posit that strong subgroups exist
if there is high variability in the extent to which attributes over-
lap in the dyads within a team. Their measure is thus based on
computing the pairwise similarities between the team’s members
across all attributes. The team’s subgroup strength is then com-
puted as the standard deviation over all possible member pairs.
Even though this measure is not specifically designed for faultline
measurement, it is easy to compute and to update, as required by
the team-formation paradigm. Hence, we include this measure in
our experimental evaluation in Section 5.

3. Operationalizing a team’s faultline potential

We consider a pool W of n individual workers. Each worker
ieW is associated with an m-dimensional feature vector w;, such
that w;(f) returns the value of feature f for worker i. For each fea-
ture f, we create a complete signed graph Gy that includes one node
for each worker in W. The sign of the edge between two nodes
(workers) (i, i’) is positive if they have the same value for feature
f(i.e. w;(f) =wy (f)) and negative otherwise. Consider the follow-
ing example:

Example 1. We are given a pool of 3 workers, where each worker
is described by 3 features: country of origin, gender, and undergrad-
uate major. Our data thus consists of the following feature vec-
tors:

Wi = [India, Male, Computer Science]
Wy = [India, Male, Business]
W3 = [China, Male, Chemistry]
Fig. 1 shows the graphs for the three features.

A long line of relevant literature has established the use of
triangles to model social structures (Cartwright & Harary, 1956;
Easley & Kleinberg, 2010; Heider, 1958; Morrissette & Jahnke,
1967). In our own setting, the triangle represents the fundamen-
tal building block of our faultline measure, as any structure that
includes more members (e.g. a rectangle) can be trivially modeled
via (or broken down to) triangles. The figure reveals the existence
of 3 possible types of triangles among the members of the team,
according to the signs on their edges: (+,+,+), (-, —, —), and

(=, —, +). By definition, (+,+,—) triangles cannot exist as they
would imply that 2 individuals have the same value as the third
one but not the same as each other. We observe that faultlines
can only appear in the presence of (4, —, —) triangles that con-
sist of one positive and two negative edges, such as the one for
the country of origin feature shown in Fig 1(a). Given that fault-
lines can only emerge in the presence of (+, —, —) triangles, we
refer to these as Conflict Triangles.

A conflict triangle captures the intuition that two people from
the same country are more likely to interact with each other than
to the third person, thus enabling the creation of a potential fault-
line. On the other hand, A faultline could never occur for the gen-
der feature (Fig 1(b)), as all three authors have the same value
(Male). Similarly, since all three authors have a different value for
the undergraduate major feature (Fig 1(c)), there is no faultline po-
tential. This is consistent with faultline theory, which states that
faultlines cannot emerge in the presence of perfect homogeneity
or perfect diversity (Gratton et al., 2011; Lau & Murnighan, 1998).

The ability of triadic relationships to capture the perfect homo-
geneity/diversity principles that are mandated by faultline theory
maintaints its usefulenes in a team-formation setting. Consider the
example in Fig. 2a. The team in the figure represents the worst-
case scenario in terms of faultline potential for the gender feature:
a 50-50 split between two large homogeneous groups of males
(M) and females (F). Fig. 2b shows an example of a team with
no faultline potential for gender, as it consists exclusively of fe-
male members. Even though increased homogeneity is indeed one
of the ways to reduce faultline potential, it is wrong to equate di-
versity with the emergence of faultlines. We demonstrate this in
Fig. 2c. All the members of the teams in this figure have different
values with respect to the feature country of origin. We observe
that, as in cases of perfect homogeneity, faultlines cannot exist in
the presence of perfect diversity. This observation reveals that the
task of measuring a team'’s faultlines goes beyond simply measur-
ing its diversity with respect to different features. Similarly, a team
formation algorithm has to carefully balance the two states of ho-
mogeneity and diversity within a team in order to achieve a low
potential for faultlines.

3.1. Feature alignment:

The next essential step toward the design of a triangle-based
faultline measure is the consideration of the alignment of conflict
triangles across multiple features (Meyer & Glenz, 2013). Consider
three individuals (i, j, k) defined within a space of features Fr.
Given a feature f e Fr, let T =< (i, j),k > be a conflict triangle
such that w;(f) = w;(f) and w;(f), w;(f) #wy(f). Let iscon(z, f) be a
function that returns 1 if t is a conflict triangle for f and O other-
wise.

If the same conflict triangle emerges for a second feature f,
we say that 7 is aligned across the two features f and f (i.e.
iscon(t, f) = iscon(z, f’) = 1). Let p(z, T) return the percentage of
all available features of team T for which 7 is aligned (i.e. for which
T appears as a conflict triangle). Formally:

p(r.T) = {f e Fr: iscon(z, f) =1}
|Frl

We say that a triangle T from team T is fully aligned if it is
aligned across all team features (i.e. p(t,T) = 1). Then, we define
the faultline potential of a given team T as follows:

CT(T) =3 p(z.T) (1)
7€Dr

where Dy is the set of all distinct conflict triangles < (i, j), k> that

appear across any of the features in T. Our measure has a proba-

bilistic interpretation, as it encodes the expected number of suc-

cesses (conflict triangles) that we would get after |Dy| Bernoulli
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Fig. 2. Examples of teams with high and low faultline potential.

trials, where each trial corresponds to a different t € Dy and has
a success probability equal to p(z, T). The trial for conflict trian-
gle T involves sampling)(uniformly at random) a feature f from Fr
and is successful if T is a conflict triangle for f. Hence, a perfectly
aligned triangle would succeed for any sampled feature and would
increment the team’s score by 1. Similarly, the trial for a triangle t
that is aligned over half of the team’s features would have a 50%
of success and would increment the team'’s score by 0.5.

The penalty that Eq. (1) assigns to each conflict triangle in the
team is directly proportional to the triangle’s alignment across the
team’s features.

Under this definition, the minimum faultline potential is as-
signed to perfectly homogeneous or perfectly diverse teams, as
they both include zero conflict triangles. On the other hand, in ac-
cordance with faultline theory (Lau & Murnighan, 1998), the maxi-
mum faultline potential is assigned to teams that can be split into
two perfectly homogeneous subgroups of equal size.

Learning the appropriate penalization scheme from real
data: The definition given in Eq. (1) intuitively applies, for each
conflict triangle, a penalty that is directly proportional to the trian-
gle’s alignment across the team’s features. We thus expect it to be
a reasonable modeling choice for many domains. However, in prac-
tice, this penalization scheme may not be appropriate for a specific
domain or application. Therefore, we extend our framework via by
describing a methodology that allows practitioners to learn the ap-
propriate penalization on function for their domain, based on in-
formation from existing teams in the same domain. We present the
details of our technique for learning the penalization parameters in
Section 6.

3.2. Efficiently computing a team’s faultline potential

The computation requires us to count the total number of con-
flict triangles across all features. Thus, for T € W, CT(T) can be com-
puted in polynomial time. For this, one has to consider all trian-
gles appearing in the feature graphs and count how many of those
are conflict triangles. The running time of the naive computation is
O(m|T|?) where |T| is the size of the team and m is the number of
features. Next, we present a method for significantly speeding up
this computation.

Given a set of workers TCW, and a feature f that takes values
vq,...,V;, we summarize the values of f observed among the work-
ers in T via the aggregate feature vectorr(T, f) such that r(T, f)[v;]
gives the number of workers in T that have a value equal to v;. We
observe that these aggregate vectors can be computed in O(m|T|)
time by simply counting all feature values of all workers. Once the
aggregate feature values have been computed, the faultline poten-
tial for each feature f that takes values vy, ..., v, can be written as
follows:

N

T pH=Y (“T’ ’;’“’f]) (IT] - (T F)lvy]) @)

j=1

We observe that, for any feature f with L different possible val-
ues, the faultline potential with respect to f can be computed in
O(L) time using the above equation. Thus, the overall faultline po-
tential CI(T) can be computed in O(mL). Given that both the num-
ber of features m and the number of possible values for each fea-
ture L are usually small constants, this computational cost is negli-
gible compared to the time required to create the aggregate feature
values. The use of the aggregate feature vectors also allows us to
update the score in constant time, as required by the second ef-
ficiency principle of faultline-aware team-formation. Specifically, if
an individual i joins or leaves the team, we only need to update
(in O(m)) the number of conflict triangles that are due to the ag-
gregate counts that change due to the addition or removal of i.

4. The Faultline-Partitioning problem

In this section, we formally define the
Faultline-Partitioning problem, ie., the problem of
partitioning a set of workers W into ¢ teams of equal size such
that the total faultline potential score across teams is minimized.
We show that this problem is not only NP-hard to solve, but
also NP-hard to approximate within any bounded approximation
factor, unless P = NP. Then, in Section 4.1, we present an efficient
heuristic algorithm for its solution.

First, we extend the notion of faultline potential to a collection
of teams. For any partitioning T = {Ty, T, --- , T} of workers into ¢
teams, we use CT(T) to denote the total faultline potential of all
teams in T. Formally:

14
CT(T) =) CT(T). (3)
i=1
We can thus define the Faultline-Partitioning problem
as follows:

Problem 1. (Faultline-Partitioning) Given a pool of work-
ers W (with |W| = ¢ x k), find a partitioning T={T},T5,--- , Ty} of
the workers W into ¢ teams of size k such that CT(T) is minimized.

Next, we proceed to analyze the hardness of the
Faultline-Partitioning problem. Our results apply for
the more general problem of partitioning a population into teams
with specific but possibly different sizes.

Theorem 1. The Faultline-Partitioning problem is NP-hard
to solve.

Theorem 1 implies that the Faultline-Partitioning
problem cannot be optimally solved in polynomial time unless
NP = P. Next, we provide a formal proof of this theorem.

Proof. We present a polynomial-time reduction from
the NP-Complete K-CLIQUE PARTITIONING problem to our
Faultline-Partitioning problem (Gary & Johnson, 1979;
Rosgen & Stewart, 2007). The K-CLIQUE PARTITIONING is a deci-
sion problem which asks the following question: Given a graph
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Fig. 3. Graph H (in gray) and its feature graphs for the corresponding
Faultline-Partitioning problem.

H = (V,X), is it possible to partition the nodes of the graph into
disjoint cliques of size k?

Given a graph H = (V,X) (with V nodes and X edges), we first
create the complement of H denoted by H' = (V,X’). Clearly, any
clique of size k in the original graph H corresponds to a set of k
nodes with no edges among them in H'.

For our reduction, every node iV will correspond to a worker
for our problem. Also, we will interpret each edge in H' as an
agreement (“+”) and each missing edge as a disagreement (“-").
Then, for every edge (i, i') in H', we create a feature f; 7 and then
construct the corresponding feature graph G Far that contains one

positive edge connecting nodes i and i, while all other edges, con-
necting all pairs of nodes, are negative. Fig 3 shows how an ex-
ample graph H with three edges is transformed into three feature
graphs.

Now consider the optimal solution to this instance of the
Faultline-Partitioning problem. Since the size of each
team is fixed (k), it is easy to see that each edge of H' that falls
within one team creates (k — 2) conflict triangles. This implies that
the optimal solution is the one that minimizes the total number of
edges that fall within the partitions. More specifically, the optimal
solution has a faultline potential equal to zero if and only if there
exists a partitioning of the nodes in H with no edge inside the
partitions which further corresponds to a partitioning of the nodes
in H into cliques. O

Corollary 1. The Faultline-Partitioning problem is NP-hard
to approximate within any factor.

Proof. We will prove the hardness of
of Faultline-Partitioning by
sume that there exists an «-approximation algorithm
for the Faultline-Partitioning problem. Then if
T =({T;.T;,--- . T} is the partitioning with lowest faultline
potential and T4 = {TA, T;4, ..., T/} is the solution output by this
approximation algorithm, it will hold that CT(T4) < «CT(T*). If
such an approximation algorithm exists, then this algorithm can
be used to decide the instances of the K-CLIQUE PARTITIONING
problem, for which the optimal solution has a faultline potential
equal to 0. However, this contradicts the proof of Theorem 1,
which indicates that these problems are also NP-hard. Thus, such
an approximation algorithm does not exist. [

approximation
contradiction.  As-

4.1. The FaultlineSplitter algorithm

In this section, we present an algorithm for the
Faultline-Partitioning problem. We refer to the algo-
rithm as FaultlineSplitter and provide the pseudocode in

Algorithm 1 The FaultlineSplitter algorithm.

Input: Set of workers W with m features and the number ofde-
sired partitions .
Output: Partitioning T = {Ty, >, ..., Ty}

: Randomly partition W into T = {Ty, ..., T;}

: while CT(T) has not converged do

C = AssignCosts (W,T)

T = ReassignTeams(T, €)

: return T

Algorithm 1. The Python implementation of the algorithm is
available online.!

The algorithm starts with a random partitioning of the input
population into ¢ equal-size groups and then reassigns individuals
to teams in an iterative fashion until the faultline potential of the
obtained partitions does not improve across iterations.

In each iteration, the algorithm starts with a partitioning of the
set W into ¢ groups and forms a new assignment with (ideally) a
lower faultline potential score. This is done by executing two func-
tions: AssignCosts and ReassignTeams. The AssignCosts function
returns a cost associated with the assignment of every individual
to every team; i.e,, (i, Tj) is the cost of assigning individual i into
team T;. These costs are used by ReassignTeams to produce a new
assignment of individuals to teams - always guaranteeing that the
teams are of equal size. Next, we describe the details of these the
two main routines of FaultlineSplitter.

The AssignCostsroutine: This routine, assigns to every worker
i and team T; cost c(i, T;), which is the cost of assigning worker i
to team T;. In order to compute these costs, AssignCosts considers
the current teams in T as a baseline to evaluate if the assignment
of worker i to team T; can lead to fewer conflict triangles. Thus, an
intuitive definition of cost is the number of conflict triangles that
i incurs when he joins T;. This is equal to CT(T;u{i}) if i ¢ T; and
CI(T;) if ieT;.

We observe that, if worker i already belongs to team T}, the re-
assignment is not going to change the size of the resulting team.
However, if i ¢ T the assigning i to T; creates a team of size (k + 1).
This is problematic, since the number of conflict triangles in teams
of size k is not comparable to that in teams of size (k+ 1). This
can be resolved by introducing a normalization factor which mea-
sures the maximum possible number of conflict triangles in a team
of a fixed size. Formally, for a team of size k, we use Ay to de-
note the maximum possible number of conflict triangles that can
emerge in the team across all features. Now, we compute the cost
function as follows:

[T Ui A (figT,
c(l’Tf)_{CT(T;)/AkH fieT (4)

Running time: Note that computing all three cost functions can
be done in O(m|W|) using the aggregate feature vectors as dis-
cussed in Section 3.2.

The ReassignTeamsroutine: ReassignTeams takes as input a cur-
rent a cost of assigning each one of the n individuals into each one
of the ¢ teams and outputs a new partition of the individuals into
¢ equal-size groups. The algorithm, views this partitioning problem
as a minimum weight b-matching problem (Burkard, Dell’Amico,
& Martello, 2012) in a bipartite graph, where the nodes on the
one side correspond to n individuals and the nodes on the other
side correspond to ¢ teams. In this graph, there is an edge be-
tween every individual i and team T;. The weight/cost of this edge
is, for example, c(i, T;) - computed as described above. Finding a
good partition then translates into picking a subset of the edges of

1 https://github.com/sanazb/Faultline.
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the bipartite graph, such that the selected edges have a minimum
weight sum, every individual in the subgraph defined by the se-
lected edges has degree 1, and each team has degree k. This would
mean that every worker is assigned to exactly one cluster and ev-
ery cluster has exactly k members. This is a classical b-matching
problem that can be solved in polynomial time using the Hungar-
ian algorithm (Burkard et al., 2012; Kuhn, 1955).

Variable-size partitioning: It is important to point out that our
algorithm can be easily modified to partition a population into
teams of fixed but possibly different sizes. The ReassignTeams rou-
tine in our algorithm computes a new assignment of individuals to
teams by solving a minimum weight b-matching problem in a bi-
partite graph where nodes on the right represent individuals and
nodes on the left represent the available spots/positions in each
team. This setup gives us the flexibility to choose the number of
available spots in each team. In fact, this is how the algorithm en-
forces equal-size teams in our current implementation.

Computational speedups: Computing the new partition using
the Hungarian algorithm, requires O(n3) time. This is a compu-
tationally expensive operation, especially since this step needs to
be completed in each iteration of FaultlineSplitter. In order to
avoid this computational cost, we solve the bipartite b-matching
problem approximately using a greedy heuristic that works as fol-
lows: in each iteration the edge (i, T;) with the lowest cost c(i, T;)
is selected, and worker i is assigned to the j-th team Tj; this as-
signment only takes place if: (1) worker i is not assigned to any
team in an earlier iteration, and (2) the j-th team has less than
k workers so far (i.e., if it has not reached the desired team size).
This is repeated until all the workers are assigned to a team.

To find the minimum cost edge in each iteration we need to
sort all edges with respect to their costs and then traverse them
in this order. Since there are O(n¢) edges, the running time of this
greedy alternative is O(n¢log(n¢)) per iteration.

5. Experiments

In this section, we describe the experiments that we performed
to evaluate our methodology.

5.1. Datasets

Adult: The Adult dataset is a census dataset from UCI's ma-
chine learning repository. It contains information on 32,561 indi-
viduals; the features in the data are age, work class, education, mar-
ital status, occupation, relationship, race, sex, capital-gain, capital-loss,
hours-per-week, and native country.? We convert non-categorical
features to categorical features as follows: for age and hours-per-
week we bin their values into buckets of size 10. Also, we con-
vert both capital-gain and capital-loss into binary features depend-
ing whether their value is equal to zero or not.

Census: The Census dataset is extracted from the US govern-
ment’s "Current Population Survey”.> We focused on the most re-
cent collected data from the year 2014. Our dataset contains cen-
sus information on 200,469 individuals. The dataset includes the
following features: marital status, gender, education, race, country,
citizen, and army.

DBLP: The DBLP dataset is created by using the latest snap-
shot of the DBLP website and filtering only authors that published
papers on tier-1 and tier-2 computer science (NLP, IR, DM, DB, Al,
Theory, Networks) conferences and journals.* Although the only
known attribute in the raw dataset is the country of origin, we ex-
tracted the following features for each of the 57,972 authors, based

2 https://archive.ics.uci.edu/ml/datasets/Adult.
3 http://thedataweb.rm.census.gov/ftp/cps_ftp.html.
4 http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html.

on their publications: number of years active, primary area of focus
(based on number of publications),average number of publications
in ten years, and total number of publications. We also computed
a quality feature for each author, by giving her 2 points for each
paper published in a top-tier conference and 1 point for all other
papers. We bin both the total number of publications and the av-
erage number of publications into buckets of size 10, and bin the
quality score into buckets of size 5.

BIA660: This dataset is collected from entry surveys taken by
all students who take the Analytics course offered by one of the
authors of this paper. The data was collected during 6 different
semesters and includes data from 502 graduate students. It con-
sists of 85 teams, with an average of 5.9 students per team. For
each student, the dataset includes the major of the degree they
were pursuing at the time of the data collection, the major of
their bachelor’s degree, gender, country, and a self-assessment of
her level with respect to machine learning, analytics, programming,
and experience with team projects. The assessments are given on
a scale from 0 (no experience) to 3 (very experienced). For each
team, we also have its performance (on a scale of 0 to 100) on
a collaborative, semester-long project that accounts for 70% of the
entire grade, as well as the average satisfaction level (on a scale of
0 to 7) of the team’s members with the way the team operated.
For each team we computed tension (bad triangles) for each team
across all features.

Synthetic-1: In order to control the number of conflict trian-
gles in our data, we have developed a method to create synthetic
datasets given a target percentage of conflict triangles. First, we as-
sume that our pool of workers W is going to consist of a single fea-
ture which can only take 3 different values X, Y, and Z. Let’s define
X, ¥, z to be the number of data points with these values respec-
tively. Now, it is clear that /(W) =x x ¥ x z. On the other hand,
given that total number of workers is n we have x +y + z = n. Note
that if the value of x is given, we can use these equations to com-
pute the value of y and z as well. To create our datasets, we try
different values of x and then we solve for variables y and z. Then,
we randomly partition workers into three groups of size x, y, and
z and assign the value X, Y, and Z to them respectively.

Synthetic-2: In order to compare different faultline measures -
ASW, Subgroup Strength (SS), and our CT measure- we generate
a dataset as follows. We consider three features: Race (Asian, White,
Black, Native American), Country (USA, China, England, France), and
Education (High-school, Undergraduate, Graduate). Then, given a
team size TS and a number of subgroups SN, we generate 100
teams that include TS individuals divided into SN completely ho-
mogeneous subgroups. Within each subgroup, all individuals have
the same value for each feature F. This value V is selected with
a probability that is inversely proportional to the number of sub-
groups in the team that has already been assigned V for this fea-
ture. This process allows us to create perfectly homogenous groups
that are highly dissimilar from each other. We repeat the pro-
cess for TSe{4, 8, 16, 32, 64}. Given a value for TS, we start with
SN =1 (a perfectly homogeneous team) and double the value until
SN =TS (one individual per subgroup). For instance, for TS = 16,
we consider SNe{1, 2, 4, 8, 16}. This process generates a total of
3100 teams. Controlling the number of perfectly homogenous sub-
groups allows us to control diversity and simulate multiple sce-
narios of conflict between different types of subgroups within the
team.

Discussion: Table 1 shows some basic statistics for our datasets.
As mentioned earlier, the Synthetic-1 dataset allows us to tune
the percentage of different types of triangles. The synthetic in-
stance reported in Table 1 corresponds to a dataset of size 400
with 8 features where we set the percentage of negative and pos-
itive triangles to 8% and 25% respectively. Fig 4 illustrates the
Cramer’s V values for all pairs of features in all datasets. Cramer’s V


https://archive.ics.uci.edu/ml/datasets/Adult
http://thedataweb.rm.census.gov/ftp/cps_ftp.html
http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html
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Fig. 4. The Cramer’s V values for all pairs of features for all datasets.

Table 1
Statistics for the real datasets.

Dataset Size Features % of conflict triangles
DBLP 57,972 6 35%

Adult 32,561 12 1%

Census 200469 7 44%

DBLP-Aug 155 9 47%

BIA660 502 8 62%

Synthetic-1 400 8 8%

value is a standard measure the correlation between two categori-
cal variables (Cramér, 2016). It has a value of 1 when two variables
are perfectly correlated and O if there is absolutely no correlation.
The figure illustrates that Adult and Census are similar in terms
of feature correlation. Specifically, we observe a small correlation
for the majority of the features and only a couple of them with
high correlations. On the other hand, DBLP exhibits significantly
higher correlation patterns.

5.2. Evaluation on the Faultline-Partitioning problem

In this section, we evaluate the performance of our algorithms
for the

Faultline-Partitioning problem.

Baselines: We compare our FaultlineSplitter algorithm with
two baselines: Greedy and Clustering. The Greedy algorithm
takes an iterative approach that creates a single team in each it-
eration and thus it requires ¢ iterations to create all ¢ teams.
Each team is constructed as follows. First, the algorithm selects
two random workers. It then continues by greedily adding the
worker that minimizes the faultline score of the team. Once the
size of team reaches k, the algorithm removes the selected mem-
bers from the pool of experts and moves on to build the next team.
Finally, Clustering is a clustering algorithm that tries to cre-
ate equal-size partitions such that the number of positive (nega-
tive) edges within the teams is maximized (minimized) (Malinen
& Franti, 2014).

Evaluation metric: for every algorithm, we measure its perfor-
mance via the faultline potential of the set of teams that it creates,
as per Eq. (3). Because some of our comparisons require plotting
results obtained from datasets of different sizes in the same fig-
ure, we apply the following dataset-specific normalization. For a
dataset of size n, we divide the faultline potential of a partitioning
obtained for this dataset with the total number of triangles that
can be encountered in datasets of this size, ie., (3). Thus, the y-
axis of all our plots is in [0,1].

5.2.1. Varying the population size

For each dataset, we randomly select, with replacement, 100
sets of n individuals, for n {100, 200, 400, 800, 1600}. We then
use the algorithms to partition each set into teams of size 5. For
each algorithm, we report the average faultline potential achieved
over all sets for every value of n, along with the corresponding 90%
confidence intervals. The results for all three datasets are shown in
Fig. 5. We also report the computational time (in seconds) of each
algorithm for each value of n in Fig. 6.

The first observation is that all the algorithms perform better
as the size of the population increases, with the achieved normal-
ized faultline potential values ultimately converging to a low value
around 0.1, for all datasets. An examination of the data reveals that
we can confidently attribute this trend to the fact that increasing
the size of the population leads to the introduction of identical or
highly similar individuals (i.e. in terms of their feature values). This
makes it easier to form low-faultline teams. This is not a surpris-
ing finding in real datasets, which tend to include large clusters
of similar points, rather than points that are uniformly distributed
within the multi-dimensional space defined by their features.

We observe that The FaultlineSplitter algorithm consistently
achieves the best results across datasets, while the Greedy al-
gorithm outperforms Clustering in two of the three datasets
DBLP and Adult. This reveals a weakness of Clustering: its in-
ability to consistently deliver low-faultline solutions as the popu-
lation becomes larger. On the other hand, the FaultlineSplitter
algorithm does not exhibit this weakness, emerging as both the
most stable and effective approach. Finally, as in the previous ex-
periment, the algorithms exhibit a negligible variation over the dif-
ferent samples that we considered for each value of the parameter.

With respect to computational time, Fig. 6 verifies that
FaultlineSplitter can scale to large population sizes. Using the
Census dataset, we observe that, even for the largest popula-
tion of 1600 individuals, the algorithm computed the solution in
less 2 minutes. In fact, its speed was nearly identical to that of
the greedy heuristic. Finally, while the Clustering algorithm
emerges as the fastest option, this comes at the cost of inferior
solutions (i.e. teams with higher faultline potential), as we demon-
strated in Fig. 5.

5.2.2. Varying the team size

For this experiment, we set the size of the population of in-
dividuals to |W| = 800. For each real dataset, we randomly select
100 populations, of 800 individuals each, with replacement. We
then use the algorithms to partition each population into teams
of size k, for ke{3, 4, 5, ---, 20}. For each algorithm, we report
the average normalized faultline potential achieved over all popu-
lation for every value of k, along with the corresponding 90% confi-
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Fig. 6. Running times for different population sizes (parameter n).

dence intervals. The results for Adult, Census and DBLP datasets
are shown in Fig 7.

We observe that the FaultlineSplitter algorithm had the
overall best performance across datasets. We observe that its
advantage wanes as the value of k increases. This can be ex-
plained by the fact that asking for larger teams makes the prob-
lem harder, as it requires the inclusion of additional individu-
als and thus makes it harder to avoid the introduction of con-
flict triangles into the team. This explanation is also consis-
tent with the fact that the performance of the two algorithms
tends to decrease as k becomes larger. A second observation is
that the Greedy algorithm is consistently outperformed by both
FaultlineSplitter and Clustering. This demonstrates the dif-
ficulty of the Faultline-Partitioning problem and the need
for sophisticated partitioning algorithms that go beyond greedy
heuristics. Finally, as shown in the figure, we observe that the stan-
dard deviations for all algorithms were consistently negligible, bol-
stering our confidence in the reported findings.

5.2.3. Varying the number of conflict triangles

The purpose of this experiment is to evaluate the algorithm
on populations with different potential for faultlines. While ran-
dom samples obtained from our real-world datasets differ trivially
in terms of the percentage of conflict triangles, we can engineer
synthetic data to obtain datasets with different number of con-
flict triangles. To conduct this experiment, we use the Synthetic-1
dataset described in Section 5.1. We consider populations of 400
individuals and set the team size equal to 5. The results are shown
in Fig 8. The plot verifies that finding low-faultline teams be-
comes harder as the population’s inherent potential for such fault-
lines increases. However, the FaultlineSplitter algorithm consis-
tently outperforms the other methods. In fact, the gap between
the two algorithms increases as the number of conflict triangles in
the population increases. This demonstrates the superiority of the
FaultlineSplitter algorithm over the other approaches in terms

of searching the increasingly smaller space of low-faultline solu-
tions.

5.3. Faultline measurement in existing teams

In this section, we compare three alternative options for fault-
line measurement in existing teams: the proposed CT measure,
the ASW by Meyer and Glenz (2013), and the Subgroup Strength
(SS) measure by Gibson and Vermeulen (2003). We select the
ASW due to its status as the state-of-the-art, even though, as
we discussed in detail in Section 2, it is not appropriate for
the Faultline-Partitioning problem that is the main fo-
cus of our work. We select the SS measure because it com-
bines the simplicity and computational efficiency required for the
Faultline-Partitioning problem with competitive results in
previous benchmarks (Meyer & Glenz, 2013).

5.3.1. A comparison on synthetic teams

For this study, we use the Synthetic-2 dataset which, as we
describe in Section 5.1, includes teams of various sizes and sub-
group composition. First, we group the teams according to size.
We then use each of the three faultline measure to evaluate the
teams in each group. Finally, we compute the Pearson Correlation
Coefficient (PCC) between every pair of measures. We present the
results in Fig. 9a. Then, in Fig. 9b we report the average computa-
tional time needed to compute the score of each team for each of
the three measures.

The first observation from Fig. 9a is that all three measures re-
port similar scores across team sizes, with the pairwise PCC over
0.65. Hence, while the three measures follow different measure-
ment paradigms, their results tend to be consistent. However, the
bars also reveal that the correlation between SS and CT measures
was the highest among all possible measure-pairs. In fact, the ob-
served PCC value for this pair was consistently around 0.9, reveal-
ing near-perfect correlation. This is intuitive if we consider the na-
ture of the two measures: the conflict triangles counted by the CT
measure include, by definition, a pair of team members that are
also identified as “overlapping” by the SS measure. A key differ-
ence between the two measures is that CT does not consider all-
positive triangles (i.e. a triplet of team members with the same
value for a feature, see Fig. 1b), while SS would consider all 3
dyads in such a triangle as overlaps. However, the results reveal
that this difference does not significantly differentiate the results
of the two measures, possibly due to the fact that SS does not fol-
low the CT’s counting paradigm and, instead, aggregates overlap
sums via the standard deviation.

With respect to computational time, Fig. 9b verifies the theoret-
ical analysis that we presented in Section 2. The y-axis represents
the average time (in seconds) required to compute the score for
a team, in log scale. As we discussed in detail in Section 4, any



450

%

Bahargam, B. Golshan and T. Lappas et al./Expert Systems With Applications 119 (2019) 441-455

’Algorithm & Greedy ‘= Faultline-Splittero Clustering

= adult census dblp
= 0.250 - s Xx—XE—¥X K%
s 0.250 py PP o § P 7 b
5 oo § o 0.15+ % 0.24 1 P - 8"
& 0.225- . o % L
qc) i o ° 8 o A
= 0.200 4 po 0.124 a io g 020410 oy i}
= e ¥
0.175 o
b & f 00940 ]
: = 0.16
£ 0.150 1 . i
S T T T goe e L LI L] L ANNNNENEN NN ENEE
z 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
Team Size

Fig. 7. Faultline results for different team sizes (parameter k).
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algorithm for the Faultline-Partitioning problem has to
quickly consider a large number of candidate teams in order to ef-
ficiently locate (or approximate) the best possible partitioning. We
observe that ASW is orders of magnitude slower than the other
two measures, with the gap growing rapidly with the size of the
teams. In addition, while the SS and CT measures can be easily
updated in constant time as the algorithm makes small changes
to the team’s roster, this is not the case for ASW. In short, while
ASW may indeed be a competitive option for faultline measure-
ment, our analysis and experiments verify that it is not a good
candidate for faultline-optimization problems, such as the one that
we study in this work. Out of two fastest measures, CT displays
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a clear advantage over SS. We observe that it is several times
faster and, as in the case of ASW, the gap grows rapidly with
the size of the population. The results verify the effectiveness of
our methodology for computing CT, which we discuss in detail
in Section 3.2. They also demonstrate that, while two measures
might satisfy the efficiency principles that are necessary for effi-
cient faultline-minimization in teams, one of the two can still have
a significant computational advantage that makes it more appro-
priate for large populations.

5.3.2. A comparison on real teams

For this study we use the BIA660 dataset, which includes two
outcomes: (i) the team’s performance (represented by its grade)
and (ii) the average satisfaction of the team’s members with their
overall collaborative experience. In Figs. 10a and b we visualize the
performance of each team against its corresponding CT, SS, and
ASW scores. We observe that performance has a strong negative
association with the CT and SS scores, as demonstrated by the
slope of the line. In contrast, the corresponding line for the ASW
measure is nearly parallel to the x-axis, suggesting a lack of cor-
relation. This finding is verified by the Pearson Correlation Coeffi-
cient (PCC) values for the CT, SS, and ASW measures, which were
—0.21, —0.23 and —0.04, respectively. Note that a negative corre-
lation is intuitive, as it means that lower faultlines are associated
with higher performance.

In Figs. 10c and d we visualize the satisfaction of each team
against its corresponding CT, SS, and ASW scores. The results
are consistent with the performance analysis: satisfaction exhibits
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Fig. 9. A comparison of the ASW, Conflict Triangles (CT), and Subgroup Strength (SS) faultline measures on the Synthetic-2 dataset.
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Fig. 10. The association of the CT, SS, and ASW measures with team performance and satisfaction.

a strong negative association the CT measure, while its association
with ASW is very weak. In fact, the correlation of satisfaction with
CT and SS appears to be even stronger than that of the team’s
performance. Again, these findings are verified by the PCC values
for the CT, SS, and ASW measures, which were —0.26, —0.34 and
0.02, respectively.

The results verify that the teams’ overall faultline-strength, as
measured by the CT measure, has a strong negative association
with meaningful outcomes. Next, we demonstrate how a practi-
tioner can examine feature-specific faultlines to identify specific
features that are associated with each outcome.

Each of the two outcomes (performance and satisfaction) serves
as the dependent variable in a separate regression that also in-
cludes the team’s faultline potential with respect to different fea-
tures, according to the CT measure. We also consider multiple con-
trol variables that could account for part of the variance in the
dependent variable. We present the results of both regressions in
Table 2.

The table reveals strong negative correlations of the faultline
scores for the features country, BS major, and current degree with
performance. This implies that the existence of potentially con-
flicting groups in these features can be detrimental to the team’s
grade. We observe similar trends for the country and current degree
features in the context of team satisfaction. Such findings can in-
form the instructor about the existence of potentially problematic
dimensions and guide his efforts to strategically design the teams.

In practice, this type of regression can be used before solving an
instance of the Faultline-Partitioning problem, in order to
identify the dimensions that need to be considered during the op-
timization. This is a critical step, as trying to solve for all possi-
ble dimensions is likely to limit the solution space and eliminate
high-quality teams due to the existence of faultlines in trivial (non-
influential) dimensions.

6. Generalizing the penalization scheme of aligned conflict
triangles

As mentioned earlier our definition of faultline potential (sum-
marized in Eq. (1)) applies, for each conflict triangle, a penalty that
is directly proportional to the triangle’s alignment across the fea-
tures. Our experimental results presented in Section 5.3.2 demon-
strate that this penalization scheme yields a metric that is a strong
predictor of a team’s success. However, one might argue that in
a specific domain or application, different degrees of alignment
should be penalized using a different scheme. In this section, we
extend our framework by (1) demonstrating how different penal-
ization scheme of aligned conflict triangles can be implemented,
(2) describing a methodology that allows practitioners to learn the
appropriate penalization scheme for their domain based on infor-
mation from existing teams in the same domain, (3) studying the
Faultline-Partitioning problem under a given penalization
scheme.
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Table 2
Regression results.

Dependent variable:

Grade Satisfaction
1) (2)
Degree —10.887*** —1.195***
(-3.793) (—4.937)
BS Major —12.821** —0.676
(-2.580) (-1.612)
Gender 0.106 0.147
(0.028) (0.457)
Country —8.010*** —1.121%**
(-3.001) (—4.977)
ML Exp —5.428 -1.029*
(-0.841) (-1.889)
Analytics Exp 5.233 -0.063
(1.082) (—0.155)
Programming Exp —4.464 0.336
(-0.926) (0.827)
Team Exp 1.344 —0.188
(0.323) (-0.535)
Average ML Exp 0.219 —0.105
(0.185) (-1.052)
Average Analytics Exp —0.241 —0.143
(—0.205) (—1.438)
Average Prog Exp —1.820* 0.014
(—1.758) (0.155)
Average Team Exp 0.898 0.040
(0.772) (0.405)
Constant 97.821 7.308***
(10.586) (9.374)
Observations 86 86
R? 0.313 0.467
Adjusted R? 0.200 0.379
Residual Std. Error (df = 73)  8.126 0.686
F Statistic (df = 12; 73) 2.766%** 5.327++

Note: The dependent variable are grade and satisfaction. t-
statistics are shown in parentheses. Significance levels:
*p<0.1; *p<0.05;

#p <0.01

6.1. Faultine potential with a generalized penalization scheme

Given a team T with a set of features Fr, we define the faultline
potential of a team given a penalization scheme g(.) as:

|Fr|

PCT(T.g) = ) _g(x) x aligned(x,T), (5)

x=1

where aligned(i, T) returns the number of conflict triangles that are
aligned across exactly x features in Fr. The above formulation al-
lows us to flexibly penalize the existence of aligned conflict trian-
gles by selecting the appropriate g(x) penalty for each value of x.
Naturally, it makes sense to define g(x) as an ascending function to
reflect the fact that higher alignment should translate to a higher
faultline potential. Note that if define g(x) = x, then the obtained
faultine potential is equivalent to our original definition of CT{(t)
presented in Eq. (1) (module some constant).

6.2. Learning the penalization scheme

The task of learning the appropriate penalty parameters can be
modeled as a supervised learning task. Each team serves as a data
point in the training set. More specifically, the predictive variables
are the aligned(x, T) values for increasing values of x. The depen-
dent variable should reflect the degree to which a team’s perfor-
mance is influenced by faultlines. We compute the dependent vari-
ables using the following technique. Given a set of teams along
with any success metric that encodes their outcome in a partic-
ular domain (e.g. performance, satisfaction, cohesion), we obtain

the dependent variables by negating the success scores and nor-
malizing them to have a mean equal to 0 and a standard devia-
tion equal to 1. The goal is then to learn the penalty-parameters
g(x) that best fit the data. To achieve this, we train a linear re-
gression to obtain the best g(x) values. It is important to mention
that fitting the linear regression may lead to negative g(x) values.
This does not create any issues, but if practitioners desire to obtain
faultline potential values that are always positive, they can sim-
ply add a constant to all g(x) values. This is a safe operation as it
simply adds a constant value to all fautline potential values and
does not affect the difference between teams’ faultline potentials.
In fact, in our experiments we always add a constant value to all
g(x) parameters to ensure that g(0) is equal to 0. This makes the
penalization scheme more interpretable as we expect the penalty
of conflict-free triangles to be 0.

If the practitioner has no access to numeric outcomes variables,
we can still learn g(x) as follows. The learning task can be modeled
as a classification task with a binary variable that is equal 1 for all
actual teams in the data. The training data is then complemented
by randomly-populated “noise” groups that do not represent actual
teams. The binary dependent variable for these fake teams is 0. In
this case, the goal is to find the penalty-parameters that best dif-
ferentiate between actual and noise teams. This technique builds
upon the fact that in most cases, individuals (and managers) tend
to form teams that have a lot degree of conflict and faultline po-
tential.

To demonstrate the effectiveness of our proposed learning pro-
cedure, we use the BIA660 dataset as it consists of a set of teams
along with two outcome scores, namely “grade” and “satisfaction”.
Table 3 summarizes the g(x) values we obtained using the tech-
niques described above. The first two rows correspond to the g(x)
values obtained from the grade and satisfaction metrics. The third
row corresponds to g(x) values calculated from our binary classi-
fication task (without using any outcome scores). The fourth rows
corresponds to g(x) values obtained on a version of BIA660 dataset
in which outcome score of each team is randomly sampled from
the set {0, 1}. This row helps verify that the results of the other
rows is significant and not due to chance.

Note that the first three rows in Table 3 share a similar trend
(and for the most part) the numbers are ascending representing
that the higher degrees of alignment should be penalized more.
On the other hand, we can see that the values in the last row are
significantly different and do not exhibit any meaningful pattern.
We can observe that the g(x) values reported in the first 3 rows,
while following the expected trend, sometimes fluctuate. For ex-
ample, the values of g(8) are smaller than g(7). This can be ex-
plained using the last row of the table which summarizes the fre-
quencies of each degree of the alignment in the entire dataset. For
instance, we can see that in the entire dataset, there are only 0.7%
of triangles that can form 8 aligned conflicts. This means, that in
our learning task this value is in almost all cases set to 0 for both
successful and unsuccessful teams. Thus, the parameters learned
using the linear regression are more subject to noise. In fact, if we
focus only on degrees of alignments that have at least 5% presence
in the data, we can see that the g(x) values are more robust and
conform to our expected behaviour.

6.3. Team-formation under the generalized penalization scheme

As we discussed in  Section 2.3, solving the
Faultline-Partitioning problem for a large group of
individuals requires an operationalized notion of faultline that
can be (1) computed in linear time and (2) updated in constant
time when a member joins or leaves the team. Unfortunately,
these two criteria may not hold for a given penalization scheme.
In fact given a team T, computing the PCT(T, g) requires a run-
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Table 3
Obtained penalization schemes using the BIA660 dataset.
g(1) 2(2) g(3) 2(4) g(5) g(6) &(7) &(8)
Grade 0.091 0.064 0053 0112 0.165 0233 0171 0111
Satisfaction 0.088 0.07 0.028 0.141 0079 0253 0208 0133
Real Vs. Fake  0.068 0.099 0079 0.061 0.115 0184 0223 0171
Random -0.063 0021 0428 -0041 —0153 0053 0142  0.098
Frequencies  0.2% 1.5% 6.8%  12.9% 17.0% 116%  45%  0.7%
100 tionship with our original definition of faultline potential. This im-
— plies that by solving the Faultline-Partitioning problem
> using our original penalization scheme, we can benefit from the
,\“ 801 speed-up techniques we introduced in Section 3.2 without sacri-
}\: ficing the quality of the obtained teams even if a different penal-
(&) 50 ization scheme is desired.
<
S 7. Handling numeric attributes
g 407 R
' One of the limitations of CT is that it is primarily designed
” . ‘ ‘ for nominal attributes. Thus, numerical attributes need to be dis-
50 60 70 cretized into bins prior to computing the faultline score. The ability
mean(CT(T)) to handle multimodal data is a well-known challenge in faultline

Fig. 11. Comparing the faultline potential using different penalization schemes.

ning time of O(m|T|?). This is because our speed-up technique
described in Section 3.2 can not be applied to any penalization
scheme. This makes the Faultline-Partitioning problem
even more challenging to solve as it becomes computationally
expensive. The FaultlineSplitter algorithm can still be used
to solve the Faultline-Partitioning problem given any
penalization scheme, but the solution does not scale up to large
population of individuals. Given that, we present some theo-
retical and experimental evidence to demonstrate that solving
the Faultline-Partitioning problem with our original
penalization scheme produces teams that are of high-quality
under different penalization schemes as well. Of course, directly
solving the Faultline-Partitioning problem with a given
penalization scheme can produce better results, but in most
cases the slight improvement can not justify the huge required
computational cost.

Let us use CT(T) and PCI(T, g) to refer to the definition of
faultline potential (according to Eq. (1)) and the faultline poten-
tial given a penalization scheme (according to Eq. (5)) respectively.
Now, it is easy to show that

CT(T) * max(g(x)) xm > PCT(T, g).

The above equation simply states that in the worst-case scenario
all m features of conflicting individuals form a conflicting triangle.
This is an strict upper bound for PCI(T, g). Although this may not
be a tight bound, it suggest that optimizing CT(T) directly might be
an efficient strategy for solving the Faultline-Partitioning
problem under any penalization scheme.

The following experiment further demonstrates that opti-
mizing the original faultline potential (presented in Eq. (1) is
quite aligned with optimizing faultline potential under a given
penalization scheme. In this experiment, we have solved the
Faultline-Partitioning problem on the BIA660 dataset us-
ing the penalization scheme from the first row of Table 3. More
precisely, we ran the FaultlineSplitter algorithm to create 50
teams of equal size. In each iteration of the algorithm, we recorded
the faultline potential according to Eq. (1). Fig. 11 illustrates how
the value of CT(T) and PCT(T, g) compare as the optimization pro-
ceeds. We can see that the PCT(T, g) has an almost linear rela-

measurement. For instance, the popular ASW approach has to pre-
process the data by using dummy variables to encode categorical
variables as numeric. Next, we present two techniques to extend
our basic CT model to deal with numerical attributes.

The first technique is based on binning, but aims to creates
bins of variable length that can accurately capture the distri-
bution of the underlying data. More precisely, a pre-processing
module based on Kernel Density Estimation (KDE) could auto-
mate the discretization process and deliver dynamic segmenta-
tions that accurately capture the distribution of numeric variables
(Rudemo, 1982). The resulting bins would then represent the natu-
ral groups of numeric values that are present in the given dataset.

An alternative technique that departs from the standard bin-
ning paradigm would be to use a threshold y to define agreement
and disagreement between team members. Specifically, given a nu-
meric feature f, we say two individuals i and i’ are in agreement
iff lw;(f) —wy (f)| < y. Otherwise, the two individuals are consid-
ered to be in a disagreement. As before, a triangle is identified as
a conflict triangle with respect to feature f if two of each mem-
bers agree on feature f and disagree with the third individual in
the triangle. The problem then translates into the task of select-
ing an appropriate value for y. Domain knowledge is a key factor
in this effort, as each feature is likely to have its own threshold.
For instance, while a difference of 2 years for the age feature is
generally considered small, a difference of 2 stars in the context of
the popular 5-star rating scale is far more significant. An intuitive
way to set feature-specific thresholds would be to assume that two
members agree on feature f if the difference of their corresponding
values is within 1 standard deviation of the same feature (as com-
puted across the entire population that we want to partition into
teams). A second way to tune the feature-specific thresholds is to
use a validation set that includes the scores of teams for meaning-
ful team outcomes, such as performance or satisfaction. We used
such a dataset in Section 5.3.2. We can then choose the threshold
values that maximize the correlation between the resulting fault-
line and outcomes scores.

While the above methods allow us to flexibly model
(dis)agreements and address numeric attributes during the compu-
tation of conflict triangles, they do not directly model the degree of
disagreement between two team members in the context of a nu-
meric feature. For instance, a conflict triangle with two members
in their 20s and one in their 30s tends to be less problematic than
a triangle with two member in their 20s and one in their 60s. To
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address this issue, we can weigh (the disagreement in) a conflict
triangle by directly using the numeric values of its members. In
practice, the weight of a conflict triangle with respect to feature
f would then be equal to the average absolute difference between
the values of feature f for the two individuals in disagreement. The
CT measure would then be expressed as a weighted sum, rather
than the pure number of conflict triangles in the given team. Com-
bining this method with the two techniques that we discussed
above (or with any techniques based on binning or definitions of
disagreement) enables us to comprehensively extend our approach
to handle numeric attributes.

8. Discussion

Our work focuses on the previously unexplored overlap be-
tween the decades of work on team faultlines and the rapidly
growing literature on automated team-formation. We formally
define the Faultline-Partitioning problem, which is the
first problem definition that asks for the formation of teams
with minimized faultlines from a large population of candidates.
We present a detailed complexity analysis and introduce a new
faultline-minimization algorithm (FaultlineSplitter) that outper-
forms competitive baselines in an experimental evaluation on both
real and synthetic data.

One of the major challenges that we address in this work is
finding a faultline measure that can be efficiently applied to fault-
line optimization. As we highlight in this paper, computational ef-
ficiency (in a practical team-formation setting) translates into two
requirements that an appropriate measure should satisfy: (i) the
ability to compute the faultline score of a team in linear time,
and (ii) the ability to update a team’s score in constant time after
small changes to the team (e.g. the removal or addition of a mem-
ber). The relevant literature has described multiple operationaliza-
tions of the faultline concept. However, as we discuss in detail in
Section 2, these operationalizations do not satisfy these require-
ments and are only appropriate for measuring faultline strength
in existing teams. As such, they are not scalable enough to serve
as the objective function of a combinatorial algorithm that has
to process a large population and evaluate very large numbers of
candidate-teams in order to find a faultline-minimizing solution.
Therefore, we introduce a new measure that we refer to as Conflict
Triangles (CT). The CT measure is based on the extensive literature
on modeling social structures and is consistent with the funda-
mental principles of faultline theory by Lau and Murnighan (1998).
In addition, CT satisfies the two efficiency requirements and is ap-
propriate for faultline-optimization algorithms.

8.1. Implications

Our work is the first to incorporate the faultline concept into
an algorithmic framework for automated team-formation. From a
team-builder’s perspective, the ability to control the faultlines of
teams that are automatically sampled from a large population of
candidates has multiple uses. First, it allows the team builder to
proactively reduce the risk of undesirable outcomes that have been
consistently linked with faultlines, such as conflicts, polarization,
and disintegration. Second, it provides an effective way to man-
age the diversity within a team. A trivial way to eliminate fault-
lines is to create highly homogeneous teams. However, this ap-
proach would also lead to teams that are unable to benefit from
the well-documented benefits of diversity, such as innovation and
increased performance (Kearney, Gebert, & Voelpel, 2009; Roberge
& Van Dick, 2010; Van der Vegt & Janssen, 2003). In order to
avoid such shortcomings, a team-builder can utilize our algorith-
mic framework to strategically engineer low-faultline teams with-
out over-penalizing diversity. A characteristic example is a team

that is maximally diverse; a team in which no two individuals
share a common attribute. Consistent with the faultline theory by
Lau and Murnighan (1998), our framework would recognize this as
a team with the same faultline potential as a perfectly homoge-
neous team. We demonstrate this via examples in Figs. 1 and 2.

Our team-partitioning paradigm has applications in both an or-
ganizational and educational setting. In a firm setting, the task
of partitioning a workforce into teams is common. By using
the proposed FaultlineSplitter algorithm, a manager can iden-
tify faultline-minimizing partitionings within the multidimensional
space defined by various employee features. A regression analysis,
such as the one we described in Section 5.3.2, can guide the man-
ager’s team-building efforts by selecting specific features with po-
tentially problematic faultlines. In a classroom setting, instructors
often face the task of partitioning their students into teams for as-
signments and projects. As we demonstrated in our experiments,
faultlines in student teams can have a strong association with
meaningful outcomes, such as performance and member satisfac-
tion. By releasing our team-partitioning software, we hope that we
can automate this team-formation task and benefit both students
and instructors.

8.2. Directions for future work

Future work could focus on algorithms that combine faultlines
minimization (either as an objective function or via constraints)
with other factors, such as intra-team communication, skill cov-
erage, and recruitment cost. Such work would add to the rapidly
growing literature on automated team formation, which we review
in Section 2.1. We expect this to be a challenging task from an
optimization perspective, as additional constraints can be hard to
satisfy while trying to avoid the creation of faultlines. For instance,
if the distribution of skills is strongly correlated with the popu-
lation’s demographics, a homogenous team is unlikely to exhibit
a diverse skillset. Hence, the ability to leverage both homogeneity
and diversity will be an asset for such efforts.

The proposed FaultlineSplitter algorithm can be combined
with any faultline measure that follows the efficiency principles
that we describe in this work (i.e. linear computation and constant
updates). Future work on such measures is essential, as existing
measures are not scalable enough for optimization purposes. We
make our own contribution in this direction via The CT measure
that we propose in this work.

In conclusion, we hope that future efforts will be able to build
on our work to address challenging problems that combine effi-
cient algorithmic constructs for automated team-formation with
the rich findings on the causes and effects of teams faultlines.
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