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Abstract Emerging interdisciplinary science efforts are providing new understanding of the interdepen-
dence of food, energy, and water (FEW) systems. These science advances, in turn, provide critical
information for coordinated management to improve the affordability, reliability, and environmental
sustainability of FEW systems. Here we describe the current state of the FEW nexus and approaches to
managing resource conflicts through reducing demand and increasing supplies, storage, and transport.
Despite significant advances within the past decade, there are still many challenges for the scientific
community. Key challenges are the need for interdisciplinary science related to the FEW nexus; ground-
based monitoring and modeling at local-to-regional scales; incorporating human and institutional behavior
in models; partnerships among universities, industry, and government to develop policy relevant data; and
systems modeling to evaluate trade-offs associated with FEW decisions.

1. The Food, Energy, and Water Challenge

A substantial percentage of the global population lacks adequate access to FEW resources. Although efforts
to meet the Millennium Development Goals of the United Nations have increased access to FEW resources
within the past 15 years, ~800 million people are still considered food insecure, ~800 million lack access to
safe drinking water, and ~1.2 billion lack access to electricity [Food and Agriculture Organization (FAO), 2015;
IEA, 2016; United Nations, 2016]. The increase in global population from 7.4 billion (2016) to 9.7 billion in
2050 [United Nations, 2015], the increase in per capita gross domestic product (GDP) by 1-5% in different
countries [PWC, 2015], and changes in dietary preferences to increased meat protein are projected to sub-
stantially increase pressures on available FEW resources (Figure 1). The FEW nexus is reflected in terms such
as “feeding ourselves thirsty” [Roberts and Barton, 2015] and “thirsty energy” [Rodriguez et al., 2013].

Pressure on FEW resources will be further exacerbated by their complex interdependencies. At the global
scale, food production is extremely water intensive, accounting for ~70% of global freshwater withdrawal
and 90% of freshwater consumption [Siebert et al., 2010]. The energy intensity of food production is lower,
representing ~30% of global energy consumption [FAO, 2011]. However, ~25-30% of global food produced
is estimated to be lost at postharvest or processing stages, or wasted at retail and consumer stages, repre-
senting substantial losses in the embodied water and energy [Gustavsson et al., 2011; Kummu et al., 2012].
While food itself represents a form of energy, use of food crops for biofuels has brought considerable atten-
tion to the high water intensity of crop production, as indicated by phrases such as “blue impacts of green
energy” or “cars versus carnivores” [de Fraiture et al., 2008; Gerbens-Leenes et al., 2009].

Energy production is much less water intensive than food production, accounting for ~15% of global water
withdrawal, with only 11% of this water being consumed [IEA, 2012]. Water is used for oil and gas extraction
and electricity generation (a secondary form of energy), the latter dominated by hydroelectricity and ther-
moelectric cooling of fossil fuel and nuclear power plants [Healy et al., 2015]. There is much discussion about
the high water intensity of oil and gas extraction from unconventional low-permeability reservoirs in the
United States using hydraulic fracturing and horizontal drilling. However, studies indicate that these
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Figure 1. The Food-Energy-Water nexus showing the interconnection among the components and adaptation strategies for scarcity.

processes represent less than 1% of total freshwater withdrawal at the national level, although the percent-
age locally can be much higher [Nicot and Scanlon, 2012; Scanlon et al, 2014; Kondash and Vengosh, 2015].

More collisions among FEW resources are likely, considering increasing climate extremes with longer-term
droughts and more-intense floods. The 2003 European heat wave provides an example of a catastrophic colli-
sion between water and energy, with an estimated 70,000 fatalities caused in part by nuclear power-plant shut-
downs because of low river levels and elevated water temperatures limited cooling requirements [EEA, 2010].
Reduced access to FEW resources can result in social strife and impact international security [Willis et al, 2016].

Research on the nexus of FEW resources and their impact on the Earth system is critical if we want to pro-
vide affordable and reliable resources in an environmentally sustainable way. A variety of new science pro-
grams are designed to address these nexus issues within the context of climate and the Earth system.
Examples include the Belmont Forum'’s Sustainable Urban Global Initiative. The U.S. National Science Foun-
dation initiated the Innovations at the Nexus of Food, Energy and Water Systems (INFEWS) program, which
is designed to support research to understand current and projected coupled processes related to society
and the environment. The program addresses physical processes (e.g., technologies for more-efficient
resource use), natural processes (e.g. hydrologic), and biological processes (e.g., agroecosystem productiv-
ity). Emphasis on social/behavioral processes related to decision making and governance is becoming more
and more important. Monitoring, networking, computational approaches, and visualization are essential for
assessment and decision making. The U.S. Department of Energy also has a strong program focusing on the
water and energy nexus [DOE, 2014].

The objective of this commentary is to show the power of the scientific community to develop approaches
in FEW systems to adapt to resource scarcity. We highlight the potential value of future partnerships among
universities, industry, and government to develop policy-relevant data at local-to-global scales for input to
interdisciplinary systems models that address trade-offs related to FEW system management.
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2. Addressing the Food-Energy-Water Nexus

2.1. Characterizing and Monitoring the Nexus

You cannot manage what you do not measure. Several advances have been made toward quantifying vari-
ous components of the FEW nexus. The water footprint (WF), which quantifies human consumption and/or
pollution of fresh water, includes green water (rainfall/soil moisture), blue water (surface/groundwater), and
gray water (freshwater volume required to assimilate contaminants to meet regulatory guidelines) [Hoekstra
and Mekonnen, 2012]. The global WF is estimated to be 9100 km*/yr (74% green, 11% blue, 15% gray). Per
capita WFs are much higher in the United States (2850 m>/yr) than in China (1070 m*/yr) or India (980 m*/
yr). Global average WFs of different food products vary widely, with the average per calorie WF of beef
exceeding that of cereals by a factor of ~20 [Mekonnen and Hoekstra, 2012].

While many previous studies indicate that vegetarian diets would result in large blue-water savings (e.g., up
to 23% in Europe) [Vanham et al., 2013], a recent analysis of 2010 USDA dietary guidelines indicates that
changes in the projected food mix to include increased fruit and vegetables would result in up to a 16%
increase in the blue-water footprint [Tom et al., 2015]. This study indicates that low-calorie fruits and vegeta-
bles have higher blue-water WFs than grains and meats, considering food waste at retail and consumer lev-
els. In other words, promoting healthy diets may not be healthy for the planet. However, Tom et al. [2015]
cite as a major limitation of the study its meta-analysis approach and reliance on literature data. Wang and
Zimmerman [2016] question the reliability of WF accounting because of confusion over water withdrawals
versus consumption; total WF versus green, blue, or gray footprints, or lack of specification, and conflicting
international data sets, underscoring the need for much more detailed evaluation of data. While WFs allow
us to rank foods based on their water consumption, they do not provide any indication of the water scarcity
or excess at locations where the food is produced [Hoekstra, 2016].

2.2. Global Analysis of Food-Energy-Water Scarcity

Many analyses of FEW systems are concerned with resource scarcity or excess based on comparison of
demand relative to supply. Global water-scarcity maps have been developed using models based on a vari-
ety of different metrics [Smakhtin et al., 2004; Alcamo et al., 2007; Wada et al., 2011; Reig et al., 2013; Brau-
man et al.,, 2016]. Global models indicate that unsustainable groundwater depletion supplies irrigation in
many hotspots globally [Wada et al., 2012]. Maps of global food-demand projections have also been devel-
oped using different models within the Agricultural Model Intercomparison Project (AgMIP) [Valin et al.,
2014]. On the energy side, oil production has been exceeding demands, resulting in a sharp drop in oil pri-
ces from ~$100 in 2014 to $52 in 2015 [BP, 2016]. Because electricity cannot readily be stored, supplies
need to meet instantaneous demands. Electricity supplies can be highly vulnerable during droughts
because elevated temperatures generally maximize electricity demand when water supplies are at a mini-
mum [Averyt et al., 2011].

2.3. Managing Scarce Resources: Conservation

Scarcity in FEW resources can be partially managed by reducing demands (conservation). The large propor-
tion of food that is lost or wasted provides an excellent opportunity to reduce water and energy demand
by reducing food waste. Global analysis indicates that ~25% of food production, cropland area, and fertil-
izer applications are lost through food loss and waste [Kummu et al., 2012]. Therefore, reducing food loss to
the lowest level found in each region evaluated would provide sufficient food to feed an additional billion
people. There is much interest in reducing irrigation-water demands by changing technologies from flood
to drip systems, with the common mantra of “more crop per drop” [Falkenmark and Rockstrom, 2006;
Molden, 2007]. However, integrated basin-scale studies in the North China Plain and U.S. Rio Grande Basin
indicate that more water-efficient irrigation technologies may have the perverse result of depleting water
resources because they reduce irrigation return flows and aquifer recharge and can result in expansion of
irrigated areas [Kendy et al., 2003; Perry, 2007; Ward and Pulido-Velazquez, 2008]. These studies suggest that
policies should focus on reducing water depletions rather than on increasing irrigation efficiencies.

Global modeling and regional analysis show opportunities for making irrigation more sustainable by com-
bining inefficient surface-water irrigation to recharge groundwater during wet periods with efficient
groundwater irrigation during droughts, with applications in northwest India and the U.S. California Central
Valley [Faunt, 2009; Doll et al., 2012; Scanlon et al., 2016]. Water for energy can be conserved by decoupling
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thermoelectric power generation from freshwater use. Analysis of U.S. data indicates that switching to
brackish groundwater or dry cooling would result in substantial water savings in water-scarce basins,
increasing power-plant generation expenses by less than 10% and increasing parasitic energy load by ~5%
[Tidwell et al., 2014a]. Increasing renewables based on wind and solar sources also reduces water demand
for electricity generation. Water conservation for oil and gas extraction is achieved through reuse of pro-
duced water. The oil industry produces ~10 L of water per liter of oil; this water has been reused for
enhanced oil recovery over many decades [Veil, 2015].

2.4. Managing Scarce Resources: Increasing Supplies

FEW system management also addresses opportunities to increase supplies, which is often associated with
increased interdependence among components of FEW systems. While food production greatly increased
in the past as a result of the Green Revolution, recent genetically modified (GM) crops have the potential to
further enhance food production through advances in genome sequencing for development of pest-
resistant varieties and drought tolerance [Godfray et al., 2010]. However, public acceptance of GM foods is
an important issue. Increasing water supplies generally involves development of alternative sources such as
desalinating brackish groundwater or seawater, treating municipal wastewater, or capturing storm water.
These nontraditional water sources, however, require more energy and are more expensive. Analysis for
power generation in the semiarid western United States indicates that water supplies from these alternative
sources were sufficient to meet projected increases in water demand but that water costs would increase
because of treatment requirements [Tidwell et al., 2014b]. Energy supplies (oil and gas) have been increasing
in the United States through advances in technology (hydraulic fracturing and horizontal drilling), resulting
in the shale oil and gas revolution with large increases in water requirements.

2.5. Managing Scarce Resources: Storage and Transport

The spatial and temporal disconnects between demand and supply can be partially resolved through stor-
age and transport of resources. Food storage is very valuable for managing supply/demand imbalances
related to droughts or economic drivers. Results of global analysis indicate that food stocks have remained
fairly stable over the past 50 years, representing ~500 kcal/cap and an ability to feed the global population
for about half a year [Laio et al., 2016]. Natural water storage occurs in lakes and aquifers, with manmade
storage focusing on surface water reservoirs. However, adverse environmental impacts of reservoirs and
large evaporative losses have shifted the focus in some regions to storing water in the subsurface in aqui-
fers using managed aquifer recharge [Dillon et al., 2009; Scanlon et al., 2016]. While primary energy sources
can be stored, e.g., oil reserves and coal reserves, storage of electricity is not generally feasible, resulting in
instantaneous supplies having to meet peak demands, usually during the hottest hours of the year in many
regions. The lack of storage results in additional reserve capacity of up to a factor of ~3 times for some
regions in the United States to provide a buffer during peak times [Shear, 2014].

Resources are transported to different extents to manage supply/demand imbalances. Although water is
transported naturally in rivers and aquifers, transport via canals and aqueducts is energy intensive because
water is heavy. The south-north water-transfer project in China is being designed to transport ~28 km?/yr
of water from the Yangtze River in the south to semiarid regions in the north where water demand is high
[Shifflett et al., 2015]. The energy intensity of this system is very high, both to transport and treat the water,
with an estimated 900 sewage-treatment plants required. California developed an integrated aqueduct sys-
tem to transport water from the humid north to the semiarid south, where it is used for irrigation and
municipal purposes [Faunt, 2009].

Oil and gas commodities are traded globally. However, the United States has been moving toward
increased energy security, with crude-oil production almost doubling since 2008 because of the shale oil
and gas revolution, greatly reducing dependence on foreign oil. Electricity can also be readily transported
through grid networks. However, transmission grids are expensive; for example, Texas spent ~ $8 billion to
connect renewable wind generation in rural areas to demand centers [Scanlon et al., 2014]. Food trade pro-
vides another opportunity to transport both food and the embedded water and energy in the food, or vir-
tual water and energy. Because the weight of food is much less than the weight of water embodied in the
food, food trade can be considered an approach to transporting water. A recent study indicates that global
food trade accounts for 23% of food production, with a doubling of food calories traded between 1986 and
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2009 [d'Odorico et al., 2014]. Global analysis indicates that food trade generally mitigates water stress in
~80% of the countries studied, [Wang and Zimmerman, 2016].

Some negative implications of food trade include trade dependency and associated loss of resilience to
shocks in the production and trade systems. During the recent food crisis of 2008, exporting countries
issued export bans, causing some trade-dependent countries to become (virtually) water/food insecure
[Tamea et al., 2016]. A shift in China’s national food-security policy in 2000 resulted in substantial increases
in soy imports from Brazil, with a savings in global water [Dalin et al., 2012]. Similarly, Saudi Arabia has
passed water-sustainability legislation banning use of fresh groundwater for irrigation of feed for animals
after decades of depleting their water resources. Saudi dairy companies now own slices of the desert in
Arizona and California for the explicit purpose of turning southwestern United States sunshine and ground-
water into hay destined for Saudi cattle [Graham, 2016].

3. Science Needs for Coordinated Food-Energy-Water Management

Data needs based on monitoring networks and modeling analyses are essential to advancing understand-
ing in the FEW nexus. The past couple of decades have seen a shift from local to regional data and model-
ing efforts to global scales, with significant advances in remote sensing and global modeling. Satellites
critical to FEW management allow monitoring of global water storage (GRACE) and vegetation (MODIS).
Global hydrologic and land-surface models also provide important information on water availability for FEW
systems [Bierkens, 2015]; however, model intercomparisons reveal large uncertainties in these models
[Haddeland et al., 2014; Schewe et al., 2014]. New insights are emerging by coupling trade data for global
food transport with embedded water and energy to understand the stocks and flows of our economic use
of resources [Dang et al., 2016]. However, a spatial disconnect exists between global data and the scales at
which FEW systems are managed. There is a need to balance the current emphasis on global analyses with
more local-to-regional analyses to provide data at more policy-relevant scales. However, ground-based
monitoring networks have been on the decline within the past decades in the United States and regional-
scale modeling efforts are more limited. A bottom-up approach to data collection would link households,
farmers, and industries to FEW systems, providing more-robust data that could be used to develop
regional-to-national-level insights.

Interdisciplinary research is essential for effective management of FEW systems. While the various science
disciplines have long histories of working independently in components of the FEW nexus, future research
should integrate physical, agroecological, and social sciences with economics. Global case studies of cou-
pled human and natural systems reflect integration of social-ecological systems with human-environmental
systems that provide valuable insights into heterogeneity, thresholds, and resilience [Liu et al., 2007]. FEW
management would benefit greatly from partnerships among universities, industry, and government to
address the complexity of FEW systems. With large-scale agricultural and energy industries controlling FEW
systems in many regions, collaboration between academia and industry will be essential to effect change.
Working with governments will provide an opportunity to develop policies more likely to improve FEW
management. For example, the Coalition for Environmentally Responsible Economies (CERES) works with
agribusinesses to develop socially responsible behavior to reduce adverse environmental impacts of food
production [Roberts and Barton, 2015].

Nexus science and recent advances in our modeling and analysis frameworks allow humans to be an inte-
gral part of the science [AghaKouchak et al., 2015; Konar et al., 2016]. In the context of dependencies, recent
descriptive-modeling frameworks [Dalin et al., 2012; Ruddell et al., 2014; Zhang et al., 2017] are providing a
more detailed understanding of the connected and evolving consequences of the regional-to-global
dynamics within our FEW systems. Big data and big computing [Lohr, 2015] allow quantitative analyses to
capture the qualitative aspects of FEW systems (e.g., preferences, consumer behavior, and decision making).
In the move from descriptive studies to those seeking to provide prescriptive recommendations, many
recent breakthroughs have occurred related to adaptation pathways for coevolving human demands, inno-
vative management policies, and adaptive infrastructure investment [Haasnoot et al., 2013; Dittrich et al.,
2016; Kingsborough et al., 2016; Zeff et al., 2016; Hermans et al., 2017]. Integrating multiple disciplines in sci-
ence and academia, industry, and government holds great promise for transforming FEW science for socie-
tal benefit.
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