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Abstract

Many urban indicators and functional citywide properties have been shown to scale with
population due to agglomeration effects. We hypothesize that scaling relations may also
exist for water-related urban indicators such as the water footprint. The water footprint is an
indicator of water use that measures humans’ appropriation of freshwater resources. We
analyze the scaling of the water footprint for 65 mid- to large-sized US cities using both
empirical estimates and a social interaction network model of city functioning. The network
model is used to explain the presence of any scaling exponent in the empirical estimates of
the urban water footprint by linking to previous theories of urban scaling. We find that the
urban water footprint tends to approximately show sublinear scaling behavior with both pop-
ulation and gross domestic product. Thus, large cities tend to be more water footprint effi-
cient and productive than mid-sized cities, where efficiency and productivity are quantified,
in a broad sense, as deviations from a linear scaling exponent. We find the sublinear scaling
may be linked to changes in urban economic structure with city size, which lead to large cit-
ies shifting water intensive economic activities to less populated regions. In addition, we find
that green water contributes to the scaling both positively by transferring the dependence of
food consumption on population into the water footprint and negatively by increasing hetero-
geneity. Overall, the proposed scaling relations allow for the comparison of water footprint
efficiency and productivity of cities. Comparing these properties and identifying deviations
from the expected behavior has implications for water resources and urban sustainability.

Introduction

For the first time in human history, the 21" century has seen the advent of a city-dominated
human settlement pattern where the majority of people now live in cities [1]. People are mov-
ing to cities because of opportunities, economic development, change in social structure and
human behavior [2]. By 2030, cities in developing countries are expected to double in popula-
tion and cities in developed countries are expected to increase by 20% [3]. It is increasingly
recognized that cities are central to global sustainability because they can collectively create
substantial stress on interconnected natural resources (e.g., food and water) [4] and have gov-
ernance structures that allow for more flexible and independent decision making [5]. Urban
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indicators are commonly used to track and assess urban sustainability [6]. In order to explore
the ability of cities to achieve sustainability goals and targets, it is important to quantitatively
understand how such indicators may vary among cities.

Recently, it has been shown that many urban indicators and functional citywide properties
can be quantified mathematically through scaling relationships. According to scaling theory,
several specific properties of cities vary on average with their size in predictable ways [7].
Robustness in scaling exponents has been found for a wide variety of urban indicators which
makes scaling a pervasive feature of urban systems [8]. Studies have shown that there are per
capita increases (superlinear scaling) in socioeconomic indicators such as Gross Domestic
Product (GDP), employment, invention rate, etc., as a function of population size, indicating
thatlarger cities are more prosperous, innovative and productive [9, 10]. In contrast, variables
related to material infrastructure, e.g,, the length of electric cables and road surfaces, exhibit
economies of scale as they increase slower than the city population size (sublinear scaling) [11,
12]. Linear scaling with population has been associated with basic human needs such as house-
hold consumption of water and electricity, housing, and jobs [8]. Several studies have also
found that scaling relationships exist for urban environmental indicators, e.g., CO, emissions
[13-16].

A wide variety of disciplines such as engineering [17], economics [12, 18], complex systems
[11, 19, 20] and geography [19, 21] have demonstrated that many characteristics of cities can
be quantified and predicted mathematically due to agglomeration or scaling effects. Recently,
Bettencourt [11] proposed a theoretical framework to predict the scaling exponents of different
urban quantities using the properties of social and infrastructural networks. According to his
theory, the functional properties of cities are determined by the interactions of the population
embedded in a massive social network. These social connections, which are also part of other
networks such as transportation, electrical, communications, etc., mainly control how people,
things, and information interact across urban space and time. In a different explanation of
urban scaling, Gomez-Lievano et al. [22] proposed that urban scaling depends on the level of
economic complexity and therefore scaling phenomena will occur when all the necessary com-
plimentary factors are simultaneously present [20, 22]. In this study, we use Bettencourt’s
network-based theory to analyze empirical results for the scaling of water-related urban
indicators.

“Living system” or “organism” are often used as metaphors of urban functioning since cit-
ies, much like an organism, consume and produce resources, goods, services, and information.
This view of cities is central to urban metabolism which can be defined as “the sum total of the
technical and socio-economic processes that occur in cities, resulting in growth, production of
energy, and elimination of waste” [23, 24]. Urban metabolism has tended to emphasize the
direct flow of resources and materials through an urban system [24-26]. To expand this frame-
work, in the context of water resources, water footprints can be used to consider indirect
flows. A water footprint is an indicator of consumptive water use that accounts for the direct
water flows that enter a geographic area as physical water and the indirect water flows, also
known as virtual water flows, embedded in the consumption of goods and services [27-31].
The virtual or embedded water is an important component of water footprints because it pro-
vides information about the dependency of a geographic region on distant water resources
[32]. Previous studies have estimated water footprints at the national or global level [29, 30, 33,
34] and a few studies have also focused on regional or city level [32, 35-40]. A main focus of
city-level water footprint studies has been on quantifying direct and indirect water uses [41],
highlighting that water can be saved at a much broader scale by targeting a city’s indirect water
use such as the water consumed through commodity production and consumption [38, 39]. In
contrast, our focus here is in the scaling behavior of the urban water footprint.
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In this study, our primary objective is to analyze the scaling of the water footprint with pop-
ulation for 65 mid- to large-sized US cities. The scaling is analyzed using both empirical and
theoretical estimates. The latter are obtained using a social network model of city functioning.
The model is used to explain the presence of any scaling exponent in the urban water foot-
prints by linking to previous theories and mathematical relations of urban scaling. To deter-
mine the urban water footprints, we account for the direct and indirect water used by cities in
the production and consumption of food and industrial commodities. OQur motivation for
examining the scaling of urban water footprints is to understand whether large cities are more
water footprint efficient and to explain deviations from and the likely sources of any efficiency.
In this study, we define urban water footprint efficiency broadly as deviations (sublinear or
superlinear) from linearity in the values of urban water footprint scaling exponents. In the case
of a sublinear scaling exponent (exponents less than 1), we denote the urban water footprint
scaling as “efficient” since the urban water footprint per capita decreases with increasing popu-
lation size, i.e., each urbanite has a lesser water footprint as the city size increases. In the case
of superlinear scaling (exponents greater than 1), the scaling exponent is used to denote ineffi-
ciency since each urbanite has a greater water footprint as city size increases. This way of mea-
suring urban water footprint efficiency is mainly concerned with economic-related efficiencies
(e.g., allocation of resources, economic specialization, comparative advantages, etc.), as
opposed to technological-related (e.g., drip versus spray irrigation) or policy-related (e.g.,
improved reservoir operations) efficiencies. Ultimately, understanding the scaling behavior of
the urban water footprint may be practically useful to devise strategies and policy intended to
enhance urban water sustainability, e.g., through cross city comparisons and by fostering
greater water resources use accountability.

Materials and methods
Data

The urban water footprint was computed using agricultural, livestock and industrial commodity
flows, and their corresponding virtual water contents, VWC. For the commodity flows, we used
2007 Freight Analysis Framework version 3 (FAF3) data [42]. The FAF3 data represents, for the
year 2007, the flow of economic commodities among 123 different origin-destination regions
encompassing the entire geography of the US. Out of these 123 regions, 73 are metropolitan statis-
tical areas (MSAs). MSAs are defined by the US Census Bureau as a geographical region contain-
ing at least one city core with population greater or equal 50,000, together with any adjacent
counties that have a strong economic tie to the city core. After combining the 6 FAF3 MSAs that
have boundaries overlapping multiple states, we ended up with 65 MSAs. We used these 65 MSAs
to compute and assess the scaling behavior of the urban water footprint. These 65 MSAs account
for the largest and some of the major mid-sized US cities. Notice that to expand the number of cit-
ies considered would require modeling the entire commodity trade network of any additional city
not included in the FAF3 data. This is deemed outside the scope of the present analysis. We only
accounted for US cities because of data availability, i.e., the FAF3 data only includes US cities.

The FAF3 data also contains commodity flows between the US and various international
regions, specified as import and export flows. Only export flows were included since our analy-
sis focuses on US cities. The FAF3 data divides the entire US product economy into 43 differ-
ent commodity classes. Out of these 43 commodity classes, we included 6 agricultural and
livestock classes (hereafter food classes) and 24 industrial classes. Only the commodity classes
related to the energy and mining sectors were left out.

To transform the FAF3 commodity flows into virtual water flows, we used VWC data from
previous studies [32, 33, 43]. We estimated the VWC of the different FAF3 food commodity
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classes using VWC data for individual crops and livestock from Mekonnen and Hoekstra [33]
and Mubako [43], production data from the US Department of Agriculture (USDA) [44], and
by applying the averaging approach of Dang et al. [45]. The VWC of the different industrial
commodity classes were obtained from the study by Ahams et al. [32], which relied on avail-
able estimates of volume of water used per employee for individual industries at the US
national level [46]. The VWC data for the food commodities accounts for both blue and green
water. The blue water accounts for the consumptive use of water originating from ground or
surface water sources [30] while the green water accounts, in this case, for the rainwater con-
sumed as evapotranspiration in agricultural production [33]. Using the commodity flow and
VWC data, the water footprint of production, WFP, and consumption, WFC, were determined
as follows

WEP, =Y Y VWC,T, ;,, and (1)
ik

WEFC, = Z Z VWG, T, s + A, (2)
ik

respectively, where i indexes different cities. In Eq (1), VWC;4 is the virtual water content of
commodity k in the FAF3 city i, and T;_.;x is the tonnage of k produced by city i and consumed
by FAF3 region j. Note that region j can be a city or non-city region. In Eq (2), VWC; is the
virtual water content of commodity k in the FAF3 region j, and Tj_; is the tonnage of k pro-
duced by the FAF3 region j and consumed by city i. The term A;in Eq (2) denotes the con-
sumptive use of domestic and commercial water [47, 48] by city i. These consumptive water
uses were obtained from the USGS as in Ahams et al. [32]. The urban water footprint, WF, of
city i was determined as follows

WF, = WEC, + WEP, 3)

WECinvolves both direct and indirect consumptive water uses, whereas WFP only consid-
ers direct uses. Direct consumptive water uses occur within city boundaries while indirect con-
sumptive water uses take place outside city boundaries. Indirect consumptive water uses are
virtually transferred to a city through the consumption of food and industrial commodities.
For example, in the hypothetical illustration in Fig 1, the direct WFC of Atlanta city (Fig 1) is
equal to the water used for domestic and commercial activities as well as the water used to pro-
duce food and industrial commodities for self-consumption. The indirect WFC of Atlanta con-
sists in Fig 1 of the virtual water transferred through the consumption of food and industrial
commodities produced in Pittsburg. In terms of production, WFP accounts for the direct
water used to produce food and industrial commodities in Atlanta that are then consumed in

Pittsburg (Fig 1).

Scaling analysis
Utrban scaling implies that urban indicators exhibit self-similarity [49]. The self-similarity of
an urban indicator can be expressed as follows [8]

Y(N, 1) = Y,()N(t) e, (4)

where Y(N, ) is an urban indicator or citywide property that depends on the population N at
time £, Y,(¢) is a baseline prefactor common to all cities at time £, # is a dimensionless scaling
exponent, and &(f) are statistical fluctuations that account for deviations from the expected
value. At a fixed time, with §(f) being Gaussian, Eq (4) takes the following form in logarithmic

PLOS ONE | hitps://doi.org/10.1371/joumnal.pone.0202301 August 20,2018 4/17



https://doi.org/10.1371/journal.pone.0202301

“— e
@ ’ P Los ‘ ONE Large cities get more for less: Water footprint efficiency across the US

Pittsburgh

DW + CW +
Virtual water
consumption within
Atlanta city

WFCdirect
Atlanta

Fig 1. Hlustration of hypothetical virtual water flows (VWF) between two cities: Atlanta and Pittsburgh. The
meaning of the variables is as follows: water footprint of consumption, WFC; water footprint of production, WFP;
domestic water, DW; and commercial water, CW.

https://doi.org/10.1371/journal.pone.0202301.q001

space

InY, = InY, + BInN, + &,. (5)

Thus, in Eq (5), Bis the slope and InY, the intercept of the line implied by the regression of
Yon N. With Yand N given by the data, the coefficients fand InY, can be obtained by the
method of ordinary least squares minimization. The scaling exponent f is of particular interest
as it provides information about the behavior of the indicator Y. For instance, it has been
shown that when Y is urban infrastructure (e.g., the length of transportation infrastructure), 3
tends to be sublinear, f < 1, and when Yis equal to an urban socioeconomic output (e.g,,
GDP), Bis superlinear, > 1. We used Eq (5), together with our water footprint estimates
from Eqs (1)-(3), to empirically assess the scaling of the urban water footprint with popula-
tion. In this study we performed scaling analysis with both population and GDP where popula-
tion data was collected from US Census [50] for the year 2007 and GDP was obtained from
Bureau of Economic Analysis (BEA) [51].
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Results
Scaling of urban commodity consumption and production

We begin the scaling analysis by revisiting the social network model of urban scaling proposed
by Bettencourt [11]. Following from a few basic principles, the model can be used to obtain, in
a unified and quantitative way, theoretical scaling exponents for different urban indicators and
functional properties. Our aim is to first use the model to obtain likely, theoretical scaling
exponents for WFCand WFP, and then compare those values against the empirical scaling
exponents obtained from the data. To implement the network model and derive the theoretical
exponents, we rely on several previous scaling and mathematical relations used to explain
urban indicators [11]. At the end, however, we obtain a single theoretical exponent that
depends only on two variables. The derivation of this theoretical exponent is shown next.

To implement the social network model, welet Y in Eq (5) be equal to the food or industrial
commodities consumed or produced by a city in terms of monetary value. Y is expressed first
in terms of monetary value to facilitate the implementation of the model. Later, we convert Y
from units of monetary value to units of volume of water to determine the scaling exponents
for WFC and WFP. The network model assumes the scaling is due to a citywide network of
social interactions set, on average, by the population density over the total area of the network,
N/A,, [11]. Furthering this analysis, we suggest that, instead of N/A,, the relevant network of
interactions is in this case set by Nj/A,,, where Nis the fraction of population N interacting in
the social network associated with food or industrial commodities. N/ A,, is used because we
only account for the fraction of the urban economy associated with food and industrial com-
modities, as opposed to accounting for all the economic activities of a city. The interactions Ny
A, are translated into urban outputs, either outputs for individual consumption or production,
using the following [11]

Sy ©)

Y
N; n

where Y/Nyis the per individual output and ] is a constant that translates the interactions per
individual into urban outputs.

Under short-term spatial economic equilibrium, the net socioeconomic benefit per capita,
Y/Nj is set equal to the transportation or mobility costs C. The costs are represented, as often
done in urban and regional economics [52, 53], by the distant L such that C~L. The length, in
turn, can be related in a very general way to the area of the city by L~A™ [11], where A is the
city area, D sets the appropriate spatial dimension (D = 2 in this case since one is dealing with
an area), and H is the fractal dimension. The simplest assumption is to set H =1 [10] which
means that individuals can fully explore the city area within the shortest distance traveled.
With the previous relationships for Cand L, and setting Y/Nyequal to C, we have that

X amm, 7)
Nf

For the total network area A,,, the following relationship is adopted [11]

A 1/D
An ~ (I\_Tf) N}: (8)

where the term (A/Np)"/" is obtained by setting the average distance between individuals equal
to the average length of infrastructure network per capita. The form of Eq (8) is motivated by
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previous findings [8]. Using A instead of A, in Eq (6) to represent the per capita output in
terms of city area, and combining Egs (6) and (7), we get A~Nf"‘, where a = D/(D+H). The scal-
ing relationship A~Ny“is substituted into Eq (8) to obtain A,,~Nf1_ , where & = H/[D(D+H)].
Lastly, substituting the latter scaling relationship into Eq (6), we obtain

Y ~ NJ*. (9)

To empirically evaluate Eq (9), Nyneeds to be known but there are no datasets available that
relate the urban consumption or production of food and industrial commodities to N There-
fore, as a proxy to Nrand to gain tractability, the number of establishments Nj associated with
economic sector or industry b is used, since previous results have shown that Ny~N”" where the
scaling exponent y varies with the type of industry and, more broadly, with the economic sec-
tor (primary, secondary, or tertiary) [12]. Thus, letting Ny~ N" and substituting into Eq (9), one
has that

Y ~ N, (10)

Contrasting Eqs (4) and (10), the theoretical value of the scaling exponent in Eq (10) is 8= (1
+0)or f=IywithD=2and H=1.

Although we have relied on several equations, Egs (6)-(9), to obtain a theoretical expression
for the exponent f, hereafter we only use Eq (10) to explain any empirical scaling exponents
for the urban water footprint. By including the exponent y in Eq (10), we have modified the
original theoretical exponent obtained by Bettencourt [11] to account for the effect of different
economic industries on the scaling. When taking into consideration all the economic indus-
tries in a city, however, one expects ¥ = 1 [12] so that the scaling exponent of Bettencourt [11],
namely 1+6, is recovered. Since y can vary over a wide range of values [12], from 0 to 1.2, the
theoretical exponent 3, in this case, may be sublinear or superlinear depending on the value of
7.

Based on the results of Youn et al. [12], the value of y for food commaodities is likely between
0.9 (food services) and 1.0 (manufacturing), which implies according to Eq (10) that the theo-
retical value of fis approximately in the range 1.05-1.17. We found by fitting Eq (5) to the
data that the empirical value of Bis 1.10 (R* = 0.84, p-value<0.001) and 1.05 (R’ = 0.63, p-
value<0.001) for urban food commodity consumption (Fig 2A) and production (Fig 2B),
respectively. Thus, the theoretical and empirical values of 5 compare well against each other.
Youn et al. [12] do not report individual values of y for the industry classes considered in the
FAF3 data. They, however, found the value of y decreases from approximately 1.2 to 0 for
industries in the service and primary sector, respectively, with secondary sector industries hav-
ing values of y in between 1 and 0. Also, the industrial commodities in the FAF3 data consist
of a heterogeneous mix of mostly secondary sector industries, which are less prevalent in large
cities and likely to engage a smaller fraction of N than the food commodities. Because of these
considerations, it is reasonable to expect for the industrial commodities that the value of S is
close to or somewhat less than 1 (i.e., y<0.85). We found the empirical values of S to be 0.86
(R?= 0.89, p-value<0.001) and 0.95 (R*=0.70, p-value<0.001) for urban industrial commod-
ity consumption (Fig 2A) and production (Fig 2B), respectively. These values of #imply that ¥
is equal to 0.74 and 0.81, respectively, which corresponds with our general observation that
7<0.85. Hereafter we omit reporting the p-value since it is always less than 0.001.

Notice that the value of f is sublinear for both urban industrial commodity consumption
and production. This is due to the value of y being less than 0.85 for both cases. This differs
from the sublinear scaling associated with infrastructure efficiencies [11], which applies when
the scaling variable under consideration is urban infrastructure. Thus, in this case, the value of
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Fig2. (a) Urban scaling of commodity consumption (expressed in monetary value) with population size. For food commodities, 5= 1.10 (95%
CI [0.98, 1.22]) and R* = 0.84. For industrial commodities, B =086 (95% CI [0.79,0.94]) and R*=0.89. (b) Urban scaling of commodity
production (expressed in monetary value) with population size. For food commodities, 5= 1.05 (95% CI [0.85, 1.25)) and R* = 0.63. For
industrial commodities, £ = 0.95 (95% CI [0.79, 1.11]) and R* = 0.70. For all cases, p-value<0.001 and the line indicates the best-fitted line by
ordinary least squares in logarithmic scale.

https://doi.org/10.1371/journal.pone.0202301.9002

Bvaries depending on the economic industries considered and the change in the prevalence of
those industries with urban population, i.e., the exponent y.

Scaling of the urban water footprint of consumption and production

To link the previous theoretical exponents to the scaling exponent for WFC, we added urban
food and industrial commodity consumption together to obtain the total urban commodity
consumption Y. The scaling exponent f in Y.~N” was obtained as the weighted average of
the scaling exponents for food, B = 1.10, and industrial, 8 = 0.86, consumption following the
approach in S1 Appendix. The approach allows to approximate the scaling exponent of the
sum of two scaling variables [7]. § is employed here, as opposed to S, to indicate that the scal-
ing exponent for Y, is approximated from two other more fundamental scaling exponents.
Using the weighted average approach, we found § = 0.86, which compares well with the
empirical value of 0.87 (R = 0.90) estimated directly from the data. Notice that the weighted
average approach allows to track the effect of 5 on 5 because of this, hereafter, the exponents
obtained in this manner are referred to as semi-theoretical.

To transform Y, from units of monetary value to volume of water, we used the dependence
between V,.and Y, where V_denotes the virtual water flows associated with total urban com-
modity consumption. By setting A = 0in Eq (2), one simply has that V, = WFC, which is a rea-
sonable assumption because the magnitude of virtual water flows in Eq (2) is much greater
than the value of A [32]. The dependence between V. and Y, can be generally described by
V~Y2. The reason for this is that V. is expected to scale with population because as urban
population increases so does total food consumption and, in consequence, virtual water flows.
Virtual water flows increase with population mainly because of green water, which rises as the
amount of cropland consumption grows. Therefore, through the mutual dependence of V,
and Y, on population, we expect the two variables to relate to each other. Indeed, we found in
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Table 1. Summary of scaling exponents used to explain the scaling of WFCand WFP.

Variables Exponents
Empirical | Weighted
average
Total (food and industrial) urban commeodity consumption in monetary value versus | =087 |5 =0.86
population, ¥ ~N*

Total urban commodity production in monetary value versus population, ¥,~N" £=095 |F=095

Total urban commodity consumption in units of volume of virtual water versus the | ¢=1.02 |-
same variable in units of monetary value, V.~Y.2?

Total urban commodity production in units of volume of virtual water versus the ¢=093 |-

same variable in units of monetary value, V,~Y,?

Water footprint of consumption versus population, WFC~N*" @5 =092 | ¢F =0.88
Water footprint of production versus population, WFP~N* @5 =091 | ¢F =0.88

https://doi.org/10.1371/journal.pone.0202301.t001

this case that ¢ = 1.02 (R* = 0.68). Combining Y~Nf and V~Y2, and letting V. = WFC, we
found that the semi-theoretical scaling exponent for WFC~N?” is approximately given by ¢
= 0.88. A similar analysis was performed for WFP. We found that WFP~N*# with £ = 0.95
(using the weighted average approach), ¢ = 0.93 (R* = 0.58), and ¢ = 0.88, with the empirical
estimate for £ being 0.95 (R’ = 0.71). Interestingly, the value of ¢ is relatively close to 1 for
both WFCand WFP, thus having only a mild effect on the scaling. Table 1 summarizes the
relationships and exponents used to obtain the scaling exponents for WFCand WFP.

The semi-theoretical scaling exponent ¢ for WFC and WFP, which is equal to 0.88 in both
cases, is relatively close to the empirical estimates of 0.92 (Fig 3A) and 0.91 (Fig 3B), respec-
tively. Thus, both WFC and WFP exhibit slightly sublinear scaling with population, indicating
that large cities tend to be more water footrpint efficient than mid-sized cities, based on our
definition of water footprint efficiency, <1. It is, however, apparent in Fig 3 that the scaling is
only approximate as there is substantial variability in the plots and some cities (e.g., New
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Fig 3. (a) Scaling of the water footprint of consumption (WFC) with population size where the scaling exponent is 0.92 (95% CI [0.75, 1.09])
and R* = 0.65. (b) Scaling of the water footprint of production (WFP) with population size where scaling exponent is 0.91 (95% CI [0.66, 1.17])
and R” = 0.44. For all cases, p-value<0.001 and the line indicates the best-fitted line by ordinary least squares in logarithmic scale.

hitps://doi.org/10.1371/journal.pone.0202301.9003
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Orleans in Fig 3A and Las Vegas in Fig 3B) show large deviations from the expected value.
Also, WEP shows more heterogeneity than WFC (Eig 3). This is not surprising since the inter-
nal economic structure of cities varies from city to city as they specialize in different economic
sectors, and some cities (e.g., New Orleans has an unusually high WFP value) may be specializ-
ing in more water intensive activities. In addition, WFC has much higher values than those of
WEP. For example, Los Angeles has a WFC value of 9.8 x 10'° m3}year (Eig 3A), which is more
than twice its WFP value (Fig 3B). We elaborate in the discussion section on the sources of var-
iability in the approximate scaling of WFC and WFP.

We can explain the sublinear scaling of WFC and WFP using the theoretical scaling expo-
nent obtained for Zin Eq (10). Accordingly, the scaling of WFCand WEFP depends solely on
two independent scaling exponents, namely & and y. That is, the scaling of WFC and WFP is
determined by both agglomeration effects as captured by the exponent 4 and the internal eco-
nomic structure of cities as captured by y. The sublinear nature of the scaling seems largely
due to the value of y. For instance, setting y = 1 to remove the effects of internal economic
structure, and given that ¢=1, then the scaling exponent for WFC and WFP become both
superlinear, approximately equal to 1+8. Based on this theory, the sublinear scaling of WFC
and WFP is tied to the changing composition of urban economic activities with city size, sug-
gesting that large cities are more service oriented with less prevalence of secondary sector
industries. This means that large cities have reduced water footprints by shifting water-inten-
sive economic activities to less populated regions. This highlights that the source of the effi-
ciency (sublinear scaling) in WFC and WEFP is due to cities specializing in less water-intensive
activities as population increases.

Scaling of the urban water footprint

To examine the scaling of WF with population, we used the weighted average approach in S1
Appendix to combine the semi-theoretical scaling exponents for WFC and WFP. We found
the semi-theoretical exponent for WF is equal to 0.88, which matches the empirical estimate
(Fig 4). This indicates that the exponent for WF can be explained by the scaling of WFCand
WEP, whose scaling exponents in turn are dependent on the values of 5, ¥, and ¢. The data,
nonetheless, show scatter in Fig 4 (R” = 0.61), which was expected as our previous scaling
results for WFC and WEFP revealed that some cities tend to deviate from the average behavior
(Fig 3). Also, when weighting the exponents for WFC and WEFP to compute the semi-theoreti-
cal exponent for WF, we found that the weight for the WFC exponent was 80%, highlighting
that WFC plays a more dominant role than WFP in determining the magnitude of WF. Hence,
cities are here net virtual water importers, as also indicated by Ahams et al. [32].

The approximate scaling of WF is sublinear (Fig 4), as was the case for WFC and WFP, indi-
cating that the per capita WF declines as the urban population increases. In other words, in
largely populated US cities, each person has on average a smaller WF than in less populated cit-
ies. In addition, we determined the scaling of WF with GDP and found that it is sublinear with
an empirical exponent equal to 0.74 (Fig 4 shows GDP as a function of population). This result
was expected since urban population and GDP are known to scale [8]. However, in the present
context, it reveals that the economic productivity of water tends to increase with GDP. In
other words, large US cities use proportionately less water than mid-sized cities to achieve a
similar increase in GDP.

Another way of understanding the scaling of WF is by separating WF into blue and green
water. We found that the blue WF (result not shown) shows little correlation with population
and the scaling effect is therefore negligible. This is because the blue WF is dominated by water
used to irrigate crops and green urban areas. These water use practices are much more
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Fig 4. Scaling of the urban water footprint (WF) with population size and GDP. For WF vs. population, the scaling exponent is 0.88 (95%
CI[0.70, 1.06]) and R* = 0.61. For WF vs. GDP, the scaling exponent is 0.74 (95% CI [0.58, 0.91]) and R? =0.56. For all cases, p-value<0.001
and the line indicates the best-fitted line by ordinary least squares in logarithmic scale.

hitps://doi.org/10.1371/journal.pone.0202301.9004

prevalent, because of its arid and semi-arid climatic conditions, in the western half of the US
than in the more humid eastern half [28]. The spatial distribution of blue WF for the selected
cities is illustrated in Fig 5A. It is evident from this figure that western US cities are more blue
WF-dependent than eastern cities. For example, the per capita direct blue water consumption
of Phoenix is 35 times higher than that of Philadelphia.

Accounting for the combined blue and green water (Fig 5B) makes the WF of western and
eastern cities appear more comparable. This highlights the underlying importance of green
water in the approximate scaling of WF. This is, as mentioned before, because of the depen-
dence of green water on population. We also separate in Fig 5 the WF into direct and indirect
consumption. This is useful because the direct component reflects local level (within city)
water requirements while the indirect component reflects regional to national level require-
ments. For the combined blue and green WF, Fig 5B shows that both direct and indirect
requirements are important to city functioning. This means that cities rely equally on local and
regional/national water resources to meet their economic demands for food and industrial
commodities. Cities, consequently, may be considered key drivers of water security, a result
that was recently highlighted for global cities [54].

Discussion and conclusions

We have shown that large US cities tend to be more WF efficient than mid-sized cities, i.e., the
urban WF tends to scale sublinearly with population. This was demonstrated using both a
social network model and empirical analysis. It was also observed, however, that some cities
deviate from the expected scaling behavior. Indeed, the plots of water footprint against popula-
tion (Figs 3 and 4) show substantial variability around the fitted lines. Some of the scaling
results from previous research for urban indicators in the US display less variability (e.g., with
R values that are typically greater than approximately 0.85 [8]) than observed here for WFC,
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Fig5. Spatial distribution of the (a) blue water footprint (m*/year) and (b) blue and green water footprint (m*/year) of consumption and
production for the analyzed US cities. The water footprint of consumption is separated into direct and indirect contributions.

https://doi.org/10.1371/journal.pone.0202301.0005

WEP and WF. A primary reason for the variability in the values of WFC, WFP and WF is due
to these indicators being mixed quantities that depend on more fundamental scaling
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relationships. This becomes apparent when one compares the performance of the scaling of
urban food, R* = 0.84, and industrial, R% = 0.89, consumption in monetary value against the
scaling of WFC, R* = 0.65. The scaling results in monetary value are more robust than the
results for WFC.

The mixed nature of the scaling of WFC, WFP and WF results in greater variability through
two sources of heterogeneity: urban commodity production and green water. Urban commod-
ity production shows greater variability than consumption, which affects the scaling of WFP
and ultimately WF. The heterogeneity of urban commodity production is not surprising as cit-
ies specialize in different industries to gain comparative economic advantages. However, other
measures of urban productivity in the US such as total wages and new patents have shown
more robust scaling [8, 11] than found in this study using the FAF3 data (e.g, the R* values for
the scaling of urban food and industrial production in monetary value are 0.63 and 0.70,
respectively). It is likely that the FAF3 data is contributing noise to the scaling relationships as
the primary purpose of the data is to track the transport of economic commodities across
regions rather than to quantify the internal functioning of cities.

Green water also has an important influence on the variability of WF values. The role of
green water on the scaling was captured through the exponent ¢ which allowed to convert
urban consumption and production from units of monetary value to volume of water. The
relationships used to determine ¢ (WFC/WFP versus the total urban consumption/produc-
tion) have only a moderate performance with R* = 0.68 and 0.58 for WFC and WFP, respec-
tively. The heterogeneity induced by green water on urban scaling is not surprising as green
water, driven by evapotranspiration and cropland/pasture area and characteristics, is strongly
dependent on factors external to city functioning such as climate. Indeed, it is noteworthy that,
despite the variability of green water values, the WFC and WEFP are able to display approximate
scaling behavior. This is because green water also depends on population given that virtual
water flows increase with food consumption and production through the dependence of food
on cultivated cropland and pasture area.

In contrast, in the case of blue water, the value of ¢ is negligible (blue water shows very
weak correlation with population) because two cities with comparable population can have
vastly different blue water requirements, depending on whether their food consumption origi-
nates from mostly rainfed or irrigated agricultural areas. For example, the following pairs of
cities have comparable population but very different blue WF (Fig 5A): New York-Los Ange-
les, Baltimore-Denver, and Indianapolis-Salt Lake City. Thus, the blue WF mainly mirrors
hydroclimatic patterns while the green WF contributes both heterogeneity and regularity to
the scaling behavior of WF through its dual dependence on hydroclimatic conditions and
population.

As indicated in the result section, the sublinear scaling of WFC and WFP exhibits depen-
dency on the changing composition of urban economic activities with city size, where large cit-
ies are more service oriented with less prevalence of secondary sector industries. This allows
large cities to have reduced water footprints by shifting water intensive economic activities to
less populated regions. The shifting of water-intensive economic activities from large cities to
less populated regions has implications for water resources and urban sustainability. For
instance, at the national level such efficiency gains are likely to be substantially reduced with-
out further interventions (e.g., technological and consumption pattern changes). We examined
the effect of international food and industrial commodity imports on the sublinear scaling of
WEF by assigning imports average VWC values based on the national US VWC estimates. We
found that commodity imports only have a relatively minor effect, hence they do not explain
the sublinear scaling. Instead, large US cities seem to rely on other, less populated US regions
to meet their indirect water needs. Such regions, when located in water scarce places like the
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southwestern US, could be particularly vulnerable to ongoing and future changes in climate.
Any large city dependent on the commodity production from a water scarce region, in turn,
may be susceptible to those water vulnerabilities. In such situations, WF efficiencies may not
be particularly helpful and ensuring physical water use efficiencies will be critical.

Our results also indicate conditions under which urban WF efficiencies are likely to be ben-
eficial. The WF efficiencies implied by the sublinear scaling are desirable when cities shift
water-intensive activities to less populated regions that are water abundant. This is obviously
advantageous to cities located in water scarce regions. However, all cities, even those located in
water abundant regions, may gain from such shift by creating opportunities for urban speciali-
zation in higher (less water-intensive) economic sectors. This suggests that growing mid-sized
cities need to be attentive not to outsource water-intensive economic activities to water vulner-
able regions. This would be supportive of urban WF efficiencies that are sustainable. In the
future, it could be useful to jointly consider the scaling of WF with metrics of water scarcity.
This could help distinguish those cities that are benefitting the most from the sublinear scaling
of WF. Such cities, in turn, could serve as examples for other cities to learn from. The sublinear
scaling of WF can be interpreted as representing the likely or average value of WF that is
achievable under relevant urban constraints (i.e., the constraints associated with city function-
ing and economic structure captured by the theoretical scaling exponent used in this study).
Then, cities that lie above the fitted scaling line may be urban areas where reductions in WF
values are realistically feasible. Moreover, it may be possible for these cities to change while
sustaining urban function or remaining resilient. Although, to be practical, we recognize that
this will need to be assessed on a case-by-case basis. We have highlighted some beneficial
implications of the sublinear scaling of WF. We believe the scaling analysis of WF can be used
to compare and benchmark cities, and potentially set realistic targets and support the develop-
ment of strategies for reducing WF. This information could be valuable to policy makers and
city planners concerned with designing economic incentives that support water sustainability.

Overall, the approximate scaling of the WF suggests that despite the multiple and complex
socioeconomic and natural forces that drive and influence the WF, and despite important
sources of WF heterogeneity, some degree of regularity emerges at the city level that helps
explain the efficiency and spatial variability of WF. One limitation of this study is that at the
time of study completion, the FAF3 database was the most recent available data despite repre-
senting the year 2007. Since publication, 2012 data are now available in the FAF4 database.
Future research could use the FAF3 and FAF4 databases to explore the effects of population
change over time on the scaling behavior of the urban water footprints. However, population
is most often a slowly varying function of time so that differences between 2007 and 2012 are
likely to have a relatively mild effect on the scaling exponents. Several previous studies have
investigated the scaling behavior of cities’ energy consumption [55] and carbon dioxide emis-
sions [13-15]. In contrast, to our knowledge, this is the first study to assess the scaling of the
urban water footprint. We believe information about the urban water footprint may help gov-
ernments, private companies, and non-governmental organizations prioritize and strategize
about future policies to further sustainable management of limited water resources in these
critical population areas.
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