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Abstract

Motivation: Cell type composition of tissues is important in many biological processes. To help

understand cell type composition using gene expression data, methods of estimating (deconvolv-

ing) cell type proportions have been developed. Such estimates are often used to adjust for con-

founding effects of cell type in differential expression analysis (DEA).

Results: We propose dtangle, a new cell type deconvolution method. dtangle works on a range of

DNA microarray and bulk RNA-seq platforms. It estimates cell type proportions using publicly

available, often cross-platform, reference data. We evaluate dtangle on 11 benchmark datasets

showing that dtangle is competitive with published deconvolution methods, is robust to outliers

and selection of tuning parameters, and is fast. As a case study, we investigate the human immune

response to Lyme disease. dtangle’s estimates reveal a temporal trend consistent with previous

findings and are important covariates for DEA across disease status.

Availability and implementation: dtangle is on CRAN (cran.r-project.org/package¼dtangle) or

github (dtangle.github.io).

Contact: gjhunt@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Complex organisms have a vast collection of specialized cell types.

The presence and interaction of these cell types is important to

understanding many biological processes. For example, shifts in the

relative composition of cell types is important to developmental

processes of organisms including embryogenesis, morphogensis, cell

differentiation and growth (Lu et al., 2003). Likewise, understand-

ing the presence or absence of cell types is of direct etiological inter-

est for many diseases and dysfunctions (Abbas et al., 2009; Altboum

et al., 2014; Lu et al., 2003; Newman et al., 2015). For example,

changes in glial populations in brain tissue are characteristic of

Alzheimer’s disease (Mohammadi et al., 2015). Similarly, white

blood cell composition can be indicative of acute cellular rejection

of transplanted kidneys (Shen-Orr et al., 2010). Cell type

composition is also important in tumorigenic processes. It has been

shown that heterogeneity of tumors cells is implicated in the meta-

static potential of cancer (Lu et al., 2003; Marusyk and Polyak,

2011).

Given the importance of understanding cell type composition,

several methods to estimate cell type proportions using high-

throughput gene profiling experiments have been developed. Known

as ‘cell type deconvolution’, these methods have been successfully

employed in a variety of applications. Deconvolution algorithms

have been used to study cell type compositional changes in patients

in clinical studies (Abbas et al., 2009; Altboum et al., 2014; Bowling

et al., 2017; Gong et al., 2011; Newman et al., 2015). In these stud-

ies, estimating constituent cell types of carefully selected tissues

reveals important cell type compositional dynamics of diseases.
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Similarly, such gene expression deconvolution has been posited as

useful for clinical cell type monitoring, for example, by tracking

patients’ leukocytes (Newman et al., 2015). Finally, estimating cell

type proportions is important for deconfounding differential expres-

sion analysis. In differential expression studies detecting gene ex-

pression differences within each cell type is confounded by changes

in the cell type composition across the factor of interest. For ex-

ample, diseases will simultaneously affect changes in gene expres-

sion within each cell type and through compositional changes in the

tissues. Including estimated proportions of cell types to account for

this confounding has been shown to improve differential expression

analysis (Capurro et al., 2015; Hagenauer et al., 2016).

We present dtangle, a new deconvolution method that is accurate,

robust and simple to compute. It estimates cell type proportions using

biologically plausible models of high throughput profiling technology.

We compare dtangle to other methods on 11 benchmark datasets.

These datasets include many different cell types, profiling technologies

and cover realistic scenarios like batch effects, mixed technologies and

third party references. Analysis of this data shows that dtangle out-

competes existing methods in a broad range of applications.

2 Materials and methods

dtangle requires two pieces of external knowledge: (i) reference data

and (ii) marker genes. First, dtangle requires auxiliary gene expres-

sion reference data for each cell type [e.g. from GEO (Edgar, 2002)].

Second, dtangle requires marker genes for each cell type. A gene is

defined as marker of a cell type if it is predominantly expressed by

that type. dtangle can determine marker genes using the reference

data or they may be specified by the user.

dtangle’s approach is built on a biologically appropriate linear

mixing model of linear-scale expressions but robustly fitting the

model using log-transformed data and thus sets it apart from other

deconvolution methods.

2.1 The dtangle estimator

In this section we describe the mathematical form of dtangle’s esti-

mator. Intuition for the estimator follows in subsequent sections.

Assume we have a mixture sample of K cell types. Let Y 2 RN be the

(base-2) log-scale expression measurements of this mixture sample

and p1; . . . ;pK be the mixing proportions of the cell types. For k ¼

1; . . . ;K assume that there are �k reference samples of cell type k

and let Zkr 2 R
N be the log-scale expressions of the rth type k refer-

ence. Furthermore, let Gk � f1; . . . ;Ng be the set of type k marker

genes. These marker gene sets are mutually disjoint.

Let gk ¼ jGkj and define YGk
¼ 1

gk

P
n2Gk

Yn and ZGk
¼

1
gk�k

P
n2Gk

P�k
r¼1 Zkrn to be the average of all type k marker genes

across the mixture and reference samples, respectively. Define Dkt ¼
1
c
ððYGk

� YGt
Þ � ðZGk

�ZGt
ÞÞ and Dk ¼ ðDk1; . . . ;DkKÞ. The value

Dkt is a normalized measure of the type k marker genes’ expression

over the type t markers’ expressions in the mixture. Precisely, Dkt is

the average difference of marker expressions, YGk
� YGt

, baseline

normalized by their average difference across the references,

ZGk
� ZGt

, and adjusted by c, a term we discuss in detail later.

We estimate pk by mappingDk 2 RK into the unit interval ½0; 1� by a

multivariate logistic function Lk : R
K ! ½0; 1�. Precisely, for x 2 RK

let LkðxÞ ¼ 1=ð1þ
P

t 6¼k 2
�xt Þ and estimate pk as

cpk ¼ LkðDkÞ (1)

(see Supplementary Section S5 for details). This definition ensures

thatcpk � 0 and
PK

k¼1
cpk ¼ 1.

2.2 Motivation and model

Let us first define some terminology. Measured expressions are

determined by a gene expression profiling (GEP) technology by

measuring the amount of mRNA transcribed from each gene.

Typically these measured expressions are further summarized, e.g.

by MAS or RMA, and normalized, e.g. quantile or TPM normaliza-

tion. We call these processed measurements the ‘measured gene

expressions.’ Often, they are transformed by a logarithm to produce

‘log-scale’ measured expressions, otherwise, they are ‘linear-scale’.

We call the true, yet unobserved, amount of mRNA transcribed

from each gene the ‘actual expression’ of the gene. This actual gene

expression can also be considered on the linear-scale or the log-

scale. (See Supplementary Fig. S1 for a graphical representation of

these relationships.) Given these definitions, the statistical modeling

that yields the dtangle estimator [Equation (1)] is as follows.

First we posit that actual expressions mix linearly on the linear-

scale. If gkn is the actual linear-scale expression of the nth gene in a

sample of type k cells and gn is the actual linear-scale expression in

the mixture, then dtangle assumes

gn ¼
XK

k¼1

pkgkn: (2)

This assumption is simply that the total amount of mRNA in a

mixture is the sum amount from each cell type.

Second, dtangle assumes that log-scale measured expressions are

well modeled as linear in log-scale actual expressions. Statistically,

Yn ¼ lþ hn þ c log 2ðgnÞ þ en

Zkrn ¼ aþ hn þ c log 2ðgknÞ þ ekrn
(3)

for n ¼ 1; . . . ;N; r ¼ 1; . . . ; �k; k ¼ 1; . . . ;K. (Recall the Y 0s and Z0s

are on the log-scale and the g0s are not.) We assume uncorrelated

errors e with zero mean and finite variance.

Equation (3) models several important features of the transform-

ation from actual to measured expressions by the GEP technology.

First, l and a model the samples’ and references’ mean measured

expressions. This accounts for experimental features like quantity of

mRNA or sequencing depth (for RNA-seq). We assume the references

have been normalized (e.g. quantile normalized or mean centered) so

that they share an intercept a. Second, hn accounts for gene-specific

effects like length biases in RNA-seq or probe affinities in microarrays.

Intuitively, c is a factor to account for imperfect mRNA quantification.

Ideally, c ¼ 1 meaning, on the linear-scale, increasing actual expression

always leads to a proportional increase in measured expression. For

RNA-seq we find c � 1, however for microarray technology a c slight-

ly smaller than 1 helps account for saturation and attenuation of the

intensity measurements for lowly and highly expressed genes (see

Supplementary Section S5). While such measuring imperfections are

well-known, dtangle is the only existing method to account for them.

Finally, dtangle assumes marker genes are (approximately) expressed

by only one cell type. If n is a marker gene for cell type k (n 2 Gk), this

implies

g‘n ¼ 0 for all ‘ 6¼ k (4)

(This is an approximation. See Supplementary Section S6.3 for

further discussion.)

Combining Equation (2) with Equation (3) and Equation (4) we have

Dkt¼
1

c

�
ðYGk

� YGt
Þ � ðZGk

� ZGt
Þ
�

¼ log 2ðpk=ptÞ þ d

� log 2ðpk=ptÞ

(5)

where d is a function of the e’s and d ! 0 as gk; gt ! 1 (for details

2094 G.J.Hunt et al.
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see Supplementary Section S7). Thus assuming the approximation in

Equation (5) holds for all t then

Dk �
�
log 2ðpk=p1Þ; . . . ; log 2ðpk=pKÞ

�

and so LkðDkÞ � pk.

2.3 Relationship of dtangle to other deconvolution

methods

The area of ‘cell type deconvolution’ encompasses several related in-

ference problems. Hence, every deconvolution problem includes

three main components: (1) measured expressions from mixture

samples, (2) measured expressions from reference samples of each

cell type and (3) the proportion each mixture sample is comprised of

each cell type. Typically it is always assumed that (1) is known. The

deconvolution problem is then estimating either: (a) the mixing pro-

portions, given the reference expressions, (b) the reference expres-

sions given the mixing proportions, or (c) the proportions and the

references jointly. All three problems are considered instances of

deconvolution. dtangle most closely resembles problem (a), of esti-

mating unknown mixing proportions given measured expressions

from the mixture and references. In Section 3 we compare dtangle to

methods solving both (a) and (c) since they both estimate the pro-

portions. Problem (a), called ‘partial deconvolution’ (Gaujoux,

2013), is typically solved as a regression or penalized regression

problem (Abbas et al., 2009; Altboum et al., 2014; Gong et al.,

2011; Lu et al., 2003; Newman et al., 2015; Qiao et al., 2012; Racle

et al., 2017; Wang et al., 2006), problem (c), called ‘full deconvolu-

tion’, is usually accomplished by non-negative matrix factorization

(Gaujoux and Seoighe, 2012; Repsilber et al., 2010; Venet et al.,

2001; Zhong et al., 2013).

2.3.1 Scale: Interpretability, robustness and efficiency

Existing methods to solve problems (a), (b) or (c) are based on a

common linear mixing model. Let X 2 RS�N be the S mixture sam-

ples’ N linear measured expressions, M 2 RS�K so that Msk is the

percentage of type k cells in sample s, and U 2 RK�N so that the K

rows of U are reference expressions of the K cell types. Existing

methods presume a linear mixing model on either the linear scale,

X � MU; (6a)

or the logarithmic scale,

logðXÞ � M logðUÞ: (6b)

They then solve for (a) M, (b) U (equiv. logðUÞ) or (c) both, pre-

suming the other components are known.

Both Equation (6a) and Equation (6b) have advantages and

drawbacks. Equation (6a) is a physically plausible linear mixing

model of linear measured expressions. It posits that mRNA from a

sample of cells is the sum of the mRNA from each cell. While plaus-

ible, fitting this model on the linear-scale is non-robust and statistic-

ally inefficient. The highly skewed data means the fit is unduly

influenced by data in the tail of the distribution (Li et al., 2016).

Furthermore, since the variance of gene expressions typically scales

with their mean, regression approaches are sub-optimal (Li et al.,

2016). In contrast, Equation (6b) models a linear mixture of log

expressions. This approach is more robust since the log transform-

ation ameliorates the skewness and heteroskedasticity. However

Equation (6b) is not physically plausible. It implicitly assumes that

the mRNA in a mixture sample is the product (not sum) of the

mRNA from each cell.

dtangle’s approach is to take advantage of the beneficial aspects

of each scale while avoiding their problems. Firstly, dtangle is based

on a biologically plausible linear mixing model of linear-scale actual

expressions [Equation (2)]. Second, dtangle’s linear model between

actual and measured expression [Equation (3)] and definition of Dkt

[Equation (5)] are on the log-scale. This makes dtangle robust and

statistically efficient. dtangle only transforms into the linear-scale in

its final step robustly exponentiating after averaging, not before.

Similar to Equation (6a) dtangle uses a plausible and interpret-

able physical model of mixing [Equation (2)]. However dtangle ro-

bustly averages log-scale expressions [Equation (5)] and thus has

robust character similar to fitting using Equation (6b).

Supplementary Section S6.2 uses simulations to explore these points

in more depth.

3 Results

3.1 Benchmarking

To evaluate dtangle we compare it to eight other deconvolution

algorithms (Supplementary Table S1). Six methods are accessed

through the CellMix R package (Gaujoux, 2013). We also compare

to CIBERSORT and EPIC as they are recent and powerful methods

(Newman et al., 2015; Racle et al., 2017). We only compare dtangle

against methods that estimate cell type proportions from gene ex-

pression data for arbitrary cell types. We do not compare to meth-

ods like xCell (Aran et al., 2017) which produce enrichment scores

and not percentages. We also do not compare against the many de-

convolution methods for methylation data or fully unsupervised

methods whose cell types have to be inferred with further post-hoc

analysis e.g. CAM (Wang et al., 2016). Furthermore, we do not

compare against methods that only estimate cell type proportions

from a very specific subset of cells or only in the context of a specific

problem, for example, immune cell infiltration of tumors by meth-

ods like TIMER (Li et al., 2016).

Like dtangle, all methods require marker genes. However four

‘full’ deconvolution methods we analyze require only marker genes

and do not explicitly require reference data. Nonetheless, we find

marker genes through DEA on the reference data and so, in one way

or another, all methods use reference data. There are several ‘com-

pletely unsupervised’ deconvolution methods in the literature (e.g.

Wang et al., 2016) that require neither markers nor references.

However their estimates are difficult to interpret biologically unless

reference data is used post-hoc to map proportions to cell types. For

this reason we do not compare to such methods. Finally, while full

deconvolution algorithms also estimate type-specific expressions

profiles, we only compare dtangle to their estimated mixing propor-

tions as this is what dtangle estimates.

We choose marker genes for deconvolution following Abbas

et al. (2009). First we restrict analysis to genes in the highest quartile

of variance. We then rank genes by P-value using a t-test between

the reference expressions of the two most highly expressed cell types.

For each cell type, the 10% of genes with lowest P-values are desig-

nated markers.

Note that many genes selected as markers using this approach do

not exactly satisfy (4). Further filtering the set of marker genes to at-

tempt to ensure they satisfy (4) could potentially improve the per-

formance of dtangle. However, in our analysis we nonetheless

follow the method of Abbas et al. (2009) without any further filter-

ing to ensure that the method of marker selection is not biased in

favor of dtangle. The exact same set of marker genes are used for

each algorithm.

dtangle 2095
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3.2 Datasets compared

We compare dtangle to the eight other algorithms across 11 bench-

marking datasets (Supplementary Table S2). The true mixing pro-

portions are known for each dataset either because the experiment

was conducted by mixing each cell type in known proportions or be-

cause an independent physical sorting technique, like flow cytome-

try, was used to estimate the proportions. Most datasets include

their own cell type references.

For the RNA-seq data we TPM normalize, transform as one plus

the read count. For the microarray data we quantile normalize on a

logarithmic scale. All data is re-exponentiated so it is on the linear-

scale for algorithms that require it. Pre-processing code is available

in the dtangle.data R package available at dtangle.github.io.

3.3 Microarray data

3.3.1 Mixture experiments with references

We consider five microarray mixture experiments: datasets

Abbas, Kuhn, Gong, Shi and Shen-Orr (Supplementary Table S2).

For each algorithm we estimate the mixing proportions in each data-

set. We evaluate the algorithms’ accuracy in terms of absolute error

of estimated proportions from true proportions and by Pearson cor-

relation and R2 of the estimates against the truth for each cell type.

dtangle has the lowest median error, second lowest mean error (be-

hind CIBERSORT), and the highest mean and median correlation

and R2 across the datasets (Supplementary Fig. S4). This meta-

analysis shows that for the microarray mixture experiments dtangle

is the most accurate algorithm as measured by most metrics and also

one of the most consistently accurate. For each dataset

Supplementary Boxplots of error, correlation, R2, as well as scatter

plots may be found in Supplementary Figures S13, S15, S16, S22

and S23.

We highlight comparisons between dtangle, CIBERSORT and

EPIC on two datasets where dtangle performs worst and best rela-

tive to other algorithms (Fig. 1a and b). For the Gong data blood

and breast tissue were mixed in known proportions. While dtangle

does not perform as well as other algorithms, it still performs quite

well. The estimated mixing proportions are still highly correlated

with the truth (see Supplementary Fig. S15). Conversely, the Shen-

Orr data is from a microarray mixture experiment where rat liver,

brain and lung cDNA were mixed in known proportions. Here,

dtangle performs as well or better than the other algorithms

(Fig. 1b, Supplementary Fig. S22). It has the comparable error and

the highest correlation and R2. dtangle performs on par with

CIBERSORT and out-performs EPIC.

3.3.2 Mixtures without references

In practice pure reference samples of each cell type are not typically

generated along with the mixed samples to be deconvolved. In this

case existing reference data for each of the cell types to deconvolved

must be procured. Typically these pure reference samples are col-

lected from repositories like GEO.

The Becht dataset is a mixture experiment where cDNA from

the HCT116 colorectal carcinoma line and various leukocytes (NK,

B, neutrophils, T and monocytes) were mixed in known quantities

and analyzed with an Affymetrix microarray. Unlike previous data-

sets no reference data was produced as part of the mixture experi-

ment. Like the authors we use publicly available expression

data from GEO as references for each cell type. In total there are

776 samples gathered from GEO which we use to create reference

profiles for the six cell types. On this data dtangle performs as

well or better than CIBERSORT and EPIC (Fig. 1c, Supplementary

Fig. S14). dtangle has commensurate mean/median error, correlation

and R2 as these methods.

3.3.3 Performance evaluation with flow cytometry based cell

sorting

Mixture experiments are only a surrogate for cell mixtures found in

organisms. Realistically, deconvolution methodology is applied to

complex tissue extracted from an organism. Such tissue will be a

mixture of many cell types (more types than in a typical mixture

experiment) and the cell types will have complex inter-cellular inter-

actions modifying their gene expressions. The difficulties are

estimating cell type proportions from such complex tissue is likely

only partially explored by a mixture experiment.

The Newman follicular lymphoma (FL) data was generated by

taking lymph node biopsy samples and enumerating immune cell

sub-types using flow cytometry (Newman et al., 2015). This process

identified 3 leukocyte types (B, CD4 T and CD8 T) in various pro-

portions across samples from 14 patients. As cell type expression

reference data we use the same reference data used to create the

LM22 reference by Newman et al. (2015). It contains gene expres-

sions of 22 white blood cell types as references. Similar to Newman

et al. (2015) we group these 22 types into 12.

The Newman peripheral blood mononuclear cells (PBMC) data

was generated from blood samples from twenty adults where the

proportions of nine types of leukocytes were determined by flow

cytometry. We again use the same data to create references as used

to create the LM22 dataset (Newman et al., 2015). dtangle com-

pares well with other deconvolution methods on these two datasets

(Supplementary Figs S19 and S20). For the Newman PBMC dataset

(a) (b) (c)

Fig. 1. Scatter plots of dtangle, CIBERSORT and EPIC on the Gong, Shen-Orr and Becht datasets. Each point is a particular cell type in a sample

2096 G.J.Hunt et al.
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dtangle has the highest average correlation and lowest average error.

For the Newman FL data dtangle has the highest average correlation

however the overall accuracy suffers somewhat because of biases in

the CD4T and B cell types. This may be due to the large number of

cell types making it difficult for our markers to distinguish among

them.

To investigate the effect of marker gene selection we re-analyze

both the Newman FL and PBMC datasets using the exact LM22 sig-

nature matrix used in Newman et al. (2015) (see Supplementary

Figs S24 and S25). The LM22 signature matrix is a highly curated

set of marker genes for 22 PBMCs developed by Newman et al.

(2015). The results largely remain the same however the biases

largely disappear for dtangle. In particular, dtangle is across the

board the best performing method on the Newman PBMC data and

dtangle has the highest average correlation and R2 for the Newman

FL data. This further underlines the fact that choosing references

and markers is an important component of deconvolution and needs

to be considered carefully.

3.4 RNA-seq

We also investigate the performance of deconvolution methods on

RNA-seq mixture experiments (Supplementary Fig. S5). The

Liu and Parsons datasets are RNA-seq mixture experiments with

internal reference data. The Linsley dataset is a realistic dataset of

leukocytes extracted from patients where the true proportions are

determined by flow-cytometry and external references are used.

dtangle, CIBERSORT, EPIC and LS Fit seem to be the best

algorithms across the RNA-seq datasets. For each dataset

Supplementary Boxplots of error, correlation, R2, as well as scatter

plots may be found in Supplementary Figures S17, S18 and S21.

3.5 Meta-analysis

We compare dtangle to the other algorithms in a meta-analysis

(Fig. 2). We see that dtangle has the lowest median error, second

lowest mean error, and highest mean and median correlation and R2

across datasets. Existing methods in the literature require linear

scale expressions. For example, CIBERSORT hard-codes this

requirement and EPIC explicitly requires TPM normalized read

counts. Nonetheless, we modify these other methods and fit them

using log expressions. While dtangle is unchanged, switching to the

log scale helps some of the other methods on some metrics but hurts

other methods on other metrics. However after transformation

dtangle performs the best on all metrics and so we conclude that

these other methods do relatively worse after a log-transformation

(Supplementary Fig. S3).

3.6 Robustness to marker selection

Thus far we have been selecting marker genes by, among the top

25% most variable genes in the references, ranking marker genes

following Abbas et al. (2009) with a t-test P-value between the top

two most expressed cell types for each gene and selecting the top

10% of differentially expressed genes. To analyze the sensitivity of

dtangle to how the markers are ranked we consider another way of

ranking marker genes. This second method looks at the ratio of the

mean expression for each cell type to the sum of the mean expres-

sions by all other cell types. We call the Abbas method ‘P-value’ and

call this latter approach ‘Ratio.’ In Figure 3 we look at the grand

error median of each algorithm across all datasets for a range of

marker tuning parameters. We compare partial deconvolution algo-

rithms as they are the most competitive with dtangle. dtangle is ro-

bust to the way markers are ranked (P-value or Ratio) and ranking

threshold determining the number of markers. CIBERSORT, EPIC,

Q Prog. and LS Fit appear to have a strong dependence on the quan-

tile cutoff. Indeed, the performance of CIBERSORT degrades much

more quickly than other methods. As the number of marker genes

approaches one per cell type its grand median error grows large very

quickly. This can be seen as the sharply increasing blue line in

Figure 3 for both the P-value and Ratio methods. In Supplementary

Figures S6–S8 we include similar plots looking at the mean and me-

dian error, and mean and median correlation and R2 for all datasets,

microarray datasets and RNA-seq datasets.

Marker gene selection also influences computational time. For

each dataset we timed all algorithms across a range of quantile cut-

offs using P-value ranking (Supplementary Fig. S9). dtangle is con-

sistently the fastest algorithm. It is between one and four orders of

magnitude faster than other algorithms regardless of what quantile

cutoff is used.

3.7 Application to Lyme disease

To demonstrate dtangle on a biological problem we consider RNA-

seq data of PBMCs from Lyme disease patients (Bouquet et al.,

2016). To better understand persistent Lyme symptoms (e.g. fatigue

or arthritis) it is of interest to understand the progression of the

human immune response to Lyme (Bouquet et al., 2016). To this

(a) (b) (c)

Fig. 2. Meta-analysis of deconvolution algorithms. Side-by-side box plots of the mean errors, correlations and R2 across the algorithms. The bold black line is

median, the grey line is mean. Overlapping are jittered points of the metric for each dataset
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end Bouquet et al. measure gene expression in a subset of white

blood cells (PBMCs). PBMCs of 28 patients were collected at the

point of diagnosis (V1), after a 3-week course of doxycycline (V2)

and 6months later (V5). PBMCs from 13 matched controls were

also collected (C).

We use dtangle to estimate, for each sample, the cell type propor-

tions of nine types of PBMCs (B, dendritic, macrophages, mast,

monocytes, NK, CD4 T, CD8 T and gamma-delta T). We use as ref-

erence the LM22 dataset from Newman et al. (2015), choosing the

top 10% of differentially expressed genes for each cell type as

markers. We find that the phagocytes (dendritic, macrophages, mast

and monocytes) make up a larger percentage of the patients’ PBMCs

earlier, rather than later, in the infection (Supplementary Fig. S26).

We see a large difference between the control group and V1 and

decreasing differences between the controls and V2 and V5. Natural

killer (NK) cells follow this same pattern.

The estimated cell type percentages agree with the current under-

standing of Lyme. The initial infection induces an immune response

where fast-acting phagocytes are recruited to attack the foreign bac-

teria (Dame et al., 2007). This agrees with dtangle’s estimates of a

relatively large percentage phagocytes early in the infection that

decreases with time. Phagocytes decrease in numbers once the bac-

teria has been cleared and they are no longer needed. Furthermore,

NK cells follow the same pattern. This agrees with work from

Horowitz et al. (2012) showing NK cells are rapidly activated by

cytokines after a bacterial infection.

In Bouquet et al. (2016) the authors seek to find genes that are

differentially expressed among the groups (V1, V2, V5 and C).

Following Bouquet et al. (2016) we compare the control group to

V1, V2 and V5 and find that there are 399 genes that are differen-

tially expressed in the intersection of each of the three comparisons.

This was done controlling for a FDR of 0.05 by the Benjamini-

Hochberg procedure.

As this previous differential expression analysis was not cor-

rected for cell type proportions we expect to find genes that are cor-

related with cell type. We add in covariates to account for

composition of fast-acting cell types (phagocyte and NK). After

doing so we only find 158 genes differentially expressed in the same

comparison. Thus the cell type composition changes the results of

the analysis greatly. dtangle is one tool practitioners can use to help

tease apart histological changes in cell composition from changes in

gene expression within particular cell types.

4 Discussion

dtangle is a simple and robust deconvolution estimator. It is a

closed-form estimator deriving from plausible biological modeling.

Our meta-analyses show that dtangle is a robust and accurate,

typically performing better than eight of the best existing methods

across eleven diverse datasets. It can accurately deconvolve cell types

using microarray and RNA-seq technology and is very fast to com-

pute where other methods are not. Furthermore it is consistent with

standard physical sorting methods like flow cytometry on realistic

complex clinical tissue. Finally, dtangle has competitive accuracy

when dealing with realistic datasets where the reference samples are

obtained from publicly available repositories. dtangle works well

even when these reference datasets were created using a different

profiling technology. This points to scRNA-seq data as a promising

source for references.

dtangle has some of the same limitations as other algorithms.

Primarily, it is necessary that the cell types comprising each sample

be known in advance and that reference data is available.

Furthermore dtangle needs to find marker genes for each cell type.

This can be potentially difficult if there are many cell types or the

cell types are closely related. Nonetheless, dtangle seems to perform

well in many situations. We will continue to develop dtangle to

overcome some of these challenges to broaden its utility.
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