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Abstract—The dominant portion of smartphone traffic is
generated by apps that involve human interactivity. Particu-
larly, when human users receive information from a server, they
spend a few seconds of information processing before taking an
action. The user processing time creates an idle communication
period during the app session. Moreover, the generation of
future traffic depends on the service of the current query-
response pair. In this work, we aim at leveraging the properties
of such interactions to reap quality-of-experience (QoE) gains.

Existing schedulers, both in practice and theory, are not
designed in view of the aforementioned traffic characteristics.
Theoretical works predominantly focus on scheduling of traffic
that is either generated independently or directly controlled,
but not governed by the the specific dynamics caused by human
interactions. Schedulers in practice, on the other hand, employ
round-robin and processor-sharing methods to serve multiple
ongoing sessions. We show that neither of these approaches
is effective for serving apps that involve human interactivity.
Instead, we show that optimal scheduling for interactive traffic
is non-randomized over packets, which we call action-based, as
it avoids breaking ongoing service of actions in order to align
human response times with the service of other actions. Since
the design of optimal action-based policy is computationally
prohibitive, we develop low-complexity suboptimal action-
based policies that are optimal for two ongoing sessions. Our
numerical studies based on a real-data trace reveal that our
proposed action-based policies can reduce total delay by 22%
with respect to packet-based equal processor sharing.

Index Terms—Interactive apps, scheduling, non-convex op-
timization.

I. INTRODUCTION

Recent analysis of wireless network traffic characteristics
[1] has revealed that web-related apps are responsible for
more than 34% of the aggregate wireless data volume,
ranking as the second dominant source of traffic after video
streaming. Web-browsing, as well as several other app
categories, such as online gaming, news, social networking,
and travel reservations, essentially require significant user
interactions with the app promising of human behavioral
impact on the data traffic generated by such apps in the
relevant timescale of seconds. These apps are thus different
from streaming and file download apps that do not involve
human interaction throughout the whole session of app
usage.

With the growing interest in improving end-users’ QoE in
the next generation networks, human behavior is now being
included in resource allocation frameworks [2], [3], [4], [5].
A multitude of emerging schemes harness long timescale
predictability of human demand, location, and economic
responsiveness in design. Such prediction-based design is
manifested in the emerging paradigms of proactive content
caching [6], [7], [8], [9], [10], WiFi off-loading [11], [12],
[13], [14], and time and content dependent pricing [15], [16],
[17], [18]. Nevertheless, there has been no specific work
that captures human’s influence on the data traffic in the
short timescale of seconds. In a recent work [19], traffic
patterns of smartphone apps have been studied from a human
behavioral perspective in the short time-scale of seconds. In a
Yelp session, for instance, a search query is sent (forming an
action initiated by an end-user) which results in a response
(from the server’s end). Based on the response, the user may
initiate one of many specific actions, e.g., another search,
or ask for a particular detail. Each action causes a burst of
packets being exchanged between the user and server. While
each action encompasses a user-server communication in
the form of query-response pair, time gaps between actions
have been reported to span several seconds. These gaps
occur as the user processes data response from the server
before generating the subsequent action. Fig. 1 illustrates a
traffic pattern from a Yelp session. The figure highlights the
sequence of actions constituting the exchange of information
between the two communicating parties. We can also observe
the few-seconds time gaps between consecutive actions.

In this work, we focus on developing app-aware schedul-
ing policies that leverage the characteristics of the action-
based model [19] for maximal QoE. In particular, wireless
schedulers can provision their resources so that the service
of an action for one user coincides with the thinking time
of another, hence effectively minimizing contentions for
the available resources and associated operational delays.
Another key feature of app interactions pronounced in the
timescale of seconds is that the generation of a new action
is contingent upon the service of the current one. That is,
each user needs to receive the server’s response first before
she can process it and initiate a consequent query. As such,
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Fig. 1: Uplink and downlink packet flows of a Yelp session
as scheduled by a WiFi access point. Every instant of packet
transmission is represented by a line: a solid blue line
for uplink, and a dashed red line for the downlink. The
flows constitute a sequence of actions, each consisting of
a query and a response. Actions are separated by time gaps
determined by human processing time.

arrivals of new traffic are heavily dependent on the service
strategy employed.

In this work, we consider a wireless scheduler (e.g., a
basestation (BS) or an access point (AP)) deployed at the
network edge that serves multiple ongoing sessions involving
human interactions with the objective of minimizing the total
delay for all sessions.

The proposed framework of action-based scheduling re-
quires the infrastructure schedulers to become app-aware,
which is a significant departure from current systems. While
we appreciate the difficulty in this change, we are motivated
by developing solutions that can possibly improve the effi-
ciency of current systems by increasing system complexity,
and without requiring any new wireless resources. In fact,
there has been recently a considerable progress in finger-
printing smartphone apps at the network outlets [20], [21].

It is also worth noting that practical WiFi standards, e.g.,
the enhanced distributed channel access (EDCA) function
of the 802.11e, offer differentiated service based on the
traffic type for enhanced quality of service (QoS). These
traffic types are called access categories [22], [23], [24].
In particular, voice traffic has the highest service privilege
followed by video traffic, then best-effort and background
traffic. We can thus see that interactive apps like Yelp, Web-
browsing, online-gaming, etc., fall all under the best-effort
traffic category of the EDCA function, despite each of these
apps has its intrinsic user-server interaction characteristics
and can be segmented for better QoE. In addition, the current
WiFi schedulers (including 802.11e) employ randomized
service policies that are based on random back-off times
which do not ensure action-based scheduling, a necessary
condition for minimum operational delay as proven in this
work.

We list our contributions in this work as follows:

« We model and formulate the problem of scheduling data
packets from multiple independent sessions sharing a
common wireless scheduler for the minimization of the
total delay of all sessions. The model accounts for the

seconds-long time gap following the service of each
action, as well as the fact that a new action from the
same session can only be generated after the current
one has been served.

e We show that optimal service policy is a non-
randomized policy, or what we call action-based. That
is, given any set of actions pending service at the
scheduler, the optimal service decision is to serve all
packets from one action, rather than switching service
between packets from different actions.

o As the optimal solution to the problem is computa-
tionally intractable, we develop three low-complexity
suboptimal action-based policies, namely a successive
approximation policy (SAP), a greedy policy, and a
two-session comparison policy (TSCP). The SAP and
greedy policy are proved to outperform any packet-
based (non-action-based) scheduler. The TSCP policy
outperforms baseline packet-based schedulers that em-
ploy first-come-first-serve or equal processor sharing
policies.

o We provide real-data driven numerical simulations to
demonstrate efficiency of proposed algorithms. We
show the average delay reduction of action-based
scheduling compared to equal processor sharing is
22% when running apps are randomly picked from
Google Maps, Google Chrome, Yelp, Expedia, and GT
Racing 2, an online car racing game. The key element
leading to higher delay reduction gain of action-based
scheduling is the diversity in the level of interactivity.
Higher gains are witnessed when some running apps
have longer user thinking time with faster processing
of actions at the scheduler (e.g., Expedia) while others
have shorter user thinking times with slower processing
of actions (e.g, Google Maps). For instance, when Ex-
pedia and Google Maps are simulated, delay reduction
gain is 43%.

While there has been existing literature on scheduling of
data traffic with interactive nature [25], [26], [27], [28],
[29], [30], none of the earlier works has considered the
aforementioned characteristics of app interactions, namely
human thinking time and coupling between service and
future arrivals. In [25], [26] traffic with human interaction is
treated as a high-priority class in mutli-type traffic systems
for its delay sensitivity, yet no other specific interactive
characteristics have been captured. In [27], interactivity at
the transport-layer TCP timescale has been considered for
opportunistic routing. The only captured property of TCP
interactive nature has been the signaling overhead. In [28],
authors model interactions of users with web-browsing apps
through an ON-OFF process that resembles the action-based
model adopted in this paper. The ON-time dynamics are
captured as an M/M/1/K queue whereas the OFF-time
dynamics are taken to be an M /G /oo queue, service times
have then been assumed exponentially distributed in [29].
The fundamental difference between [28], [29] and our work
is that they assume independent action arrivals (ON-times) of



the service offered to each action, while we account for the
coupling between future action generation and the service
of the current action. In [30] interactive traffic has been
modeled as a sequence of jobs with deadlines, yet future
job arrivals are independent of the service offered.

The rest of this paper is organized as follows. In Section
II, we layout the system model and formulate the problem
of total time average expected delay minimization and show
that the optimal solution is attained by a non-randomized,
or what we call action-based, policy. In Section III, we
investigate the optimal service policy design and show the
merits of action-based scheduling leading to global and
locally optimal solutions. We present our proposed policy
designs in Section IV, and provide numerical simulations in
Section V. We conclude the work in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
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Fig. 2: System Model

A. System Model

We consider a wireless scheduler deployed at the network
edge (a BS or an AP) that serves a set N := {1,--- , N} of
N independent sessions involving human interactions. The
scheduler is assumed to be aware of the interaction charac-
teristics for each session. Time is divided into slots with the
slot duration being the time taken by the scheduler to serve
one packet in both uplink or downlink directions. Traffic
packets are exchanged between end-users and associated
servers. When the scheduler decides to serve a packet from a
certain session, then in one slot, the packet is received from
the source and forwarded to the destination. Fig. 2 shows
the main system components. We assume that the wireless
scheduler is the bottleneck element in the network that can
at most serve one packet per time slot.

App interactivity: We adopt an action-based model to
capture the short timescale dynamics of the data traffic. In
particular, we assume that session n is represented by a ran-
dom sequence of actions {ay,(t)}+>0, Where a,(t) € {0,1}
denotes the session state at time ¢, whether in action or not.
Suppose that only session 7 is running, and no other sessions
are competing for resources with session n. Then, if a query
or a response packet has been exchanged between the user
and the server in slot ¢, then a,(¢) = 1, in which case the

system is witnessing an action for session n, and the user-
server pair will complete the action in the next slot with
probability i, transiting to state a,(t + 1) = 0. On the

Fig. 3: Packet generation process for a system with a single
session n.

other hand, if the query and response exchange has been
completed in slot ¢, then a,(t) = 0, in which case there is
no action for session n at time ¢, and the user-server pair
will initiate an action in the next slot with probability A,
transiting to state a,, (¢ + 1) = 1. When session n has all its
packets served upon generation without scheduling delays,
i.e., the only session in the network, then process {a,,(¢)}:
follows the discrete time Markov process illustrated in Fig.
3. The assumed Markov behavior of the action process
can be justified by the recent findings on the interactive-
app traffic. It has been shown that action interarrivals and
service durations can be reasonably modeled with light-
tailed distributions [19]. In fact, Google Maps app has
an exponentially distributed action interrarival distribution.
Here we note that parameter J\,, is related to user thinking
time: the larger A, is, the faster the user interacts with the
app, and vice versa. Moreover, parameter j,, quantifies the
processing time of actions of session n: the larger p,, is, the
faster the scheduler can serve actions of session n.

Service of NV concurrent sessions: The wireless sched-
uler can serve one packet at a time slot. We let Q,(t) €
{0,1} represent the queue backlog of session n at slot
t. If session n is in an action state and has a pending
service at time ¢, then @Q,(t) = 1, else Q,(¢t) = 0. The
system state at time ¢, denoted x(t), is then given by
the set of all actions pending service in slot ¢. That is,
z(t) := {n: Qu(t) = 1,n € N}, and the system’s state
space is the power set X’ := 2V The service of packets from
the N sessions is dictated by the scheduler through a service
strategy 7 := {s(¢, z(t)) }+>0, Where s(t,z(t)) € x(t) is the
session scheduled to communicate a packet in slot .

Service delay: We consider the operational delay to be
the main QoE metric in this work. Since the scheduler can
serve one packet every time slot, each session n € x(t)
incurs a time-slot of delay if s(¢,2(t)) # n. Formally, the
cumulative delay of session n by time ¢ is given by

t—1
dn(tvﬂ—) = Z l{s(l,T(l));ﬁn}Qn(l)v ne Na (H
1=0
where 1;., is the indicator function that takes on the value
1 if condition c is met, and O otherwise.

Coupling between service and new arrivals: Due to
the interactive nature of apps, we assume that actions are



generated sequentially in the sense that no new action is
generated before all the packets of the current action have
been served. As such, the queue backlog of each session is
related to the action process through the following update
equation:

Qn(t+1) = a,(t — dy(t, (2)

In the following subsection we formulate the optimal
scheduling problem and introduce the baseline equal pro-
cessor sharing policy.

7)), Vn.

B. Problem Formulation

We consider the problem of minimizing the time average
aggregate expected delay of the N sessions. The time
average delay for session m under service policy 7 is given
as i

D,,(7) = limsup ;E[dn(t)]

t—o0

3)

The aggregate time average delay under policy 7 is thus
written as Dot () = 25:1 D, (r), and the delay mini-
mization problem is:
D‘:cot = milfl Dtot (ﬂ-)a (4)
mell

where IT := {7 = {s(t,
¢, s(t,x(t)) €
strategies.

Optimality of Action-based Scheduling: With the ag-
gregate delay minimization problem formulated, we can
conclude the following.

Proposition 1: The optimal solution to (4) is realized by
a stationary non-randomized policy 7* = {s*(z(t)) }+.
Proof. From (1), the queue update (2) can be re-written as

t,x(t)}e : s(t,x(t)) = 0if z(t) =
x(t),z(t) # ¢} is the set of all feasible

0 Wp. ln, s(t,z(t)) =n,Qu(t) =1,

1 wp. 1=y, stz®)=n0Q.k) =1,
Qn(t+1) = 11, s(t,x(t)) #n,Qn(t) =1,

0 wp.1=MX,, Qp(t)=0,

1 wp. An, Qn(t) =0.

Thus, the future system state x(¢ + 1) depends only on the
state and control of time ¢. As such, the process {z(t)}; is
a controlled finite-state Markov chain with a finite decision
space. Hence, it is optimized by a stationary non-randomized
policy [31]. m

Proposition 1 has thus established that the optimal service
policy does not randomize decisions over the packets of
contending sessions. Instead, the optimal decision is to serve
all the packets belonging to an action from one session
before switching to the packets of another session. This
is what we refer to as action-based scheduling in order
to highlight the significance of leveraging app interactivity
characteristics to improve the QoE gains of the network
(with the formal definition of action-based scheduling is
provided in Definition 2 in Subsection III-B). However, to
investigate the structure of the delay minimization problem,

its solution, and the operation of other randomized policies,
e.g., EPS, we consider the system’s performance under a
general stationary randomized policy.

Randomized Scheduling: Consider a general stationary
randomized policy m, at any time slot ¢ the control s(¢, z(t))
depends only on the state z(¢) and not on the time index.
That is, s(t,z(t)) = s(z(t)), Vt. Accordingly, for any state
x, the stationary control s(x) = n w.p. a,(z), n € x, where
an(x) € [0,1], and ) . a,(x) = 1. Note that (a,(z)),
defines a probability mass function over all sessions of state
x € X. The value of o, (x) determines the fraction of the
scheduler resources assigned to session n € x whenever the
system is in state x. In the sequel, we confine the solution
space to the set of all feasible stationary policies, IT C II,
IT:= {7 = {s(t,z(t)) }+ : s(t,z(t)) = s(xz(t)), Vt}.

Definition 1: We call the policy that assigns equal shares
of the scheduler resources to all the sessions of a state z
an equal processor sharing (EPS) policy. We denote an EPS
policy by & = {§(x) }zer with &, (z) = and |z| is the
cardinality of the set x.

Baseline Service: We adopt the EPS policy as the baseline
service strategy employed by traditional wireless schedulers.
The reason behind such a choice is that current schedulers
do not distinguish between different running apps’ traffic,
and hence treat all sessions equally irrespective of their app
interaction characteristics. The EPS policy attains the same
average delay performance as round-robin and first-come-
first-serve (FCFS) policies that serve packets in the order
of their arrival. When two or more sessions are backlogged,
i.e., having packets pending service, their packets actually
request service from the AP scheduler in the same slot.
The FCFS policy will serve these packets in a round-robin
fashion. That is, after serving one packet from a session,
a new packet from the same session will request service
in the next slot. Such packet will not be scheduled until
one packet from every other session has been served. Thus
FCFS exhibits a round-robin behavior in this case. We let
ﬁtot := Dyt (7) denote the aggregate expected delay under
EPS policy.

In the rest of this paper, we investigate the design of the
optimal stationary policy that harnesses the user-server inter-
action characteristics. Since in [19] it has been reported that
action interarrival and service times occur in the timescale
of a few seconds while packet service time occurs in the
timescale of microseconds, we assume that the time slot
duration allows for at most one event of either one action
arrival or one action service. That is, A\, < 1, u, < 1
rendering the Markov chain of the system operate in a nearly
continuous time fashion. The previous assumption, however,
does not have any impact on the structure of the problem
pertaining to the optimality results below; it is only adopted
to simplify the analysis.

1
||

III. OPTIMAL POLICY DESIGN

In this section, we investigate the structure of the delay
minimization problem, (4) study its complexity, and show
that all local optima are attained by action-based scheduling.



A. The Two-session System

We begin with the N = 2, two-session, system to exactly
characterize the optimal solution and glean main insights
on the scheduling problem. The state space of the system
with two users is given by X = {¢, {1}, {2},{1,2}}. The
system has only one state with more than one session having
concurrent actions pending service, that is {1,2}. Any
stationary policy m € II, therefore, schedules s({1}) = 1,
s({2}) = 2, and s({1,2}) = 1, wp. a1({1,2}) and
s({1,2}) = 2, wp. a2({1,2}). Since (a,({1,2}))?_, is
a probability mass function, we can write «;({1,2}) = «
and @2({1,2}) =1—a, a € [0,1].

1—(u+4y)

1= (A +42)

1
= (auy
+ (1= a)u,)

1—(uz+11)

Fig. 4: State-diagram of the two-session system under a
randomized stationary policy 7.

The resulting system state process {x(t)}; is a discrete
time Markov chain with a state evolution diagram depicted
in Fig. 4.

Proposition 2: For N = 2, the delay minimizing strategy
7" is given by
pi1 (A3 + A1 X2+ Ao g1 +pa uo)
#2(>\%+)\1>\2+)\1#2+#1u2) ’ 5)
0, otherwise,

* )

and the minimum average delay is given by

AA2 (A1 4+ g+ pg + po)

(A + pn ) (12 + Az—ns (A1 + A2 + g1 + p2))’
where n* =1if @* =1 and n* =2 if a* = 0.
Proof. Let P({1,2}) be the steady-state distribution of
state {1,2} under policy 7. We have E[14)£13Q1(t)] =
(1—a)P({1,2}). Since E[d; (1)] = Y1=5 E[l{s(1)21} Q1 (D)),
then D; = (1 — @)P({1,2}). In the same way, we get
Dy = aP({1,2}). Thus the total time average delay is given
by Diot = P({1,2}), i.e., the fraction of time spent in state
{1,2} is always a delay for one of the two sessions.

Solving for the steady-state distribution of the Markov
chain, we obtain P({1,2}) = Z((z; , where

* p—
Dtot -

via) =M1 + Ao+ pq + o),
0(a) =v(a) + apr (A + p2)(M + Ao+ p1)+
(1= a)pa (AL + p1) (AL + Aa + pi2).

We observe that v is independent of a while §(«) is

linear in it. Thus, D;o is monotone in «. Checking the
first derivative of Dy, W.r.t. «, ag&‘“ = Yy (?(;;’2('1)5 (@)

Since §(a)? is non-negative, then Dy, is monotonically
decreasing in « if and only if §(a)r'(a) < v(a)d ()
and non-decreasing otherwise. Through simple algebraic

manipulation, it follows that D is decreasing in « if

#1(>\§+>\1)\2+)\2#1+#1/—L2) . .
> 1, in which case the
H2(>\f+>\1 >\2+)\1H2+H1M2) ’

optimal choice of a is a* = 1. Else, o =0. =

We note from Proposition 2 that the optimal scheduling
procedure always favors actions of session n*. Whenever the
system is in state {1, 2}, the scheduler gives all resources to
session n* until all packets of its ongoing action have been
served. Then the system transits to state {3 — n*} where
resources are assigned to the action of session {3 — n*}.
The system then either completes the service of session
{3 — n*}’s action and becomes empty (returns to state ¢),
or a new action from session n* is initiated in which case
the system goes to state {1,2} and assigns its resources to
session n*. The optimal policy is action-based because the
scheduler decides to serve a whole action in every state.

The condition for selecting the session to serve in state
{1,2} is dependent on user thinking and action processing
times for each session. We can see from (5) that having large
thinking time (i.e., small ),) and small action processing
time (i.e., large p,,) are favorable properties towards serving
actions of session n first whenever more than one action
are awaiting service. In fact, if A\ < Ay and pu; > po then
o = 1. The rationale is that, larger thinking times leave
more system resources available for serving actions from
the other session while actions with smaller processing times
create less delay when served first.

If the two sessions are scheduled under our baseline
EPS policy, then & = 0.5, and the total expected delay
is ﬁwt = /\1/\z+(A?3\rl;jf)(/\z+uz)' We measure the relative
efficiency of optimal action-based policy 7* over EPS 7 as
nt = Dot =Dios ¢ 100%, which quantifies the delay reduction
gain. By substitution with system parameters (A, fin )n, WE
get n* in (6) where n* is as defined in Proposition 2.

Remark 1: Comparing (6) with the allocation of * in (5),
we have n* > 0 with equality if and only if A\; = Ay and
1 = peo, in which case the system is indifferent to both
sessions, and D, is independent of a.

Remark 2: Since state {1,2} is recurrent, contention for
scheduler resources between the two sessions can never
be avoided. For each contention event, i.e., being in state
{1, 2}, the optimal action-based policy reduces delay by 50%
relative to the EPS, however, resolving contentions faster
allows for more contentions than under the EPS policy, thus
the maximum delay reduction gain is 50%.

and only if

B. The N-session Scenario

In this subsection, we study the optimality of action-based
scheduling for the N-session system. Under any random-
ized stationary policy m, the system follows a discrete-time



Hn= ()‘g—n* + A1A2 + >‘3—n*,un* + NlNZ) -

*

G CINED ¥ Ans 3 —p
p3—nx (N + A1 A2 + A 13— + piafi2) < 50%.

’r’:

Markov process with state space X of 2V different states.
The Markov process is also aperiodic and irreducible, hence
has a limiting distribution p := (P(z)).cx, that is given by
the unique solution to the linear system

where A is the 2V x 2V state transition matrix with its 2% th
row containing all ones, and b is a 2N x 1 vector with all
elements but the last one are zeros, and the last element
is one. For the construction of A and b, we introduce the
mapping J : X — Z, where J(x) =Y . 2" " +1is
a one-to-one indexing of each state z € X'. We denote the
element in A whose row index is .JJ(z) and column index is
J(y) by A(z,y), for any x,y € X. The elements of A are
thus given as:

- an{w /\n - Znez O‘n(x)u’m
1, z=N,yeX,

an(y)ﬂn, y\.’E = {n}7v’n’ ¢ z,
Ans w\y={n},Vn ¢y .z #N,

0, otherwise.

Similarly, we denote the element in b whose index is J(z)
with b(z), where b(N) = 1, and b(z) =0, Vz € X\{N}.

Proposition 3: Let B, denote the matrix formed by
replacing the column J(z) in A with b, and define D :=
{x € X : |x| > 1} as the set of all delay states. Then

1
Dy, = —- — 1) det(B;). 7
wl7) = gy (e~ Daet(B). @)
z€D
Proof. For any session n € N, E[l{;4)£n@n(t)] =
2 wepmea(l = an(2))P(x). Hence
N
Dtot(ﬂ-) = Z Dn(ﬂ')
n=1
N
=y (1= an(x))P(x)
n=1xzeD,nex
Rearranging terms, we obtain
Dior = Y _ (|2 = 1)P(x).
xzeD
By applying Cramer’s rule with P(z) = (ifgs&”)), we obtain

7). m

(Ans + fn ) (A3 + M A2 + papio + Az—nx (1 + p2))

r=y,x#N,

(6)

Expression (7) captures the impact of optimization param-
eters (a,(x)),, v € X, on the aggregate expected delay of
the system. As such, we can re-write the problem (4) as

: 1

min 2l — .
(an(@))mwex  det(A) ;O | )
an(z) € 10,1],

Zan(x) =1,

nex

* p—
tot —

1) det(B

s.t., Vnex,x € X,

Ve e X.
()

While the new optimization (8) has a convex constraint
set, its objective function is non-convex in the optimization
parameters because of the non-linearity of the determinant
operator. Therefore, obtaining an optimal allocation of the
scheduler resources is a computationally formidable prob-
lem. Nevertheless, we harness the structure of the objective
function to establish that all locally optimal solutions to the
problem are non-randomized (action-based).

Definition 2 (Action-based policy): We say that a policy
7 € Il is action-based if it is a non-randomized policy. That
is, if for every state x € D, In € x such that a,,(x) = 1.
In other words, an action-based policy is such that for every
delay state, the scheduler allocates all resources to serve the
action of a particular session.

On the action level, an action-based policy is in general
preemptive. That is, if v, () = 1 for some session n in state
x, then a,(x U {m}) is not necessarily 1, for any m ¢ z.

Theorem 1 (Optimality of action-based scheduling): Any
opitmal solution to (8) is attained by an action-based policy.
Proof. Notation: For matrix A (or respectively B,), we use
Alz,y) B.(x,y)) to denote the 2V — 1 x 2V — 1 matrix
resulting from eliminating the row and column correspond-
ing to states x,y respectively from A (B,). We also use
sgn(z,y) to denote the sign of either A(x,y) or B, (z,y).
With this notation, we can expand det(A) with respect to
(an(z))n as

det(A

Z an(z x) det(A{x\{n},

+sgn(NV, z) det (AN, z)) + R(z),

z))
©))

Jin sgn(z\{n},

where

o (Znex
+sgn(NV, z) det (AN, z)),
det(AN,N)), z=N.
2 mga Amsgn(z U{m}, z) det(A(z U{m}, z))
+sgn(N, z) det(A(N, z))

— (Xnes @ (@)tin + X ga A

() o, + ngg;c m) det(A(xz, z))
x = N\{n},Vn.

) det(A(z, x)),
otherwise.
(10)




In the same way, we can expand det(B,) with respect to
(an(2))n where

Replace every occurrence of A in

det(By) = 1 (9), (10) with B,, Yy # x.
sgn(N, z) det(B, (N, z)), y=z.
(11

Lemma 1: Let K € Z,, be a positive integer, ¢,g €
R¥ be real K—dimensional vectors, and e, h € R be real
numbers such that g’'v + h # 0, for any probability mass
function v = (v;)X_,. Then any optimal solution to

. cTv+e
min ———
ve[o,]x gTv+ h

K
S.t. Z v =1,
k=1

denoted v* = (v} ) is such that v; € {0,1}.
Proof Lemma. Taking the first derivative of the objective
function w.r.t. vy, we obtain

(12)

Zl[il,l;ék vi(gick — grar) + heg — egy,
(&"v+h)? ’

where ¢;, g; are the elements of ¢, g respectively.

Since the numerator is independent of vy, the objective
function is monotone in every coordinate. Since the denom-
inator is independent of k, the index w.r.t. which we compute
the first derivative, then the optimal allocation of v satisfies

lth

— : cite
vi = 1, k= argmin oth
0, otherwise.

]

Now let (a*(z))ne- denote an optimal allocation when
the system is in state z € D. Suppose that in every state
z € D\{z} we use (a(2))nez, and we use a general allo-
cation (au,(x))ne, with state € D. From the expansions
of det(A), det(B,) w.r.t. the controls (v, ())nee (9), (11),
we observe that these expansions are affine in (a, (2)),. As
such, delay minimization problem can be written in the form
of (12), with the optimization variables being (a,(x))n.
Hence, that optimal allocation satisfies o, (x) = 1 for some
n ez, and o, () =0, Vm € 2\{n}. m

Theorem 1 thus establishes that any randomized policy
is always outperformed by at least one action-based policy.
Thus, harnessing the query-response nature of app-user
interactions in the form of action-based services holds the
potential to maximally enhance end-users QoE. In addition,
the theorem significantly reduces the complexity of the op-
timization from an infinite dimensionality problem in which
the search for optimal solution runs over an uncountable
set of values to a search over a set of finitely many points.
Nevertheless, the search for optimal strategy does still suffer
major complexity as the number of sessions grows. This
growing complexity calls for the design of efficient action-
based schedulers that strike a balance between minimal delay
performance and operational complexity.

IV. PROPOSED SERVICE POLICIES

While Theorem 1 reduces the problem’s complexity to
a finite search, the global optimal solution has to be ob-
tained through an exhaustive search problem with a worst
case complexity of Hf:[:Qn(ZX ), which is still formidable
for large N. Accordingly, we study the design of low-
complexity service policies to reap the potential gains of
interactive traffic characteristics. We consider two main ap-
proaches. The first utilizes successive approximations of the
non-convex problem, whereas the second utilizes priority-

based scheduling.

A. Successive Approximations Policy

The complexity of policy design essentially emanates
from the non-convexity of the objective function of (8).
We tackle such a problem through an iterative technique
that solves a sequence of approximate convex problems of
the original problem. In particular, in each iteration i, the
non-convex objective function, Dy (7), is replaced with an
approximate quasiconvex function Dﬁg{ (m), then we use the
solution to the resulting convex problem to generate a new
approximate function [)t(éfl)(w), and so on. The series of
solutions to these approximate convex problems converges
to a point that satisfies the KKT conditions of (8).

Lemma 2: Let D) be a convex function in (v, (), = €
D, that replaces the objective function ZN)tot in (8) at iteration
i. Denote by (i) = (o (2)),, z € D, the optimal
solution to the resulting convex optimization problem at the
i — 1%t iteration, i = 1,2,---. If

1) DY)(m) > Dyos(m), ¥r €11,

2) VD (r 1) = VDigu(n D),

3) Dig(n ™) = Deor(mV),
then Dyoy(7(9) < Dyop(7*=1), Vi, and the sequence of
policies {w(i)}i converges to a policy 7 := (&n(2))new,zeD
which is a locally optimal solution to (8).

Lemma 2 is a special case of Theorem 1 in [32] which aims
to provide locally optimal solutions to non-convex problems.

Then we construct the approximate objective function
D) (1) as follows.

D(l) = {dct(j&(i)) ZfﬂGD(‘x| - 1) det(B:(DZ))7 i= 17 27 o
tot ~ ~ .

tot, 7_0a
(13)
where
A(z,y), VreX,i mod2VN +1=J(y).
; ALY Vo€ X
A(Z)(l‘,y) = ('ray)v . HAS v
;i mod 2% + 1 # J(y).
A, i=0.

(14)
Moreover, B{")(z,y) is obtained as in (14) by replacing
every occurrence of A and A9 with B, and Bff), respec-
tively, Vz € X. The matrices A, I§Z, z € X are obtained
for a scheduler that employs our baseline EPS policy. In
particular, they respectively consist of elements of A and



B, with every «,(z) replaced with &, (x), Vn € z, x € X,
zeX.

The idea is to have iterations run over all states sequen-
tially, where in each iteration resource sharing controls are
optimized for one state assuming other states employ most
recent controls from the previous iterations. Since there are

N possible states, a state z € X is visited once every 2V
iterations, whenever i mod 2V + 1 = J(z).

Theorem 2: Let x € X be such that J(z) = 4
mod 2% 41, for some iteration i. The approximate objective
function D§01 of (13) is quasiconvex in (a,(x)),. Further,
the sequence of solutions resulting from replacing Dyt of
(8) with {Dt(?t}z converges to a locally optimal solution of
®).

Proof. First, for x € X satisfies i mod 2 + 1 = J(x),
we note that ﬁt(?t is a linear fractional mapping in (o, ()),
since detgA(i)) # 0 for any randomized stationary policy.
While Dt(ét is quasilinear, the resulting optimization problem
at iteration 1, i.e.,

: ()
min D (m
Qn - Dioi(m)
st, ay(z) €[0,1], Vneuw, (15)
Z ap(z) =1
newx

can be transformed into a convex (linear) optimization
problem through means of change of variables (c.f. Chapter
4 in [33]).

Second, we consider the three conditions specified in
Lemma 2. Since Dy is continuous in (a,(2))n,, and the
set of constraints is compact, then Doy has a maximum
value U that can be added to Dt(é)t to maintain Condition
1). Nevertheless, adding a constant to the objective function
does not change the solution, which is the main point of
interest. For Condition 2), we have

Y

ot

an (@) (a%*“(m))

ly| — (i), O det(B())
Zdet AU detA) 5 @)

yeD
— det (B )6?921(()))) Ca)
e (0 G
_det<By)m> CRON
_ a% ’

(7).,

where the last equality holds by the construction of AY and
B (14). Finally, Condition 3) in the same lemma need not
be satisfied; it is mainly stated in Theorem 1 of [32] for
a non-convex constraint function. Such condition ensures

the satisfaction of complementary slackness conditions by
the approximate function and the original function. Since
we are interested in the objective function, not a constraint
function, Condition 3) is not necessary for convergence to a
KKT point. m

Before we present the algorithm for the proposed suc-
cessive approximation policy (SAP), we establish that the
policy is essentially action-based.

Theorem 3: For every iteration i, the solution to (15) is

action-based, hence, the limiting point 7 satisfies that for
every state x € D, In € x such that &,(z) = 1, and
Gn(z) =0Vm ez, m ¢ x.
Proof. We note that (15) is a linear-fractional optimization
with the optimization variables being (cv,(x)),. Thus, from
Lemma 1, it follows that o’ (z) = 1 for some n € =,
while '} )( ) = 0 Vm # n. Since every iteration leads to
an action-based allocation policy 7(*), the limiting point 7,
which is a locally optimal solution to (8), is also action-
based. m

The action-based property of SAP allows for a simplified
solution to every iteration. In particular, for state z € D such
that i mod 2V + 1 = J(z), the solution to (15) is given
by as()i)(x) =1 and o?) (z) = 0, Vm # n), where n(¥) is
specified in (16). With the above simplification we present
steps leading to our proposed SAP in Algorithm 1.

Algorithm 1 Algorithm for Successive Approximation Pol-
icy (SAP)

1: Initialization: iteration ¢ = 0, set A(O), B as in (14).
2: while Target convergence accuracy is not reached do
3 i=1+1.
Compute AW B( R Yy € X as in (14).
Find 7 such that i mod 2 +1=J(x)
if |z| > 1 then

Compute n(@ from (16).

Set a(())( ) =1, and ozm)( ) = 0 for every m €
9:  end if
10: end while

® DNk

While we do not specify a particular criterion for stopping
the iterations in Algorithm 1, we note that the algorithm
converges in a finite number of steps. The reason is that the
SAP is an action-based policy, in which the search for the
optimal solution at every iteration runs over a finite set, as
such the number of iterations taken to convergence is finite.

Remark 3 (A coordination-game perspective): The pro-
posed SAP algorithm can be viewed as the evolution of best-
response dynamics in a repeated coordination game [34].
Players are represented by delay states with a common utility
function —Dy. and a strategy space for state © € D being
{(an(2))n : an(x) € {0,1}, 37, . an(z) = 1}. From (15),
we can see that each player adheres to the best-response
strategy given the strategies played by other players in the
previous steps. With the finite strategy space for each player,
the game is a finite ordinal potential game, and, according



n) = argmin
nexr

Y, en(lyl — 1) (i sen(a\{n}, ) det(BY 2\ {n}, 2)) Ly + sen(N'2) det (B (N, 2)) + Ry (n, 2))

3 , , (16)
sgn(a\{n}) det(AD (2 {0}, 2)) + sn(N, 2) det(AD N, 2)) + R (72)
where
— (ki + X ngo Am) det(M(z, 2)) + sgn(NV, ) det(M(N, z)), x = N\{n},
Rat(n, ) = det(M(N, N)), r=N, a7
’ > mgz Amsgn(z U{m}, x) det(M(z U {m},z)) + sgn(N, z) det(M(N, z))
= (pn + 2 mia Am) det(M(z, z)), otherwise,

and M € {A®) B{}.

to Theorem 19 in [34], best-response dynamics converge to
a Nash equilibrium of the game in a finite number of steps.
From Theorem 3, we note that SAP policy can not lead
to a higher delay than EPS policy, i.e., Dior > Dot (7).
However, we provide a stronger result in the following
theorem.

Theorem 4: The SAP strictly outperforms EPS policy
unless all ongoing sessions have identical statistics. That
is Digy > Dyt (7) with equality if and only if (A, )
= (A i), Vm,n € N.

Proof. (=) Suppose that (A, un) = (A, u), Vn € N.
We then can note that the Markov process {x(t)}; under
any randomized stationary policy w € II is lumpable to a
new process L (t) := |x(t)|, which captures the number
of actions pending service at any time t irrespective of the
sessions generating these actions. The lumped process has
only N + 1 states, where the total time average expected
delay is given by

al (A"

Dyot (1) = Z(" - 1)(ZNN)NI>J

1=0 (N—D)!

Clearly, Dot (7) is independent of the scheduling policy T,
in which case Diot(m) = Di, = Diot, V¥ € T1L

(<) Suppose that Dot (%) = Diot, and towards contra-
diction that, W.L.O.G. (A1, 1) # (A, p), while (A, pn)
= (\u), n=2,---,N. Now, consider the first occurrence
of iteration ¢ for which ¢ = J({1,2}), and let a;({1,2})
= «, and a5({1,2}) = 1 — «, while the first occurrence of
i ensures that agffl)(x) = |71\ for all n € z, x € D\{1,2}.
Then, ﬁéé)t is a monotone function in « for which the
minimum is realized at « € {0,1}. Hence, Dt(g)t(ﬁ(i))
< Dios. As such, Dioy (1) < Do, from Theorem 3, which
is a contradiction. Thus, (A1, 1) = (A, p). =

Corollary 1: Optimal action-based scheduling strictly re-
duces total average expected delay below that of EPS if and
only if at least two of the ongoing sessions exhibit different
statistics.

Remark 4 (SAP outperforms any non-action-based pol-
icy): Corollary 1 can be further generalized to any non-
action-based policy other than EPS. That is, for any non-

n=2

action-based policy 7« with less delay than EPS, i.e.,
Dyot(7) < Dyot, SAP algorithm can be modified such that
its initial condition is 7 instead of 7 and the resulting action-
based policy of SAP algorithm will lead to less expected
delay than that of 7 as long as two of the ongoing sessions
exhibit different statistics. The reason is that, starting from
any initial condition, the iterations of SAP algorithm yield a
sequence of monotonically decreasing expected delay until
convergence to a local optimal which is essentially an action-
based policy.

The SAP has been proposed to tackle the prohibitive
complexity of the globally optimal solution. Under SAP,
the search for locally optimal solution scales grows with
N as 2V. While exponential in N, it significantly relaxes
the product form [],_,n(Y). Moreover, in Section V we
show that convergence of SAP algorithm takes as few cycles
as two, where each such cycle consists of the oN _N -1
iterations needed to span the set D of delay states.

B. Priority-based Scheduling

To further seek simplified action-based scheduling, we
consider priority-based scheduling where sessions are as-
signed to different priority classes and served accordingly.
An action from the session with the highest priority always
receives service once it has been initiated, thus the highest
priority session incurs no delay. An action from the session
with the second highest priority receives service only when
there is no highest priority action in the system, and so on,
actions from less priority sessions can only receive service
after actions from higher priority sessions have been fully
served. Priority-based scheduling has been shown optimal in
Section III-A for the two-session system where session n*’s
actions are always served first whenever there is a contention
for resources.

The potential of reduced complexity through priority-
based scheduling is that the policy is developed in as much
as N — 1 steps, where in each step one session is assigned a
certain priority level. We use the notation 7, to denote the
session that is served with priority p, p = 1,--- , N. Priority
p = 1 is the highest and p = N is the lowest. Whenever the
system is in state x, priority-based scheduling implies that



ay(z) =1 for n = ng, ¢ = min{p : n, € =}, while o, (z)
= 0, n # ng. In this section, we propose two priority-based
scheduling policies that achieve efficient delay performance
at considerably reduced complexity.

1) Greedy Policy: We begin with a greedy policy deter-
mined by an algorithm which sequentially assigns priority
to sessions. In every step, one session is selected to receive
a current priority order which leads to minimum delay. The
total number of steps needed is at most N — 1. Initially,
all sessions are served by EPS policy. Then the N sessions
are tested to determine the one that can receive the highest
priority and attain minimum total average delay while others
remain under EPS. The remaining N — 1 sessions are
then evaluated to select the one that receives the second
highest priority given the highest priority session and the
EPS scheduling of the other N — 2 sessions. The algorithm
proceeds in the same way until every session has been
assigned a priority order.

We denote by wﬁ,’f) the policy employed by the algorithm
while testing the assignment of session m to priority order
p given ny, ---, n,_1, and that sessions that have not
yet assigned a priority order are served according to EPS.
That is, 7 assigns the scheduler resources (o, ())n,» as

follows
1, n=ngq=min{j:n,; €z},
g=1-,p-1
0, n=ngq>min{j:n; €},
q=2,---,p—1,
ap(z)=<1, n=mmeax,n,¢uz, (18)

q:]-v"'vp_la

0, m#mmex,n, ¢z,
q:17"'7p_1a
1

Tal® otherwise,
x|

Vn € x, x € X, while we use the initial condition that
WE,[L)) = 7, Vm € N. Then the algorithm selects a session

min Diot (71'7(5 ))

19
N\{nlv"'vnp—l} ( )

m* = arg

as a candidate for priority order p. The session m*
is assigned such a priority order only if Dtot(ﬂ,(,’;l) <
Dot (m(f;j)), otherwise, the algorithm terminates at step
p — 1, with m(qf,j) being the final greedy policy.

We summarize the operation of the proposed greedy
algorithm yielding to the greedy policy in Algorithm 2.

Remark 5: From the construction of the greedy policy
we can see that it mixes between action-based scheduling
in some states, and EPS in others. However, it is always
guaranteed that the policy can never increase delay above
that of EPS.

Remark 6: (Greedy policy outperforms any non-action-
based policy.) Similar to Remark 4, the initial condition of
Algorithm 2 can be modified to be with any non-action-
based policy so that the resulting greedy action-based policy
strictly outperforms the initial non-action-based one.
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Algorithm 2 Algorithm for Greedy Policy

I: Initialization: step 0, 7% = 7, Vm € .

2: forp=1to N —1 do

3 forme N\{ny, -+ ,np_1} do

4 Compute m(r’f) for which «, () is specified in (18).

5: Compute Dy (77,(,1{)) from (7).

6 end for

7 Compute m* from (19).

8 if Dyt (1)) < Dyt (n'27)) then

9: ny, =m*

10:  else

11: Terminate algorithm with 71'55:}) being the greedy
policy.

12:  end if

13: end for

14: Terminate the algorithm with Wﬁfl\tll ) being the greedy

policy.

Remark 7: The search complexity for the priority order
of the greedy policy scales quadratically with the number of
sessions.

2) Two-session Comparison Policy (TSCP): In this ap-
proach we aim to further simplify the priority-based sched-
uler design by utilizing the structure of the optimal solution
to the two-session scenario. In particular, we define a metric
®n,m to compare any two sessions as in (5) and accordingly
give one session priority over the other. We then rank the
sessions based on their relative comparisons with respect to
®n,m, that ranking is harnessed to assign the priority-based
schedule of the TSCP. Our proposed two-session comparison
metric @y, p, 1=

1 _ Hn > HPm
T A2 A A A e e o A2 A A0 A+ A o F e o ?

0, otherwise,
(20)
VYn,m € N, and

N
On = Z ¢n,m~

m=1

2n

We then rank all the sessions through the ¢,, metric and
assign them service priorities accordingly. The TSCP thus
determines session n,, such that

¢np Z¢ma vmeN\{lv ;npfl}a

with ties broken arbitrarily.

The steps leading to the construction of the TSCP are
summarized in Algorithm 3.

Remark 8: We note that the development of the TCSP
does not require any sophisticated matrix-related operations
such as computation of determinants. Instead, it relies on
simple operations specified by the ¢,, ,,, metric. Hence, the
overall complexity of TCSP is remarkably less than that of
the SAP and greedy policy.

Remark 9: Despite the reduced complexity of the TSCP,
closed form expressions asserting its performance guarantees

(22)



Algorithm 3 Algorithm for Two-session Comparison Policy
(TSCP)

1: Initialization: step 0, compute ¢, ,, for all sessions
n,méeN.
Compute ¢,, for all sessions n € N from (21).

2: for p=1to N do

3:  Compute n,, as in (22)

4: end for

are analytically formidable for a general number of sessions.
Nevertheless, numerical simulations in Section V demon-
strate its relative efficiency over the EPS policy.

V. NUMERICAL SIMULATIONS

In this section we provide numerical simulations based on
real-data trace of smart-phone app traffic involving human
interactions. The data trace reported in [35] encompasses
packet-level detail of 1500 sessions collected from 5 differ-
ent smart-phone apps, namely Google Maps (travel), Google
Chrome (web-browsing), Yelp (dinning and local search),
Expedia (travel planner), and GT Racing 2 (online gaming).
From the findings reported in [19] on the number of packets
per action as well as the time gaps between consecutive
actions, we capture the main characteristics of app sessions
as follows. Over the WiFi network the AP transmission rate
is 54Mbps, thus we take the time slot duration to be 326us
which is the packet transmission time. From Table I in [19]
which lists the average number of packets per action, we
compute the parameter p, for every app session m as the
reciprocal of the average number of packets per action. From
Table II in [19] which lists the time gap statistics between
any two consecutive actions, we compute the parameter
A, as the ratio of slot duration over the average time gap
between two actions. As such, we summarize the values of
(An, itn) pairs for the five tested apps in Table 1.

TABLE ©: Pairs of (A, iuy,) for the five tested apps.

Maps (0.126,1.837) x 10~3
Chrome (0.109,2.041) x 10~2
Yelp (0.131,4.032) x 10~3
Expedia (0.121,14.492) x 10~3

GT Racing 2 | (0.085,6.238) x 103

Our numerical simulations are divided over two sub-
sections. In Subsection V-A, the system’s performance is
evaluated against the baseline centralized EPS scheduling,
whereas in Subsection V-B, the performance is evaluated
against the distributed service of the WiFi 802.11e’s EDCA
function.

A. Comparison with EPS:

To highlight the potential gains of action-based schedul-
ing, we begin with the two-session scenario where every
possible pair of the tested apps is considered for scheduling.
As the optimal solution is fully determined in Proposition 2,
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we provide the delay reduction gain n* (6) in Table II. Recall
that delay reduction gain n* measures the relative delay
improvement over the equal processor sharing policy. We

TABLE II: Delay reduction gain n* for every pair of tested
apps.

Maps Chrome Yelp Expedia GT
Racing 2
Maps 0 5.1% 26.34% 43.3% 34.9%
Chrome 5.1% 0 23.78% 42.6% 33.25%
Yelp 26.34% | 23.78% 0 35.8% 17.68%
Expedia | 43.3% 42.6% 35.8% 0 28.19%
Ragl};{g 2 | 34.9% 33.25% | 17.68% | 28.19% 0

can see from the table that action-based scheduling promises
of considerable delay reduction gain reaching values of 43%
of delay savings. The gains associated with the the Expedia
app are the highest. The reason is the high processing speed
of actions of such app, that essentially gives it privilege to
receive service first at minimum delay expense for other
sessions sharing the same AP. We also observe 0 gains
associated with the service of two sessions from the same
app since the scheduler is indifferent to traffic characteristics
of each session. The service of Maps and Chrome leads
to relatively small delay savings for their user thinking
dynamics and action service times exhibit highly similar
characteristics.

For the multi-session case, we evaluate the performance
of our proposed three policies versus the number of ses-
sions. Driven by the data of Table I, we randomly generate
app sessions with A, being uniformly distributed on the
interval [0.085,0.131] x 1072 and p,, uniformly distributed
on [1.837,14.92] x 1073, For every number of sessions we
average the results over 10* simulation runs. We compute
the delay reduction gain, 7, for each policy, and plot the
results in Fig. 5a. We can observe that the three policies
have close performance, and interestingly TSCP is highly
efficient despite its remarkable low complexity relative to
the SAP and the greedy policy. We note also that the delay
reduction gain is substantial reaching more than 22% as the
number of sessions grows.

We evaluate the complexity of the SAP by measuring
the average number of cycles of iterations over which the
SAP algorithm runs over the delay states until convergence.
Each cycle comprises 2V — N — 1 iterations. In Fig. 5b, we
plot the average number of such cycles against the number
of sessions. The figure clearly shows that convergence is
realized in no more than two cycles, on average.

We have noted from Table I that \,’s are at least one
order of magnitude smaller than pu,,’s, which is reasonable
noting that human’s spend more time comprehending and
processing information sent from servers in every action.
Under such order of magnitude difference, we find that
the TSCP exhibits high efficiency. Nevertheless, the TSCP’s
performance falls dramatically relative to the SAP and the
greedy policy as the difference between \,, and p,, declines.
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Fig. 5: Performance of proposed policies for A, and u,
being uniformly distributed on [0.085,0.131] x 1072 and
[1.837,14.92] x 1073, respectively.

We simulate a system where ), is a linear fraction of
n aS Ay, = pppn, Where p, is uniformly distributed on
[0.3,0.8] to capture the scenario when A, and p, are of
the same order of magnitude, which hypothetically indicates
fast thinking time by end-users. Results are also averaged
over 10% simulation runs. In Fig. 6a, the delay reduction
gain efficiency is in general significantly reduced compared
to that of Fig. 5a as the system gets more congested with
interactions. We can note that the greedy policy attains
the best performance among the three tested policies while
TSCP’s performance drops fast as the number of sessions
grows. In Fig. 6b we study the convergence speed of SAP
where it takes more cycles to convergence compared to
the realistic system of Fig. 5b. Overall, we can conclude
that the proposed priority-based scheduling policies deliver
a favorable balance between performance efficiency and
implementation complexity.

B. Comparison with EDCA

The WiFi 802.11e standard allows for different QoS
scheduling by prioritizing the service of four different types
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Fig. 6: Performance of proposed policies for u,, being uni-
formly distributed on [1.837,14.92] x 1073 and \,, = py fin,
where p,, is uniformly distributed on [0.3,0.8].

of traffic, called access categories (ACs). This QoS differen-
tiation is realized through an enhanced distributed channel
access (EDCA) function that assigns smaller access param-
eters to ACs with higher priority. These parameters are the
arbitration inter-frame spacing (AIFS) and the minimum and
maximum collision window sizes (CWMin) and (CWMax),
respectively, [22], [23], [24].

In this subsection, we simulate and compare the random
access EDCA function with our app-aware TSCP scheduling
policy for the four apps: Google Chrome, Yelp, Expedia, and
GT Racing 2 whose traffic characteristics are listed in Table
I. The simulated EDCA operation assumes that each ongoing
app session sends packets randomly, yet upon collision, the
sending sessions must back-off for a number of time slots
drawn uniformly random from the range

[1, min{2’ + CWMin(p), CWMax(p)}],

where 7 is the collision stage and p is the priority index of
the session involved in the collision event.

The CWMin and CWMax values for the four priority
indexes considered in this simulation are as listed in Table
III where aCWmin is a simulation parameter that we vary



TABLE III: Contention window boundaries for the simulated
priority levels.

Priority Index (p) CWMin CWMax
1 aCWmin+1T 1 aCWmin+1 1
2 m -1 aéWmin
2
3 aCWmin 2(aCWmin + 1) — 1
4 2(aCWmin+1) —1 | 4(aCWmin+1) — 1

in simulation. We further consider AIFS to be similar for
all sessions in this simulation. Thus priority scheduling
of EDCA is mainly determined based on the values of
CWDMin(p) and CWMax(p). The priority indexes themselves
are assigned based on the metric in (22).

The average delay resulting from the EDCA scheduling is
denoted Dy,;(EDCA), whereas that of TSCP is denoted by
Dy, (TSCP). We consider the delay reduction gain of TSCP
over EDCA as our performance metric and plot it in Fig. 7.
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Fig. 7: Delay improvement of the proposed TSCP action-
based scheduling over random access EDCA vs aCWmin.

With one simulation run spanning 10° time slots and
averaging over a 100 simulation runs, we plot in Fig. 7 the
average delay reduction gain realized by TSCP over that
of EDCA as the parameter aCWmin varies between 7 and
255. The figure clearly highlights the QoE improvement of
at least 53% that TSCP can achieve. The TSCP harnesses
app-aware centralized scheduling capabilities that not only
rank the service of app traffic for reduced delay, but also it
does not suffer the delays from the random back-off times
that EDCA incurs.

VI. CONCLUSION

In this work, we have considered the problem of serving
multiple smart-phone app sessions involving human interac-
tions and sharing the same bottleneck wireless scheduler. We
have built on top of recent findings on the characteristics of
human-app interactions in the timescale of seconds where
human’s influence on traffic patterns is pronounced. In
particular, we have utilized an action-based model where
each app session is composed of a sequence of actions, each
is formed by uplink and downlink transmissions constituting
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the query-response pair of such action. In the light of the
action-based model, we have accounted for two specific
properties of user-server interactivity. Namely, (1) the time
taken by users to process the server’s response and generate
a new action spans a few seconds, on average. Such human
thinking time creates periods of silence in the packet flow
of the app session. (2) The generation of a new action
for a given session is contingent upon the service of the
current action. That is, no new action will be generated
unless all packets of the current action have been served,
thus future arrivals depend on the service strategy at the
wireless scheduler.

For the adopted model, we have formulated the problem
of maximizing end-users’ QoE in the form of minimizing
the total time average expected delay. While the problem
is generally of infinite dimension, we have proved that all
locally optimal solutions to the problem are non-randomized,
i.e., action-based, which reduces the problem complexity
into a finite search problem. In action-based scheduling,
the scheduler decides to serve the packets of an action
from one session as a whole rather than switching service
between packets of different sessions. As the optimal action-
based policy requires an exhaustive search with formidable
complexity, we have developed reduced complexity policies
that are shown analytically and validated numerically to
attain improved delay performance over traditional non-
action-based or packet-based policies such as equal proces-
sor sharing.
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