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Contact structures, excisions and sutured
monopoles

Zhenkun Li

Abstract

In this paper we explore some of the interplay between con-
tact structures and sutured monopoles. We first study the behavior
of contact elements defined by Baldwin and Sivek [1] under Floer
excisions, which was introduced to sutured monopoles by Kron-
heimer and Mrowka [15]. Then we do some computations in su-
tured monopoles and in particular, we obtain an exact triangle for
oriented Skein relation for knot monopole Floer homology and derive
the connected sum formula for sutured monopoles. A similar argu-
ment also leads to the connected sum formula for sutured instatons
and framed instanton Floer homology.
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1 Introduction

The sutured monopole and instanton Floer homology was introduced by
Kronheimer and Mrowka in [15]. They were designed to be the counter
parts of Juhdsz’s sutured Heegaard Floer homology [11] in monopole and
instanton settings respectively.

It has been shown by works of Kutluhan, Lee and Taubes [17] and
subsequent papers, Baldwin and Sivek [3] that the sutured monopole Floer
homology and sutured (Heegaard) Floer homology are isomorphic to each
other. So if we simply aim at computing monopole Floer homologies, then
we could make use of the isomorphism and look at the Heegaard Floer side,
which is known to be more computable. However, the computations and
constructions in this paper will be restricted to be with in the monopole
setting and will not make use the isomorphism to Heegaard Floer theories.

This is not only for fun but also for the following three reasons. The
first is that we would like to develop a theory within the monopole settings
so that it might be possible some day, when equipped with enough tools,
we could derive a new proof of the isomorphism between monopole and
Heegaard Floer theory, by looking at basic building blocks for the two
theories. The second is that though the isomorphism between the two
Floer theories have been proven, the morphisms within each theory have
not been identified. The third reason is that the constructions in sutured
monopoles would also shed some light on sutured instantons, as these two
objects are constructed in a similar way.

A sutured manifold is a compact oriented 3-manifold M whose bound-
ary is divided by an embedded 1-submanifold ~, which is called the suture,
into two parts of the same Euler characteristics. To define the monopole
Floer homology, we construct a closed 3-manifold Y together with a closed
surface R < Y out of (M,~), by first gluing 7' x [—1,1] to M along the
suture and then identifying the remaining boundaries. Here T is a choice
of auxiliary surface so that 07 has the same number of components as ~.
The pair (Y, R) is called a closure. We can also choose a non-separating
curve 11 < R for the use of local coefficients. Then we define

SHM(M,~) := HM(Y|R;T,) := @  HM(Y,sT,).

c1(s)[R]=29(R)—2

If (M,~) is equipped with a contact structure £ so that dM is convex
and ~y is the dividing set, then Baldwin and Sivek in [1] found a way to
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extend ¢ to a contact structure £ on all of Y. Then by work of Kronheimer,
Mrowka, Ozsvath and Szabd [16], one can define a contact invariant

¢e = pg € HM(-Y|— R;T'_,)) = SHM(—M, —7).

for sutured monopoles.

Contact structures and contact elements have played very important
roles in sutured (Heegaard) Floer theory. The construction of gluing maps
and cobordism maps both need contact structures (see [12, 9]). The re-
construction of HF K~ using direct limit systems of sutured manifolds by
Etnyre, Vela-Vick and Zarev in [6] also involves contact structures in an es-
sential way. Besides, in [13] Kalméan and Mathews provided some examples
so that the generators of the sutured (Heegaard) Floer homologies of some
family of balanced sutured manifolds are in one-to-one correspondence to
the tight contact structures on those manifolds.

In this paper we will explore more about the interplay between contact
structures and sutured monopoles. We have two main topics.

1.1 Contact element through Floer excisions

We will first look at contact elements and Floer excisions. In [15], Kron-
heimer and Mrowka first uses connected auxiliary surfaces to get closures
of a balanced sutured manifold but then disconnected surfaces were used to
prove some important results. The isomorphism between using connected
and disconnected surfaces were constructed through Floer excision maps.
Later Baldwin and Sivek constructed the contact invariants by also using
connected auxiliary surface. So it would be interesting to ask whether the
construction can be extended to the case of disconnected auxiliary surfaces
and how those contact elements are related by Floer excisions. The an-
swer to these questions may help us understand more about trace, co-trace
cobordisms and the behavior of contact elements under suitable sutured
manifold decompositions.

To be more specific, suppose for i = 1,2, (M;, ;) is a balanced sutured
manifold and 7} is a connected auxiliary surface which leads to a closure
(Y;, R;) of (M;,~;). If we cut T} and T3 along non-separating simple closed
curves and re-glue to get a connected surface T', we can use T to close
up (M; b M,y U 72) and get a large connected closure (Y, R). In [14],
Kronheimer and Mrowka constructed a cobordism W from (Y; 1 Y3) to Y
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and after choosing some suitable local coefficients this cobordism induces
a map

F = HM(=W) : HM(—(YiUY3)|—(RiUR2); Ty o)) — HM (=Y |=R;T_,).

Suppose further that for i = 1,2, (M;,;) is equipped with a contact
structure &; so that dM; is convex and +; is the dividing set. Then as done
by Baldwin and Sivek [1], there are corresponding contact structures &;, &
and € on Vi, Y, and Y respectively.

In this paper, we prove the following.

Theorem 1.1. Under the above settings, the map F' preserves the contact
elements up to multiplication by a unit. That s,

F(¢51u52) = gbga
where = means equal up to multiplication by a unit.

However, the result in the above theorem is not fully satisfactory. Sup-
pose (M, ~) is a large connected sutured manifold so that

oM =~ 8M1 L 8M27

and under the isomorphism, v is identified with v; U 75. Then we can still
use 177 1Ty or T to close up (M, ~y). The two resulting closures are still re-
lated by a Floer excision and still there is a map between the corresponding
monopole Floer homologies. The proof of the theorem 1.1 in this paper,
however, does not apply to the case when (M, ) is connected. Though we
still make the following conjecture:

Conjecture 1.2. Theorem 1.1 still holds if we replace (M; 1 My, v1 U 72)
by a connected (M, ) described as above.

Some evidence or idea of the proof lies in [23] by Niederkruger and
Wendl. In the paper they defined an operation called slicing which coin-
cides with the procedure of doing Floer excision and an operation of attach-
ing torus 1-handles which coincide with the cobordism W constructed by
Kronheimer and Mrowka in [15] for Floer excisions. Hence the cobordism
W is equipped with a weak symplectic structure. Compared with the pre-
vious results by Hutchings and Taubes [10] and by Echeverria [5] that exact
symplectic or strong symplectic cobordisms preserve contact elements, we
make the following conjecture.
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Conjecture 1.3. Suppose (W,w) is a weakly symplectic cobordism from
(Y1,&1) and (Ys,&). Suppose that for i = 1,2, there is a 1-cycles n; < Y,
so that n; is dual to wly,. Suppose v < W is a 2-cycle so that v = —ny U,
then the map

HM (W, 5,;T,) : HM(=Ya, 56T ,) — HM(=Y1,5¢,;T )
will preserve the contact elements:
HM(W7 Sw; FV)(¢§2) = ¢51'

The confirmation of conjecture 1.3 would possibly provide a proof of
conjecture 1.2.

1.2 Connected sum formula

The second topic is motivated by the connected sum formula for sutured
monopoles. In particular, we prove the following theorem.

Theorem 1.4. When using Zsy coefficients, suppose (My,v1) and (Ms, ;)
are two balanced sutured manifolds, then we have

SHM(MlﬁMza 7Y ’72) = SHM(MD ’71) ® SHM(Mza ’72) ® (22)2-

Furthermore, the same result holds for sutured instantons with C coef-
ficients. As a consequences we also get a connected sum formula for the
framed instanton Floer homologies of two closed manifolds Yy and Ys:

F(YitYs) = IF (V) ® TH(Ys).

The connected sum formula relies on the balanced sutured manifold
(53(2),6?), where S3(2) is the sutured manifold obtained from S® by digging
out two disjoint 3-balls and pick one simple closed curve on each spherical
boundary as the suture. The computation for sutured instantons was done
by Baldwin and Sivek in [2] using an oriented Skein relation for sutured
instantons. In this paper, we follow the idea of Kronheimer and Mrowka
[14] and prove the same result for sutured monopoles.

Theorem 1.5. When using Zo coefficients, there is an exact triangle as-
sociated to the oriented Skein relation for knot monopole Floer homology.
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In the proof of the above theorem, another important sutured manifold
(V, A1) arises. Here V is a framed solid torus and the suture A* consists of
four longitudes on V. The computation relies ultimately on the surgery
exact triangle for monopole Floer homology, which was proved by Kron-
heimer, Mrowka, Ozsvéath and Szabé [16]. However their proof only applied
to Zsy coefficients so we need also work with that coefficients. The usage of
Zs coefficient is guaranteed by Sivek [24].

Along the computation, there is an interesting observation. In order to
bound the rank of some relative balanced sutured manifold (V; A\®), which
is a solid torus with six longitudes as the suture, we need to decompose it
along an oriented meridian disk D. However, we can also decompose (V, \%)
along —D and the spin® structures associated to decomposing along D and
—D, as discussed in [15], are different: thus we know that SHM(V, \%)
has rank at least 2. This observation is related to a similar construction
done by Baldwin and Sivek in [4], where they used a surface with only
one boundary component and having two transverse intersections with the
suture to define a grading for sutured monopole Floer homologies. The
argument above for (V,7%) is a naive version of generalization of their work
and a more systematic treatment would be helpful for further researches.

One direct result using this sort of grading is the following.

Theorem 1.6. Let (V,\*") be a solid torus with 2n longitudes as sutures.
We will use Q coefficients, and suppose n = 2k + 1 is odd. Then there is a
grading induced by a meridian disk of V' and under this grading the sutured
monopole Floer homology of (V,\*") can be described as follows:

Hi_{.k(Tnil), _kf < Z < kf

2n 2\ A~
SHM(V, ~ ,Z):{O 1>kori< —k.

The conclusion also holds for sutured instantons with C coefficients.

Remark 1.7. Tt is commented by Yi, Xie that for sutured instantons and for
odd n, the representation variety of a suitable closure of (V,?") is precisely
the (n — 1)-dimensional torus 77!

As we will explain more in subsection 4.1, the following question might

be interesting:

Question 1.8. Is the homology group (or module) SHM(V, ") fully gen-
erated by the contact elements of some tight contact structures on (V,~v*")?
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2 Prelimilaries

2.1 Sutured monopole Floer homology

The definitions and notations shall be in consistent with the author’s pre-
vious paper [20]. For more details readers are referred to that paper. We
shall start with the definition of sutured manifolds.

Definition 2.1. Suppose M is a compact oriented 3-manifold with bound-
ary. Suppose 7 is a collection of oriented simple closed curves on dM so
that

(1). M has no closed components and any component of M contains
at least one component of .

(2). The surface 0M\y can be oriented so that the induced boundary
orientation is the same as the chosen one on v. The unique orientation
satisfying this requirement is called the canonical orientation.

(3). Let A(y) = v x [-1,1] € dM be an annular neighborhood of
v < 0M, and let R(y) = 0M\int(A(y)). Let Ry(y) be the part of R(7)
so that the canonical orientation coincide with the boundary orientation

induced by M, and R_(y) = R(7)\R. (7). Then we shall require that

X(Ry (7)) = x(R-(7))-

The pair (M, ) is called a balanced sutured manifold.

To define the monopole Floer homology, we need to construct a closed
3-manifold out of the sutured data. Suppose (M, ~) is a balanced sutured
manifold. Let 7" be a connected surface so that

(1). There exists an orientation reversing diffeomorphism f : 0T — 7.

(2). T contains a simple closed curve ¢, so that ¢ represents a non-trivial
class in Hy(T).

(3). Let
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and suppose the two oriented boundary components of M are
oM =R, UR_.
We know that ¢ x {1} < Ry is non-separating by assumption. Let
h:R, - R_
be an orientation preserving diffeomorphism so that
h(c x {1}) = ¢ x {—1}.

We can use h to glue the two boundary components of M together. Alter-
natively we can define

~

Y =M R, x [-1,1].

U
idx{—1}uhx {1}
Let R=R, x {0} Y.

Definition 2.2. The pair (Y, R) is called a closure of (M,~y). The choices
T, f,c, h are called the auxiliary data. In particular, T is called an auxiliary
surface. Pick 1) to be a non-separating simple closed curve on R, and define

S(Y|R) = {s spin® structures Y| ¢;(s)[R] = 29(R) — 2.}
Then define the sutured monopole Floer homology of (M, ~) to be

SHM(M,y) = @ HM(Y,s;T,).
s€&(Y|R)

Remark 2.3. The curve n may be absent, when it is convenient to use Z or
Zy coefficients. In general when 7 do exists, we will use the Novikov ring R
or other suitable rings to construct local coefficient system. For the precise
meaning of 'suitable’, readers are referred to [15] and [24].

The well-definedness of sutured monopole Floer homology is proved by
Kronheimer and Mrowka [15].

Theorem 2.4. The isomorphism class of SHM (M, ~) is independent of all
the auxiliary data and the curve n made in definition 2.2.
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Floer excisions will be used repeatedly in the paper so we would like
to present it here. Floer excisions in sutured monopoles were originally
introduced by Kronheimer and Mrowka [15].

Suppose Y7, Ys are two closed oriented 3-manifolds. Suppose fori = 1,2,
there is an oriented closed surface R; < Y; and an oriented torus T; < Y,
so that R; nT; = ¢;. Here ¢; is a simple closed curve such that there exits
another simple closed curve n; © R;, intersecting ¢; transversely once. We
can cut Y; along T} to get a manifold with boundary Y;, so that

~

Y, = Tiy 0T

Here T; 1 are parallel copies of T;. Let ¢; + < T; 4 be parallel copies of ¢;.
Pick an orientation preserving diffeomorphism

h: T1,+ - TQ,—7
so that
h(ci,) =co—, h(m nerg) =nene .

Then we can use h to glue Y, and Y, together to get a large oriented
connected 3-manifold Y with an oriented connected surface R obtained by
gluing Ry and Ry together. Also n; and 7, are glued together to result in
a simple closed curve n c R.

Now we construct a cobordism from Y; 1 Y, to Y as follows. Let U be
the surface as depicted in figure 1 and let pq, po, p3, g be the four vertical
arcs as part of the boundary of U. Suppose all u; are identified with the
interval [0, 1].

Let N N

W = (Y1 x [0,1]) ;}(TLJr x U) \J(Yz x [0,1])

be the 4-manifold obtained by gluing three pieces together. Here
¢=(iduid) xid: (T1+ vTi-) x[0,1] = T} 4 x (u1 U ug),
and
Y=(huh)xid: T\ x (ugUuy) = (To vTh_) x[0,1]
are the gluing maps. Let Fiy = R; U Ry U R and let

v = ((m 0 V1) x [0,1]) w((m 0 ens) x U) ((m 0 V2) x [0,1]).

9
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1 R

2 3

-

2 Ha

e

r/—— [ N

Y x [0,1] Ty x U Y x [0,1]
Figure 1: Gluing three parts together to get W. The middle partis 7 ; xU,
while the 77 ; directions shrink to a point in the figure.

See figure 1. Then we can define a map

F = HM(W|Fw;T,) : HM(Y; U Ya|Ry U Ro: Ty oy) — HM(Y|R;T,).
In [15] Kronheimer and Mrowka proved the following theorem.
Theorem 2.5. The map F is an isomorphism.

Remark 2.6. In the rest of the paper, when the choices of the surface and
the local coefficients are clear in the contents, we will omit them from the
notation, and simply write

HM(W) : HM(Y; U Ya|Ry U Ry) — HM(Y|R).

2.2 Arc configurations and contact elements

In this subsection we will review Baldwin and Sivek’s work in [1] on con-
structing the contact elements for balanced sutured manifolds.

Definition 2.7. Suppose (M, ) is a balanced sutured manifold. A contact
structure £ on M is said to be compatible if M is convex and 7 is (isotopic
to) the dividing set.

Definition 2.8. Suppose 7' is a connected compact oriented surface with
boundary. An arc configuration A on T consists of the following data.

10
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(1). A finite collection of pairwise disjoint simple closed curves {cy, ...c;,}
so that for any j, [¢;] # 0 € Hi(T).
(2). A finite collection of pairwise disjoint simple arcs {ay, ..., a,} so
that
(a). For any 1, j, int(a;) n¢; = .
(b). For each i, one end point of a; lies on 07" and the other on some
Cj.
(c). Each boundary component of 7" has a non-trivial intersection with
some a;.
See figure 2. It is called reduced if there is only one simple closed curve.

Figure 2: Above: an arc configuration on 7. Below: the shaded region
corresponds to the negative region on 7' x {t} < T x [—1,1] with respect
to the contact structure induced by the arc configuration. Its boundary is
the dividing set on on T" x {t}.

Now let (M,~,£) be a balanced sutured manifold with a compatible

11
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contact structure. Suppose T" is a connected auxiliary surface of (M, )
and A is a reduced arc configuration on 7'. Baldwin and Sivek constructed
a suitable contact structure £ on

M=MouT x [-1,1]

as follows. First the arc configuration A gave rise to an [—1, 1]-invariant
contact structure on T x [—1, 1]. The negative region on any piece T' x {t}
is shown as in figure 2. Then they perturbed the contact structure on M in
a neighborhood of v € M so that the dividing set in A(~y) can be identified
with that on 0T x [—1,1]. So they were able to choose a diffeomorphism
f:0T x [—1,1] — A(y) which also identifies the contact structures. After

rounding the corners, they derived E on M. Suppose
oM =R, UR_,

then Ry are convex and the dividing set on each of R, consists of two
parallel non-separating simple closed curves. Finally they chose a diffeo-
morphism h : R, — R_ preserving the contact structures to get a closure
(Y, R) with a contact structure ¢, so that R is convex and the negative
region on R is just an annulus. They also chose a simple closed curve
1 < R intersecting each dividing set transversely once to support the local
coefficients. From the construction

a(§[R] =2 - 29(R),
and by work of Kronheimer, Mrowka, Ozsvath and Szabé [16], there is a
contact element

¢¢ € HM(—Y,s5T_,)) © SHM(—M, —7).

Remark 2.9. In [1] Baldwin and Sivek only used reduced arc configurations
to construct contact elements. However, the same construction on M can
be made with a general arc configuration as defined in definition 2.8. The
new dividing set on R, consists of m many pairs of parallel non-separating
simple closed curves, where m is the number of simple closed curves in that
arc configuration. However, in this case, the diffeomorphism h preserving
contact structures may not always exists (as it shall identify the dividing
sets). The reason why we want to make this more general definition is that
we will see in the later section that a general arc configuration do exists
during Floer excision, and the diffeomorphism A can indeed be chosen so
that we can construct a contact structure on the closure Y.

12
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At last we want to introduce the definition of contact handle attachment
for the references in section 4.2.

Definition 2.10. A contact handle attached to a balanced sutured mani-
fold (M, ~v) with compatible contact structure € is a quadruple h = (¢, S, D3, )
so that:

(1). D3 is a 3-ball equipped with the standard tight contact structure
and 0 is the dividing set on 0D3.

(2). S < @D? is a compact submanifold and ¢ : S — 0M is an embed-
ding so that ¢(S nd) < «. S has different descriptions due to the index of
the gluing:

(a). In index 0 case, S = .

(b). In index 1 case, S is a disjoint union of two disks, and each disk
intersects 0 in an arc.

(c). In index 2 case, S is an annulus intersecting ¢ in two arcs. Also we
require that each component of 05 intersects each arc transversely once.

(d). In index 3 case, S = 0D>.

3 Contact element and excision

Suppose now for i = 1,2, (M;,~;) is a balanced sutured manifold. Suppose
T;, fi, ¢i, hi are the auxiliary data to construct a closure (Y;, R;) as in defi-
nition 2.2. Now R; contains a circle corresponding to ¢; < T; which, by a
little abuse of notation, we also denote by ¢;. We can choose a 1-cycle n;
having exactly one transverse intersection with ¢;.

Let M = M; u My and v = 41 U 7. Then (M, ~) is also a balanced
sutured manifold and we can use auxiliary data (7', f, h) described as below
to close up (M, ). We cut T; along ¢; and re-glue the newly created bound-
ary with respect to the orientation. Then 77 and 75 become a connected
surface T so that

9(T) = 9(Th) + 9(To) = 1, 0T = 0Ty v 0T

We also choose f = fiu fo and h = hy U he. When doing the cut and paste
along c¢; and cg, the two curves 1; and 7, can also be glued together to get
a curve 7. See figure 3.

As in the subsection 2.1 we can construct a Floer excision map

F: HM(-Y| - R) — HM(~(Y; uYy)| — (R U Ry)).

13
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Figure 3: Above: The two auxiliary surfaces 77 and T;. Below: the con-
nected auxiliary surface 7.

We have the following theorem.

Theorem 3.1. Under the above settings, suppose the genus of Ty and T
are large enough, and suppose for i = 1,2, (M;,~;) is equipped with a
compatible contact structure &. Then we can find suitable arc configurations
A1, As and A on Ty, Ty and T respectively, so that there are corresponding
contact structures &1,& and € on Y1, Ys and Y respectively, as described in
subsection 2.2. Then the map F above will preserve the contact elements:

F(9g) = 9z,06,
Here = means equal up to multiplication by a unit.

Proof. We will choose some special arc configurations. For i = 1,2 assume
that we have a reduced arc configuration A; on T; so that the simple closed
curve is just ¢; and all arcs are attached to only one side of ¢; < T;. See
figure 4. Recall ¢; is the curve on the auxiliary surface T; which is required
as in definition 2.2. Then the induced contact structure on 7; x [—1,1]
has dividing set on T; x {t} consisting of a few arcs, whose end points are
both on 07; x {t}, and a simple closed curve which we shall also denote by

14
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c;. We then pick a gluing diffeomorphism h; which identifies the contact
structures and also preserves ¢;.

Figure 4: Above: The two reduced arc configuration on 7T} and T,. Below:
the resulting arc configuration on 7" from slicing. It has two simple closed
curves instead of one.

When we extend & to &;, which is defined on all of Y}, the new contact
structure & will be S! invariant in a neighborhood of ¢;. To describe this
contact structure in coordinates, let A; < T; be a neighborhood of ¢; < T;.
In Y;, A; x St is a neighborhood of ¢; = ¥;. In this neighborhood, we can
write the contact form as

;= P+ u; - dp;,
where ; is a 1-form on A;, u; is a function on A; with
¢; = {p € Ailui(p) = 0},
and (; is the S! direction. See [8]. The non-degeneracy condition reads
0 # a; Aday = (u; - dB; + Bi A dug) A dp;.

Along ¢; we know then §; A du; # 0. Hence along ¢;, 5 = df; where ¢ is a
coordinate for ¢; and (u,0;) is a local coordinate for [—¢,e] x ¢; = A; for

15
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some small ¢ > 0. We shall also assume that u; > 0 (or < 0) corresponds
to the positive or negative regions. Then the slicing operation defined in
[23] can be described as follows. Let L; = ¢; x S* be the pre-Lagrangian
torus (For definition see [21]) and N; = [—¢, €] x ¢; x ST be a neighborhood
of L; with coordinates (u;,0;,¢;,) (The coordinates u; corresponds to r
in [23] and the other two coordinates are the same, while we didn’t write
them in the same order as in that paper.) We can cut N; open along L; so
that [V; is cut into two parts NN; + corresponding to +u; = 0. We can then
re-glue Ny, to No_ and Ny _ to Ny by identifying L; with Ly so that
(01, ¢1) is identified with (6, ¢2). Suppose the resulting 3-manifold is Y,
then Y has a distinguished surface R obtained from cutting and re-gluing
Ry and Ry along ¢; and c¢y. Recall we also have a simple closed curve
1; © R; which intersects ¢; transversely once. After a suitable isotopy, we
can assume that under the above identification of L; with L, we can also
identify the intersection point n; N ¢; with 79 N co. Hence n; and 7y are
also glued together to get a curve n < R. This is exactly the same setting
of doing Floer excision along tori L; and Ls. Hence (Y, R) is a closure of
(ML My, vy Uys) as we have discussed above. Also from theorem 2.5 there
is an isomorphism

F: HM(—(Y1 UY2)| = (Ry U Ro);T_(yyom)) — HM(=Y| = R;T_,).

The process of slicing also glues the contact structures & on Y; to get a
contact structure é’ on Y. The contact structure E’ , however, arises from
an arc configuration A" which is not reduced. This is because with respect
to &, the dividing set on R consists of two pairs of parallel non-separating
simple closed curves instead of just one pair. See figure 4. Let & be a
contact structure on Y obtained by extending &; on Y; using a reduced arc
configuration A. Here A is obtained by ’merging’ the two simple closed
curves of A’ into one in a way that the curve n < R still intersects the new
simple closed curve transversely once. See figure 5. The proof of theorem

3.1 is then clearly the combination of the following two lemmas.
O

Lemma 3.2. If the genus of Tt and Ty are large enough, then the spin®
structures associated to & and &' are the same. Furthermore, if we denote
that spin® structure by so, then we have

0 = g € HM(=Y,50;T_,).

16
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Figure 5: Above: the arc configuration on 7" obtained from slicing. Below:
the reduced arc configuration after merginng the two simple closed curves.

Lemma 3.3. If the genus of Ty and Ty are large enough, then we have

F(¢g v dg,) = ¢
In order to prove the above two lemmas, we will need some preliminaries.

Lemma 3.4. (Baldwin, Sivek [1]) Suppose (M,~) is a balanced sutured
manifold and & is a contact structure on M so that OM is convexr and vy is
the dividing set. Suppose (Y, R) is a closure of (M,~) obtained by using a
connected auziliary surface with large enough genus. Suppose we use some
(not necessarily) arc configuration on T to extend & to a contact structure
€ on'Y. Then there exist a contact structure £ on R x S* and pair-wise
disjoint simple closed curves aq, ..., oy, so that

(1). The contact structure g is S'-invariant so that each R x {t} is
conver with dividing set being some pairs of parallel non-separating simple
closed curves.

(2). Each «; is Legendrian and is disjoint from the pre-Lagrangian tori
of the form

(Dividing set on R) x S*.

17
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(8). The result of doing +1 contact surgeries along all a; < R x St s
contactomorphic to'Y equipped with &.

Lemma 3.5. (Niederkriger, Wendl, [23]) Suppose R is the surface as
above and &g is an S*-invariant contact structure on R x S' so that each
R x t is convex with dividing set being a few pairs of non-separating simple
closed curves. Suppose that there is a curve n < R so that n intersects
every component of the dividing set transversely once. Then (R x S*, &R)
is weakly fillable by (W,w) and n is dual to w|pxst up to a scalar.

Lemma 3.6. (Kronheimer, Mrowka, Ozsvdth and Szabd, [16]) In the above
lemma the contact element

Gep, € ﬁ-l\//[(—R x St s T )
1s primitive. Hence in particular it is non-vanishing.

Lemma 3.7. (Kronheimer, Mrowka, [15]) In the above lemma, there is
actually a unique spin® structure so so that

(1). We have
01(50)[R] =2 — 29

(2). The monopole Floer homology of E-]\/J(—R x S'. s0;T_,) is non-
zero. Furthermore, we actually have

HM(—R x S",5;T_,) =~ R.
Here R s the coefficient ring we use for local coefficients as in remark 2.3.

Lemma 3.8. (Baldwin, Sivek, [1]) Suppose for i = 1,2, Y; is a closed
oriented 3-manifold with contact structure &. Suppose (Ya,&s) is obtained
from (Y1,&1) by performing a contact +1 surgery along a Legendrian curve.
Then there is a cobordism W from Yy to Yy obtained from Yy x [0,1] by
attaching a 2-handle with suitable framing. Suppose for v = 1,2, n; is a
1-cycle in'Y; supporting local coefficients. Then the map

HM(=W) : HM(=Y1,5¢;Ty,) = HM(=Y2,56,;T )
preserves the contact elements (up to multiplication by a unit).

Remark 3.9. The above lemma is stated in Baldwin and Sivek [1] as a
corollary to results from Hutchings and Taubes [10].

18
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Proof of lemma 3.2. As in the settings of theorem 3.1, € and &’ are contact
structures on Y which are obtained from contact structures & u & on
(My,71) U (Ms,7,) and some particular arc configurations A and A’ on 7.
From lemma 3.4 we know that there are contact structures g and &5 on
R x S' and a set of pair-wise disjoint curves aq, ..., a,, € R x S' so that

(1). Both &g and & are S invariant and each R x {t} is convex.

(2). We have £g = € near a neighborhood of each «.

(3). All «; are disjoint from the pre-Lagrangian tori of the form

(Dividing set on R) x S*

for the dividing sets with respect to both £z and &f.

(4). If we do contact +1 surgery on all of a;, then (R x S ¢g) (or
(R x S*, £5)) will become a contact manifold contactomorphic to (Y, €) (or
v, 8)).

The condition (2) relies on the proof of lemma 3.4 (of the current paper)
in [1]. The essential reason is that ¢ and & are only different in the part of
Y coming from auxiliary surfaces while the curves «; are contained in the
interior of the original sutured manifold.

By lemma 3.5 and 3.6 we know that the contact invariants ¢¢, and ¢g,
are both non-zero and primitive in the same monopole Floer homology.
Then lemma 3.7 makes sure that £z and £} correspond to the same spin®
structure sy on R x St (since there is only one candidate of possible spin®
structures). Then we have

Gep = et € E]\/J(—R x 51,50§F717)7 (1)

for suitable choice of local coefficients.

The surgery description above makes sure that on Y, & and & also
corresponds to the same spin® structure. This fact, together with lemma
3.8 and equality (1), then imply the result of lemma 3.2. O

Proof of lemma 3.3. First apply lemma 3.4 to (Y;,&;) for i = 1,2, we get a
contact structure (g, on R; x S and a set of Legendrian curves i1y ey Qi
satisfying the conclusions of the lemma. In particular, if we do contact +1
surgery on all of o, ; we will arrive at (Y}, &;). If we pick a suitable connected
component ¢; of dividing set on R; xt and do the slicing operation on R; x S*
and R, x S! along the two pre-Lagrangian tori ¢; x S' and ¢y x S*, then
the result is the 3-manifold R x S! with contact structure £ in the proof of
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lemma 3.2 and the two sequences of curves o 1, ..., a1, and aa 1, ..., 25,
together form the set of curves a,...,a, as in the proof of lemma 3.2.
There is a cobordism associated to the slicing operation, or equivalently,
doing a Floer excision, on R; x S and Ry x S'. We call this cobordism W,
and it is from (Ry x S') L (Ry x S') to R x S'. There is a second cobordism
W, associated to the surgery along «; as in lemma 3.8, from R x S! to
Y. Finally there is a third one Wy corresponding to F' (also from Floer
excision) from Y to Y; u Ys.

As usual, we shall choose suitable surfaces and local coefficients to make
precise the cobordism map but we omit them from the notation. The map
HM(—W,) would preserve contact elements because it is an isomorphism
between two copies of R and the contact elements are units in each copy
of R. The map HM(—W;) would preserve contact elements as in lemma
3.8. So if we could prove that the composition HM (—(W, u W u Wg))
preserves the contact elements, then HM (—Wp) = F would also do, since
it is an isomorphism. Thus lemma 3.3 is proven.

To show that HM(—(W, u W u Wg)) preserves contact elements, we
observe that when we cut the cobordism W, u W, u Wg along a T; 4 x S*
and glue back two copies of T1 ; x D?, the result is a disjoint union of two
cobordism W; and W,. See figure 6. For W; is from R; x S! to Y; and
is associated to the surgeries along «;; as in lemma 3.8. Hence by that
lemma, HM (—(W; u Ws)) would preserve the contact elements. Finally,
by lemma 2.10 in [15], we know that

HM(—(W, U W, 0 Wg)) = HM(—(W; U Wa)).

So we are done. O

4 Connected sum formula

We will derive the connected sum formula for sutured monopoles in this
section. The formula relies on the computation of some particular balanced
sutured manifold. We will explore how the contact structures and an Floer
excision would help us in the calculation.
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Ry x St Ry x St Ry x St Ry x St
N
e
a1 Qg j
W1 WQ
| ~—77 T ~J '/’ ______ ~J
"~
Y Y,

Figure 6: Left: the union of the three cobordisms, cut along the 3-torus
Ty, x S'. Right: the two disjoint cobordisms resulting from the cutting
and pasting.

4.1 Computing SHM(V,~*+2)

We will start with the family of balanced sutured manifolds (V,~v*"). Sup-
pose V = St x D? be a solid torus and v*® < 0V is a suture consists of
2n many longitudes (each of the form S* x {t} for t € 0D). Note adjacent
longitudes should be oriented oppositely, and there should be in total an
even number of longitudes in order to give R(7*") a compatible orientation.

When n > 2, we can pick an annulus A properly embedded in V' so that

(1). )An~* =&,

(2). On the boundary, dV\0A has two components so that one contains
precisely three components of the suture v*" in the interior.

The result of (sutured manifold) decomposition of (V,v*") along A con-
sists of two components. One components is diffeomorphic to (V,v*"~2)
and the other is diffeomorphic to (V,~*). See figure 7 for an example of
decomposing (V,~®). By induction and proposition 6.7 in [15], we know
that, when using Q coefficients and n > 2, we have

SHM(V,7*"; Q) = SHM(V, 7% Q)®" Y (2)

Now we have the following.
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Figure 7: Everything is S'-invariant so we look at a cross section, which is
a disk {t} x D? = S' x D% The (red) dots represent the suture and the
(blue) arc inside the disk represents the annulus A along which we do the
decomposition.

Lemma 4.1. When using Z: coefficients, we have
SHM(V7 747 Z) = Zz @ Gtorv
where Gy is a (finite) torsion group without any even-torsion.

Proof. We prove that the rank of the homology should be precisely 2. To
get a lower bound, we first use Q coefficients and look at (V,~%). Recall
V = S'x D?is asolid torus. Let to € S! be a point and D = {tg} x D* = 'V
be a meridian disk of V. We have 0D intersects ~° at six points:

0D n % = {to} x {p1,...,p6} = S* x OD?.

Let p; be arranged in the way that if we travel along the oriented curve
0D starting from p;, then we will meet p; before meeting p; 1. Suppose
A =1 u..ulgsothat fori=1,...,6

0D nl; = {to} x {pi}.

Now we can assume that the annular neighborhood A(7) of v < V' =
St x dD? is of the form
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for some small enough fixed constant € > 0. Let T be an auxiliary surface
of T consists of three disjoint annuli:

T=A 0 Ay U As,
where for ¢ = 1,2, 3, A; has the form
A; = S) x [-1,1].
We choose an orientation reversing diffeomorphism f : 0T — ~ so that

FOST < A1}) = 1o, f(S1 > {=1}) = o, f(Sy x {1}) =15,

and also

FOS3 % {=1) = I, F(S}x (1)) = L, J(S} x {-1}) = bs.

Figure 8: We still look at a cross section, which is the disk D = {to} x D?
St x D?. The (red) dots in the left sub-figure represent the suture and the
stripes (with blue boundary) in the right sub-figure represent the three
annuli A;, Ay and As. The shaded region is precisely the surface D’.

Let

then V has four boundary components:
‘7 = Rl,_,_ U R2’+ U RL— U R27_,

so that S] x {fe} < Ry 4+ and S3 x {£e} < Ro+. Suppose for i = 1,2,3,
S! has coordinate ¢', and t} is identified with ¢, € S* by f.

D' = D ({thh v {8} U {8)) x [~1,1] x [<,e].

23



Zhenkun Li 4 CONNECTED SUM FORMULA

Then for j = 1,2, we have D' n R;, = Cj 1. See figure 8. Choose an
orientation preserving diffeomorphism

h:(RiyuRyi)— Ry LRy,

so that for j = 1,2
W) = Cj—.

Then we can close V up as we did in subsection 2.1 to get a closure
(Y® RO of (V,45). The surface D’ becomes closed oriented surface D)
of genus 2 inside Y. Now define

SHM(V,75%,9)= @  HM(Y.5Q).
s€6(Y|R),
c1(s)[D®)]=2i.

We know that
SHM(V, %) =~ @ SHM(V,~°,4).
1EZL
If we decompose the balanced sutured manifold (V) along D, the re-
sult is a 3-ball with one simple closed curve as the suture. So by proposition
6.9 of [15], we know that

SHM(V,~5,1) = Q.

On the other hand, we can also decompose (V, ) along —D. A similar
argument then shows that

SHM(V,~%, —1) = Q.

Hence with Q coefficients the rank of SHM(V,+°) is at least 2. From formula
(2) and universal coefficient theorem we know that SHM(V, +*), with either
Q or Z coefficients, has rank at least two.

To obtain a lower bound, we will need to work with Zs coefficients and
use by-pass attachment for sutured monopoles introduced by Baldwin and
Sivek in [1]. The by-pass attachment, as depicted in figure 9 induces an
exact triangle

SHM(V, %)

ST

SHM(V,~?) SHM(V, ~?)
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We know that SHM(V, v?) = Z, so with Z, coefficients the rank of SHM(V, v*)

is at most two and so is with Z coefficients by the universal coefficient the-
orem. 0

S,
/

~,
2
s

- =<,

longitude /
meridian
SHM(V, 7*)
SHM(V;7?) e SHM(V, ?)

,,,,,,,,,
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Figure 9: The by-pass attachment along the horizontal (blue) arc .. The
change of sutures are limited in the dotted circles.

The shaded region
represents R_ (7).

Remark 4.2. In [14] a particular closure of the manifold (V,~*) u (V,~*)
was constructed by Kronheimer and Mrowka. One can try to compute

the monopole Floer homology of that closure directly, and we expect the
following the conjecture.

Conjecture 4.3. The torsion group Gy is actually 0 in lemma 4.1.
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Remark 4.4. In the proof of lemma 4.1 we go through (V,~%) instead of
just looking at (V,~*). This is not only because we want to make some
convenience for the following theorem 4.5 but also for some other subtleties.
when dealing with (V,4*) directly, we cannot pick a meridian disk D inter-
secting v* four times, as we will not be able to construct the closed surface
D, as we did for (V,~°), in any closure of (V,~*). There is another subtlety
in the above construction. When pairing intersection points py, ..., pg, wWe
didn’t just pair the adjacent points, but pair them in a particular way (we
paired ps with pg and py with ps, not just simply pairing adjacent ones). We
shall remark here that these two subtleties already existed in Kronheimer
and Mrowka’s paper [15], but they didn’t discussed on those subtleties in
that paper.

As mentioned in the introduction, the above construction is a naive
version of the generalization of the grading defined by Baldwin and Sivek [4]
for knot instanton Floer homology. We plan to develop a more systematical
treatment in the author’s following paper [19].

We are now able to prove the following theorem.

Theorem 4.5. Suppose n = 2k + 1 is odd. With Q coefficients, there is
a grading on SHM(V,~*") induced by a meridian disk of V', so that with
respect to this grading. we have for —k <i < k,

SHM(V, ™", 1) = Hi,(T" Q),

and SHM(V,~*" i) = 0 for |i| > k. Here T™! is the (n — 1)-dimensional
torus.

Proof. The basic case is trivial: if £ = 0, then we have
SHM(V,+*) = SHM(V,1*,0) = Q = Ho(T° = {pt}; Q).

When k = 1, the grading was already constructed in the proof of lemma
4.1, and we have

SHM(V,7°, £1) = Q = Hy(T* Q) = Hy(T3; Q).

From the adjunction inequality (see subsection 2.4 in [15]), we know
that for |i| > 1
SHM(V,~°,i) =0,
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while from lemma 4.1 and formula (2), we know that SHM(V,~%) ~ Q*,
hence we have

SHM(V;+%,0) = Q? = H,(T% Q).

Now for a general k, we argue in a similar way as we did for (V,~°).
Let D = {ty} x D? be the meridian disk and

0D Ny ={p1, ..., pon}-

The points are indexed in an order so that if we travel along the oriented
circle 0D and start from p;, then we will meet p; before p;,1. The suture
%" can now be described as

2n
=8 x {ni}-
i=1

We pick an auxiliary surface T for (V,+?") so that T consists of n many

disjoint annuli:
7= A
i=1

We choose an orientation reversing diffeomorphism f : 07" — ~ so that

F(0Ar) = ' x {p1, p2}

and for j =1, ..., k, we have

f(aAZj) = St x {p4k—17p4k+2}, f(5A2j+1) = S' x {p4kap4k+1}'

Let

V=V uTx[-¢¢e,
fxid

we know that
k+1

6?=Lﬂ&ﬁuR“L
i=1
so that for j =1,...,k+ 1,
Agja x {te} < Rj+.
The meridian disk D becomes a surface D' = V so that for =1 .., k+1

é’D' M R]}i = Cj,i'
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Choose an orientation preserving diffeomorphism
h:(RiyV..0Rgi14) = Ry U.iURp 4
so that for j =1,...,k+ 1,
h(Cya) = O

Then we get a closure (Y*", RZ") for (V,7*"), so that D' becomes an
oriented closed surface D" < y ),

Now we define a grading on SHM(V, v*") as follows:

SHM(V, v, i) = D HM(Y® 5 Q).
s€6(Y (2| RCM),
c1(s)[DEM)]=2i.

Note D’ is obtained from D by attaching 2k + 1 stripes so
V(D) = X(D') = x(D) — (2 + 1) = —2.
Hence from adjunction inequality, we know that if |i| > k then
SHM(V, %", i) = 0.

To compute the homology for each grading we need to use Floer excision
again. Let ¢1,q0 € 0D n Cy 4 < 0D’ be a pair of points. Suppose ¢ =
h='(q1) and ¢, = h™'(q) where h is the diffeomorphism we use to get the
closure (Y2 R(Z") for (V,~4%*"). Suppose we choose an h so that

(1). We have ¢i,¢be 0DnCyy < D'

(2). We have that ¢} lies in between pg and p; and ¢ lies in between py
and ps.

(3). We have for i = 1,2,

WS = {gi}) = 8" x {a}-

The two conditions can actually be achieved by an S!-invariant h. Pick
two arcs (1, s < D so that for i = 1,2

Bi N 0D = 06; = {qi, ¢}

In the closure (Y®" R(Z™) B, and 3, becomes two circles and after cross-
ing S*, they become two tori 7} and T. We pick a 1-cycle n < R®" < Y?»
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to be union of all the images of C; . < oV in Y, Clearly it intersects
both 77 and T5 transversely once.

We can do Floer excision along 77 and 75, or to be more precise, the
inverse operation of a Floer excision introduced in subsection 2.1. The
result of this 'reversed’ Floer excision is a disjoint union of two 3-manifold
Y =4 and Y. The surface R?™ is cut into R®*~% U R and the surface
DB is cut into D4 U D©) as well. See figure 10.

P7y -y Pon

Figure 10: We still look at a cross section, which is the disk D = {to} x D*
St x D?. The (red) dots in the left sub-figure represent the suture and the
stripes (with blue boundary) in the right sub-figure represent the three
annuli Ay, Ay and Az. Ay, ..., A, are not depicted. The two (red) arcs
inside D are f31, 2. The shaded region represents the surface D’.

As described in subsection 2.1 there is a cobordism W from Y ®*=4
Y© to Y2 Inside the cobordism W, there is another (3-dimensional)
cobordism between D@4 |, DO < y@n=4 [, y(©) and D < Yy,
This cobordism is gotten from the same way we construct W from the
Floer excision in dimension three but do it in dimension two. Hence if s is
a spin® structure on W so that

c1(5)[DP Y] =z, ¢1(s)[DY] =y,
then we must have B
c(8)[DPV] =z +y.

So there is a product formula for computing SHM (V, 42") out of SHM(V, y?"~4)
and SHM(V,~%). After a degree shifting, this product formula is precisely
the one we compute H,(T"1) from 771 = T"3 x T? and hence we are
done. 0J

29



Zhenkun Li 4 CONNECTED SUM FORMULA

One question arises in this argument. We shall first fix a suitable field
F of characteristic 2. Then we have a by pass exact triangle just as in the
proof of 4.1 for general (V,~*"):

SHM(V, ")

T

SHM(V,7*"2) ; SHM(V, ")

From formula (2), we know that for n > 1,
SHM(V,7*") = (F)*"

This force the map 1 being 0. Hence p is injective and ¢ is surjective.
If we assume n = 2, then we know from [8] that there is a unique tight
contact structure & compatible with (V,~?). From [1] we know that the
contact element of &, generates SHM(V,v?) =~ F. Since by-pass attachment
preserves contact elements, we know that after the by-pass associated to v,
& becomes overtwisted, and after the by-pass associated to p, & becomes
a compatible contact structure & on (V,~?), so that the contact element of
& generates im(p) =~ F < SHM(V,~*). If there were another compatible
contact structure & on (V;~?*) so that after the by-pass associated to ¢, it
becomes & on (V,~?), then we know that SHM(V, ~+*) is simply generated
by the two contact elements of £&; and &. We can also try to use induction
to look at general (V,~%") then. However, by-pass attachments do not
necessarily have inverses. So this lead to the following question:

Question 4.6. Is SHM(V, v*") generated by contact elements of compatible

contact structures?

4.2 The connected sum formula

Now let us derive the connected sum formula for sutured monopoles. First
we have the follow proposition.

Proposition 4.7. We use Zs coefficients. Suppose three oriented links Ky,
K, and K, are the same outside a 3-ball B* and inside B they are depicted
as in figure 11. We have the following.
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Figure 11: The oriented Skein relation.

(1). If K5 has one more component than K and Ky, then there is an
exact triangle:

KHM(S3, K) KHM(S3, K,)

\/

KHM(S3, K,)

(2). If Ky has one less component than K and Ky, then there is an
exact triangle:

KHM(S3, K KHM(S?, K)

\ /

KHM(S3, K5) ® (Zo ® Z)

Proof. Tt follows from an analogous argument in sutured instantons in [14].
The extra term in the second case actually rely on the sutured monopole
Floer homology of the manifold (V,~*) with Z, coefficients, and this is
computed in lemma 4.1. O

As a corollary of the above proposition, we derive the following corollary
independent of the work by [7] or [22].

Corollary 4.8. With Zy coefficients and the canonical Zy grading of monopole
Floer homology, the Euler characteristics of KHM(S3, K, i) (for definition,
see [15]) corresponds to the coefficients of a suitable version of Alexander
polynomial of the knot K — S3.
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Proof. Tt follows from an analogous argument in sutured instantons in [14].
O

Now we make the following notation.

Definition 4.9. Suppose Y is a closed oriented 3-manifold. Let Y (n)
denote the manifold obtained by removing n disjoint 3-balls from Y. We
can make Y (n) to be a balanced sutured manifold (Y (n),0") by letting 6"
consisting of one simple closed curve on each boundary sphere of Y (n).

The following two lemmas are straightforward:

Lemma 4.10. Suppose Y is a closed oriented 3-manifold and n € Z is no
less than 2, then

Y(n)=(Y(n—1)uS*2),6" ' ué®) uh,

where h = (¢, S, D3,§) is a contact 1-handle so that ¢ send one component
of S to dY (n — 1) and the other component to 0S3(2).

Lemma 4.11. Suppose (My,v1) and (Ms,v2) are two balanced sutured
manifolds (both of which has no empty sutures). Suppose (S3(2),6%) is
defined as in the defintion 4.9, and its two boundary components are

853(2) = 512 U 522.
Then we have
(M My, v U o) = (My LU My 1 S?(2),71 U Y2 U 6%) U hy U hy.

Here fori = 1,2, h; = (¢4, Si, D2,6;) is a contact 1-handle so that ¢; maps
one component of S; to OM; and the other component of S; to S?.

Remark 4.12. In the above lemmas, we don’t require a sutured manifold
(M, ) to have a global contact structure. However, we can identify a collar
of the boundary to be identified with M x [0, 1] and assume that there
is an [-invariant contact structure in that collar so that dM is a convex
surface with v being the dividing set. Then the contact handle attachment
makes sense.

From the above lemmas, we can see the significant role (5%(2), §2) plays.
So we will proceed to compute its sutured monopole Floer homology now.
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Lemma 4.13. For any closed 3-manifold Y and every positive integer n,
there is an injective map

SHM(Y (n), ™) — SHM(Y (n + 1), 6").

Proof. We can get (Y(n + 1),6") from (Y (n),d") by attaching a con-
tact 2-handle and if we attach further a contact 3-handle, it will result in
(Y(n),0™) again. The pair of handles form a 2-3 cancelation pair as in the
paper [18] so the composition is the identity. O

Corollary 4.14. We have SHM(S3(2),6?) =~ Zy @ Z,.

Proof. 1t follows from the proof of an analogous statement in sutured in-
stantons in [2]. Some ingredients are different from their proof but are all
discussed above.

O

Corollary 4.15. Suppose (My,v1) and (Ms, ) are balanced sutured man-
ifolds. Then we have

SHM(MlﬂM%% &) 72) = SHM(M1 LM,y v 72) ® (Z2 @22)-

Corollary 4.16. Suppose L is a link in S3. Then for any coefficients,
KHM(S3, L) # 0.

There is another interesting observation. Suppose (M, 1) and (M, y2)
are two balanced sutured manifolds and h = (¢, S, D?,4) is a 1-handle so
that ¢ maps one component of S to dM; and the other component to dMs.
Suppose W' = (¢/,S', D¥ ') is a 2-handle so that the core of S’, which
we denote by o/, is mapped to a circle 3 = 0D3, so that it represents a
generator of Hy(0D*\S). The result of first attaching h and then A’ will
resulting in a balanced sutured manifold (M, ) which is diffeomorphic to
(M18Ms, v, U 72). Hence we have a map:

C_poC_y: SH_M(M1 UM,y U ’72) e SH_M(M111M2771”Y2)7

and by the basic properties of gluing maps, we know that under the iso-
morphism

SHM (M8 My, v1792) = SHM(M; L M, v, U ) @ SHM(S?(2), 6%),
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the above composition of handle gluing maps is just the identity on SHM (M; L
Ms,~v1 U 7,) tensor the contact element for a suitable contact structure
(_53(2)7 _52) n SH_M(S3(2)7 52)

The discussion in Instanton settings would be completely analogous.
We will use the field of complex numbers C as coefficients and have the
following proposition:

Proposition 4.17. Suppose (M, 1) and (Ma,~y,) are two balanced sutured
manifolds then

SHI(M;£Ms, v1 U v2) = SHI(My, v1) ® SHI(Ma, 12) @ C2.

This formula can also be applied to the framed instanton Floer homol-
ogy of closed 3-manifold. Suppose Y is a closed oriented 3-manifold, we can
connect sum Y with 7% and let w be a circle which represent a generator of

H{(T?). The pair (YHT3, w) is then admissible and we can form the framed
instanton Floer homology of Y

IY) = I°(Y4T?).

In [15], Kronheimer and Mrowka discussed the relation between the framed
instanton Floer homology of a closed 3-manifold and the sutured instanton
Floer homology of (Y'(1),d'). As a corollary to the connected sum formula
for sutured instantons, we have the following.

Corollary 4.18. Suppose Y| and Ys are two closed oriented 3-manifolds.
Then as vector spaces over complex numbers, we have

IF(1) @ I*F(Y2) = IF(Y11Y5).
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