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Gluing maps and cobordism maps for sutured

monopole Floer homology

Zhenkun Li

Abstract

The naturality of sutured monopole Floer homology, which was
introduced by Kronheimer and Mrowka [17], is an important ques-
tion and is partially answered by Baldwin and Sivek [1]. In this
paper we construct the cobordism maps for sutured monopole Floer
homology, thus improve its naturality. The construction can be
carried out for sutured instantons as well. In the paper we also con-
struct gluing maps in sutured monopoles and sutured instantons.
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1 Introduction

1.1 Main theorems and backgrounds

Sutured manifold is a powerful tool introduced by Gabai [6] in 1983, to
study the topology of 3-manifolds. In 2010, the construction of monopole
Floer homology was carried out on balanced sutured manifold by Kron-
heimer and Mrowka [17]. The combination of Floer theories and sutured
manifolds has many important applications. For example, sutured Floer
homology can detect tautness (see [10] and [17]) and fibredness of knots
(see [20] and [17]), and these played essential roles in the proofs that Kho-
vanov homology detects unknots by Kronheimer and Mrowka [15] and that
Khovanov homology detects trefoil by Baldwin and Sivek [4]. In this paper,
we construct the gluing maps and cobordism maps for sutured monopole
and instanton Floer homology. This will enrich our tool bar for potential
usage.

Theorem 1.1. (Gluing maps) Suppose (M,~) and (M',~") are balanced
sutured manifolds and M < int(M). Suppose there is a contact structure &
on Z = M'\int(M) so that 0Z is convexr with v U~ being the dividing set,
then there is a contact gluing map

O : SHM(—M, —y) — SHM(-M’, —),

which is well defined up to the multiplication by a unit. Furthermore, the
gluing map satisfies the following properties:
(1). If Z =~ 0M x [0, 1] then there exists a diffeomorphism

¢ M — M,

which restricts to the identity outside a collar of M < M and is isotopic
to the inclusion M — M’, so that

de = SHM(9).

Here = means equal up to multiplication by a unit.

(2). Suppose (M",~") is another balanced sutured manifold and M' <
int(M"), and let Z' = M"\int(M") with a contact structure £" on Z' so that
07" is conver with dividing set v w ~", then we have

Peog = Pgr 0 Le.
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(8). If Z =~ M x [0,1] U h where M x {0} is identified with OM < M
and h is a contact handle attached to M © Z along OM x {1}, then there
1s a suitable diffeomorphism

¢: M — MudM x[0,1],

which restricts to the identity outside a collar of M < M, and is isotopic
to the inclusion M — M v dM x [0, 1], so that

O = C, 0 SHM(0)),

where C}, is the contact handle map associated to h.

Theorem 1.2. (Sutured cobordism maps) Suppose W = (W, Z,[£]) is a
sutured cobordism between two balanced sutured manifolds (My,~,) and
(Ms,7y2) then W induces a cobordism map

SHM(W) : SHM(M;, y1) — SHM(M3, 72),

which is well defined up to multiplication by a unit and satisfies the following
properties:

(1). Suppose W = (M x [0,1],0M x [0,1],[&]) so that & is [0, 1]-
mwvariant, then

SHM(W) = id.

(2). Suppose W = (W', Z' [£]') is another sutured cobordism from
(Ms, ) to (Ms,~ys), then we can compose them to get a cobordism W' =
(WouW", ZuZ' [Eu]) from (M, 1) to (Ms,~ys) and there is an equality

SHM(W") = SHM(W') o SHM(W).
(8). For any balanced sutured manifold there is a canonical pairing
<'7 > : M(Mu fy) X M<_M7 ’7) - R7

which is well defined up to multiplication by a unit. Here R is the coefficient
ring. Furthermore, let W = (W, Z,[&]) be a cobordism from (My, 1) to
(Ms,7y2), and let WY = (W, Z,[£]) be the cobordism with same data but
viewed as from (—Ma,7y2) to (—My,v1). Then W and WY induce cobordism
maps which are dual to each other under the canonical pairings.
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A sutured manifold (M, ) is a compact oriented 3-manifold M, with
an oriented 1-submanifold v on the boundary dM. The 1-submanifold ~
is called the suture and it divides dM into two parts R, (y) and R_(7)
according to the orientation induced by v and M. It is called balanced if
every component of M contains a suture and R, () and R_(v) have the
same Buler characteristics.

The monopole Floer homology of a closed 3-manifold Y together with a
spin® structure s on Y was built by a version of infinite dimensional Morse
theory based on the so called Chern-Simons-Dirac functional as in [16].
The total homology group is then a direct sum among all spin® structures.
To adapt the construction to balanced sutured manifolds, Kronheimer and
Mrowka constructed a pair (Y, R), consisting of a closed 3-manifold and a
distinguishing surface, out of the sutured data (M, ). This pair was called
a closure and the sutured monopole Floer homology was defined to be the
monopole Floer homology of Y using only top spin® structures with respect
to R, i.e., those spin® structures s on Y so that

ci(s)[R] = 29(R) — 2.

This homology is denoted by SHM(M, ).

The monopole Floer homology of a closed 3-manifold has very good
naturality. This is partially because the space of all choices in the con-
struction of monopole Floer homology is contractible. Hence it is natural
to ask whether sutured monopole would also have a good naturality prop-
erty. However, the construction of the closure, which involves some ’dis-
crete’ choices, make the question much more difficult to be studied. The
naturality of sutured monopole is partially proved by Baldwin and Sivek in
[1], where they showed that for a fixed balanced sutured manifold and any
two different closures of it, there is a canonical map for Floer homologies
between them. However, whether there exists a cobordism map in sutured
monopole Floer homology theory is still open (and the main theorem of this
paper answers this question positively). To be compared with, Juhédsz [11]
has constructed a cobordism map in sutured (Heegaard) Floer homology
theory.

Our construction of the cobordism map would provide the sutured
monopole Floer homology a better naturality property. In some cases when
we could fix the choices of closures, we might be able to make use of the
even better naturality of monopole Floer homology of closed 3-manifolds
and find some future applications.
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Along with the cobordism map, we also construct gluing maps in su-
tured monopoles and instantons. Gluing maps are very important tools in
the sutured Floer homology theory. One direct application of gluing maps
in future is to construct a possible minus version of knot Floer homology
in monopole or instanton settings, using a direct system whose morphisms
coming from gluing maps. The question has been proposed in details in the
introductory part of Baldwin and Sivek’s paper [2]. One thing we would
like to comment here is that the construction of the direct system would
be an immediate application of the gluing maps, but the construction of
gradings in the direct limit would have some difficulties, and this will be
the main topic of the author’s future paper [18].

1.2 Outline of the proof

The topological data for a cobordism between two balanced sutured man-
ifolds (My,v1) and (Ma,y2) would be a pair (W, Z) where W is a compact
oriented 4-manifold with boundary

oW = —M, v Z U M,.

In order to keep track of the sutured data, we need also a contact structure
& on Z so that 07 is convex and 7, U 73 is the dividing set. For the purpose
of gluing cobordisms, we should allow the contact structure £ to vary by
isotopy and look at only the isotopy class [£] of contact structures on Z.
We call W = (W, Z, [£]) a sutured cobordism from (M, y) to (Ma,72).
The construction of the cobordism map would share some similarity
of the construction of that in sutured Heegaard Floer homology theory in
Juhész [11]. The construction falls into two steps and the first is to use the
isotopy class of contact structures [£] on Z to construct a gluing map

(I),g : SHM(Ml,’}/l) — SHM(Ml U (—Z),’)/Q)

A corresponding construction for sutured (Heegaard) Floer homology was
done by Honda, Kazez and Mati¢ [8] and revisited by Juhédsz and Zemke
[13]. The second step is to construct a map from the 4-manifold W

FW : SHM(Ml U (-Z),’yg) — SHM(MQ,’YQ)

The composition SHM(W) = Fy o ®_¢ would be the desired cobordism
map.
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The second map Fy arising from W is straightforward in monopole
settings. The main difficulty is to construct the gluing map ®.. There
is no known construction prior to this paper. Some partial works were
done by Baldwin and Sivek in [2], where they only constructed the handle
attaching maps for contact handle attachments. A contact handle is a tight
contact 3-ball attached to a balanced sutured manifold and is attached in
different ways according to the index of the handle. The straightforward
idea then is to decompose Z into contact handles and composite the gluing
maps defined for those handles. However they only conjectured that two
different contact handle decompositions will result in the same composition
map.

In the present paper we are going to introduce slightly different defi-
nitions for contact handle attaching maps for 2- and 3-handles. Though
they turn out to be equivalent to what have been constructed by Baldwin
and Sivek [2], our point of view will be a little bit more convenient when
studying the duality of the sutured cobordism map. In the paper we also
make use of a tool called contact cell decomposition, which was introduced
by Juhdsz and Zemke [13]. A contact cell decomposition can be thought
of a refinement of the construction of Legendrian graphs inside contact 3-
manifolds, by Honda, Kazez and Mati¢ [9], as a preparation for defining the
contact elements in sutured (Heegaard) Floer homology. In a contact cell
decomposition of Z, we decompose Z into three pieces Z = N u Z' u N'.
Here N u N’ is a collar of the boundary 07 < Z and Z’ is decomposed
further into contact handles so that any two different decompositions are
related by isotopies and three types of handle cancelations. In this paper
we are able to prove that the composition of gluing map is independent of
all three types of handle cancelations and hence get a well defined gluing
map.

As an application of the gluing map, we prove the following result,
which is originally conjectured by Baldwin and Sivek [2].

Corollary 1.3. Under the above settings, suppose there are two different
ways of contact handle decompositions of Z, both relative to OM :

M=Mouh u..0h,, M'=MuUhiu..Uhl,.

Then the compositions of the two sets of handle attaching maps are the
same:

Chy ©...0Chy = Chy 0...0Cy : SHM(—M, —v) — SHM(-M', —+).

7
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Further with the discussion in [2], we know the follow thing.

Corollary 1.4. With the above notations, if the contact structure & on Z
is the restriction of a contact structure & on all of M', then the gluing map
preserves contact elements, i.e.,

Pe(Pgr|ny) = e

When composing the gluing map ®_, with the map Fy coming from
the 4-manifold W as discussed above, we get the cobordism map SHM (W)
associated to the sutured cobordism W = (W, Z, [£]).

The functoriality of the cobordism maps holds. This is essentially be-
cause we can interpret the two maps ®_¢ and Fyy as attaching 4-dimensional
handles to a suitable product cobordism, and we can somehow prove that
handles attached corresponding to different steps can change the order of
attaching with each other.

The duality of the cobordism map is also proved. To do this We actu-
ally introduced a second way to construct the gluing maps as well as the
cobordism maps, so that the duality is then a simple corollary.

Although we will work with local coefficients though out the paper, we
shall remark here that all discussions can be modified to work with simply
Z coeflicients (and we shall fix a large enough genus for closures of balanced
sutured manifolds) except for proposition 3.22. When using Z coefficients,
the ambiguity appeared in the above statements reduces to being up to a
sign. The reason why 3.22 relies on local coefficients is that we shall use
Floer excisions along tori, which was introduced in [17], in the proof of that
proposition. However local coefficients are necessary in that setting.

The sutured instanton Floer homology was also introduced by Kron-
heimer and Mrowka [17]. A parallel construction for sutured instanton can
also be done in a similar way. We will briefly discuss about sutured in-
stantons in the last section of the paper. It worth mentioning here that
in [3] Baldwin and Sivek defined the contact elements as well as contact
handle gluing maps for sutured instanton. However, they only proved that
the contact element is preserved under 0, 1,2-handle attaching maps but
didn’t say anything about 3-handles. Using gluing maps constructed in
this paper, we are able to prove that contact elements are also preserved
by 3-handle attaching maps.
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1.3 Future questions

The construction of gluing maps and cobordism maps would be a first step
to many further problems and we would like to introduce some of them
here. We have already mentioned one above on the minus version of knot
monopole Floer homology and here are more questions to be asked.

A first adaption of the construction in the current paper might be to the
sutured knot (or link) homology. As suggested by Juhész [11], we are given
a cobordism (X, F, o) between two links L; < Y] and Ly < Y, with marked
points, where X is a cobordism between Y; and Y;, F' < X is a cobordism
between L, and Ly and o < F' is a 1-dimensional submanifold determining
a contact structure on the boundary of a tubular neighborhood of F' < X.
Then we could try to construct a map between link Floer homologies.
There may be some further applications to the study of embedded surfaces
in 4-manifolds.

A second question is related to contact elements of the sutured mani-
folds. Given a balanced sutured manifold (M,~y) with a contact structure
¢ so that dM is convex and 7 is the dividing set, Baldwin and Sivek con-
structed in [2] a closure (Y, R) of (M, ~) which carries a contact structure
¢ restricting to & on M\N(v). Here N(v) is a neighborhood of v < M.
Hence they were able to define a contact element

(bﬁ € M<_M7 _/7>

based on work by Kronheimer, Mrowka, Ozsvath and Szabé [14]. However
they only carried out this construction using connected auxiliary surface
(an auxiliary surface is the surface used to construct closures of balanced
sutured manifolds), while in some cases, disconnected auxiliary surfaces
might be more convenient (see [17], section 6.) So it would be interesting
to generalize their construction using disconnected auxiliary surface and
study how contact invariants behave under the Floer excision maps defined
in [17]. Another related questions is that in [2], or in second 6 of the
current paper, contact invariants for sutured instantons are defined. One
can ask what is the analytical correspondence in the classical Instanton
Floer homology theory.

A third question is about trace and co-trace cobordisms. Suppose
(M,~) is a balanced sutured manifold, then we can form a special cobor-
dism

W = (M x [0,1],0M x [0,1], [&])
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where &, is a contact structure on M x [0, 1] so that & is [0, 1]-invariant,
OM x {t} is convex for each ¢ € [0,1] and 7 x {t} is the dividing set. We
can view W as a cobordism from (M u (—=M),y u ) to . In [13] the
corresponding cobordism map for sutured (Heegaard) Floer homology was
computed and one could ask whether we have a similar result for sutured
monopoles.

A forth question is about the ambiguity of being up to multiplication
by a unit. When using Z coefficients, it is up to a sign, which is kind
of acceptable, as the contact invariant is also only defined up to a sign
and this ambiguity cannot be resolved, as shown by Lin [19]. Also, as
a comparison, Honda, Kazez and Matic’s construction of gluing map in
sutured (Heegaard) Floer homology also has a sign ambiguity when using
7 coefficients. However, when using general local coefficient over a suitable
ring R, it might not be satisfactory. For example, the pairing

<'7'> : SI—I—M(Mv’Y) X SI—I—M(_M7’7) - R

defined above is also up to a unit. In the worst case where R is a field,
we only know that the vanishing or non-vanishing of the pairing is well
defined. So it would be interesting to see whether or not one could improve
this ambiguity.

The paper is organized as follows. In section 2 we review the basic
settings of the sutured monopole Floer homology and the naturality. In
section 3, we discuss on the construction of contact handle attaching maps
and prove their cancelation or invariance properties. Those basic ingredi-
ents then are used in section 4 for constructing general gluing maps and
proving basic properties of them. In section 5, we construct the cobordism
maps associated to sutured cobordisms between balanced sutured mani-
folds and prove their basic properties. In section 6 we briefly go through
the construction in sutured instanton Floer homology.
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the National Science Foundation under Grant No. 1808794. I would like
to express my enormous gratitude towards my advisor Tomasz Mrowka for
suggesting the problem and the invaluable helps all the way along. I would
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Boyu Zhang for helpful conversations.
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2 Prelimilaries

2.1 Monopole Floer homology for 3—manifold

Suppose (Y, s) is a closed connected oriented 3-manifold equipped with a
spin® structure 5. Kronheimer and Mrowka in [16] associated 3 flavors of
monopole Floer homologies to (Y, s), with Z coefficients:

HM.(Y,s), HM.(Y,s), HM.(Y,s).
The three flavors fit into a long exact sequence:
> HM.(Y,s) 5> HM,(Y,s) & HM.,(Y,s) & HM,(Y,s) —> ... (1)

Suppose we are given a smooth 1-cycle n < Y, and let R be the Novikov
ring over Z, which is defined as

R = {ZnatayaeR, Na € Z, t{a € Rln, < N} < w0 for all N € Z}.

Then we can define similarly all three flavors of monopole Floer homologies
with local coefficients

HM.(Y,s:1,), HM.(Y,5:T,), HM.(Y,5T,).

They also fit into a the same long exact sequence as (1).
If furthermore the spin® structure is non-torsion, that is, ¢;(s) is not a
torsion element in H?(M;Z), then we have

HM'(sz;Fn) = 07

and HM,(Y,s:T,) is isomorphic to HM,(Y,s;T,) via j. So we will call
either flavor to be just HM,(Y,s;T,).

Suppose ' < Y is a closed oriented embedded surface of genus at least
2. Let S(Y|F) be the set of all spin® structures s such that

ci(s)[F] = 2g9(F) — 2,
and define
HM(Y|F;T,) = (—B HM,(Y,s;T,).

s€6(Y|F)

11
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Suppose (Y1, F1,m) and (Ya, Fy,19) are two triples, then a cobordism
(W, Fw,v) between them is a triple where

(1). W is a cobordism from Y; and Ys, which means that W is a smooth
compact oriented 4-manifold with boundary and there is an orientation
preserving diffeomorphism from dW to —Y; U Y5.

(2). Fw < W is a closed oriented embedded surface in W, which
contains F; and F; as two components.

(3). We have v < W being a smooth 2-cycle and dv = (—n1) U 1o

As discussed in [17], the cobordism (W, Fy, v) induces a map between
mononopole Floer homologies:

HM(W|Fy:T,) : HM(Y|Fi;T,)) — HM(Ya|Fy;T,,).

Remark 2.1. For simplicity, in the rest of the paper, we may omit the
surface and local coefficients from the notation of a cobordism map.

2.2 Sutured monopole Floer homology

Definition 2.2. A balanced sutured manifold (M, ) consists of the follow-
ing data:

(1). A compact, oriented 3-manifold M with non-empty boundary ¢ M.

(2). An embedded oriented 1-submanifold v < 0M.

(3). An annular neighborhood A(7) of v on 0 M, which can be identified
with v x [—1,1].

(4). R(y) = 0M\A(7) being the closure of the complement of A(7) on
oM.

They should satisfy the following requirements:

(1). M has no closed components.

(2). Every component of M contains at least one suture.

(3). R(y) can be oriented in a way that dR(7), as oriented curve, is
parallel to v in A(7). The requirement (2) above makes sure that R(y) has
no closed components so the orientation above is unique, and is called the
canonical orientation.

(4). Let Ry (y) be the part of R(y) so that the canonical orienta-
tion induced by v coincides with the boundary orientation of M, and let
R_(v) = R(7)\R, (7). Se shall require further that

X(Ry (7)) = x(R-(7))-

12
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Now suppose (M, ~) is a balanced sutured manifold. In order to define
the sutured monopole Floer homology, we need to construct a closed 3-
manifold with a distinguishing surface inside it. To do this, we pick a

compact oriented surface 1" so that
(1). We have ¢(T) = 2.
(2). There exists an orientation reversing diffeomorphism

f:0T — 7.

(3). There is a curve ¢ < T so that ¢ represents a non-trivial class in
H{(T).
Since A(7y) has been identified with v x [—1, 1], we have a map

fxid: 0T x [-1,1] - v x [-1,1] = A(%).
We can use this map to glue T x [—1,1] to M:

M=M U Tx[-1,1].
fxid

The boundary of M consists of two components

Ry =R, (y)u (T x{1}),
R_=R_(y)u (T x {~1}).

Let h : R, — R_ be an orientation preserving diffeomorphism so that
h(c x {1}) = ¢ x {—1}.

We can use id and h to glue R, x [—1,1] to M to get a closed manifold
Y. In details, Ry x {—1} is glued to R, < OM via identity and R, x {1}
is glued to R_ < 0M via h. Let R be the surface R, x {0}. There is then
a curve ¢ = ¢ x {0} c R.

Based on this construction, we have the following definition.

Definition 2.3. In the above construction, we call T" an auziliary surface
and h a gluing diffeomorphism. We call the manifold M a pre-closure of
(M, ), and call the pair (Y, R) a closure. We define the genus of the closure
(Y, R) to be the genus g(R) of R.

Remark 2.4. The definition of genus follows from Baldwin and Sivek [1].
While the others follow from Kronheimer and Mrowka [17]

13
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Definition 2.5. Suppose (Y, R) is a closure of a balanced sutured manifold
(M, ~) and 7 is the non-separating oriented smooth curve defined as above.
Then we define the sutured monopole Floer homology with local coefficients
of (M,~) to be

SHM(M,~v;T',) = HM(Y|R;T,).

2.3 The naturality of sutured monopole Floer homol-
ogy

In the definition of sutured monopole Floer homology, there are a few
choices (T, f,h) involved (also ¢ and 7). In [17] Kronheimer and Mrowka
have already proved the invariance:

Theorem 2.6. The isomorphism class of sutured monopole Floer homology
of a fixed sutured manifold (M,~) is independent of all the choices made
in the construction of the closure as in definition 2.5.

Although we have the invariance of the isomorphism types of the su-
tured monopole Floer homologies, it is still not enough to talk about ele-
ments in them. This leads to Baldwin and Sivek’s work on the naturality
of sutured monopole Floer homologies. To get the naturality, Baldwin and
Sivek defined a more refined version of closures in [1]:

Definition 2.7. Suppose (M,) is a balanced sutured manifold then a
marked closure of (M, ) is a quintuple D = (Y, R, r, m,n) where

(1). Y is a closed oriented smooth 3—manifold.

(2). Ris a connected closed oriented smooth surface with genus at least

(3). We have a map
r:Rx[-1,1]->Y

which is a smooth orientation preserving embedding.
(4). We have a map

m : M — Y\int(im(r))
which is a smooth orientation preserving embedding and satisfies following

properties:

14
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(a). We have that m extends to a diffeomorphism
m:MupT x [—1,1] - Y\int(im(r))

for some A(v), T, f as defined in definition 2.3. Also we need some smooth
structure on M U T x [—1, 1] which restricts to the given one on M.
(b). We have that m restricts to an orientation preserving embedding

m: Re(y)\A(7) = r(R x {~1}).

(This is to make sure that R has the correct orientation.)
(5). We have that 7 is a non-separating smooth oriented curve on R.
We define the genus of D, which is denoted by ¢(D), to be the genus of
the surface R.
We define the sutured Floer homology of the marked closure D to be

SHM(D) = HM(Y|R;T,).

Remark 2.8. Here, strictly speaking, the surface should be (R x {0}), but
for simplicity we will always write R for short. Also the local coefficient
should be I',(;x{0}) and we will only write I';,.

Remark 2.9. We shall emphasis here that in the requirement (a), the auxil-
iary surface T  should be connected. This is implicitly contained in Baldwin
and Sivek’s original construction in [2]. Especially, when they constructed
the handle gluing maps, they used the fact that auxiliary surfaces they
used are all connected. So throughout the present paper, when we use
an auxiliary surface to construct a closure, it should be understood to be
connected otherwise stated.

Baldwin and Sivek also constructed in [1] canonical isomorphisms be-
tween the homologies of two different marked closures of a fixed balance su-
tured manifold. The basic terms are canonical maps ®f, ,, for g(D) = g(D’)

and (IJ%’?;,I for g(D') = g(D) + 1. These tow basic types of canonical maps
will composite to get canonical maps between any two marked closures of
the same balanced sutured manifold. In summary they satisfy the following
proposition:

Proposition 2.10. Suppose (M, ) is a balanced sutured manifold. Then
for any two marked closures D and D" of (M,~), there is a canonical map

®p 0 SHM(D) — SHM(D'),

15
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which is well defined up to multiplication by a unit of R, such that
(1). If D =71, then
q)D7'D’ = 1d.
Here = means equal up to multiplication by a unit.
(2). If there are 3 marked closures D, D' and D", then we have

(I)D’,D” O @D,ID/ = @D,D/l,

Hence the homologies and canonical maps fit into what is called a pro-
jective transitive system in [1]:

Definition 2.11. A projective transitive system of R-modules consists of
an index set A together with

(1). A collection of R-modules {M,}aca

(2). A collection of equivalent classes of R-modules homomorphisms
{[ha.5]}apea, such that

(a). Two morphisms are called equivalent if they differed by multipli-
cation by a unit.

(a). For all a, 5 € A, hyap is an isomorphism from M, to Ms.

(b). If @ = 3, then h, g = id.

(c). For all a, B,y € A, we have

hpy 0 hag = hay-

With a projective transitive system, we can construct a canonical pro-
jective module out of it:

Definition 2.12. Suppose (A, {M,}, {has}) is a projective transitive sys-
tem, then we can define a canonical projective module or simply a canonical

module:
M=]][M/~,

acA

where if we have m, € M, and mg € Mgz, then m, ~ my, if and only if
thag(ma) = u-mg.

Here v € R* is a unit.

16



Zhenkun Li 2 PRELIMILARIES

Remark 2.13. Although we call M simply a canonical module, it shall be
understand that it is not a real module. Note all M, are isomorphic, and
we can regard M as having a bijection to

M,/R*.
for all a € A.
We can define the maps between the two systems:

Definition 2.14. Suppose we have two projective transitive systems (A, {M,}, {has})
and (A', {M.},{h] s5}). A morphism between them is a collection of equiv-

alent classes of maps {[fa,|}acayear, where two maps are called equivalent

if and only if they differ by multiplication by a unit, such that

S8y 0 hap = hi{,é ° fan-

Such a morphism will define a map between the canonical projective

modules
f:M— M

by choose any a € A, § € A" and define
f([mal) = [fas(ma)l.

Remark 2.15. Strictly speaking, a morphism is a collection of maps but for
simplicity, we will write one map in the collection to represent it.

There is a simple lemma about how to compare such two morphisms:

Lemma 2.16. Suppose {fo~} and {f,,.} are two morphisms between pro-
jective transitive systems (A, {Ma},{ha,s}) and (A", {M.},{}! ;}), then the
following 3 conditions are equivalent:

(1). The induced maps are equal:

f=f: M- M.
(2). There exists a, B € A and v € A’ so that

fﬁfy © hayﬁ = féé,’y'
(3). There exists « € A and 7,5 € A’ so that

fOMS = hfy(g © f(;;y'

17
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From the above discussion, we know that the marked closures {SHM (D)}
and the canonical maps {[®p p/]} together form a projective transitive sys-
tem and hence we have a canonical projective module

SHM(M,~)

associated to it. There is a sub-system of it, namely the system consists
of {SHM(D)} with D having a fixed genus g, and {[®7, 5]} which are
canonical maps between marked closures of the same genus. This sub-
system can be associated to a canonical projective module

SHM? (M, )

Remark 2.17. Throughout the paper, we will use SHM to denote the ho-
mology of a particular marked closure D or some time, when we only care
about the isomorphism class, the homology of a balanced sutured mani-
fold (M,~). The notation SHM will only be used to denote the canonical
module coming from projective transitive system over (M, ). This usage
might be slightly different from Baldwin and Sivek’s original paper.

For later references, we shall present the definition of the canonical map
CIDQDD, between two marked closures of the same genus. We only introduce
the definition here. The well definedness and other basic properties were
proved in [1].

Lemma 2.18. (Baldwin, Sivek, [1]) If ¥ is a closed orientable surface of
genus at least two, then the space of all diffeomorphisms from % x [0,1] to
itself, which restrict to identity on 3 x {0, 1}, is connected.

Suppose (M, ) is a balanced sutured manifold and
D= (Y,R,r,m,n), D= " R v mn)

are two marked closures of (M, ) with the same genus g(D) = g(D’). Pick
a diffeomorphism

C : Y\int(im(r)) — Y'\int(im(r")),
so that
Clny =m om™ :m(M) — m'(M).
Define
SOE = (T/(il, '))71 oCo (T(ila )) 'R — Rla

18
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and
¢ = (9 oY) R— R,

Pick a diffeomorphism ¢ : R — R so that
pC oy (n) =1

If we pick t <0 < ¢/, and cut Y open along r(R x {t}) and r(R x {t'}),
and re-glue by the maps

ro (W)™ xid)or™, ro((p° op®) x idy)or™?

respectively, we will get another marked closure (Y, R, 7", m,n). The way
we construct ¢ and 1 will ensure that Y” and Y are actually diffeomor-
phic.

To proceed, we want to construct a cobordism from Y to Y” to define
the canonical map. The idea is that we can decompose the two gluing maps
as compositions of +1 Dehn twists and such Dehn twists are related to F1
Dehn surgeries along the curves on which we perform Dehn twists (See [1],
section 4.1). Furthermore, those Dehn surgeries are related to attaching
4-dimensional handles to a suitable product 4-manifold. (See Rolfson [22]
Chapter 9) The resulting 4-manifold can be viewed as a cobordism between
two closures Y and Y”, and it thus leads to the canonical map.

Now suppose ()71 and o o ¢ are isotopic to the compositions of
Dehn twists:

(4)00 o wc) ~Dglo..oDg,
()" ~ Dirti o o DEm.

an+1
Here D' means doing a Dehn twist along curves a; = R. The sup-script
e; is chosen from {—1,1} and 1 represents a positive Dehn twist (or right
handed Dehn twist, see section [5] 3.1) while —1 represents a negative one.
Pick

3<t< <tp41 < 1<1<t< <t < (2)

4 m n+1 A A n 1 4
and pick t; to be greater than ¢; and smaller than the next number in the
sequence (2). Define

N = {ile; = =1}, P = {ile; = 1}.

19
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Now let Y_ be the 3-manifold gotten from Y by doing (+1)-surgeries
along curves a; x {t;} < r(R x {t;}) for all the indices i € N'. Then Y is
diffeomorphic to the manifold gotten from Y_ by doing —1-surgeries along
curves a; x {t;} < R x {t;} for all i € N. If we require such diffeomorphism
to restrict to identity on Y'\(R x ((—3,—1) u (1,2))) then by lemma 2.18,
there is a unique isotopy class of such diffeomorphisms. If we attach —1-
framed 4-dimensional 2-handles to Y_ x [0, 1] along curves a; x {t;} x {1} for
all © € A and let the resulting 4-manifold be X_, then X_ is a cobordism
from Y_ to Y. Choose the surface Fix_ to be r(R x {0}) x {0} and choose
the 2-cycle to be v = r(n x {0}) x [0,1], we can define a map between
monopole Floer homologies:

HM(X_): HM(Y_|[r(R x {0});T,)) — HM(Y|r(R x {0}):T,).

Remark 2.19. The (+1)-surgeries above means +1 with respect to the sur-
face framing (R x {t;}). In the rest of the paper, when we do surgery with
respect to a surface framing and the surface is understood, we may not
mention the choice of framings anymore.

Now let Y, be the 3-manifold obtained from Y_ by doing (—1)-surgeries
along curves r(a; x {t;}) for all i € P. Similarly as above, there is a
cobordism X, from Y_ to Y, and a map

HM(X.): HM(Y_|r(R x {0})) — HM(Y,|r(R x {0})).

There is a diffeomorphism f : Y, — Y’ such that

(1). We have that f = C when restricted to Y"\int(im(r”)) = Y'\int(im(r)).
(2). We have that f(r(n x {0})) = r'(n' x {0}).

The diffeomorphism f will induce a map

HM(f) : HM(Y, |r(R x {0})) — HM(Y'|r(R x {0})).

Remark 2.20. The first property actually implies that any two such f would
be isotopic to each other by lemma 2.18. The second property ensures
that f will induce a map between monopole Floer homologies with local
coefficients. One might have noticed that in the above construction, the
result of cuting twice and re-gluing using (¢¢)~! and ¢ o ¢¢ is the same
as cutting once and re-glue using ¢“. Yet the second property of f above
is the reason why we need not only ¢ but also ¥°.

The canonical map is defined as
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Definition 2.21. With the above notations, the canonical map
(I)D,D’ : SHM(D) — SHM(D/)
is defined as

(I)D,D’ = HM(f) O HM(X+) o} (HM(X,))il

3 Handle gluing maps and cancelations

3.1 Prelimilary discussions

To start with, we first introduce the definition of contact handle attach-
ments. The following definition is from Juhdsz and Zemke [13]. (Also in
Giroux [7] or Ozbagci [21] or Baldwin and Sivek [2].)

Definition 3.1. Suppose (M,~) is a balanced sutured manifold. A 3-
dimensional contact handle attachment of index k, where k € {0, 1,2, 3}, is
a quadruple h = (¢, S, D?,§). Here D? is a standard tight contact 3—ball
with § being the dividing set on 0D. Also S < dD? is a 2-submanifold of
0D? and

¢: 8 —IM

is the gluing diffeomorphism. The pair (S, ¢) has different description for
different index k:

(1). When k=0, S = .

(2). When k£ = 1, S is the disjoint union of two disks. Each disk
intersects the dividing set ¢ in a simple arc.

(3). When k = 2, S is an annulus on ¢D? and it intersects the dividing
set 0 in two simple arcs, and each simple arc represents a non-trivial class
in Hl(S, 55)

(4). When k = 3, S = dD?.

Furthermore, if we set §; = 6 N S and dy = §\dy, then in any case we
shall require that ¢(d;) < v < dM. The new dividing set 4 for the new
sutured manifold M" = M Uy B is

7 = (N\$(01)) v (62).

See figure 1.
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N
I
Q

‘ ' §| e — S5

S =oD?
Figure 1: Contact handle attachment. Top left: 0-handle. Top right: 1-
handle. Bottom right: 2-handle. Bottom left: 3-handle.

Before constructing handle gluing maps, let us first look at a special
construction.

Proposition 3.2. Suppose (My,7) and (My,v) are two balanced sutured
manifolds so that 0My = 0M; and the sutures are also identical. Suppose
W is a smooth compact oriented 4-manifold so that W can also be viewed
as a manifold with conners: the boundary oW consists of two horizontal
parts —My and My as well as a vertical part 0My x [0,1]. The two parts
— My and 0My x [0, 1] meet in the conner My x {0}. The two parts M
and 0My x [0, 1] meet in the conner My x {1}. See figure 2. Then we can
define a morphism between canonical modules:

Proof. Suppose T is an auxiliary surface for (M, ~) and f : 0T — = is the
map gluing 7" to (Mo, ). Let

MO = MO ft(_)ZdT X [—1, 1]

be the pre-closure and 6]\70 = R, U R_. Suppose h : Ry — R_is a
diffeomorphism, we can use h to glue R, x [—1, 1] to My and get a closure
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7
M, /
7

Figure 2: The special type of cobordism W.

Y. Suppose 7 is a non-separating curve on R = R, x {0}, we get a marked
closure Dy = (Yo, R, 7, mg,n) for (Mp,~). Since the boundaries of M, and
M are identified, we can use the same auxiliary data (T, f,h,n) to get a
marked closure Dy = (Y7, R, r,m1, 7).

There is a natural way to construct a cobordism from Yj to Y7 out of W.
Use fxidxidto glue T'x[—1,1]x[0, 1] to A(y) x[0,1] € dMyx[0,1] < oW,
and use (id U h) x id to glue (R x [0,1]) x [0,1] to the result of the first

—~

gluing. Finally we get a cobordism W from Yj to Y;. We have a map

—~

HM (W) : SHM(Dy) — SHM (D).

We claim that this map will induce a morphism between canonical mod-
ules. We only prove here that the cobordism map constructed above com-
mutes with the canonical map ®9, and the commutativity with ®9-9+! would
follow with a similar argument. To proceed, suppose D}, = (Yy, R', 1", m{,n’)
is another marked closure for (M, ), obtained in a similar way as above,
D) = (Y{,R',v",m},n') is the corresponding marked closure for (Mj,~),

A

and W’ is the corresponding cobordism from Y to Y{. Then we need to
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show that the following diagram commutes up to multiplication by a unit:

foxd
Dy, Dy,

SHM (Do)

SHM (D))

HM (W) HM(W')

@

SHM(D,) —=21 ~ SHM(D})

g
Do ,D6

the identity on My can be extend to a diffeomorphism

By definition 2.21, the canonical map @ is constructed as follows:

Co : Yo\int(im(r)) — Yy\int(im(r")),
and there are maps ¢ and ¥“© and we can decompose them into compo-
sition of Dehn twists:

o op? ~ Dglo...oDg", oY op% ~ Do+l o oDy’

Ay+1

For simplicity, we assume here that all e; = 1 (the general case follows
from a similar argument) and the map (I)gDo,D{) is then induced by a cobor-
dism Wy obtained from Y7 x [0, 1] attaching 4-dimensional 2-handles along
curves ar, ..., a, < Y7 x {1}.

Since the two manifolds M, and M; have identical boundary: oM =
0M;, for constructing the canonical map @%1 py» We can chose a diffeomor-
phism

Cy : Yi\int(im(r)) — Y{\int(im(r"))

so that C] restrict to identity on M; and also Cy = C outside int(M))
and int(M,;). Hence we have

P = %, Y =y,

This means that the canonical map (13%1 D, is induced by a cobordism W,
which is obtained by attaching 4-dimensional 2-handles to Y7 x [0, 1] along
the same set of curves aq, ...,a, < Y; x {1}.

Now the commutativity of the diagram is equivalent to

o~ o~

HM(Wy) o HM(W) = HM(W') o HM(Wy). (3)
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From the next lemma (lemma 3.3) we can view W as obtained from M, x
[0,1] by attaching 4-dimensional handles hf, ..., h% to int(My) x {1}, and
then W’ is obtained from Y x [0,1] by attaching the same set of 4-
dimensional handles hi, ..., h% to int(My) x {1} = Y{ x {1}. So to prove the
equality (3), it is enough to prove that the set of handles hi, ..., h} and the
set of 2-handles attached along ay, ..., a,, < Yy x {1}, which are coming from
the construction of canonical maps between closures, can commute with
each other. But this is obvious: hj, ..., hl are attached to int(My) x {1} =
Yy x {1} and the curves ay, ..., a,, are inside int(im(r)) x {1} < Y x {1} and

int(Mp) N int(im(r)) = &.
0

Lemma 3.3. Suppose (Mo, ), (My,~) and W are defined as in proposition
3.2. Then W is diffeomorphic to a 4-manifold obtained from My x [0, 1] by
attaching some 4-dimensional handles to int(My) x {1}.

Proof. We can assume a neighborhood N of the vertical boundary part
OM; x [0,1] of W is identified with dMy x [—1,0]s x [0,1]; so that the
vertical boundary part is dMy x {0} x [0,1]. We can choose a smooth
function f: W — [0,1] so that

f(=My) =0, f(M) =1, f(0Mo x [-1,0] x {t}) = t.

Perturb f a little bit so that f is Morse and there is no critical points of f
near 0W < W. Such perturbation exists since the set of Morse functions
is dense in the space of smooth functions and f has already been Morse
near the boundary dW < W, and having no critical points there. Then f
induces the desired handle decomposition. O

Remark 3.4. In [12] Juhdsz and Thurston also proved that 0- and 4- handle
attachments can be avoided.

Suppose we are giving a smooth compact oriented 4-manifold with
boundary W, and let S < dW be a closed oriented surface surface which
separates dW into two parts. Let M; and My be the closures of those two
parts with orientations so that

5M1=5M2=S, —MlUMQZaW
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Suppose 7 < S is a collection of oriented simple closed curves so that
(M, ) and (M, ) are all balanced sutured manifolds. We can view W as
a cobordism from (M, ) to (Ms, ). An adaption of lemma 3.3 shows that
W is actually diffeomorphic to the 4-manifolds obtained from M; x [0, 1]
by attaching some 4-dimensional handles along int(M;) x {1}. Hence just
as in the proof of proposition 3.2 we can also have a map between sutured
monopole Floer homologies of (M;,~) and (Ms, 7). Sometimes it is more
convenient to use this setting so we will give this a name:

Definition 3.5. Under the above settings, we call W a cobordism with
sutured surface (S,9), from (My, 1) to (Ma,72). The collection of oriented
simple curves § on S is called a suture.

3.2 Constructions of handle gluing maps

The definition of handle attaching maps for attaching 0- and 1-handles in
[2] are kind of straightforward and are summarized as follows.

Definition 3.6. Suppose (M,~) is a balanced sutured manifold and h
is a 0 or 1-handle attached to (M,~) and results in a new balanced su-
tured manifold (M’,~"). We can use auxiliary data 7" and f to produce M
which is a pre-closure of (M, ). Then M is also a pre-closure of (M’ ~").
Hence we can use the same auxiliary data R, h,n to get marked closures
D' =(Y,R,r,m',n) and D = (Y, R,r,m = m/|y,n) for (M',~') and (M, ~)
respectively. The handle attaching map

Cy, : SHM(—M, —v) — SHM(—M', —+')

for the contact handle h is then defined to be the map between projective
transitive systems induced by the product cobordism (—Y) x [0, 1] (or
simply just the identity map).

The paper [2] also discussed on the handle attaching maps for contact 2-
and 3-handles. But we want to introduce somewhat different definitions for
our convenience. Suppose we are attaching a 2- or 3-handle h = (¢, S, D3, 6)
and result in (M',~'). Let Z = M'\int(M). The idea is that when we turn
h up-side down, we will get a 1- or 0- handle as a result. To turn A up-side
down, we shall consider the manifold W = M’ x [0,1]. We can chose the
surface S = M x {0} € M; x {0} < W and the suture v = v x {0} < S.
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Then W can be viewed as a cobordism with sutured surface (S,7), from
(M, 7) to
(My,y) = (M" v oM x[0,1] U Z,7).

In this case, Z is attached to dM’ x {1} and can be viewed as a 0- or
I-handle Y. Let M{ = M" v dM' x [0,1] and 7] =+ x {1} < dM]. See

figure 3.

M Z
1 . -
t i A/IQ M1 M{

Wi =M x [0,1]} D*x [0,1]
; ,

0 3 J

W = M x[0,1]

Figure 3: The product W, W7, and the sutured manifolds My, My, Mj.

Now we have a handle attaching map

Chv : SHM(=My, =) — SHM (=M, =)

which is an isomorphism by definition 3.6. Proposition 3.2 induces a map
Foyw : SHM(—=M, —v) — SHM(—M, —),

so we only need a map
U SHM(—My, =) — SHM (=M, —').

This map seems to be obvious, since

(M{,71) = (M"w oM x [0,1],9" x {1})

is just gotten from (M’ ,+') by attaching a collar of the boundary. This
can be made precise as follows. When closing up (Mj,7}), we choose an
auxiliary surface 7] and glue T] x [—1,1] to (M{,~;) along A(y}) = 7} x
[—1,1] by a map

fo0T] — .
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Let ]\7{ = M| U T] x [—1,1] and suppose
OM! =R, UR,

so that R/, contains Ry(v'). If we choose an orientation preserving diffeo-
morphism h : R, — R, then we can glue R’ x [0,1] to Y{ and get a
marked closure D] = (Y{, R/, r1,mq, 61) for (M{, 7).

We want to show next that there is a canonical way to view D] as a
closure of (M’,~"). We can view the original collar A(+’) of 7" as identified
with 4" x [—1,1]. We can get a new product neighborhood A’'(y") =+ x
[—3,3]. Now let

T =T G % [0,1],
where f: 0T] — ' = 7} is the map defined as above and the annuli glued
to 1] via f are chosen to be 7' x [0,1] € dM’ x [0,1]. Then we can view

~

T'x[—1, 3] as attached to (M’,+') along A'(v'). Let M' = M'0T"x[-1 1],
we want to show that there is a canonical way to identify

MN\int(M') = (R, u R") x [-1,1]. (4)
See figure 4.
Ty Ty T’ % [~3,3]
R, x[0,1]—
1
oM’ x [0,1]
0
int (M)

Figure 4: The collar M’ x [0, 1] and the auxiliary surfaces T7,T".

Suppose 0M' = R, U R_, then there is a canonical way up to isotopy
to identify Ry with R,. The Ry () is identified with R, (v}) and T7 part
is identified with itself. The rest of R4 are product annuli of 4'. Hence
there is a canonical way to identify

O(MN\int(M')) = (R, U R") x {~1,1}. (5)
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Note it is obvious that
(M\int(M")) = (R, u R") x [0,1],

so by lemma 2.18, there is a unique isotopy class of diffeomorphisms which
restrict to the canonical identification (5) on the boundary. Hence there is
a well defined map

U SHM(=Mj, =) — SHM(=M', =)
induced by the identity on HM (-Y{| — R};T'_;).

Definition 3.7. Suppose h is a 2- or 3-handle attached to (M,~) and
(M',~") is the resulting balanced sutured manifold. Suppose Cjv, F_y
and U are defined as above, then we define the contact handle attaching
map as

Ch=V"10CloFy: SHM(—M,—v) — SHM(-M',—+').

Actually the handle gluing maps constructed above are the same as
what are done in Baldwin and Sivek’s paper [2].

Proposition 3.8. The gluing maps in definition 3.7 are equivalent to those
constructed by Baldwin and Sivek in [2].

Proof. For 2- or 3-handles, suppose (M, ) is the original sutured manifold
and (M’,~') is the result of attaching a contact handle h = (¢, S, D3,§).
Suppose (M7, ) and (M, ~]) are constructed as in definition 3.7.

Suppose W = M’ x [0, 1] is the product, we can view it as a cobordism
with sutured surface (S = dM x{0},~). When doing closing up along (.5, ),
we get two marked closures D = (Y, R,r,m,n) and D; = (Y1, R,7,m1,7)
for (M, ~) and (M, ) respectively and a cobordism W from Y to Y; which
induces the map F_y,. From definition 3.6 and the construction of ¥ in
definition 3.7, we can see that D; is also a marked closure of (M’,~"). Thus
handle attaching map is just induced by the cobordism w.

Let W7 = M x [0,1] € W and we can view WW; as a special cobordism
with sutured surface (Si,7). Let My = M x {1} u dM x [0,1]. See figure
3. By doing a suitable closing up along (S1,7), we can get two marked
closures D (the same as above) and Dy = (Y3, R, 7, mg,n) for (M,~) and
(M, 7) respectively and a cobordism W, from Y to Ya.
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Recall h = (¢, 5, D3,6) is the contact handle attached to M. Then W
can be viewed as obtained from W; by attaching D? x [0, 1] through the
map

¢ xid: S x[0,1] > oM x [0,1] € My < oW;.

Accordingly, TV can be viewed as obtained from Wl by attaching D3 x [0, 1]
through the map

gbxid:Sx[O,I]Hé’Mx[O,l]cMQCYQCé’ﬁ\/l.

This D3 x [0, 1] now becomes a 4-dimensional handle. Let h* = (¢ x id, S x
[0,1], D3 x [0, 1]) be this 4-dimensional handle.

If h is a 3-dimensional 2-handle, then h* is a 4-dimensional 2-handle.
Recall for a 2-handle h, S is an annulus. Suppose o < int(S) is the core of
S, ie.,

[a] = +1 < H{(S) = Z,

then we can view h as a 2-handle attached along the curve ¢(a) < M,
and view h?* as attached along the curve

o(ar) x {%} < Yy < OW.

Note that W is actually diffeomorphic to Y x [0, 1] so such a 4-dimensional
2-handle attachment actually corresponds to a Dehn surgery on Y along
the curve ¢(a) € M < Y. The slope of the Dehn surgery can be compute
from the framing of the 4-dimensional 2-handle attached and it is a 0 Dehn
surgery with respect to 0 M x {%} surface framing. If dM x [0, 1] is equipped
with I-invariant contact surface so that M is convex and ~ is the dividing
set, then since ¢(«) intersects 7 twice we know that when we realize ¢(«)
as a Legendrian curve intersecting ~ twice, then the 0 surface framing
corresponds to the contact +1 framing. This is exactly the case in [2].
Hence the two gluing maps are the same.

If & is a 3-handle, then A? is also a 3-handle. Now W is diffeomorphic
to the result of attaching a 4-dimensional 3-handle to Y x {1} < Y x [0, 1]
hence it is also diffeomorphic to the result of gluing a 4-dimensional 1-
handle to Y3 x [0, 1] along two points in Y x {0}. This is exactly the same
as in [2] so the two gluing maps are the same. O

Above discussions will also lead to an equivalent definition for the handle
gluing maps for 2- and 3-handles, which would be more useful in later
discussions.
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Definition 3.9. Suppose (M, ~) is a balanced sutured manifold and h is a
2-handle attached to (M, ) along the curve a < dM and results in a new
balanced sutured manifold (M’,~’). Suppose we use auxiliary data T', f to
get a pre-closure M for (M,~), then we can do a 0-Dehn surgery along
a curve $ < int(M), which is isotopic to «, with respect to dM-surface
framing to get a pre-closure M for (M’',~"). Since the surgery is supported
in a neighborhood of 3, we have OM = OM' and hence we can use the
same auxiliary data R, h,n to get marked closures D' = (Y, R,r,m,n) and
D = (Y R,r,m/,n) for (M,~) and (M’,~") respectively. We can form a
cobordism W from Y to Y obtained by attaching a O-framed 4-dimensional
2-handle to Y x [0, 1] along 5 = Y x {1}. The handle gluing map

Ch : SHM(—M, —~) — SHM(—M', —+)
for a 2-handle h is defined to be the map induced by the cobordism W,

Definition 3.10. Suppose (M,) is a balanced sutured manifold and h
is a 2-handle attached to (M,~) along a sphere S < JdM and results in
a new balanced sutured manifold (M’,~"). Suppose we use auxiliary data
T, f to get a pre-closure M for (M,~), then we can do a cut and paste
surgery along a sphere S" < int(M), which is isotopic to S, to get a pre-
closure M’ for (M’,~"). Since the surgery is supported in a neighborhood
of §’, we have OM = oM’ and hence we can use the same auxiliary data
R, h,n to get marked closures D' = (Y, R,r,m,n) and D = (Y, R,r,m’,n)
for (M,~) and (M’,~') respectively. We can form a cobordism W from Y
to Y’ obtained by attaching a 4-dimensional 3-handle to Y x [0, 1] along
S" < Y x {1} corresponding to the cut and paste surgery. The handle gluing
map

Ch : SHM(—M, —~) — SHM(—-M', —+)
for a 3-handle A is defined to be the map induced by the cobordism ~W.

3.3 Basic properties of handle attaching maps

For a special pair of handles, we can cancel them both topologically and
for cobordism maps.

Lemma 3.11. Suppose (M, ) is a balanced sutured manifold, h = (¢, S, D3, )
is a 0-handle and b/ = (¢',S', D¥ §") is a 1-handle such that the attach-
ing map ¢ maps one component of S" to M and the other component to
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0D3. Let (M',~') be the resulting balanced sutured manifold, then there is
a diffeomorphism g : (M,~) — (M',~") so that

(1). The map o restricts to identity outside a neighborhood of ¢'(S") N
oM.

(2). The map 1oy is isotopic to the inclusion map M — M’

Further more, we have

Ch/ o Ch = SHM(wm) : SHM(—M, —’}/) - SHM(—M’, —’}//).

Proof. The two handles form a pair of handles which can be canceled
topologically, so we can easily find such a diffeomorphism v, : (M,v) —
(M',~") satisfying the two conditions above.

From definition 3.6, we know that a marked closure D’ = (Y, R, r,m’/,n)
will induce a marked closure D = (Y, R, r,m = m’|y;,n) and the composi-
tion Cjs o C}, is induced by the identity map

id : SHM(=D) — SHM(-D).

Let us now describe the map SHM (). If we fix the same closure
D' = (Y, R,r,m/,n), then we can get a closure

~

D = (Y7 R7 T, m/ © 1%1#7)
for (M,~) and the map SH M (1) is the induced by the map
id: SHM(=D) — SHM(=D').

To prove the lemma, we need to show the commutativity up to multiplica-
tion by a unit of the following diagram, by lemma 2.16:

I N
-D,—-D

SHM(-D) SHM(-D)

SHM(~D)

Now since m and m’ o 1y are isotopic in Y so that the isotopy is
identity outside a neighborhood of ¢”(S5”) < int(Y'\int(im(r))) and the two
marked closures have the same r map, the canonical map from SHM (—D)
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to SHM(—ﬁ) is just the identity map by definition 2.21, so the above
diagram indeed commute, and we must have

Ch/ o Ch = SHM(wm) : SHM(—M, —’y) - SHM(—M’, —’y/).
U

Lemma 3.12. Suppose (M, ) is a balanced sutured manifold, h = (¢, S, D3, )
is a 1-handle attached to (M,~y) and W' = (¢',S’, D¥,§') is a 2-handle at-
tached to (M,~) v h. Suppose o' < S’ is the core of the annulus S’, i.e.,
the simple closed curve which generates Hy(S). Suppose the attaching map

@' maps the core o' to a curve which is the union of two arcs

)= udyc oM Y D?).
Here ¢ is an arc on 0M disjoint with the suture v and ¢, intersects the
dividing set & on 0D3\S twice, and we shall require that c, intersects each
component (there are two components) of 5\S once.

Suppose (Ms,y2) is the resulting manifold of attaching h and h', then
there is a canonical isotopic class of diffeomorphisms s : (M,7vy) —
(Ms,vs) so that

(1). The map 115 restricts to identity outside a neighborhood of (¢(S) U
¢'(S"))nIM c M.

(2). The map 1o is isotopic to the inclusion M — M'.

Furthermore, we have

CpoCy = SH_M(Q/JH) : SH_M(—M7 —’Y) - SH_M(—M2, —’72)-

Proof. The two handles can be canceled topologically so the map ;5 is
easy to find.

Now suppose (M, 1) is the result of attaching the 1-handle h. Then
from definition 3.6 we know that a marked closure D; = (Y, R, 7, mq,n) of
(M, v1) will induce a marked closure D = (Y, R, r,m = mq|y,n) of (M,~)
and the map C}, is induced by the identity map

id: SHM(—D) — SHM(-D;).

From definition 3.9, there is a curve § < Y isotopic to my(¢(a)) <
my(0M;) < Y so that if we do a 0-Dehn surgery with respect to my(0M;
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\ _____________ 7/7/:—\———5—————{,6\

R+(m) I-handle h
R-framing 0M;-framing
// T N— F
I
B~ }'____—\____/‘ _____________ r
N\, ./ \

A neighborhood of 3

Figure 5: Top: the 1-handle h and the part ¢, of the core of the 2-handle
h'. Bottom: in a neighborhood of the curve [, the longitudes of the two
surface framings

surface framing, then the resulting manifold Y3 is a closure of (Ms,7s).
Now g < int(mq(M;)) < Y and the Dehn surgery can be supported in an
arbitrarily small tubular neighborhood of 3. Hence the data for r, R, n in D,
is not influenced by the Dehn surgery along S and we get a marked closure
Dy = (Ys, R,7,ma,n) for (Ms,72). As in definition 3.9, the Dehn surgery
corresponds to a cobordism 17[\/ from Y] to Y3, obtained from Y; x [0, 1] by
attaching a O-framed 4-dimensional 2-handle along 5 x {1} < Y] x {1}. So
we have a cobordism

—~~

HM(~W) : SHM(-D,) — SHM(~D,)

and this map induces Cp.
Let us now describe the map SHM(1)5). If we fix the same closure
Dy = (Ya, R, r,m2,n), then we can get a closure

ﬁ = (3/27 R7 r,Mmgy O 1/}127 ?7)
for (M,~) and the map SHM(¢2) is the induced by the map
id: SHM(~D) — SHM(—D5).

by lemma 2.16, to finish the proof, we need to show the commutativity, up
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to multiplication by a unit, of the following diagram:

N N
SHM(—D) ——"—~ SHM(-D)
M(=W)oid y

SHM(—D,)

Now let us describe &7 p_p I details. The key observation is that

under the condition of the lerr,lma, we can isotope [ into R, (v1) or R_(71)
and then into a curve ' < r(R x {t}) for any ¢t € (—1,1). The reason is
that from the hypothesis of the lemma we know that ¢'(/) = ¢} U &, ¢]
has already been contained in R, (y;) or R_(71), and ¢, can be isotoped
into the same component within the 1-handle h.

The surgery on [ is +1 with respect to the contact framing and 0 with
respect to the dM;-surface framing as discussed in the proof of proposition
3.8. It is straightforward to see that after the isotopy, the surgery becomes
a t+1-surgery along ' with respect to the surface r1 (R x {t}). See figure 5.
If we go through contact framing again, since now 8’ does not intersect the
dividing set on r1 (R x {t}), we can see that it is a +1-surgery. When reverse
the orientation to deal with —D; and —251, it becomes a —1-surgery and
hence corresponds to a positive Dehn twist. Hence from the definition 2.21
for the canonical map, we know that the canonical map is induced by a
cobordism W’ which is obtained from Y x [0, 1] by attaching a 4-dimensional
2-handle to along ' < Y x {1}. Yet W and W' are diffeomorphic since 3
and (8 are isotopic and the framing of the handle gluing are also the same.
Hence the above diagram indeed commute and we are done. O

Lemma 3.13. Suppose (M, ) is a balanced sutured manifold, h = (¢, S, D3,5)
is a 2-handle and h' = (¢', ', D¥ ') is a 3-handle both attached to (M, 7).
If a < int(S) is a curve which represents a generator of Hy(S), then we
shall require that o is mapped to a curve on 0M which intersects v twice
and bounds a disk D on 0M. Hence a retraction of this disk D union with
one component of 0D3\S will become a new sphere boundary S? of the re-
sulting manifold (My,v1) of gluing h to (M,~). We shall require that the
attaching map ¢ maps S’' = 0D to S?. See figure 6.
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Suppose (Ms,y2) is the resulting manifold of attaching h and h', then
there is a canonical isotopic class of diffeomorphisms 13 : (M,~) —
(Ms,7y2) so that

(1). The map a3 restricts to identity outside a neighborhood of D < M.

(2). The map a3 is isotopic to the inclusion M — M'.

Furthermore, we have

Ch/ @) Ch = SHM(’I/}Qg) . SHM(-M, —’)/) — SHM(-MQ, —’}/2)

the 2-handle h
\\\\\\\\\\\\ S? = ¢’ (S")

Figure 6: The 2-handle h and the sphere S? along which 7/ is attached.

Proof. The two handles can be canceled topologically so the map 193 is
easy to find.

Suppose (Mg, o) = (M,~). As in the definition 3.9 and definition 3.10,
fori =0, 1,2, there are suitable closures D; = (Y;, R;, r;, m;,n;) for (M;, ;).
The map C, is induced by a cobordism ~W from —Y, to —Y] so that Wis
obtained from Yj x [0, 1] by attaching a 4-dimensional 2-handle D? x [0, 1]
along a curve § < Yy x {1}. The map C}, is induced by a cobordism —W
from —Y; to —Y, so that W is obtained from Y; x [0,1] by attaching a
4-dimensional 3-handle D3 x [0,1] along a sphere in Y; x {1}. The 3-
dimensional handles D? and D is a pair of handles which can be canceled
topologically, so the corresponding pair of 4-dimensional handles will also
be canceled topologically. Hence the composition of the cobordism W u W’
is actually diffeomorphic to the product cobordism Yy x [0, 2]. We can think
of identification Yy x {2} with Y5 to be induced by the diffeomorphism )93
and hence by lemma 2.16 we have an equality

Ch’ O Ch = SHM('@Z)Q?,)
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O
We have a few more invariant results for contact handle attachments.

Lemma 3.14. Suppose (M,~) is a balanced sutured manifold and h =
(¢,S,D36), W = (¢,S",D¥,48") are two contact handles glued to (M,~)
with result (M',~"). Suppose further that the gluing maps have disjoint
mages:

¢(5) n ¢'() = &,

then the two maps commute:
Ch o Ch/ = Ch/ o Ch : SHM(—M, —’)/) - SHM(—M’, —’y/).

Proof. Note that from definition 3.6, 3.9 and 3.10, we know that the gluing
maps on canonical modules are essentially induced by cobordism which is
either a product one or one obtained from a product cobordism by adding
a 4-dimensional 1- or 2-handle. The condition in the lemma means that
the attachments of those 4-dimensional handles can be moved apart and
hence commute with each other. Hence the inducing gluing maps between
canonical modules also commute. O

Remark 3.15. Suppose we first glue A and then glue A’ so that the index
of h is no smaller than that of &', then by an isotopy we call always move
them apart. Hence such gluings always commute.

Lemma 3.16. Suppose (M,~) is a balanced sutured manifold with a local
contact structure defined in a collar of OM. Suppose (M',~') is another
balanced sutured manifold. Suppose

fi(M,y) = (M)

is a diffeomorphism and =1 will pull back the local contact structure. Sup-
pose h' is a contact handle attached to (M',~") and via f we can regard h'
as a contact handle h attached to (M,~y) and there is a contactomorphism

f:MuUh—MUR
which restricts to f on M. Then we have an equality:

Ch o SHM(f) = SHM(f) o Cy.

37



Zhenkun Li 3 HANDLE GLUING MAPS AND CANCELATIONS

Proof. The instanton version is proved in [3]. The monopole version is the
same. U

The last invariance result is about the inclusion of (M, ) into a disjoint
union (M,~) u (N,0) when (N, d) has a contact structure £ so that 0N is
a convex surface and ¢ is the dividing set. Then from [21] we know that
(N, &) possesses a contact handle decomposition hy, ..., h,. We can regard
those contact handles as attached to (M,~) but all attaching maps are
disjoint from JdM. From this point of view, there is a map:

Ch, ©Ch, , 0...0Ch : SHM(—=M, —v) — SHM(—(M 1 N),—(y u 9)).

We want to prove that this map is independent of the contact handle de-
composition of (IV,d). The idea is that essentially this map is the identity
on M tensoring with the contact element of N. The proof will become
easier if we require that there is no 3-handle existing in the handle decom-
position of (N,d) as such decompositions can be related to partial open
book decompositions of (N, d). We will not introduce the basic definitions
of partial open book decomposition or positive stabilizations, and interested
readers are referred to [2, 3, 13].

Lemma 3.17 (Juhész, Zemke, [13], section 4.1). Suppose (N,0) is a bal-
anced sutured manifold and & is a contact structure on N so that ON 1is
convex and ¢ is the dividing set. The the following two objects are in one-
to-one correspondence to each other:

(1). A partial open book decomposition of (N, 0,€).

(2). A handle decomposition of (N, 0,&) with no 3-handles.

Lemma 3.18 (Honda, Kazez, Matié, [9], theorem 1.3). Suppose (M,~) is
a balanced sutured manifold and £ is a positive contact structure on (M, )
so that OM is a convex surface and v is the dividing set. Then (M,~)
admits a partial open book decomposition. Furthermore, for any two partial
open book decompositions of (M,~), one can perform positive stabilizations
on each finitely many times so that the resulting two partial open book
decompositions are isotopic.

Lemma 3.19 (Juhdsz, Zemke, [13], lemma 4.7). Suppose (N,0) is a bal-
anced sutured manifold and & is a contact structure on N so that ON is

convez and 0 is the dividing set. Suppose (S, P, h) is a partial open book de-
composition of (N, §,€) and (S, P', h') is a positive stabilization of (S, P, h).
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Suppose H and H' are two contact handle decompositions of (N, 0,&) aris-
ing from (S, P,h) and (S’, P', h') respectively, then H' can be obtained from
H by adding a pair of canceling index 1- and 2-handles (See lemma 3.12).

Lemma 3.20. Suppose (M,~) is a balanced sutured manifold and (N, 0) is
a balanced sutured manifold with a compatible contact structure £&. Suppose
we have two different ways to decompose (N, §,€) into contact handles:
hi,...;hn and By, ..., k!, so that neither contains a 3-handle. Then we can

regard those handles as attached to M and have an equality
Ch,0...0Cy, = Cyy 0...0Cy : SHM(—=M, —vy) — SHM(—(M uN), —(yud)).

Proof. The proof is a combination of lemmas 3.17, 3.18, 3.19, 3.12 and
3.16. 0

Remark 3.21. This is essentially the way Baldwin and Sivek defined a con-
tact invariant for sutured instantons in [3].

If we allow 3-handles in the contact handle decompositions, the gluing
map is still independent of decompositions and we will prove this result in
the next proposition. Also we shall remark that this proof does not depend
on the uniqueness part of the relative Giroux correspondence, but as a price
to pay, local coefficients are necessary. Note that if one is already satisfied
with using the uniqueness part of relative Giroux correspondence then the
next technical proposition is not used anywhere else in the paper.

Proposition 3.22. In lemma 3.20, if we allow 3-handles in both of the
decompositions, then the same conclusion still holds.

Proof. Since {h;} and {h}} are both contact handle decompositions of
(N,6,€), they must both have at least one 0-handle. Let (Ny,dp) be a
0-handle or a 3-ball with one simple closed curve being the suture on its
boundary, we can view all other handles h; or h;» as being attached to Nj.

By lemma 3.14 we can assume that the handles are ordered so that
the index is non-decreasing. Suppose (Ni,71) is gotten from (Ny,dy) by
attaching all 0- and 1-handles in {h;} and (NNVs,d2) is got from attaching
all remaining 2 and 3-handles to (Ny,d;). There is a contactomorphism
g : Ny — N. As in definition 2.7 and 2.3, we can use auxiliary data T, f to
form a pre-closure Ny for (Ny, ;). We shall require:

(1). There is an arc configuration A (defined in [2]) on T so that N,

carries a contact structure and J/N; is convex.
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This can be achieved by an auxiliary surface 7" of large enough genus.
By definition 3.6, we know that NN; is also a pre-closure for (g, dp). Define

ON; =R, UR_.

From definition 3.9 and 3.10, there are curves (31, ..., Bs < int(Ny) < j\71,
all isotopic to curves on 0Ny, and spheres S, ..., S, < int(NV;) < Y7, so that
if we do 0O-surgeries along all §; and do cut and paste surgeries along all
S;, then we will get a pre-closure N, for (N3, d2) so that ONy = ON;. As
discussed in proposition 3.8, the Dehn surgeries can be made to be contact
+1 surgeries and the cut and paste surgeries can also be done to preserve
contact structures. So there will be a contact structure on Ns.

We can similarly form (N7,07), (IV5,65) and a contactomorphism ¢’ :
N} — N. We can require

(2). The pre-closure Ny is also a pre-closure for (N],8).

This requirement can be achieved by choosing a 7" with large enough
genus. N N

As above there are curves 3] = N; and spheres S = N; so that doing

suitable surgeries along these objects will result in a pre-closure Né carrying
a suitable contact structure and 0N, = dN;. Note the boundary of all pre-
closures are identified and are all R, U R_. For later use, we will need a
diffeomorphism . N
C: N2 - Né
We shall require that
C|(N2) = (gl>_1 Og . N2 — Né

If we pick a non-separating simple closed curve ¢ < T, then ¢ will
correspond to two curves ¢, < R, and c. < R_. By choosing the auxiliary
surface 7" with large enough genus, we could require that

(3). C preserves ¢ x [—1,1] € Ns.

(4). There exists a gluing diffecomorphism h : R, — R_ preserving
contact structures and identifying ¢, with c_ in the way that ¢, and c_
are both identified with c.

(5). There exists a smooth curve n R intersecting ¢ transversely once.

We can use the same auxiliary data R,,h,n to get a marked closure
Do = (Yo, Ry, 7, mg,n) for (Ny, &) and marked closures Dy = (Y, Ry, 7,971, 1),
Dé = (ng R+7T7 (gl)ilv 7)) for N.
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Note that for all three marked closures, the curve ¢ becomes a torus as
follows: there are ¢ x [—1,1] ¢ T'x [—1,1] and ¢ x [-1,1] € Ry x [—1,1]
and the way we get the closures will identify their boundaries to get ¢ x S*.
Suppose g € Yy, 3y < Yy and ¥, < Y] are the corresponding tori.

Now let T be an auxiliary surface for (M,~) and f : dT" — ~ be the
gluing map. Let
M=MuT x[-1,1], oM =R, UR_.

!
Suppose there is a non-separating simple closed curve ¢ ¢ T and a diffeo-
morphism o N
h . R+ - R_
so that h(¢ x {1}) = & x {—1}. Use h we will get a marked closure
D = (Y7 R-i—aramaﬁ)

for (M,~) and there is a torus ¥ < Y corresponding to ¢.

We can now form a marked closure for (M, ) L (No, dg) as follows. Cut
Y open along ¥, and let Y = Y\(int(N(X))). We have 0Y"” =¥, u X_.
Cut Yy along ¥y and let Yy = Yp\(int(N(Xp))) with oYy = o4 U X .
Let

T2 — 2

be a diffeomorphism so that 7(X n7) = Xy n 7. We can use 7 to glue
24 to Yo and X_ to Yo 4. Let Y be the resulting manifold. There are
corresponding }:E, 7,m,n so that

D = (Y, R, #mm,n)

is a marked closure of (M, ) w1 (No,70). If we use Y5 or Yy and the same
T, we can construct two similar marked closures

152 = (%,_ﬁ,f‘,mg,ﬁ),ﬁ; = (gaﬁafaméaﬁ)

for (M,~) u (N,d). Now the diffeomorphism C' extends by identity to a
diffeomorphism which we also called C"

C : Yo\int(im (7)) — Y;\int(im(#')).

There are Legendrian curves and spheres §;,5; < (Y\N(X)) < Y so
that if we do contact +1-surgeries along these curves 3; and do cut and
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paste surgeries along S, then the resulting manifold will be exactly Y.
Hence there is a cobordism W from —Y to —372 so that W is obtained
obtained from Y x [0, 1] by gluing 0-framed 4-dimensional 2-handles along
all B < Y x {1}, and gluing 4-dimensional 3-handles along all S; Y x {1}.
Then the map

HM(W) : HM(=F| = #({0} x R),T_y) — HM(~T3| = #({0} x R),T_;)
will induce the map
Ch, 0...0Ch, : SHM(—(M 1 Ny), —(yudy)) — SHM(—(M uN), —(yud)).

Later we will use another interpretation of —I. Gluing 4-dimensional
2- and 3- handles to ¥ x [0, 1] at ¥ x {1} is equivalent to glue 4-dimensional
2- and 1-handles to Y5 x [0,1] at Y5 x {0}. Suppose those handles are
attached along curves 6;, which correspond to f3;, and along pairs of points
(pj,q;), which correspond to 5.

There are curves 3} < Y and spheres St < }72’ as well. We can construct

similarly a cobordism W’ from ~Y to —572’ which induces the map
Chy, 0...0Cy : SHM(—(M 1 Ng), —(yudg)) — SHM(—(M u N), —(yud)).

Just as for W, there are curves ¢, }72’ corresponding to ! and pairs
of points (p/;, ¢j) corresponding to S} = }72’ )
To show that
Chn 0...0 Ch2 = Ch;n ©...0 Ch’Qa

we only need to show that

. o HM(W)=HMW, (6)

—Do,—D),
where (IL@Q P, is the canonical map constructed in definition 2.21 for the

two marked closures —Z/)\g and —13; of the same genus. The diffeomorphism
C'is used to construct such a canonical map. As in definition 2.21, we can
construct R R R R

¢’ R— R, ¢“:R— R
The way we choose C' makes sure that the maps ¢ and ¢ will fix the
part of R coming from R+ which was used to build the marked closure D
of (M, ). Hence we can decompose ¢ o ¢¢ and (¢¢)! as

QOC O’QZ)C ~ Dce& o .. ODEZ) SOC Owc Deutl o ODEZ?

Ay +1
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so that all a; are disjoint from the part of R coming from ]§+.

In general there will be both positive and negative Dehn twists but for
simplicity, we only deal with the case when all e, = —1. The general case
will follow from a similar argument. As in definition 2.21, let W, be the
cobordism from —Y5 to —Y; obtained from (—Y5) x [0, 1] by gluing some
4-dimensional 2-handles along all the curves ay,...,a, (=Ya) x {1}, then
the canonical map (137@277@,2 is induced by the cobordism W..

Equation (6) is now equivalent to

HM(W O W,) = HM(W'). (7)

Note that the curves 6; and pairs of points {p;, ¢;} used to define W are
all contained in YO\]\Of (30) © Y, so intuitively there is nothing happened in
Y part of Y and we shall be able to split off a product copy of Y. This
idea is carried out explicitly as follows.

C—L SN

id U N
2 Ha

-

Ha M3

e

r/—— [ N

Y” x [0,1] Y xU Yy x [0,1]
Figure 7: The three parts of the cobordism —W,. The middle part is ¥ x U,
while the ¥ directions shrink to a point in the figure.

Let U be the surface depicted as in the figure 7. It has four vertical parts
of the boundary which we call pq, ..., us. Suppose each is parametrized by
[0,1]. Recall we have Y” and Y’ by cutting open Y along ¥ and Yj along
Y repsectively. We have the gluing diffeomorphism 7 to get Y. Now let
—W, be the cobordism obtained by gluing three parts Y” x [0,1], X x U
and Yy x [0, 1] where we use id x id to glue 0Y” x [0,1] to 3 x (u1 U p2)
and use 7 x id to glue ¥ x (3 U p4) to 0¥y x [0,1]. The result W, can

A~

be thought of as a cobordism from —(Y 1Y) to —Y. Similarly we can
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construct a cobordism W/ from (Y U YJ) to Y. The same cobordism is

juts one from —YJ to —(Y L Y{). From theorem 3.2 in [17], we know that
W, and W/ induces isomorphisms, so the equality (7) is equivalent to

HMW, oW oW, uW)=HMW, oW o W,). (8)

1-handles . .
Wi W,
2-handles
= =N -~ =N
D D

Figure 8: Cut along ¥ x S! and glue back two copies of ¥ x D?.

On W, uW uW, U W! we can cut along a 3-manifold 3 x S! as shown
in the figure 8, and glue back two copies of ¥ x D? along boundaries. The
result is a cobordism W = Wy U Wa, where Wy = (=Y) x [0,1], and W,
is a cobordism from —Y; to —Y; obtained from Y; x [0, 1] by attaching
4-dimensional 1-handles at pairs of points {p;,¢;} < Y5> x {1} and then
attaching 4-dimensional 2-handles to Y5 x [0, 1] along curves 6; < Y x {1}
and g © Y2 X {1} We can apply similar argument to W, v W/ v W/, and
get W' = I/V1 v, WQ, where I/V1 W, ~ (=Y) x [0,1] and W} is a cobordism
from —Yj to —Y; obtained from YJ x [0, 1] by attaching 4-dimensional 1-
handles at {p/, q;} c Yy x {1} and then attaching 4-dimensional 2-handles
to Yy x [0,1] along 6, < Y5 x {1}. There is a commutative diagram from
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the naturality of Kiinneth formula:

HM(=(Y 1Y) — HM(=Y) ® HM(=Y,)
HM(W) | HM (W)’ HM(W)®HM (W2) | HM(W])®H M (W})
HM(—(Y uY})) L HM(-Y)® HM(-Y))

The map HM (Wl) = HM (W{) since they are both product cobor-
disms. We claim that HM(WQ) = HM(Wz’) Since both cobordisms are
exact symplectic, they both map contact elements to contact elements (see
corollary 2.23 in [2]). Yet Y} is a surface fibration over S' with fibre Ry,
hence HM (Yp) = R (see lemma 4.7 and 4.9 in [17]), and the contact el-
ement in HM(Y}) is a generator of the module (See [2]). From Kiinneth
formula, the maps ¢ and ¢’ are injective, so HM(W) = HM(W’) Finally
from corollary 2.10 (or see the proof of theorem 3.2) of [17], we know that

—~ —~
!

HM(W, oW OW, W) = HM(W) = HM(W') = HM(W, 0 W' 0 W)).

Hence we are done. O

4 The general gluing maps
Now we will try to construct the general gluing map.

Definition 4.1. Suppose (M’ +') is a balanced sutured manifold. By su-
tured submanifold we mean a balanced sutured manifold (M, ) so that
M < int(M").

In [13] Juhdsz and Zemke used contact cell decompositions to re-construct
the gluing map originally introduced by Honda, Kazez and Mati¢ in [8].
Here we will introduce the basic definition of contact cell decompositions
and use it to construct general gluing maps. The following definition is
from [13].

Definition 4.2. Suppose (M, ) is a sutured submanifold of (M’,~’) and &
is a contact structure on (Z = M\int(M ),y u~'), so that 07 is convex and
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v u -~ is the dividing set. A contact cell decomposition of (Z, ) consists of
the following data:

(1). A non-vanishing contact vector field v that is defined on a neigh-
borhood of 0Z < Z and with respect to which ¢Z is a convex surface with
dividing set v U +'.

The flow of v induces a diffeomorphism between 0Z x I and a collar
neighborhood of 07 and under this diffeomorphism v corresponds to the
vector field £, M is identified with M x {0} and M’ is identified with
OM’ x {1}. We shall call

V= 'U|8M><I> V, = 'U|8M’><I-
(2). Barrier surfaces
S < oM x(0,1), S"< oM x (0,1)

that are isotopic to dM, M’ respectively and are transverse to v. Write
N for the collar neighborhood of dM bounded by S and N’ for oM’ S’
similarly. We shall call

7' = Z\int(N U N').

Note 07" = S u §' is a convex surface.

(3). A Legendrian graph I' ©¢ Z’" which intersects 0Z’ transversely in a
finite collection of points along the dividing set on 02’ with respect to v.
Furthermore, I" is tangent to v in a neighborhood of 07’ < Z'.

(4). A choice of regular neighborhood N(I') < Z’ of T" such that ¢ is
tight on N(I') and dN(I')\0Z’ is a convex surface. We also require that
N(I') n0Z" is a collection of disks D with Legendrian boundary such that
each boundary 0D has tb(D) = —1. We shall also assume that N(I') meets
0Z' tangentially along the Legendrian unknots forming 0N (T').

(5). A collection of 2-cells Dy, ..., D,, inside Z'\int(N(I")) with Legen-
drian boundary on 07’ U dN(I') and each @D; has tb(0D;) = —1. Further-
more, the following two conditions shall hold:

(a). Each component of Z\(N(I') u Dy u ... u D,,) is a 3—ball and ¢ is
tight on each of them.

(b). The disks N(I') n 07 and the Legendrian arcs ¢D; n 0Z' induces
a sutured cell decomposition ([13], definition 3.1), with the dividing set
induced by v.
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Now we are ready to define the gluing map:

Definition 4.3. Suppose (M,~) is a sutured submanifold of a balanced
sutured manifold (M’,~"). Suppose Z = M'\int(M) is equipped with a
contact structure £ so that 07 is a convex surface with dividing set v U ~/'.
Suppose C is a contact cell decomposition of (Z, &), we will use the same
notations as in definition 4.2. The contact vector field v will induce a
diffeomorphism ¢, : (M,v) — (M u N,d) where ¢ is the dividing set on
S < 0N with respect to v. Suppose hl,...,h. is a handle decomposition
of (N’,0" U ~') with no 3-cells. The existence of such decomposition is
guaranteed by lemma 3.18 and lemma 3.17.

A contact cell decomposition will lead to a handle decomposition: ver-
tices of I' are 0-handles, edges of I are 1-handles, 2-cells D; are 2-handles
and the remaining is a collection of 3-handles. Suppose we get a sequence
of contact handles A/, ..., h! from it, then we define the contact gluing map

(I)g : SHM(—M, _'7) - M(_Mla _/7/)

to be
Q¢ =Chy, 0...0Cy 0Cy, 0...0Cpy 0 SHM(9,,).

Proposition 4.4. The contact gluing map ®¢ as in definition 4.3 is well
defined.

Proof. The relation between two contact cell decompositions is stated in
[13], proposition 3.6. Any two contact cell decompositions are actually
related by a sequence of isotopies fixing boundary and three types of can-
celations. The well-definedness of our gluing map is just a combination of
that proposition with lemmas 3.11, 3.12, 3.13, 3.16 and 3.20. O

Proposition 4.5. Suppose (M,~) is a sutured submanifold of (M',~") and
(M',~") is a sutured submanifold of (M",~"). Suppose there are contact
structures & on Z = M'\int(M) and & on Z' = M"\int(M'), and their
union " = £ U & is a contact structure on Z" = M"\int(M), so that
the boundaries of corresponding manifolds are all convex surfaces and the
sutures are dividing sets. Then we have an equality:

D¢ 0 g = Dgr : SHM (—M, —v) — SHM(—M", —").

Proof. We follow the idea from Juhdsz and Zemke [13]. Suppose C is a con-
tact cell decomposition of Z and v is defined as in definition 4.2. Suppose
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hi,...; hy and Ay, ..., by, are defined using C as in definition 4.3. Suppose C’
is a Contact cell decomposmon of Z' with v, hl, . h and h/1> . h’ defined
similarly. Then we have

Pgode = Cj,0...0C], o}, 0...0C; 0SHM(¢y)oCl;, 0...0Cy 0Cy, 0...0C), 0. S H M (¢y).

Suppose h; = ¢5(h;) and k], = ¢5(h}), then by lemma 3.16, we know
that

SHM(¢5) 0 Chy 0...0Ch 0C, 0...0C, =Ch 0...0Ch 0Ch 0...0C.

If we go back to the definition of gluing maps, we can see that the set
of handles Ay, ..., hy and the set of handles hy, ..., Iy, R}, ..., h! are attached
to disjoint parts, so we can switch their order by lemma 3.14. The handles
hi, ..., hy corresponding to the neighborhood of dM” bounded by dM" and
the barrler surface S < Z”. The handles R}, ..., h, and b}, ...,k corre-
sponding to Legendrian graphs and 2-cells and tight 3-balls in Z and Z’, so
they are still basic elements to form a contact cell decomposition of Z U Z’.
The remaining handles hq, ..., h, correspond to the neighborhood of M’
in Z bounded by dM’ and the barrier surface S’. They consist of only 0-,
1- and 2- handles by lemma 3.18 so we can consider them as Legendrian
graphs and 2-cells. Hence the whole series

jy 000G 00, 0..0C; 00y o...0Cy oC;, 0...0C 0 SHM(¢p,)

can be thought of as from some contact cell decomposition of Z U Z’ and
hence the proposition follows. O

Suppose (M, 7) is a sutured submanifold of (M’,~") and if Z = M'\int (M)
is just a product dM x [0, 1] equipped with an I-invariant contact structure
so that for any ¢ € [0, 1], dM x {t} is convex with 7 x {t} being the dividing
set, Then we shall expect the contact gluing map to be the ’identity’. This
is made precise by the following proposition.

Proposition 4.6. Suppose (M, ) is a sutured submanifold of (M',~") and
€ is a compatible contact structure on Z = M'\int(M). Suppose there is a
Morse function f and a contact vector field nu on Z so that

(1). There is no critical point of f and

feM) =0, f(oM') =1
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(2). The contact vector field v is gradient like: v(f) > 0 everywhere in
Z.
Then we have the equality

Qe = SHM(¢,) : SHM(—M, —~) — SHM(—M', —+").
where ¢, is just the diffeomorphism induced by v.

Proof. With lemma 3.11, 3.12 and 3.13, the proof is exactly the same as
the proof of proposition 5.1 in [13]. O

At the end of the section, we want to relate the general gluing map
with the contact handle gluing map introduced before. Suppose (M, ) is
balanced sutured manifold and h is a contact handle attached to (M, )
and (M',~') is the result balanced sutured manifold. First we shall note
that (M,~) is not a sutured submanifold as in definition 4.1, we require
M < int(M’). The way to resolve this is to glue a product region 0M x [0, 1]
to M along 0M x {0} and glue h to dM x {1}. This is made precise by the
following definition from [13]:

Definition 4.7. Suppose (M, ) is a sutured submanifold of (AM’,~") and
¢ is a compatible contact structure on Z = M'\int(M). Suppose there is a
contact vector field v on Z and a decomposition Z = Z; u h such that

(1). The contact vector field v points into Z on M < 0Z and points
out of Z on oM' < 0Z.

(2). We have Zy =~ dM x |0, 1] and 0M is identified with 0M x {0} < 0Z.
We shall also require that v is non-vanishing on Z,, pointing into Z; on
0M x {0}, pointing out of Zy on dM x {1} and each flow line of v on Z; is
an arc from dM x {0} to OM x {1}.

(3). We shall require that h is a topologically 3-ball with piece-wise
smooth boundary and is tight under &.

(4). We can view h as a contact k-handle, for £ = 0, 1,2, 3, attached to
M v Zy, with corner smoothed.

Then (Z,&) is called a Morse-type contact handle of index k.

Proposition 4.8. Suppose (M,~) is a sutured submanifold of (M’ ,~")
(Z = M\int(M),&) is a Morse-type contact handle of index k for k =
0,1,2,3. Suppose the contact vector field v and the decomposition Z =
Zo U h are as in the definition 4.7 and v < OM x {1} < 0Zy is the di-
viding set with respect to v. Suppose ¢, 1 (M,~) — (M U Zy, 7o) is the
diffeomorphism induced by v. Then we have an equality

Qe =CloSHM(p,) : SHM(—M, —~) — SHM(—M', —+").
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Proof. The proof is exactly the same as the proof of proposition 5.6 in [13].
The handle cancelations needed have been proved in lemma 3.11, 3.12 and
3.13. 0

Remark 4.9. With proposition 4.8, 4.5, 4.4, we can actually prove the con-
jecture 1.7 in [2]: the gluing maps constructed by composing contact handle
gluing maps is independent of the contact handle decomposition.

Corollary 4.10. The contact element in sutured monopole Floer homology
is preserved by the gluing map Pe.

5 The cobordism maps

5.1 Constructions and functoriality

Now we are ready to construct the cobordism map between sutured monopole
Floer homologies. The following definitions are from [11].

Definition 5.1. Suppose (M, ~) is a balanced sutured manifold and &g, &;
are two compatible contact structures. We say that &, and &, are equivalent
if there is a 1-parameter family & so that for any ¢ € [0,1], & is a contact
structure on M with convex boundary JM.

Definition 5.2. Suppose (My, 7o) and (M;,7;) are two balanced sutured
manifolds. A sutured cobordism from (Mg, 7o) to (My, 1) is a triple W =
(W, Z,€) so that

(1). W is a compact 4-dimensional smooth oriented manifold with
boundary

(2). Z is a compact oriented 3-manifold so that dW\int(Z) = —M; U
MQ.

(3). We have that ¢ is an oriented and co-oriented contact structure on
Z so that 0Z = dM; u dM; (not specifying the orientation) is a convex
surface with dividing set v9 U 71.

Definition 5.3. Suppose (My, 7o) and (M;,7;) are two balanced sutured
manifolds and W = (W, Z,€) is a suture cobordism between them. We
can regard (Mo, 7o) as a sutured submanifold of (My U (—Z), ), and from
definition 4.3 we have a gluing map

®_¢ - SHM(My, v0) — SHM(My U (—=Z), 7).

50



Zhenkun Li 5 THE COBORDISM MAPS

The cobordism W can be thought as one with sutured surface (0Ma,72),
from (Mo v (—=Z),71) to (My,71). Hence there is a morphism

FW : SHM(MO U (—Z),’)/l) - SHM(Ml,’}/l)

The sutured monopole Floer cobordism map induced by W = (W, Z,§) is
defined as the composition

SHM(W) = FW o (I)_g : SHM(M(), ’)/0) - SHM(Ml,’}/l)
There are some basic properties of the cobordism map:

Proposition 5.4. Suppose Suppose (Mo, 7o) is a balanced sutured manifold
and W = (W, Z,€) is a suture cobordism from (My,~0) to itself so that
W = My x [0, 1] with Z = 0My x [0, 1] and & is I-invariant. Then we have

SHM(W) = id : SHM (Mo, v0) — SHM (Mo, 70)

Proof. Note the map Fy is induced by a cobordism W as in the proof of
proposition 3.2. In the above settings, however, W is actually diffeomorphic

to a product cobordism. Hence the proposition follows from proposition
4.6. 0J

Proposition 5.5. Suppose (My,vo), (Mi,v1) and (Ms,~2) are three bal-
anced sutured manifolds. Suppose W = (W, Z,&) is a suture cobordism
from (Mo, v0) to (My,71) and W = (W', Z',¢') is a suture cobordism from
(My,71) to (Ma,~2). The composition of W and W' is a suture cobordism

W =W'=WuW' Z"=2Z0Z "=¢0¢)
from (Mg, v0) to (Ms,2). Then we have the equality
SHM(W") = SHM(W') o SHM (W) : SHM (Mo, 7o) — SHM(Ma, 72).
Proof. We will not go into details. Suppose we have marked closures
Dy = (Yo, Ro,70,m0,10), D1 = (Y1, Ry, r1,ma,m), Dy = (Ya, Ry, 12, ma,12)

for (Mo, 7o), (My,71) and (Ms,~,) respectively, and the map SHM(W)
is induced by a cobordism obtained by attaching 4-dimensional handles
hi,..;hy and By, .. hy to Yy x [0, 1] at Yy x {1}. Here hy, ..., h, correspond
to the gluing map ®_, and Bty ooy o correspond to the cobordism map Fyy .
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Suppose similarly for SHM(W') we have handles R}, ..., b, corresponding to
the gluing map ®_o and iz’l, o ﬁ; correspond to the cobordism map Fyy-.
Then the composition SHM(W') o SHM(W) is induced by attaching four
sets of 4-dimensional handles Ay, ..., Ay, A1y eees Bon,s Ry, ..., L, iz’l,jz; to
Yy %[0, 1] at Yy x {1} in the order we wrote them down. Note the attachment
of two sets of handles 711, - A, and Ry, ..., bl can commute with each other
because Ay, ..., by, corresponds to handles attached to int(mq(M;)) < Vi,
while Al ..., h. are attached to Y; near m;(0M) < Y; so the two sets of
handles are attached disjoint from each other. Then the handles hq, ..., h,
and A}, ..., b} are attached first and correspond to the map ®_¢» as in the
proof of proposition 4.5. The handles hy, ..., h,, and 71’1, ey iLQ are attached
secondly and correspond to the cobordism map Fy» as in the proposition
3.2. Hence we get the desired equality:

SHM(W") = SHM(W') o SHM(W).
O

Remark 5.6. Intuitively, the three types of maps: cobordism maps, gluing
maps and canonical maps all commute with other types. The reason is
that for suitable marked closure D = (Y, R, r, m,n), cobordism maps corre-
spond to handles attached in m(int(M)) < Y, gluing maps correspond to
handles attached near m(dM) < Y and canonical maps correspond to han-
dles attached in int(im(r)) < Y, and the three regions in Y are pair-wise
disjoint.

5.2 Duality and turning cobordism around

Suppose W = (W, Z,[¢]) is a sutured cobordism from a balanced su-
tured manifold (M;,~;) to another (Ms,72). We can turn the cobordism
around, to make another cobordism WY = (W, Z, [¢]) from (—Mz,s) to
(=Mji,~). Suppose for for i = 1,2, D; = (Y;, R;, i, m;,m;) is a marked
closure of (M;,;), then DY = (=Y;, —R;, ri, —m;, —n;) is a marked closure
of (—=M;,~;). Note for a fixed spin® structure s and smooth 1-cycle n we
have a well defined pairing

(> : HM(Y,s;T,) x HM(-Y,5T_) — R. (9)
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Since in sutured monopoles all he spin® structures are non-torsion, the
pairing 9 induces a pairing

(-, SHM(D) x SHM(D") —» R

When passing to the projective transitive system and deal with canonical
groups or models, the pairing above is well defined up to a unit as we will
prove as follows.

Lemma 5.7. Suppose W is a cobordism from'Y toY" then we can view W
as another cobordism W from =Y’ to =Y. Then the two maps HM (W)

and ﬁ-l\//[(WV) are dual to each other with respect to the pairing in (9).

Lemma 5.8. Suppose (M, ) is a balanced sutured manifold, then there is
a pairing well defined up to multiplication by a unit:

<'7 > : SI—I—M(Mv 7) x SI—I—M(_Mv 7) - R. (10)

Proof. First suppose D = (Y, R,r,m,n) and D' = (Y', R',r',;m/,n) are two
marked closures of (M, ) of the same genus. Suppose a € SHM (D) and
be SHM(D") are two elements in the corresponding homology modules,
then we must show that

(a,b) = (®p p/(a), Pp. v (b)), (11)

where the pairing is the one in (9).

We prove here only the case when there is a curve o« € R so that after
doing a (+1) surgery along r(«a x {0}) < Y with respect to the r(R x {0})-
framing, we get a manifold diffeomorphic to Y. The general case will follow
from a similar argument and the functoriality of the canonical map ®9.

Suppose there is a curve o/ < R parallel to o but is disjoint from a.
Since the Dehn surgery is supported in arbitrary small neighborhood of «,
we can assume that r(a/ x {0}) < Y.

In this case, there is a cobordism W from Y to Y’ obtained by at-
taching a 4-dimensional 2-handle, with (+1)-framing with respect to the
r(R x {0})-surface framing, to Y x [0, 1] along r(a x {0}) x {1} = Y x {1},
and

CIDQDD, = HM(W™).

On DV, the surgery is still a (41)-surgery, but we so there is a cobordism
W= from —Y’ to —Y obtained by gluing a 4-dimensional 2-handle, with
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(+1)-framing with respect to —r'(R’ x {0}), to the curve r(a/ x {0}) x {1} <
Y’ x {1}, and
% pv = HM(W ™)™,

We actually have that W' and W~ are diffeomorphic by an orientation
preserving diffeomorphism, so W~ can be viewed as turning W+ around.
As a result, by lemma 5.7, we have

(D% p(a), P 1 (b)) = CHM(W*)(a), HM(W ™)~ (b))
={a, HM(W ™) o HM(W ™) (b))
= {a,b).

Hence (11) is proved.

Now suppose D = (Y, R,r,m,n) and D' = (Y',R',r',m',n/) are two
marked closures for (M, ~) so that g(D’) = ¢g(D) + 1. Then we need to
show that

<a’7 b> = <(I)%,g;’1<a’)7 (I)%gVJ,%’V (b)>7 (12)

Since we have dealt with the case of the same genus, we can discuss
only the special case as follows: there are two disjoint oriented embedded
tori Ty, T < Y’ so that

(1). Fori=1,2, T, nm/(M) = .

(2). Fori=1,2, T, nr'(R x [-1,1]) = 7'(¢; x [~1,1]) where ¢; = R’ is
an embedded oriented circle, and the two circle ¢; and ¢y together cut R’
into two oriented parts R] and Ry, so that

c1 Uy =0R] = —0R, and R}, =~ 3,

where ¥, 5 is the compact oriented surface of genus 1 and having two bound-
ary component.
(3). Ty and T5 cut Y into two parts Y/ and Y so that

Ty Ty =0Y, =—0Yy and m'(M) < Y.

(4). For i = 1,2, n intersects R; in an oriented, non-boundary-parallel
properly embedded arc 7;.

Suppose for ¢ = 1,2, p; = ¢; n n; and pick an orientation reversing dif-
feomorphism f : ¢; — co sending p; to po. Choose an orientation reversing
diffeomorphism h : T7 — T3 so that for i = 1,2

h|7n/(ci><[_1,1]) = (T’)*l o(fxid)o r.
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We can use h to glue the two boundary components of Y/ to get a closed
manifold Y; and do the same thing for Y to get a closed manifold Y. As
done in [1] there is a natural way to get a closure Dy = (Y1, Ry, r1, my,m1)
for (M,~) and a closure Dy = (Y5, Ra, 19, ma,72) so that Y3 is a fibration
over St with fibres diffeomorphic to Rs.

As we have already deal with the case of same genus, we can assume that
the two marked closures D and D; are the same. Then we can describe the
canonical maps ®%%%! and ®%97},, as follows. Pick the surface U depicted
in figure 7. Glue the three part7Y1’, T} x U and Yy together using h just as
depicted by figure 7. The result is a cobordism W from Y = Y; disjoint
union Y, to Y’. This cobordism will induce the canonical map ®%%%}.
The same cobordism, with the reversed orientation, will be a cobordism

W= = =W from (=Y) u (—Y2) to =Y’ and it will induce the canonical
map @%’%J%,v. If we turn W around, it will become a cobordism WY from
~Y" to =Y Li(—Y3) and induce a dual map by lemma 5.7. Then the equality
(12) will follow from the fact that the cobordism WY o W~ will induce the

identity map up to multiplication by a unit, which is proved in [17]. O

There is a simpler way to describe the gluing map.

Suppose (M’,~') is a balanced sutured manifold and (M, ) is a sutured
submanifold. Suppose Z = M’\int(M) and £ is a contact structure on Z so
that 07 is convex with dividing set v u~/’. Suppose Z has a contact handle
decomposition relative to M. That is, there are contact handles hq, ..., h,
so that if we attach them to (M, ), then we will get (M’ ,~). Suppose
hi, ..., h, are all 0- and 1-handles and h,,1, ..., h,, are all 2- and 3-handles.
Suppose (Mj,71) is the result of attaching all hy,..., h,, to (M,~). Let
W = M’ x [0,1], and let My = dW\(M; x {0}) with suitable orientation.
We can view W as a cobordism from (Mj, 1) to (Ma, ;) with sutured
surface (S = dM; x {0},71). If we do closing up along S, we will get
two marked closures Dy = (Y1, R,r,mq,n) and Dy = (Y3, R, r,mg,n) for
(My,7) and (Ms,y2) respectively and a cobordism W from Y] to Ys.

Proposition 5.9. Under the above settings, the marked closure Dy s also
a marked closure for (M,~) so there is a map

¢ : SHM(—M, —v) — SHM(—M;, —).

The marked closure Dy is also a marked closure for (M',~') so there is a
map
W : SHM(—M', —~') — SHM(—M,, —7,).
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The gluing map can be written as
O, = U toF yod.

Proof. From proposition 4.8 we know that the gluing map is actually equal
to

= Chn 0...0 Chl-

Since (M, 1) is gotten from (M,~) by attaching a few 0- and 1-handles,
the marked closure D for (M, ;) must also be one for (M,~) and hence
® is just the composition

P = Chm o ... OChl-

Let Wy = M x [0, 1] € W be the product. Still let S = dM; x {0} and
let My = 0W;\(M; x {0}) with suitable orientation. Then we can view W as
a cobordism from (M, 1) to (Ms,y3) with sutured surface (S,71). When
doing the same closing up along S as above, we get two marked closures
D, and Dy = (Y3, R,r,mg,n) for (M;,~v1) and (Ms, ;) respectively and a
cobordism 17[\/1 from Y; to Y. If we write

= (¢, 5, D, ;).

then we can see that W is gotten from 17[\/1 by attaching all D;’ x [0,1] to

Wl via maps
¢; xid: S; x [0,1] — OM; x [0,1] € My < Yy = OW).

This exactly the way we define 2- and 3-handle attaching maps in definition
3.9 and definition 3.10. Hence we have

U loF y=Cho...0oChii

and we are done. O

Corollary 5.10. Suppose W = (W, Z [£]) is a sutured cobordism from
(My,7v1) to (Msy,~y,). Suppose S < Z is chosen as in proposition 5.9 and
vy correspondingly. Suppose S separates OW into two parts M, and M, so
that M contains M; and is oriented in the same way as M;. We can view
W as a cobordism from (Mj,~}) to (M}, ~]) with sutured surface (S,~4). If
we do closing up along S, we get two marked closures D} = (Y{, R,r,m},n)
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and Dy = (Y5, R,r,mb,n) for (M{,~,) and (M5,~,) respectively. As above
we have

@ : SHM(M, 1) — SHM(M;], ~}),
T : SHM(My,~,) — SHM(M}, ~}).

Then we can actually write the cobordism map to be
SHM(W) = Ut o Fyy 0 ®.
Proof. We can decompose the sutured cobordism W as a union of two:
W =W"uWe.

Here W? is a special cobordism whose underline manifold is W* = W
but with sutured surface (S’ = dMs,75). The cobordism W" is a special
cobordism whose underlining manifold is W = (M u(—2)) x [0, 1] but with
sutured surface (Sx{0} = (Mu(—2))x|0,1],v;). The cobordism W can be
viewed as a union W* U W? with sutured surface (S,v}). From proposition
3.2 we know that W* can be viewed as gotten from (M; U (—Z2)) x [0, 1] by
attaching some 4-dimensional handles hi, ..., h} to int(M; U (=2)) x {1}.
Hence the result W of doing closing up along S for W is the same as
doing closing up along S for for W* U W?®. The result of the later can be
described as follows. When doing closing up along S for W, we get two
marked closure Dy = (Y1, R,r,my,n) and D = (Y, R,r,m,n) for (My,~)
and (M; U (—Z), 7o) respectively, and a cobordism W? from Y; to Y. Now
W can be thought of as obtained from Y; x [0, 1] by attaching some 4-
dimensional 2- and 3- handles which correspond to the gluing map ®_,.
When adding the contribution from W*, we know that W can be viewed
as obtained from W by attaching h{,...,h} to Y < OW?. This description
also exists in the construction of cobordism map. Hence we know that W
indeed induces the cobordism map SHM(W).

]

Now we can describe the relation between SHM(WW) and SHM (W) as
follows:

Corollary 5.11. Suppose W = (M, Z,[£]) is a sutured cobordism from
(Mi,71) to (Ms,ys). The same cobordism can be also viewed as a cobordism
WY from (—Ms,vs) to (—My,v1). Then the cobordism map SHM(W) and
SHM (W) are dual with respect to the pairing (10).
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Proof. If put the cobordism W up-side-down, then the distinguising surface
S'is unchanged (but in Z, a i-handle becomes a (3 —1)-handle). Hence from
corollary 5.10, Fyy is induced by a cobordism W while Fyyv is induced by
a cobordism W which is obtained by putting 4% up-side-down. Hence the
conclusion follows from lemma 5.7. O

There is a question related to the trace and co-trace cobordism. Suppose
(M,~) is a balanced sutured manifold and W = (W = M x [0,1],Z =
OM x [0,1],[£]) is the sutured cobordism from (M u (=M),v U (—7)).
Here ¢ is a [0, 1]-invariant contact structure on Z so that 0M is convex
with respect to % and v is the corresponding dividing set. Let R be the
ring with which we build the local coefficient, then we would like to ask
the following question:

Question 5.12. How to describe the cobordism map
SHM(W) : SHM(M i (=M),y v v) — R?
Note from Kiinneth formula, there is a map
i : SHM(M u (=M),y v y) — SHM(M, v) ® SHM(—M, 7).
Also there is a canonical map
tr: SHM(M,~) @ SHM(—M,v) - R

defined as
tr(a®b) = ba),

since SHM(—M,~) is the dual of SHM(M,~). We make the following
conjecture:

Conjecture 5.13. With the above settings, we have

SHM(W) = troi. (13)

6 A brief discussion on Instanton

The constructions in section 3-5 can be applied to instanton sutured man-
ifolds. The following definition is from [3].
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Definition 6.1. Suppose (M,) is a balanced sutured manifold, then a
marked odd closure of (M, ) is a sextuple D = (Y, R, m,r,n, «) so that
(1). The quintuple (Y, R, m,r,n) is a marked closure of (M, ) defined
as in definition 2.7
(2). We have « being a curve disjoint from im(m) and intersects (R x
[—1,1]) in the form r({p} x [—1, 1] for some point p € R.

Now suppose D = (Y, R, m,r,n, «) is amarked odd closure of a balanced
sutured manifold (M, ) we can pick a Hermitian line bundle w over Y such
that ¢1(w) is dual to the curve aun. Let E be a U(2)-bundle over Y with
a bundle isomorphism p : A2E — L. With such data we could define
instanton Floer homology I,(Y"), on Y. Follow from the definition in [17],
we can define

SHI(D) = ]*(Y|T(R X {0}))wa

where L. (Y|r(R x {0}))., means the generalized eigenspace of p(r(R x {0}))
in I,(Y), with eigenvalue 2¢g(R) — 2. In [1], Baldwin and Sivek construct
canonical maps between marked odd closures and the sutured instanton
Floer homology becomes a projective transitive system of C-modules. In
[3], they also construct contact handle gluing maps for instanton Floer
homology and the construction in this paper would be applied to instanton
and we have:

Theorem 6.2. For sutured instanton Floer homology, we have:

(1). The handle gluing maps constructed by Baldwin and Sivek satisfy
similar cancelation and invaraint properties as in lemmas 3.11, 3.12, .13,
3.14, 3.16, 3.20.

(2). There are well defined (up to multiply by a non-zero complex num-
ber) gluing maps for sutured instanton Floer homology and it satisfies sim-
tlar properties as in propositions 4.5, 4.6, 4.8.

(8). There are well defined (up to multiply by a non-zero complex num-
ber) gluing maps for sutured instanton Floer homology and it satisfies sim-
tlar properties as in propositions 5.5, 5.4.

Remark 6.3. This will give a confirmative answer to conjecture 1.8 in [3]
where Baldwin and Sivek conjectures that the gluing maps is independent
of the handle decomposition.

At last we want to give an alternative definition of the contact invariant
defined in [3]. The original definition used partial open book decomposi-
tions of contact balanced sutured manifolds. Yet partial open book decom-
positions only involve 0-, 1- and 2- handles so it is only expected but not
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proved that the contact element is also preserved by attaching a contact
3-handle. Now we can use the gluing map to define the contact element:

Definition 6.4. Suppose (M, ) is a balanced sutured manifold and & is
a contact structure on M so that dM is a convex surface and v is the
dividing set. We can define the contact element of (M,~,£) as follows.
Suppose D < int(M) is a Darboux ball in M, let 6 < 0D be the dividing
set on 0D. Let Z = M\int(D), we have a gluing map

(I)ﬁ : @(_Dv _5) e ﬂ(_M7 _7>
Then the contact element ¢(M, -y, &) € SHI(—M, —v) is defined as

G(M,7,8) = Pe(1),
where 1 € SHI(—D, —0) is a generator of the canonical module.

Proposition 6.5. Suppose (M,~) is a balanced sutured manifold and & is
a contact structure on M so that M is a convexr surface with dividing set
v. Then

(1). The contact invariant defined as in definition 6.4 is equivalent to
the contact element defined by Baldwin and Sivek in [2].

(2). The contact element is preserved under the gluing map .

As discussed in [17], if we have a closed 3-manifold Y and we dig a 3-
ball to create a spherical boundary with one simple closed curve as sutures,
then the sutured instanton homology can be identified with the instanton
Floer homology of a suitable admissible bundle over Y47?. So Baldwin
and Sivek’s construction would result in a contact element for the closed
3-manifold Y#T3.

Question 6.6. Can we re-construct the contact element in the classical
instanton Floer homology theory? Would this element be preserved by exact
symplectic cobordism as so in the monopole settings?
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