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Direct systems and knot Floer homology

Zhenkun Li

Abstract

In this paper we construct possible candidates for the minus version of
monopole or instanton knot Floer homology. We use a direct system which
was introduced by Etnyre, Vela-Vick and Zarev [7]. If K < Y is a knot then
we can construct a direct system based on a sequence of sutures on 0Y (K)
and the direct limit is of our interests. We prove that a Seifert surface of the
knot will induce an Alexander grading and there is a U map on the direct
limit shifting the degree down by 1. We prove some basic properties and
compute the case of unknots. We also use the techniques developed in this
paper to compute the sutured monopole and instanton Floer homology of a
solid torus with any valid sutures.
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1 Introduction

1.1 Statement of result

Floer homologies have become very important tools in the study of 3-manifolds,
since the first construction by Floer [8]. Among them two major branches
are the monopole, which was introduced by Kronheimer and Mrowka [15]
and the Heegaard Floer, which was introduced by Oszvath and Szabd [23]
or Rasmussen [24]. For a closed oriented 3-manifold Y, there are four flavors
of homologies associated to Y in each of the two theories, and they have
been known to be isomorphic by works of Kutluhan, Lee and Taubes in [18]
and subsequent papers. If there is a knot K inside a 3-manifold Y, then
there are corresponding four flavors of homologies of the pair (Y, K) in the
Heegaard Floer theory. See Oszvath and Szabé [22]. However, some corre-
sponding constructions in the monopole and instanton theory are missing.
The only monopole or (non-singular) instanton Floer homology for knots in
3-manifolds is the sutured version constructed by Kronheimer and Mrowka
[16], and is refined by Baldwin and Sivek [2]. The monopole version is proved
to be isomorphic to the hat version of the knot Heegaard Floer homology by
Baldwin and Sivek [5] or Lekili [19]. In this paper, we are going to construct
homologies associated to a based non-homologous knot, which are candidates
for the monopole and instanton correspondences of the minus version of the
knot (Heegaard) Floer homology.

Theorem 1.1. Suppose Y is a closed connected oriented 3-manifold and
K c Y is an oriented knot. Suppose S is a Seifert surface of K and p e K
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is a fized base point. Then we can associate the triple (Y, K,p) a module
KHM™ (Y, K,p) over the mod 2 Novikov Ring R. It is well defined up to
multiplication by a unit in R. The Seifert surface S induces a 7 grading
on KHM™ (Y, K, p), which we denote by KHM™ (Y, K, P, S,i). Moreover, the
following properties hold:

(1). Fori>g=g(S), KHM™ (Y, K,p,S,i) = 0.

(2). There is a map

U:KHM™ (Y, K,p) — KHM™ (Y, K, p)

which is of degree —1.
(3). There exists an Ny € Z, such that if i < Ny, then

U:KHM~ (Y, K, p, S,i) ~ KHM~ (Y, K, p, S,i — 1).
(4). There exists an exact triangle

KHM™ (Y, K, p) v KHM~ (Y, K, p)

KHM(Y, K, p)

(5). If Y = S and S realizes the genus of the knot, then we have
KHM(Y, K, p, S,i) # 0
fori = g(S) and i < Ny with the same Ny as in (3).

Theorem 1.2. With the same setting as in theorem 1.1, we can construct
KHI™ (Y, K, p) using instanton Floer homology so that all the properties (1)-
(5) in the above theorem hold.

It worth mentioning here that Kutluhan [17] constructed another minus
version of knot monopole Floer homology in a different way. He used the
holonomy filtration for the construction.

1.2 Outline of the proof

We shall only present in this susbeciton with the monopole case. The con-
struction of KHM™ (Y, K, p) is based on the sutured monopole Floer homol-
ogy. A sutured manifold (M,~) is a compact oriented 3 manifold with an
oriented 1-submanifold v on dM which we call the suture. The suture di-
vides M into two parts, according to the orientations of the suture and the
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3-manifold, which we call R_() and R4 () respectively. Sutured manifolds
were first introduced by Gabai [9]. Kronheimer and Mrowka then carried
out the construction of the monopole Floer homology on balanced sutured
manifolds in [16].

A sutured manifold (M, ) is called balanced if M, R4 () have no closed
components and x(R_(v)) = x(R4(v)). To define the sutured monopole
Floer homology for such an (M,~), Kronheimer and Mrowka constructed a
closed 3-manifold Y together with a distinguishing surface R out of (M, ).
The pair (Y, R) is called a closure of (M,~). Sometimes we simply call YV’
a closure. The genus of the closure refers to the genus of the surface R.
To construct the closure, one need to first find an oriented surface 7" whose
boundary is diffeomorphic to v, and then glue T' x [—1,1] to M with 0T x
[—1,1] identified with an annular neighborhood of v ¢ dM. The surface T
is called an auxiliary surface. The new 3-manifold after the gluing is called
a pre-closure and has two boundary components, R, and R_, of the same
genus. So we can pick a diffeomorphism h from R, to R_ to glue the two
boundary components together to get the closure (Y, R). We call h a gluing
diffeomorphism.

To study the naturality of the sutured monopole Floer homology, Baldwin
and Sivek [1] constructed canonical maps between two different closures of
a same balanced sutured manifold (M,~). Their construction is only well-
defined up to multiplication by a unit, so the closures and canonical maps
form a projective transitive system and will result in a canonical module
SHM(M,~y), whose elements are well defined only up to a unit.

The construction of the (canonical) module KHM™ (Y, K, p) was inspired
by Etnyre, Vela-Vick and Zarev [7], where they use a sequence of balanced
sutured manifolds (Y (K),T',), and gluing maps in sutured (Heegaard) Floer
theory, which was introduced by Honda, Kazez and Matié¢ [12], to construct a
direct system. They proved that the direct limit is isomorphic to the classical
minus version of knot Heegaard Floer homology. Here Y (K) = Y\int(/N(K))
is the knot complement, and T',, consists of two curves on 0Y (K) =~ T2, which
are of class +(—n, 1) under a framing induced by some Seifert surface. We are
going to construct the same direct system in sutured monopoles. In details,
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there is a commutative diagram

o,
SHM(—Y (K),—T',) = SHM(—Y(K), —Tpy1) (1)
T Vi
L

SHM(~Y (K), ~Tys1) SHM(~Y (K), ~Ty+2)

where the balanced sutured manifolds are described as above, and the maps
come from gluing maps in sutured monopoles constructed by the author in
[20].

The knot Floer homology KHM(Y, K, p) introduced by Kronheimer and
Mrowka [16] is based on the balanced sutured manifold (Y (K),T's), where
Iy, consists of two meridians on 0Y (K).

The commutativity of the above diagram (1) is guaranteed by the func-
toriality of the gluing map. The crucial difference from Etnyre, Vela-Vick
and Zarev [7] is that because of the involvement of closures, the construction
of the grading in sutured monopoles is a delicate issue. We construct the
grading in the direct limit in two steps.

The first step is to construct a grading on each SHM(Y (K),T",), using a
Seifert surface S, for any n. For a fixed n, the boundary of the Seifert surface
S intersects '), at least 2n times. To construct such a grading, we work with
the general case where (M, ) is an arbitrary balanced sutured manifold, S is
a properly embedded surface whose boundary has only one component, and
0S intersects ~ transversely at 2n points.

For the case n = 1, the construction has already been carried out by
Baldwin and Sivek [6]. When n = 1, we can pick a properly embedded arc
a < T, where T is an auxiliary surface of (M,~). When glue T' x [—1,1] to
M, we shall require that the end points of a are glued to the two intersec-
tion points dS n v and hence o x [—1,1] is glued to S along dor x [ 1,1].
Then S becomes a new surface S inside the pre-closure M. Note M has
two boundary components Ry and the two boundary components of S are
contained in two different boundary components of M. Then we shall pick a
gluing diffeomorphism h : Ry — R_ which also identifies the two boundary
components of S. Hence S becomes a closed surface S inside the closure Y of
(M,~). The grading can thus be defined by looking at the pairing of the first
Chern classes of the spin® structures on Y with the fundamental class of S.
This idea was first introduced by Kronheimer and Mrowka [16] and Baldwin
and Sivek [6] proved that the definition of the grading is independent of all
choices made in the construction, and hence is well defined in SHM (M, 7).

bt
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For a general n, the basic idea is the same but there are more choices to
be made and thus many new issues arise. For example, now we will need n
arcs ajq, ..., o, instead of just one and we shall determine which arc is going
to connect which two intersection points of 05 with «y, and thus leading to
an interesting combinatorial problem. We will deal with it in subsection 3.3.
Along with the proof, we will also need to use a new interpretation of Baldwin
and Sivek’s canonical maps between different closures. We will use just the
Floer excisions introduced by Kronheimer and Mrowka [16] to construct an
equivalent canonical map. This will be covered in subsection 3.2.

In the above construction, actually the closed surface S could only be
constructed out of S when n is odd. If n is even, then we need to perturb S
to create a new pair of intersection points. There are two different ways of
perturbations, which we call positive and negative stabilizations, and write
ST and S~ respectively. Based on St and S—, we can construct two different
gradings on SHM(Y'(K),T';,). The relation between the two gradings will be
the key to the second step of constructing the grading for the direct limit.
Also using the degree shifting property, we can compute the sutured monopole
Floer homology of a solid torus with any valid suture.

Proposition 1.3. Suppose V' is a solid torus and ~ is a suture on oV with
2n components and slope g, then

SHM(—V, —y) = R@" " leD),
Similarly, in instanton theory, we can get

Proposition 1.4. Suppose V is a solid torus and 7y is a suture on oV with
2n components and slope g, then

SHI(—V, —y) = C" D,

The second step of constructing the grading for the direct limit is to prove
that maps in the commutative diagram (1) will shift the grading in a desired
way. To be explicit, )™ | . shall be of degree 0 while ¢} | ., shall be of degree
—1. The construction of the maps ¢} , . rely on the by-pass attachments,
which are realized by contact handle attachments in sutured monopoles, as
introduced by Baldwin and Sivek [3].

It is a basic observation that the region we attach contact handles is dis-
joint from the Seifert surface S, hence if we look at the grading associated to
the ’correct’” surfaces, then ¢ , ., and ¢ ;4 will both preserve the degree.
However the ’correct’ surfaces involves both positive and negative stabiliza-
tions, while in order to define a canonical grading on SHM(Y (K),T',,), we only

6
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use negative stabilizations. Hence the problem is reduced to understanding
the degree shifting between S* and S~—.

To understand this degree shifting property, we need a better understand-
ing of the construction of the closures, and how spin¢ structures on different
closures are related by canonical maps. In particular, we prove the following
result.

Proposition 1.5. Suppose (Y (K),T',) is the balanced sutured manifold de-
scribed as above, and Y, is a closure of (Y(K),I'y). Suppose s; and sy
are two spin® structures on Yy, so that both of them support the sutured
monopole Floer homology of (Y (K),T'y,), then in terms of Poincdre duals
of first Chern classes of the spin® structures, the difference between s1 and so
lies in H1(Y (K)). More precisely, there is a 1-cycle x < Y(K), so that

P.D.(Cl(ﬁl) — 61(52)) = [x] S Hl(Y)

We will deal with the basic properties of the direct limit in subsection 5.2.
Most of them have been stated in theorem 1.1. Besides them, we can also
prove that the direct system stabilizes:

Proposition 1.6. For a fized i € Z, there exists N1 € 7Z, such that for
n > Ny, we have an isomorphism:

Yo g1t SHM(=Y(K), =Ty, 4) = SHM(=Y (K), —T'y11, ).
Moreover, a similar result in instanton theory also holds.

The techniques used in computing the sutured Floer homology of a solid
torus can also be applied to knot complements. As a result, we obtain the
following.

Proposition 1.7. Suppose K 'Y is a knot and S < Y is a Seifert surface of
K. Suppose Yy is the manifold obtain from Y by doing a Dehn surgery along
K with slope 7% with p,q > 0. We also have the dual knot Ky, < Y. Then

for any fized i, there exists N € R, such that if the surgery slope —’q’i < N,
then we have

KHM ™~ (—Yy, Ky, 5,i) =~ KHM ™ (Y, K, S, ).

Moreover, a similar result in instanton theory also holds.
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1.3 Future questions

The first to be asked is how the projective module KHM ™ (Y, K, p) is related
to HFK~(Y,K). In [7] Etnyre, Vele-Vick and Zarev used a similar direct
system and they have proved that the direct system is isomorphic to HF K.
The sutured monopoles and sutured Heegaard Floer homology homologies of
(Y(K),T',,) are isomorphic, and the gluing maps in sutured monopole and
Heegaard Floer settings also share many similarities in their constructions.
See the author’s previous paper [20] and Juhdsz and Zemke [14]. Hence we
would like to make the following conjecture:

Conjecture 1.8. There is an isomorphism
KHM (Y, K,p) ~ HFK~ (Y,K)® R,
where HF K™ uses Zsy coefficients.

In the paper we construct an Alexander Z-grading, but it is still unknown
whether there are other gradings. In particular, we would like to ask the
following.

Question 1.9. Can we construct a Zo grading on KHM™ based on the canon-
ical Zs grading on the monopole Floer homology?

Throughout the paper we use mod 2 Novikov rings for local coefficients.
It might be interesting to ask whether we could use other coefficients. There
are two directions to think about. The first is try to work in characteristic
0. The reason why we need to work in characteristic 2 is that the current
version of surgery exact triangle in the monopole theory is only proved with-
out taking orientations into account. However, the construction of by-pass
exact triangles in [3] relies on surgery exact triangles and without by-pass
exact triangles, we cannot obtain stabilization properties as well as exact tri-
angles relating KHM™ (Y, K, p) and KHM(Y, K,p). The second direction is
to try to deal with the situation when local coefficients are absent. For tech-
nical reasons, if we want to construct the canonical maps between closures
of different genus, then local coefficients are necessary. However, our present
construction for the grading involves the usage of closures with arbitrarily
large genus. In summary, we would like to ask the following question:

Question 1.10. Can we construct the same direct system with grading, and
having the same nice properties (1)-(5) as in theorem 1.1, but using Z coef-
ficients?
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For knot monopole Floer homologies, there is currently no construction for
the cobordism maps. The cobordism maps for KHM(Y, K, p) or KHI(Y, K, p)
can be obtained directly from the cobordism maps for sutured monopole Floer
homology and the same construction in sutured Heegaard Floer homology,
but the construction of cobordism maps for KHM™ (Y, K, p) or KHI (Y, K, p)
are different, since we need to construct a sequence of maps related to the
direct system to induce one on the direct limit.

Question 1.11. Can we construct cobordism maps for KHM™ (Y, K, p) and
KHI™ (Y, K,p)?

In the Heegaard Floer theory, we have surgery formulas relating the knot
Floer homology with the Heegaard Floer homology of the surgery manifold
when surge along a knot. It might be useful to develop a similar formula
in the monopole theory and the instanton theory. The latter might be of
more interests as the instanton theory is closely related to representations of
fundamental groups. We would like to ask

Question 1.12. Can we develop a surgery formula for KHM™ or SHI™ ¢

In the paper we analyze spin® structures of closures of knot complements.
It is natural to ask whether the same conclusion holds for general balanced
sutured manifolds, and what if we look directly at spin® structures, not just
their first Chern classes. Recall if the first homology of the closure does not
have 2-torsions, then the spin® structures and their first Chern classes are in
one to one correspondence. However this is not true if 2-torsion do exist.

Question 1.13. Suppose (M,~) is a balanced sutured manifold, and Y is a
closure of Y. Suppose 51 and so are two spin® structures, both supporting
the sutured monopole Floer homology of (M,~). Then their difference can
be interpreted as a line bundle L over Y. Is it always true that L can be
trivialized on Y\int(M)?

If the answer to the above question is affirmative, or we could at least
deal with knot complements, then we can further study the following question.
Suppose (M, ~) is a balanced sutured manifold and Y; and Y5 are two different
closures between them. Kronheimer and Mrowka [16] proved that the sutured
monopole Floer homology of (M, ) defined using Y7 and Y5 are isomorphic.
The above question serves as a refinement of their proof of isomorphism: not
only the total homologies are isomorphic, but also the spin® structures have
a one-to-one correspondence. So we can ask further:

Question 1.14. Can we see this isomorphism in the chain level? In details,
if we choose suitable auziliary data for both Y1 and Ys, can we directly relate
the solution of Seiberg- Witten equations and flow lines between them?
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Kronheimer and Mrowka’s proof that the sutured monopole Floer homol-
ogy is independent of the closures gives some intuition that the essential data
are all contained in the original balanced sutured manifold (M, ). The above
question might offer more evidence for this intuition. For a knot complement,
there is a particular closure described as follows. Suppose (Y (K),T'),) is de-
scribed as above, and ¥ is a closed connected oriented surface of large enough
genus. Let a be a non-separating simple closed curve on . In ¥ x S', identify
a with a x {t} for some t € S', and we can remove a tubular neighborhood
of a € ¥ x St and glue it to Y (K):

Y = Y(K) v ¥ x SNint(N(a)).

Proposition 1.5 implies that any spin® structures on Y which support the
sutured monopole Floer homology of (Y (K),T',) would restrict to a unique
spin® structure on ¥ x SN\int(N(a)). We know that Hi(¥ x S') has no 2-
torsions so there is a unique spin® structure on ¥ x S* whose first Chern class
is the Poincare dual of (2g(X) —2) many copies of the curve {s} x S' = ¥ x S1.
We call this spin® structure also so and the unique one on ¥ x S™\int(N(a))
is just the restriction of sg.

We could guess that the sutured monopole Floer homology of (Y (K),T';,)
might be obtained by glue the solutions to Seiberg-Witten equations on Y (K)
and (3 x SN\int(N(a)),s0) together along the boundary torus. If one can
describe what happens explicitly, then it would shed some light on a more
analytical way of constructing sutured monopole Floer homology (which may
have better naturality), all flavors of knot monopole Floer homology and even
a Bordered theory in monopole Floer homology.
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would like to thank his advisor Tom Mrowka for his invaluable helps. The
author would like to thank John Baldwin, Mariano Echeverria, Jianfeng Lin,
Langte Ma, and Donghao Wang, Yi Xie for helpful conversations.

2 Prelimilaries

2.1 Balanced sutured manifolds and monopoles

We will start with the definition of balanced sutured manifolds.

Definition 2.1. A balanced sutured manifold is a pair (M, ~y) of a compact ori-
ented 3-manifold M with non-trivial boundary and an oriented 1-submanifold

10
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v < 0M. On 0M, let A(y) = v x [—1,1] be an annular neighborhood of ~,
and let
R(y) = 0M\int(A(y)).

They shall satisfy the following requirements:

(1). Both M and R() have no closed components.

(2). If we orient 0R(y) = 0A(y) = v x {£1} in the same way as 7, then
the orientation on 0R(7) shall induce a unique orientation on R(7y). This
orientation is called the canonical orientation on R(y). Use R, () to denote
the part of R(7y) whose canonical orientation coincides with the boundary
orientation of 0M and R_(7) the rest.

(3). We have that

X(R+ (7)) = x(R-(7))-

To define the sutured monopole Floer homology, we need to construct a
closed 3-manifold out of a balanced sutured manifold (M,~). Let T' be a
connected oriented surface, so that:

(1). There is an orientation reversing diffeomorphism

f:o0T — .

(2). There is a simple closed curve ¢ < T so that [¢] # 0€ H{(T).
(3). T has genus at least 2.
When we choose such a 7', we can use f to glue T to M:

]\7=M\J{T>< [—1,1].

The manifold M is called a pre-closure of (M,~) and it has two boundary
components:

oM =R, UR_,

where
Ri = Ri(’}/) kf T x {il}

Let h: Ry — R_ be an orientation preserving diffeomorphism, then we can
form a closed 3-manifold as

Y=M U R 1.1
idkdh +><[ ’],

where h : Ry x {1} — R_ < 0M is the map just defined and id : R, x {—1} —
R, < 0M is the identity on R;. Let R = Ry x {0} ¢ Y, and we make the
following definition:

11
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Definition 2.2. The pair (Y, R) is called a closure of the balanced sutured
manifold (M,~). The choices T, f,c, h are called the auxiliary data. In par-
ticular, the surface T is called an auziliary surface and h is a gluing diffeo-
morphism.

Remark 2.3. Throughout this paper, we shall require that 7" is connected and
has large enough genus. However, in general, the choice of auxiliary surface
shall have more freedoms. See [16].

To use local coefficients, we shall also need to choose a non-separating
simple closed curve n  R. The coefficient ring we use for the present paper
will be the mod 2 Novikov ring. For detailed definitions, readers are referred
to [3].

Definition 2.4. Suppose (Y, R) is a closure of (M,~) as above. If R is
connected, we define the set of top spin® structures as follows:

S(Y|R) = {spin® structure s on Y|ci(s)[R] = 2g(R) — 2.}

If in any case R is disconnected and let Ry, ..., R, be its components, then

we define
n

S(Y|R) = ) &(Y|R,).
i=1
For later references, we also define the set of spin€ structures which support
the sutured monopole Floer homology as follows:

&*(Y|R) = {s € 6(Y|R)|HM.(Y,s;T,) # 0}.
For monopoles on closed 3-manifolds, readers are referred to [15].

Definition 2.5. The sutured monopole Floer homology of (M,~y) is defined
to be
SHM(M,7) = HM(Y|R:T,),

where v
M(Y|R§Pn): @ HM-(Yaﬁ;Pn)
sc&(Y|R)

The following lemmas from Kronheimer and Mrowka [16] will be useful.

Lemma 2.6. Suppose Y is a surface bundle over S whose fibres are closed
connected oriented surfaces of genus at least 2. Let R be a fibre and n < R be
a non-separating simple closed curve. Then there is a unique spin® structure
s on'Y so that

(1). We have ci(s)[R] = 2g(R) — 2.

12
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(2). We have EZ\/I.(Y,E;P,]) # 0.

Moreover, for this spin® structure we have
HM.(Y,s;T,) =~ R,
where R is the mod 2 Novikov ring which we use for the local coefficients.

Lemma 2.7. Suppose Y is a closed oriented 3-manifold and R < Y is an
embedded closed connected oriented surface of genus at least one. Suppose s
18 a spin® structure such that

le1(s)[R]| > 29(R) — 2,

then we have .
HM,(Y,s;I') =0,

for any choice of local coefficients.

Floer excisions were introduced into sutured monopoles by Kronheimer
and Mrowka [16]. We will summarize the results we need in the rest of the
subsection.

For ¢ = 1,2, suppose Y; is a closed connected oreinted 3-manifold and
R; < Y; is an embedded closed connected oriented homologically essential
surface of genus at least 2. Let 1; < R; be a non-separating simple closed
curve. When cutting Y; open along R;, we get

Y; = Y\int(N(R;)),

where N(R;) is a product neighborhood of R; < Y;. The manifold EN/Z has two
boundary components N
aY; = Ri,Jr U Ri,f.

We orient R; + in the same way as ;. There are parallel copies of 7;, which we
call n; +, on the surfaces R; 1. Pick an orientation preserving diffeomorphism

h: Ri — Rs,

so that h(n1) = 72. We can use h to glue Ry 1 to R — and also Ry _ to Ra 4.
Then Y; and Y, are glued together to become a connected 3-manifold which
we call Y. Let R < Y be the disjoint union of surfaces Ry and R 1 in Y.
Let n < R be the disjoint union of curves 7; 1 and 72 4.

There is a 4-dimensional cobordism W from Y; u Y5 to Y as follows. Let
U be the surface as depicted in figure 1. It has four vertical arcs as part of
the boundary, and we can assume that each one of them is identified with

13
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[0,1]. Now we can use the identity and h to glue three pieces 571, Y and
Ry x U together to get the desired cobordism. The cobordism W induces a
map as in [16]

HM(W): HM(Y; 0 Ya|Ry U Ro; Ty o) — HM (Y |R;T). (2)
C _id _h TN
- h
o 0l
::uQ H3 :
| \ !
i \ i
Mo i Ha |
1 1 1
] 3 !
< R A I *‘

Y: % [0,1] R xU Ya x [0,1]

Figure 1: Gluing three parts together to get W. The middle part is Ry x U, while
the R, 4 directions shrink to a point in the figure.

We can also cut along tori. For i = 1,2, let Y; be as above. Let T; ¢ Y;
be a torus and R; < Y; be a closed connected oriented surface, so that R;
intersects T; transversely along a circle ¢;. Suppose 1; < R; is a simple closed
curve so that n; intersects ¢; transversely at a point p;. Let

hIT1—>T2

be an orientation preserving diffeomorphism so that h(c;) = ¢o and h(p;) =
po. As above, we can cut Y; open along 7; and re-glue using h to get a
connected 3-manifold Y. There is a distinguishing surface R, obtained by
cutting R; open along ¢; and re-glue using h. The curve n; and 7 are also
cut and re-glued to result in a simple closed curve n € R < Y. As above,
there is a cobordism map

HM(W): HM(Y; 0 Ya|Ry U Ro; Ty o) — HM (Y |R;T). (3)

For more details of the excision process, readers are referred to Kron-
heimer and Mrowka [16]. In that paper, the follow theorem is proved.

Theorem 2.8. (Kronheimer, Mrowka, [16].) The maps (2) and (3) are both
1somorphisms.

14
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2.2 The naturality of sutured monopoles

Baldwin and Sivek [1] constructed canonical maps for two different closures
of the same balanced sutured manifold. In order to do this, they also refined
the definition of the closure.

Definition 2.9. A marked closure D = (Y, R,r,m,n) of a balanced sutured
manifold (M, ) consists of the following:

(1). A closed connected oriented 3-manifold Y.

(2). A closed connected oriented surface R.

(3). An orientation preserving embedding

r:Rx[-1,1] - Y.
(4). An orientation preserving embedding
m : M — Y\int(im(r)).

(5). A non-separating simple closed curve n c R.
They shall satisfy following requirements:
(a). The embedding m extends to a diffeomorphism

M k}) T x [-1,1] — Y\int(im(r)),

for some auxiliary data (7, f).
(b). The embedding m restricts to an orientation preserving embedding

Ry(y) = r(Rx {=1}).

The genus of the closure is referred to the genus of the surface R. We
define .
SHM (D) = P HM (Y, 5T\ x qop))-
5e6&(Y |[r(Rx{0}))

Theorem 2.10. (Baldwin and Sivek, [2]) Suppose (M,~) is a balanced su-
tured manifold, then for any two marked closures Dy and Do of (M,7), there
is a canonical map ®p, p,, well defined up to a unit, from SHM (D) to
SHM (Ds). The canonical maps satisfy following properties.
(1). If D1 = Dy, then
Op, p, = id.

Here = means equal up multiplication by a unit.
(2). Suppose we have a third marked closure D3 for (M,~), then we have

@p, py = Pp, Dy © Py D,

15
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Hence for a balanced sutured manifold (M,~), marked closures D and
canonical maps ® fits into a projective transitive system, which is defined in
[2]. The projective system determines a canonical module, which we shall

denote by
SHM(M, 7).

We can then talk about elements (up to multiplication by a unit) in that
canonical module.

Remark 2.11. There are two ways to think about SHM (M, v). The first is to
think of it as a module over R but whose elements are only well defined up
to a unit. The second way is to think it as a well defined set, obtained by
a module over R quotient by R*. We will not distinguish between the two
descriptions.

We will have an extra complexity if we deal with knots in 3-manifolds. Let
K c Y be a knot. This extra complexity comes from the choices of tubular
neighborhoods of K < Y to remove to get knot complements. Fix a point
p € K. Suppose
p:S'xD* Y
is an embedding, where D? is the unit sphere in the complex plane, and
S1 = 0D?. We shall require that

p(S' % {0}) = K and p({1} x {0}) = p.

Now let Y, = Y\int(im(¢)), and let v, = p({£1} x 0D?), with opposite
orientations on two components. For each fixed ¢, we have a well defined
canonical module SHM(Y (¢),7,), and we want also relate different choices
of ¢.

Suppose ¢’ is another embedding S' x D? < Y, satisfying the same
conditions as ¢. Pick a tubular neighborhood N of K < Y such that
im(p),im(p’) € N and an ambient isotopy

ft:YHY, tE[O,l],

such that:
(1). For any t € [0,1], fi(p) = p.
(2). For any t € [0,1], f, restrlcts to identity outside N < Y.
(3). We have /i (im(g)) = ().
(4). We have fi(p({£1} x 8D2)) o' ({£1} x D?).
It is clear that fi : (Y,,7,) — (Yyr,7y) is a diffeomorphism between
balanced sutured manifolds. Hence we can define

\Ilcp,cp’ = SHM(f1) : SHM( goa%o) — SHM(Y, o V! )

16
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Theorem 2.12. (Baldwin, Sivek, [2]) The map ¥, . is well defined, i.e., is
independent of choices of the tubular neighborhood N and the ambient isotopy
ft. Also it has the following properties:

(1). We have ¥, , = id.

(2). If we have a third embedding ¢”, then

U, ="

©yp 0" 0 Voo

Thus we know that {SHM(Y,,,v,)} and {¥,, ./} actually form a transitive
system of projective transitive systems. They then lead to a larger projective
transitive system and hence the knot monopole Floer homology KHM (Y, K, p)
is well defined (as a projective transitive system).

2.3 Contact structures and contact elements

In this subsection we summarize the results related to contact geometry which
we will use in later sections.

Definition 2.13. A contact sutured manifold (M,~,&) is a triple where
(M, ) is a balanced sutured manifold and & is a contact structure on (M, )
so that M is convex and ~ is the dividing set. The contact structure is said
to be compatible with the balanced sutured manifold (M, ).

Theorem 2.14. (Baldwin, Sivek, [3]) Suppose (M,~,£) is a contact sutured
manifold, then we can associate an element

¢¢ € SHM(—M, —)
to it. This element is called the contact element.

Definition 2.15. Suppose (M’,~’) is a balanced sutured manifold. A sutured
submanifold (M,~y) of (M',~") is another balanced sutured manifold so that
M < int(M').

The gluing maps in sutured monopoles were define by the author in [20],
and it will be crucial in the construction of the direct system in section 5.

Theorem 2.16. Suppose (M,~) is a sutured submanifold of (M',~") and
suppose Z = M'\int(M). Suppose & is a contact structure on Z so that
(Z,v v+, €) is a contact sutured manifold. Then there is a well defined map

(bﬁ : SI{J(_Ma _’Y) - m<_M/7 _’Y,)?

so that

17
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(1). If (M',~") is a sutured submanifold of (M",~") and there is a contact

structure on M"\int(M"), making it a contact sutured manifold, then we have
the composition

<I>§/ [¢) @5 = q)fugl : SHM(—M, —")/) - SI—I_M(_Mﬁa _’Y”)'

Here = means equal up to multiplication by a unit.
(2). Suppose (M',~', &) is a contact sutured manifold and &'|7 = &, then
we have

Pe(gr)y,) = der-

Suppose we have three balanced sutured manifold (M,~;), (M,~2) and
(M,~3), so that the underlining 3-manifold are the same but the sutures are
different. Suppose further that (M,~1), (M,~2) and (M, ~3) are only different
with in a disk D < dM, and within the disk D, they are depicted as in figure
2. We say that (M,~s) is obtained from (M,~;) by a by-pass attachment
along the arc «. Similarly, (M,~3) is obtained from a by-pass attachment
from (M,~2) and (M,~1) from (M,~3). Then we have the following theorem.

S "

Figure 2: The by-pass exact triangle.

18
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Theorem 2.17. [Baldwin, Sivek [3]] There is an exact triangle relating the
sutured monopole Floer homologies of the three balanced sutured manifolds as
follows:

S:H—M(iM’ 771)

P31 a3
SI—I—M( 7Ma 773)

In contact geometry, a by-pass is a half disk carrying some particular
contact structure attached along a Legendrian arc to a convex surface. For
details, see Honda [10]. There is a description of the maps in the above
by-pass exact triangle as follows. We deal with the map 12, and the other
two are the same. Let Z = 0M x [0,1] and we can pick the suture v, on
OM x {0} as well as the suture y2 on dM x {1}. Then there is a particular
contact structure 12 on Z which corresponds to the by-pass attachment and
makes (Z,71 U 72) a contact sutured manifold. Hence we can attach Z to M
by the identification 0M x {0} = M < M. The result (M U Z,72) is just
diffeomorphic to (M, ;) and we have

P12 = Peyy.

Here ®¢,, is the gluing map associated to {12 as in theorem 2.16.

In section 5, we will use the by-passes on knot complements to construct
the direct system. Let K < Y be an oriented knot. Let A\ and p be the
longitude and meridian according to some framing of the knot. Let I',, be
a suture on 0Y (K) which consists of two curves of class +(A — nu) and T'y,
consists of two meridians. In this case dY (K) is a torus, and we have the
following theorem due to Honda [10].

Theorem 2.18. There are two tight and minimal-twisting contact structures
on T? x [0,1] so that for i = 1,2, T? x {i} is convex with dividing set be-
ing U'pii. These two contact structures correspond to two different by-pass
attachments on (Y (K),T,).

Definition 2.19. We denote the two contact structures as in theorem 2.18
by {4, and £_ ,, respectively and call the corresponding two by-passes positive
and negative respectively. The positiveness and the negativeness of the two
by-passes are defined as in figure 3.

Remark 2.20. This definition of the sign is in a way different from the original
one in [10]. However this is the most direct way for us to develop the theory.
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Figure 3: The positive and negative by-pass attachments for (Y (K),T'3)). The
squares represent the toroidal boundary of Y(K'). Note the contact structures &4 o
correspond to the by-passes from the bottom one to the top left one in each by-pass
triangle.

There are by-pass exact triangles associated to the positive and negative
by-passes defined as above:

SI—I—M(*Y(K)yfrnJrl) — SI—I—M(*Y(K%*FOO)

1 o)
% %

SHM(-Y (K), —I'»)

(4)
Note as the above discussion, 1/1@;3 = P fne To construct the direct
system, we have the following fact.

Proposition 2.21. [Honda, [10]] On T? x [0,2], the two contact structures
E-nU&int1 and U & pq1 are the same.
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Corollary 2.22. We have a commutative diagram

v,
SHM(Y (K),T,,) S SHM(Y(K),Tpy1)
wi,nJrl ¢'$Tnl+2
wﬁ+1+2
—SHM(Y(K)7FH+1) - —SHM(Y(K)vrn-i-Q)
Proof. The corollary follows from proposition 2.21 and theorem 2.16. O

There is a second way to interpret the maps 14 associated to by-pass
attachments by Ozbagci [21]. He proved that a by-pass attachment can be
realized by attaching a contact 1-handle followed by a contact 2-handle. In
sutured monopoles, we have maps associated to the contact handle attach-
ments due to Baldwin and Sivek [3] so we can composite those contact handle
attaching maps to define ¢,. This is actually the original way Baldwin and
Sivek constructed the by-pass maps (when they define by-pass maps, there
was no construction of gluing maps) and proved the existence of the exact
triangle. The two interpretations are the same because of the functoriality of
the gluing maps, and their relation with the contact handle attaching maps.
For details see the author’s previous paper [20]. We will use this second point
of view in the proof of proposition 5.5.

3 An Alexander grading

3.1 Basic constructions

Definition 3.1. Suppose (M, ) is a balanced sutured manifold and S is a
properly embedded oriented surface. A stabilization of S is an isotopy of S
to a surface S’, so that the isotopy creates a new pair of intersection points:

08" ny = (05 n) v {py,p-}.

We shall require that there are arcs o < S’ and 3 v oriented in the same
way as 05’ and v respectively, such that

(1). We have da = 0 = {p4+,p—}.

(2). The curves a and  cobounds a disk D so that int(D)n(yudS’') = &.

The stabilization is called negative if D can be oriented so that 0D = auf
as oriented curves. it is called positive if 0D = (—a) u (. See figure 4.

We will denote by S** the result of doing k& many positive or negative
stabilizations of S.
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A
Y

negative

9 > + <
D

| /A'%
Y < N N

% g L s

oS positive

Figure 4: The positive and negative stabilizations of S.

The next lemma is straightforward.

Lemma 3.2. Suppose (M,~) is a balanced sutured manifold and S is a prop-
erly embedded oriented surface. Suppose ST is the result of doing a positive
or negative stabilization on S. Then we have:

(1). If we decompose (—M,—~) along S or S—, then the resulting two
balanced sutured manifolds are diffeomorphic.

(2). If we decompose (—M,—=) along S*, then the resulting balanced
sutured manifold (M',~") is not taut, as Ry (") would both become compress-
ible.

Suppose (M,~) is a balanced sutured manifold and S is a properly em-
bedded oriented surface. Suppose further that S has precisely one bound-
ary component and 0S5 intersects v at 2n points. Since 7y is parallel to the
boundary of R (7), it is non-homologous and hence the algebraic intersec-
tion number of 05 with v on M must be zero. We shall also assume that
n = 2k 4+ 1 is odd as this can be achieved by a negative stabilization of S if
needed. Suppose the intersection points are pi, ..., pa,,, and they are indexed
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so that if we travel along the oriented curve 05, starting from p;, then we
will always meet p; before meeting p;1.

Now pick a connected auxiliary surface T of large enough genus. Let
f: 0T — ~ be an orientation reversing diffeomorphism and let p; = f —(pp).
Suppose aq, ..., a, be n pair-wise disjoint simple arcs on 7', so that

(1). We have that [a1], ..., [, ] are linearly independent in Hi (T, dT).

(2). We have that day = {p},ph}, and for all 1 < i < k, we have

Oag; = {pili—lap/4i+2}a Oagiy1 = {pﬁi,PZz‘H}-
Let

n
M=M o Tx[-1.1], S = Cx [—1.1]).
RN e A Sfii-d(i:UlO“[ D)

We know that
k+1

8]\7: R+ URf, 8§m Ri = U Ci,i-
i=1
Here we require that for i =1,...,k + 1,
a9;—1 X {il} C Ci,i'
Pick an orientation preserving diffeomorphism h : R, — R_ so that for
i=1,..,k+1,
h(le‘F) = Ciyi'
Then we can use h to get a closure (Y, R) of (M,~v). The boundary compo-

nents of the surface S are glued with each other under h so S results in a
closed surface S c Y. From the construction we know that

x(S) = x(8) —n.

We pick a non-separating simple closed curve n < R, so that n is disjoint
from S n R and also represents a class which is linearly independent from the
classes represented by the components of S n R in Hy(R).

Definition 3.3. We say that the surface S — Y is associated to the surface
S < M. We can use S to define a grading on SHM(M, ) as follows.

SHM(M,~,S,i) = @ HM.(Y,5T,).
5€6(Y|R)
c1(s)[S]=2¢

We say that this grading is associated to the surface S < M. When we use
the language of marked closures, the closure (Y, R) corresponds to a marked
closure D = (Y, R,m,r,n) and we write the grading as

SHM(D, S, 4).
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The grading on SHM(D) will also induces a grading on SHM(M, ) as in
the following theorem. We also say it is associated to S and write

SHM(M, ~, S, 7).

Theorem 3.4. When S < M is fixed, and the number of intersection points
of S with v is 2n with n odd. Then the grading on SHM(M,~) associated
to S is well-defined. That is, it is independent of all choices made in the
construction of the grading.

Proof. There are four types of choices we made:

I. The starting point py.

II. The choice of the linearly independent arcs aq, ..., v, on 7.

III. The choice of the gluing diffeomorphism h.

IV. The genus of the closure.

The proof of the independence will be the contents of the rest of the
current section. Particularly the results are stated in corollary 3.21, corollary
3.7, proposition 3.9, and lemma 3.5. ]

In [6], Baldwin and Sivek have already dealt with the choices of type II,
IIT and IV. Among them the idea for type IV can be adapted to the setting
of the current paper directly, so we will not write the proof again.

Lemma 3.5. The definition of the grading on SHM(M,~) associated to the
surface S < M is independent of choices of type IV.

We will deal with choices of type II right now.

Lemma 3.6. Suppose T is a compact connected oriented surface with bound-
ary and of large enough genus. Suppose {aq,...,an} is a set of properly em-
bedded simple arcs on T, so that
(1). The arcs oy, ..., o, are pair-wise disjoint.
(2). The arcs represent linearly independent classes [o], ..., [an] in Hi (T, T).
Suppose {afy,...,al,} is another set of properly embedded simple arcs so
that
(3). Fori=1,...,n, we have da; = dcl,.

(2
(4). The set of arcs {cfy, ...,al,} also satisfies the above conditions (1) and

(2).
Then there is an orientation preserving diffeomorphism h : T — T so that

h fizes the boundary of T and for i =1,...,n, we have

h(ei) = af.
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Proof. Suppose N is a product neighborhood of
aru..ua, T

Let N
T = T\int(N).

The boundary oT consists of the following:
oT (T n T U Qi+ U oy

Here o + are parallel copies of «;, being part of the boundary of the product
neighborhood N. From condition (2) we know that 7" is connected. Also

~

x(T) = x(T) + n.
Similarly we can pick N’ to be a product neighborhood of
adju..ua,cT,

and have
T' = T\int(N"), oT" = (0T ~ T") U U oL U

By condition (3) we can assume that N n 0T = N’ n 0T, and so there is
an orientation preserving diffeomorphism
froT —oT,

so that
f‘(?TmT id, f(az +) —04 +

for all ¢ = 1,...,n. Since we have
X(T') = X(T) +n = x(T),
the diffeomorphism f extends to a diffeomorphism
g:T—>T.

After a small perturbation, we can glue T and T" along o; + and a;i, and ¢
is glued to become a diffeomorphism

h:T—T

which is the desired one. O
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As discussed in [6], the above lemma together with proposition 3.9 will
result in the following corollary.

Corollary 3.7. The definition of the grading on SHM(M,~) induced by the
surface S < M s independent of choices of type II.

We will deal with choices of type III in subsection 3.2 and choices of type
I in subsection 3.3.

3.2 A reformulation of Canonical maps

In this subsection we will give a simpler description of the canonical maps
$p pr constructed by Baldwin and Sivek in [2] for two different marked clo-
sures of the same genus. For our convenience, we only study the following
special case. It would be essentially the same to deal with a general canonical
map.

Suppose (M, ) is a balanced sutured manifold and T is a connected aux-
iliary surface. Suppose

M=MuT x[-1,1], oM = R, U R_.

Suppose hi, ho are two different gluing diffeomorphisms and using them we
can get two marked closure Dy = (Y1, Ry, r1,m,n) and Dy = (Yo, Ry, 72, m,n).
Here we choose the same non-separating simple closed curve supporting the
local coefficients.

Let h = hfl o he and Y" be the mapping torus of h, or to be more
precise, the manifold obtained from R, x [—1,1] by identifying R, x {1} with
R, x {—1} via h. Then we can obtain Y5 from Y7 and Y as follows. Cut Y3
open along Ry x {0} and cut Y along R, x {0}. We can re-glue them via the
identity on R, to get a large connected manifold. This resulting manifold is
precisely Y5. As in theorem 2.8, there is a cobordism W from Y7 L Y to Y.
Hence W induces a map

HM(W): HM(Y; uY" R, UR,) - HM(Y3|R,).
Note from lemma 2.6, we know that
HM(Y"R,) =~ R.
Let a be a generator of HM (Y"|R,) and let ¢ be the map
v HM(Y1|Ry) - HM(Y1|Ry) @ HM(Y"|R) =~ HM(Y; U Y"|R, UR,)

defined as
z) =2r®a.
We have the following proposition.
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Proposition 3.8. Under above notations, the canonical map ®p, p, can be
re-interpreted as

¢D17D2 = HM(W) OL.

Before proving the proposition, we first use it to prove that the definition
of the grading is independent of choices of type III. Suppose (M,~) is a
balanced sutured manifold and S < M is a properly embedded surface with
precisely one boundary component, so that 05 intersects v at 2n points for
some odd n = 2k + 1. Suppose in the construction of the grading induced by
S, the choices of type I, II, IV are fixed. This means that there is a connected
auxiliary surface T for (M,~) and n arcs aq, ..., a, so that

(1). We have

(a1 U ...uay) =05n".

(2). If we let

OMUT x[-1,1] =Ry OR_, §=58 [ J (e x [-1,1]),

i=1n

then we have

6§ M Ri = CLi? ceuy CkJrLi.
Then there are two gluing diffeomorphisms hy and hy so that for i = 1,2
hi(CLJr U... U Ck+1,+) = CL* U... U Ck+1,—-

We can use hy or hs to glue Ry x [—1,1] to M u T x [—1,1], to get marked
closures Dy = (Y1, Ry, m,r1,n) or Dy = (Y2, Ry, m,72,7n). Here we choose
the same non-separating simple closed curve n < R, for simplicity. We have
the following proposition.

Proposition 3.9. Under the above settings, we have for any i € Z
®p, p, : SHM(Dy, S, i) => SHM(Dy, S, ).

As a result, the definition of grading in the projective transitive system SHM(M,~)
is independent of the choices of type I11.

Proof. Let h = hfl ohg, and form Y as in proposition 3.8. From lemma 2.6,
there is a unique spin® structure sy so that

HM(Y"R,) = HM.(Y" 50;T,) =~ R.

There are tori inside Y": the cylinders C; ; x [~1,1] € Ry x [~1,1] are
glued via h to become a union of tori 7. Lemma 2.7 tells us that

C1 (50) [T] =0.
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Let S; ¢ Y; and Sy < Y, be the surfaces induced by S € M in the
construction of the grading. We know that there is a 3-dimensional cobordism
from S7 u T to Sy inside the the cobordism W. The construction of this
(3-dimensional) cobordism is just the same as that of Floer excisions but
is done with the dimension reduced by 1. If s is a spin¢ structure on W
which contributes non-trivially to the cobordism map H M (W), then s should
restricts to o on Y hence we know that

c1(8)[S2] = e1(s)([S1] + [T]) = e1(s)([S1]) + ea(s0)([T]) = ex(s)([S1])-

Hence HM (W) preserves the grading and so does <I>9D1 p, by proposition
3.8. O

Now we are going to prove proposition 3.8. There are a few preparations
we will need.

Lemma 3.10. In the settings of proposition 3.8, suppose we have a third
gluing diffeomorphism hs, and let ' = hy* o hy and h" = hoh' = h{' o h3.
Construct W', W”  / and " just in the same ways as we construct W and
t. Then we have the identity:

HMW")yol" = HM(W')o/ o HM(W)ou. (5)

Proof. Let Yy, Yy,» be the mapping tori of i’ and h” repsectively. Since h” =
hol/, there is an excision cobordism from Y}, 1Y}~ to Y} just as we construct
W, W’ and W”. Call this cobordism —W,” and let W, be the cobordism from
Y} to Yy, 1Y), obtained by putting —W,” upset down and also reverse the
orientation. By theorem 2.8 and lemma 2.6, it is straightforward to see that

HMW W' OW,)ow3=HMW') ot/ o HM(W)ou.
Hence to prove (5), it is enough to show that
HMW o W' W,) = HM(W"). (6)

However, we can cut W’ u W’ U W, open along a 3-manifold R, x S!, as
depicted in figure 5 and glue back two copies of R, x D?, and the resulting
manifold is exactly W”. Hence from proposition 2.5 in [16], (6) must hold
and we are done. O

Corollary 3.11. If hy = hy, then Y is just the product and we know that

HM(W) o= id.
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Figure 5: The union W u W’ u W,. The (blue) curve in the middle represents the
3-manifold R; x S! to cut along.

Proof. From theorem 2.8 We know that
HM(W)ou
is an isomorphism. From lemma 3.10, we know that
HMW)owto HM(W)ov=HM((W)ou.
Hence we are done. O

Proof of proposition 3.8. Suppose h is decomposed into Dehn twists:
h ~Dg o..oDg

as in Baldwin and Sivek [2]. From theorem 2.10 and lemma 3.10, it is suffice
to deal with the case when n = 1, i.e., there is only one Dehn twist involved.

When e; = 1, the Dehn twist is positive. In this case the canonical
map @%171)2 is constructed using the cobordism W as in the hypothesis of
proposition 3.8, with the boundary component Y capped off by the total
space of a relative minimal Lefschetz fibration, see lemma 4.9 in [2]. Also
such a Lefschetz fibration would have relative monopole invariant being a
unit in R, as in proposition Bl in [2]. Hence we conclude

o, 5 = HM(W) oL
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When e; = —1, the Dehn twist is negative. We can also look at the
canonical map @%2 p,- It corresponds to h~!' and is constructed using a

positive Dehn twist. Suppose we construct W’ and ¢/ out of h™! just as we
construct W and ¢ out of h. Then from the above argument we know that

® 5 = HM(W') ol

Then the identity

(I)gD17D2 =HM(W)o..

follows from theorem 2.10, lemma 3.10 and corollary 3.11. O

3.3 Pairing of the intersection points

In this subsection, we will deal with type I choices, i.e., the starting point p;.

Let us first pick any intersection point of 0S with v as p;. We shall first
relax the requirement in the construction of the grading that da; shall be a
pair of special points.

Definition 3.12. Suppose we have a collection of n pair of numbers

P = {(’il,jl)’ ey (Zn,]n)}’

so that
{i17j17 7Znajn} = {17 27 secy 2n}7

and for all [ = 1,...,n, we have
it # ji (mod 2).
Then we call such a collection P a pairing of size n.

Suppose (M, ~) is a balanced sutured manifold and S < M is a properly
embedded oriented surface. Suppose S has only one boundary component
and it intersects v at 2n = 4k + 2 points, and those points are labeled by
D1, ---, Pakso in the same way as described in definition 3.3, with an arbitrary
chosen starting point p;. Suppose P = {(i;,J;)} is a pairing of size n, T is
an auxiliary surface of M and «q, ..., a;, are pair-wise disjoint simple arcs so
that

(1). The arcs aq,..., a;, represents linearly independent classes in Hy (T, 0T).

(2). For I =1,...,n, we have

doy = {pi,, pj, }-
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Then as in the definition 3.3, we can construct

M=MOuTx[-1,1], Sp =S o (| Jau x [-1,1]).
=1

We have N N
oM = R+ ) R_,aSp (@) Ri = CLi U CSi7i'

In general, the number of intersection circles s, and s_ are not equal to each
other, and we make the following definition.

Definition 3.13. A pairing P is called balanced if s_ = s.

Remark 3.14. Although in order to define balancedness, we need to go through
the construction of pre-closurs of balanced sutured manifolds, it is well defined
on its own (and is independent of all the other choices, such as (M,~), S, T, p1,
in definition 3.13. Actually the set {s;,s_} only depends on P.)

Another thing to notice is that a pairing could be balanced only if its size
n is odd.

Example 3.15. Here are some examples of the pairings. Assume n = 2k + 1
is odd.
(1). The simplest pairing

P ={(1,2),(3,4), ..., (4k + 1,4k + 2)}

has s =1 and s; =n, or s_ =n and s, = 1, depending on the choice of
the starting point p;, so it is never a balanced paring when n > 1.

(2). In definition 3.3, we have a paring arising from the construction of
the grading:

P9 = {(1,2),(3,6), (4,5), ..., (4k — 1,4k + 2), (4k, 4k + 1)}.

This is an example of a balanced pairing, with s, =s_ =k + 1.
(3). There is another very special balanced pairing with s; = s_ = 1:

P ={(1,2k +2),(2,2k + 3),...,(2k + 1,4k + 2)}.

Now if (M,~), S and p; are chosen as above and we are equipped with
a balanced pairing P, then we can repeat the construction in definition 3.3,
and define a grading on the projective transitive system SHM(M,~). Since
we have had corollary 3.7, proposition 3.9 and lemma 3.5, the grading now
depends only on the choice of S, p; and P. As S and p; will actually be fixed
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almost throughout this subsection, we will omit them from the notation and
write, in a moment, the grading as

SI—I—M(M? 7’ P? Z)'

There is a special operation we could do on balanced pairings. Suppose P
is a balanced pairing and we pick two indices [; and l5 so that the following
two conditions hold:

(i). The two arcs oy, x {1} and oy, x {1} are not contained in the same
boundary components of 573.

(ii). The two arcs oy, x {—1} and aq, x {—1} are not contained in the
same boundary components of 0S.

Then we can do the following operation on P as follows. Suppose in the
two pairs (i, 1, ) and (i, j1,), 4, and i, are odd (and the two other numbers
must be even), then we can obtain a new pairing P’ out of P by removing
the two pairs (iy,,7;,) and (i1, j;,) from P and add two new pairings (i, ji,)
and (ig,, 1, )-

Definition 3.16. We call the above operation the cut an glue on parings.

Two pairings are called equivalent if one is obtained from the other by a cut
and glue operation.

Example 3.17. If n = 3, P = {(1,2),(3,6),(5,4)} and I} = 1,la = 3 ([; =
1,13 = 2 do not meet the requirements of doing the cut and glue operation),
then the resulting pairing P’ is

P’ ={(1,4),(3,6),(2,5)},

and it is balanced.
It is obvious that the equivalence is an equivalent relation. Also the result
of a cut and glue operation on a balanced pairing is still a balanced pairing.

The significance of equivalent pairings is the following.

Lemma 3.18. Suppose a cut and glue operation on a balanced pairing P with
two indices l1 and ly will result in P’, then we have for all 1,

SHM (M, ~,P,i) = SHM(M,~,P’,i).

Proof. At this point we have shown that choices of type II, ITI, an IV do not
make difference on the definition of grading so when fixing P we can freely
choose other auxiliary data to construct the grading. Now let T" and aq, ..., o,
be chosen and the pre-closure M as well as the properly embedded surface §'p
have been constructed. We can assume that they are chosen so that there is
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Figure 6: The auxiliary surface 7" and the surface ¥,

a curve c intersecting each of o, and a;, transversely at one point. See figure
6. The requirement (i) and (ii) make sure that a;, x {£1} and oy, x {£1} lie in
four different boundary components of §p. So we can choose an orientation
preserving diffeomorphism A : R, — R_, where oM = Ry U R_, so that

hoS A R.) =05 R_, h(cx {1}) = ¢ x {—1}.
Also we can require that
h(ay, x {1}) = oy, x {—1} and h(oy, x {1}) = oy, x {—1}.

Let
Y =M u R, x[-1,1], R=R x {0}
iduh

be a closure of (M,~). The surface gp results in a closed surface Sp — Y.
We can also choose a simple closed curve n on R = R, x {0}, so that n
intersects ¢ x {0} transversely at one point. Hence we get a marked closure
D = (Y,R,m,r,n), where m,r are both inclusion.

By definition, we have

SHM(D,P,i)= @ HM.Y,sT,).

s€&(Y|R)
c1(s)[Sp]=2i
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Let Y5 be a closed connected oriented surface of genus 2. Let ¢/, § and 3
be three simple closed curves on 35 as depicted in figure 6.

Let Yx, be the 3-manifold X x S*. There is a torus ¥ Y being ¥ = ¢x S*
and a torus ¥’ < Yy being ¥’ = ¢ x S'. We can choose an orientation
preserving diffeomorphism A’ : ¥ — ¥ so that for all t € S* ;we have h/(c x
{t}) = x {t} as well as

W (((on, ne)u (an, ne)) x {t}) = (B ) x {t}.

We can use X, ¥/ and I’ to do a Floer excision on Y 1 Ys,. The result
is a 3-manifold Y’, with a distinguishing surface R’, obtained from R L1 Xo
by cutting and re-gluing along two curves ¢ and ¢’. The surface Sp — Y
also becomes a new closed surface Spr = Y’ obtained from S U (8 x S!) by
cutting and re-gluing along four curves (a;, nc) x S, (ag, N ¢) x S, and
(B ) x St (there are two intersection points of 8 with ¢/). The curve 7
together with § < X5 will result in a simple closed curve ’ < R'. See figure
6. Hence we get a new marked closure D' = (Y, R',m/, 7', 1) where m/, ' are
both inclusions. The Floer excision results in a cobordism W from Y u Yy
to Y’ and then a map

HM(W) : HM(Y U Ys|R U $9; T, s) — HM(Y'|R';T,).
Let a € HM (Yx|¥9;T'5) = R be a generator. Then we can define
v HM(Y|R;T,)) — HM(Y'|R';T,)
as t(r) = x ® a and we know that
Opp = HM(W) o,

as in [2].

The surface Spr = Y’ actually arises from the balanced pairing P’, which
is obtained by doing a cut and glue operation on P with two indices /; and
lo. Just as we did in the proof of proposition 3.9, we can conclude that for
all 4,

Opp/(SHM(D,P,i)) = SHM (D', P',4).

Hence we are done. O

Definition 3.19. Two balanced pairings P, P’ are called connected if there
is a sequence of balanced pairings

730 = P,Pl, apn = Pla

so that for all ¢ = 0,1,...,n — 1, P; and P;1 are equivalent.
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Lemma 3.20. The two special balanced pairings P9 and P? in example 3.15
are connected to each other.

Proof. In example 3.17, we have shown that

{(12),(3,6), (4,5)} and {(1,4),(2,5),(3,6)}

are equivalent. In a similar way, we can also show that
{(16),(2,4),(3,5)} and {(1,4),(2,5),(3,6)}
are equivalent. So
{(12), (3,6), (4,5)} and {(16),(2,4),(3,5)}

are connected. The later one can be thought of as slide the arc «q, which
originally joined the points p; and ps, over the two arcs as and as.

If we skip the pairs (2,4), (3,5) and look at {(1,6), (7,10),(8,9)}, then the
above argument applies and we can connect it to {(1,10), (6,9),(7,8)}, and
this can be thought of slide oy over ay and as. We can repeat this step for
many times.

Case 1. If n is of the form 4k + 1. In this case, we can slide oy over to
join p1 and p4xio. Hence PY is connected to a new balanced pairing

P ={(1,n+1=4k+2),(2,5),(3,4), ..., (4k — 2,4k + 1), (4k — 1,4k),
(4k + 3,4k +6), (4k + 4,4k + 5), ..., (8k — 1,8k + 2), (8k, 8k + 1)}.
Then we can do cut an glue operations on pairs (41 — 2,4l + 1) and (4] — 2 +
n,4l + 1 + n) as well as on pairs (4] — 1,41) and 4] — 1 + n,4l + n, for all
1 <1 < k. The result of these operations is just the special balanced paring
P? so we are done.

Case 2. If n is of the form 4k + 3. In this case, we can still slide a7 to
join p1 with pgg1o, so PY is connected to

P ={(1,4k +2),(2,5),(3,4), ..., (4k — 2,4k + 1), (4k — 1,4k),
(4k + 3,4k + 6), (4k + 4,4k + 5), ..., (8k + 3,8k + 6), (8k + 4,8k + 5)}.

Now do another cut and glue operation on pairs (1,4k + 2) and (4k +
4,4k +5), we will get a new balanced pairing

P ={(1,n +1=4k+4),(2,5),(3,4), ..., (4k — 2,4k + 1), (4k — 1,4k),
(4k + 2,4k + 5), (4k + 3,4k +6), ..., (8k + 3,8k + 6), (8k + 4,8k + 5)}.

There is then an « arc joining psr.o and pyr.5, we can slide it over to join
Pak+s and po. Similarly there is an « arc joining pgri3 with pyrrg and we
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can slide it over to join pgry3 with pgrie. Then PY is connected to a new
balanced pairing

={(l,n+1=4k+4),(2,n+2 =4k +5),(n = 4k + 3,2n = 8k + 6),
(3,6),(4,5)...(4k — 1,4k + 2), (4k, 4k + 1)
(4k + 6,4k +9), (4k + 7,4k + 8), ..., (8k + 2,8k + 5), (8k + 3,8k + 4)}.

Finally, we can do cut and glue operations on pairs (4l — 1,4l + 2) and
(4l —1+n,4l+2+n) as well as on (41,41 + 1) and (4 +n,4l + 1+ n) for all
1 <[ < k, then the final result is P? and we are done. U

Corollary 3.21. The definition of grading on SHM(M,~) is independent of
choices of type 1.

Proof. Tt is straightforward to check if we use the special balanced pairing
P#, then the surface Sps is the same for all possible choices of the starting
point p1. Hence the corollary follows from lemma 3.18 and lemma 3.20. [J

Remark 3.22. We want to use P9 in the definition of grading because it is
more convenient to use this construction to discuss about the positive and
negative stabilizations (see definition 3.1), as we will see in subsection ?7.

Though we only discussed some special pairings, we would like to make
the following conjecture. Note the concept of balancedness, equivalence, con-
nectedness defined above can be reached in a purely combinatorial way and
is independent of all the topological input.

Conjecture 3.23. Any two balanced pairings of the same size n, where n is
odd, are connected.

4 The degree shifting property

4.1 A naive version

Suppose (M, ~) is a balanced sutured manifold and suppose S is a properly
embedded surface in M with only one boundary component. In definition 3.3,
we constructed a grading on SHM(M, ) associated to S, when [0S n~| = 2n
with n being odd. If n is even, then we introduced in definition 3.1 positive
and negative stabilizations ST to increase n by 1. It is a natural question to
ask how the gradings associated to ST and S~ are related to each other. The
following proposition is a first answer to this question.
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Proposition 4.1. Suppose (M,~) is a balanced sutured manifold, S < M is
a properly embedded surface with only one boundary component and that 05
intersects ~y transversely at 2n points with n = 2k > 0 even. Suppose that
the balanced sutured manifold obtained by decomposing (—M,—~) along S is
taut. Suppose ST are the positive and negative stabilizations of S. Suppose
S is of genus g and let

ge=9+k.

Then we have
SH_M(—M7 -, Si7gc) - SH_M(—M7 -, S+7gc - 1)
We need a lemma before the proof of the proposition.

Lemma 4.2. Suppose (M,~) is a balanced sutured manifold and S is properly
embedded surface inside M so that 0S is connected and |0S N ~y| = 2n with n

even. Let
n—1

2

9ec = +g(s)a

then we know that
SHM(M,~, S,i) =0

for alli > g. and
SHM(M,, S, gc) = SHM(M',~"),

where (M',~") is the balanced sutured manifold obtained from (M,~) by de-
composing along S.

Proof. This follows from the construction of the grading in definition 3.3,
the adjunction inequality in lemma 2.7 and the proof of proposition 6.9 in
Kronheimer and Mrowka [16]. O

Proof of proposition 4.1. 1f we have two different negative stabilizations S}
and S, , then we know from lemma 3.2 and lemma 4.2 that

SH_M(—M7 -7, 51_796) = SI'I_M(—M/7 _7/) = SI{J(_Ma -, 52_790)7

where (M’,+) is obtained from (—M, —v) by performing a sutured manifold
decomposition along .S. Hence we can choose a special negative stabilization
to deal with.

Suppose the intersection points of 05N~ are labeled as py, ..., p2,, as we did
in definition 3.3. We also pick a suitable p; so that the new pair of intersection
points created by the positive or negative stabilization lie between ps and p4.
Let 5/ < 0S be part of 0S so that 08" = {p3,ps} and 3’ contains no other
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intersection points p; for j # 3,4. Let 8 < S be a properly embedded arc so
that 08 = {ps,ps}, B and S’ co-bound a disk on D, and when doing positive
and negative stabilizations, the isotopies on S are fixed outside the disk D.
Now if we use the same starting point p; to label ST n v, then the new pair
of intersection points are both ps and ps in the two cases. See figure 7.

Figure 7: The negative stabilization of S. Positive stabilizations are similar.

Suppose T is an auxiliary surface of (M,~y) with large enough genus.
When constructing the grading using ST, we also need to choose linearly
independent arcs al,ag,ag,a4...,an+1 c T to connect intersection points
0ST n v, and the special pairing P9, as defined in example 3.15, to tell us
what exactly are the end points of those arcs a;. Here agi correspond to the
different surfaces ST while T and all other arcs «; can be chosen the same
for both S* and S~. Now in the pre-closure M = M U T x [—1,1], we have
surfaces ST < M. After picking suitable gluing diffeomorphisms k™, we get
two marked closures

so that there are closed surfaces ST < Y+, and the gradings are defined by
the pairings between first Chern classes of spin® structures with fundamental
classes of S*. Note the genuses of ST are both g. = g + k + 1.

From proposition 3.8, we know that the canonical map ®_p- _p+ can
be interpreted in terms of a Floer excision cobordism W from —Y~ L =Y,
where Y is the mapping torus of h = (h=) ' o h™, to —Y+.
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Now we can construct a special closed surface of genus 2 as follows. Re-
call we have an arc § < S, and since the isotopies for positive or negative
stabilizations are supported in the interior of the disk D, /3 also lies in S*.
Let § = B U (ag x {0}) = S* be a closed curve. Then the curve § cuts each
of S* into two parts. One part contains S\int(D) and the other part is a
connected oriented surface T+ < ST of genus 1 and with boundary §. Inside
W, we can define

Yo=T"uUdx|[0,1]]u-T"cW.
It is straightforward to see that in W,
[S7]=[S"]+ [%].

Hence by the adjunction inequality in dimension 4, which is a 4-dimensional
analogue to lemma 2.7, we have

®_p- _p+(SHM(-D,5 ,9.)) € SHM(-D,5",g.+1)
®SHM(-D,S*,g.)
®SHM(-D,S",g. —1).
The adjunction inequality also implies that SHM (=D, S*,g.+ 1) = 0. If we

decompose (—M, —v) along ST and suppose (M’,~') is the resulting balanced
sutured manifold, then by lemma 3.2, R4 (') is compressible and so

SHM(-D,S*, g.) =~ SHM(—M',—~') = 0.

The first isomorphism follows from lemma 4.2 and the second equality follows
again from the adjunction inequality in lemma 2.7.
Hence the only possibility left is

@,D—7,D+<SHM(—D,S_,QC)) = SHM(_D75+7QC - 1)

and we are done. O

4.2 Knot complement with two sutures

In this section we shall focus on the case when the balanced sutured manifold
(M, ) is the complement of a non-homologous knot, which means that M =
X(K) = X\im(N(K)), where X is a closed connected oriented 3-manifold
and K < X is a non-homologous knot. Also we focus on the case where v has
only two components. Under these conditions, we can prove that the result
of proposition 4.1 holds not only for the top grading but for all gradings.
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Proposition 4.3. Suppose (M = X(K),~) is the balanced sutured manifold
described as above. Suppose S is a Seifert surface of the knot K, viewed as
a properly embedded surface in M, so that |0S n~y| = 2n. Then for any
q,k,l € Z such that n + q is odd, we have

SHM(—M, —v, 89,1) = SHM(—M, —~, S92F | — k).
Note S9 is defined as in definition 3.1 and in particular S° = S.

Before proving proposition 4.3, we will first deal with the following related
proposition.

Proposition 4.4. Suppose (Y, R) is a closure of (—M,—7y), and let 1,89 €
S*(Y|R) (see definition 2.4) be two spin® structures on Y both supporting
the sutured monopole Floer homology. Then there is a 1-cycle x inside M,
so that

P.D.Cl(ﬁl) — P.D.Cl(ﬁz) = [w] € Hl(Y)

Note the cycle is contained in M but the identity is on the whole Y .

We shall start by describing the closures of (—M, —v). Note if (Y, R) is a
closure of (M, ), then (=Y, —R) is a closure of (—M, —v). So in the following
discussion, we shall describe the closures of (M, ~y) and for (—M, —7), one can
just reverse the orientations.

Let ¥, be a closed oriented connected surface of genus g which is large
enough. Its first homology is generated by the curves ai,b1,...,a4,b4 as in
figure 8.

Figure 8: The surface X,.

Let T' = ¥ \int(N(a1)) be a surface obtained from X, by cutting ¥, open
along ay, then T can be viewed as an auxiliary surface for (M, ). Let

M=MUuUT x [-1,1]
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be a pre-closure of (M,~). Let
oM =R, UR_.

Remark 4.5. For different sutures v and surfaces S, the genus ¢ of the auxil-
iary surface T" might be different in order to construct the grading.

If we choose a special gluing diffeomorphism h° : R, — R_ so that
hrx {1y = id, then we get a special marked closure

DO = (YO’ R’ TO? mo? /’7)'

Similar to the closures described in section 5.1 in [16], the closure (Y, R) can
be thought of being obtained as follows. Let X, be described as above, and
let Yy, = X, x S1, where S! is identified with the unit circle in the complex
plane. Let a; also denote the curve a; x {1} < Yy, and N(a;) is a tubular
neighborhood of a; < Ys. Note a; < ¥, so there is a framing on 0N (a1)
induced by X,. Let A4, 1o be the meridian and longitude respectively.

Then we actually have

YO =M z(Yg\int(N(al))).
Here
¢ :0N(ay) —> oM

sends two copies of A\, to the suture v. Note there are canonical ways to
identify Ry with ¥,. So in the marked closure Dy, we have R = X,.
Note (Yo, %) is a closure of (M,~) so (—Yp, —%,) is one for (—M, —v).

Lemma 4.6. Proposition 4.4 is true for —Y©.

Proof. From the Mayer-Vietoris sequece we know that there is an exact se-
quence

Hy(T?) — H{(M)® Hy(Ys\int(N(a;))) — H (YY) -0,
where T2 = 0M = 0(Yx\int(N(ay))). Hence we conclude that
Hy (V) = Hy(M) @ Hy (Yo\int (N (a1)))/ ~,
where ~ is the relation induced by the gluing map ¢ :

[Aa] ~ @([Aal); [1a] ~ Px([pal)-

A direct calculation shows that
Hy(Ys\int(N(a1))) = {[pal, [a1], [01]; -, [ag], [bg], [°]),
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0

where s’ corresponds to the S! direction in Yy = X4 X S1. Hence we can

write
Hy(Y?) = Hi(M) ®<{[b1], [az], [b2], --., [ag], [bg], [s°])- (7)

This is because a; and p, are absorbed into Hy(M).
Suppose 5 € &*(—=YY| — X,), then we can express P.D.c;(s) in terms of
the above basis. The coefficient for [s] can be fixed by the evaluation

ci(s)[—24] = 29 — 2.

There are no [b1], [az], [b2]...[ay], [by] terms because we have tori ay x ST, by x
Sl...,ag x S' < Y? and the adjunction inequality in lemma 2.7 rules out
those possibilities. The rest terms must then lie in H;(M). So if further we
look at the difference of two supporting spin® structures, the difference (of
the Poincaré dual of their first Chern class) must lie in M. O

Now we want to deal with other closures of (—M, —v). As above, we have
the pre-closure N
M=MuT x|[-1,1],

where T' = ¥/\N (a1 ). Also recall
oM =R, UR_.

Note as in the above discussion, there are canonical ways to identify R, and
R_ with ¥,. Now we can pick any orientation preserving diffeomorphism
h: Ry — R_ to get a closure (Y, %) of (M,~), or a marked closure

D = (K Egyrym,n)'

In particular, the special marked closure D° in lemma 4.6 corresponds to
taking h = k" = id.

Let Y” be the mapping torus of the diffeomorphism h : Xy — X4, then
we can reinterpret Y as

Y = M ug (YMint(N(ay))).

From proposition 3.8, we know that the canonical map ®p, p can be obtained
from a cobordism W from Y° LY to Y. The cobordism W arises from the
Floer excision as in subsection 2.2. The computation of the first homologies
of Y, Y" and W, are straightforward and we can describe them as follows

H1(Y) = Hi(M) @ {[pal; [a1], [b1]; s [ag], [bg], [s])/ ~o.n (8)
Hy(Y") = ([a1], [b1]--, [ag), [bg]. [s]")/ ~n (9)
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H\(W) = Hi(M) @{[pal, [a1], [b], ..., [ag], [bg], [s). ["])/ ~pn . (10)

Here s is a circle intersecting ¥, once. We can isotope h so that h has a fixed
point p € 3, then inside Y, there is a circle s = {p} x S*. The class s" is
similar. The relations ~ ), are

l[a1] ~ ¢«([a1]), [1al ~ d«([1al); [ai] ~ A([a:]), [b:] ~ h([b:]).
The relations ~j, are
lai] ~ h([ai]), [bi] ~ R([bi])-
From the above description, the following lemma is straightforward.
Lemma 4.7. The inclusion i : Y — W induces injective maps

Lemma 4.8. Suppose (W,v) is an oriented cobordism between two oriented
3-manifolds with local coefficients systems (Y,n) and (Y',n'). Suppose s is a
spin® structure on'Y and s is a spin® structure on'Y’, so that

HM(W,v)(HM.(Y,5Ty)) 0 HM(Y',8';Tyy) # {0},
then we know that
ix(P.D.c1(5)) = 7' (P.D.c1(s)) € Hy(W).
Herei:Y — W andi' : Y' — W' are the inclusions.

Proof. This is straightforward since the monopole cobordism map is con-
structed through spin® structures on the cobordism W. So

HM(W,v)(HM.(Y,s;T,)) n HMJ(Y',s';T,) # {0}

means that there exists a spin® structure sy which restricts to s on Y and to s’
on Y’. Then the dual of ¢1(s) € H?(W) has boundary P.D.ci(s)—P.D.c1(s') €
H,(0W) which means that

ix(P.D.ci(s)) = i'.(P.D.c1(s')) € Hy(W).
]

Recall we have defined &*(—Y°| — %) to be the set of supporting spin®
structures as in definition 2.4. We can also define

POG* (Y - %)) = {P.D.ci(s)]s € &* (Y| - =,)}.
We can define PDS*(—Y|—-3%,) similarly. Then we have the following lemma.
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Lemma 4.9. Suppose we have the closures
_DO = <_Y07 _2g7 r,m, _77)7 -D= (_Y7 _Ega r,m, _77)

for (=M, —~), the mapping torus Y" and the cobordism W from Y L Y" to
Y defined as above. Suppose sy is the unique supporting spin® structure on
—Y" satisfying the conclusion of lemma 2.6. Then there exists a map

P PDE* (YO~ 5,) - Hy(Y)

50 that POGS* (=Y | — ) < im(p) and p satisfies the following property (x):
suppose we have spin® structures s € G*(=Y°| —%,) and s’ € &*(=Y| - %,),
so that

HM(—W)(HM (=Y, ;T )QHM J(~Y" 51T, ))nHM (<Y, p(s):T_,) # &,

then
P.D.ci(s") = p(P.D.c(s)).

Proof. Suppose s € &*(—YY| — X,) is any supporting spin® structure. We
define the image p(P.D.ci(s)) as follows. Pick any spin® structure sy on
—W so that

(1). We have El\/f(—T/V,EW,y) # 0.

(2). We have sy|_yo = s. Then we define p(P.D.c1(s)) = P.D.ci(sw]|—vy).
We now show that this map is well defined. Suppose we have another spin®
structure sy, on —W so that condition (1) and (2) also satisfied, then we
need to show that

P.D.Cl(ﬁw|,y) = P.D.Cl(EQ/VLy).
Let 7 : Y — W be the inclusion. We know that there is an exact sequence
Hay(W,Y) 5 Hy(Y) 2 Hy(W).

By lemma 4.7 and the exactness, we know that im(d) = ker (i) = 0. However,
clearly we have

O(P.D.ci(sw) — P.D.cy (5%/)) = P.D.ci(sw|-y)— P.D.c (5§,V|,y),
thus we conclude that
P.D.Cl(ﬁw|,y) = P.D.Cl(ﬁg/[/Ly).

The property (#) follows from the construction of p and lemma 4.8. The
fact that POS* (Y| — X,) < im(p) follows directly from the fact that —W
induces an isomorphism as in theorem 2.8. O
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Proof of proposition 4.4. We want a more explicit description of the map p
in lemma 4.9. Using the notations in that lemma, we have a supporting spin®
structure s on —Y and a (unique) supporting spin® structure s; on —Yh.
We can write

P.D.ci(s) = [z] + (2 —29)[s"],

where [z] € Hi(M) < H1(Y?) and s° is the class as in (7), by lemma 4.6.
Also we can write

P.D.ci(sy) = [y"] + (2 — 29)[s"],

where [y"] is a linear combination of the classes [a1], ..., [by] in Hy(Y"), which
is described in (9).
Now we claim that

p(P.D.ci(s)) =[] + [y"] + (2 - 29)[s] € H1(Y).

This is because the cycles # Y and x = Y co-bound annuli z x [0, 1] inside
W, y" c Y" and 3" = Y co-bound annuli " x [0,1] inside W and s° = Y?©,
s" © Y" s <Y co-bound a pair of pants in side W. Thus inside W we can
find an explicit (relative) 2-cycle ¢ so that

cnY'=0cnY®=PD.ci(s), cnY" =dcnY" = P.D.ci(sp).
Thus as in the proof of lemma 4.9, the injectivity in lemma 4.7 implies that
p(P.D.cy(s)) = [a] + [1"] + (2 - 29)]s]. (11)
With this explicit formula, proposition 4.4 follows directly. O

Corollary 4.10. If the inclusion j : M — Y induces an injective homomor-
phism
st Hi(M) — Hi(Y),

then the map p in lemma 4.9 is in fact a bijection:
P POS*(~Y| - B) - POS*(~Y| - L),

Proof. 1t is straightforward from (10) to check that when j, is injective, the
inclusion j° : M — W also induces an injective homomorphism

39 Hy(M) — H{(W).

Then the injectivity follows directly from (11), since [y"] and (2 — 2g)[s] in
that formula are fixed and the only variance is [2] which is represented by a
cycle in M. ]
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Proof of proposition 4.3. Now we have a balanced sutured manifold (M, )
where M = X (K) is the complement of a non-homologous knot K < X and
~ has two components. Also we have a Seifert surface S of K which can be
viewed as a properly embedded surface in M. Let |0S n 7| = 2n. For any p
so that n + p is odd, we can do p-stabilization as in definition 3.1 and apply
the construction in definition 3.3 to construct a grading

SI—I—M(*Ma - Sp’ l)
on SHM(—M, —7). As in definition 3.3, we can construct a marked closure
Dp = (Yp, X, 7p, mp, 1)

so that SP ¢ M extends to a closed surface SP — Y.
We claim that the inclusion j : M — Y), for any p satisfies the condition
in lemma 4.10, that is,
ot Hy(M) — Hy (V)

is injective. So then we can apply the corollary.
To prove this claim, first note that M = X (K) so we can compute directly
that

Hy(M) = Hi(X) ®@{[pk ]

where pug is a meridian circle of K inside M = X (K). From the discussion
above, we know that

Yy = M y(Y"\int(N(a).

where h,, : ¥; — 3, is some orientation preserving diffeomorphism and

Hy(Yp) = Hi(M) @ {[pal: [ar], s [bg]: [p])/ ~o.n,

as in (8). Thus we know that the relations ~g 5, only affects [ux] € Hi(M)
but not anything in H;(X). Hence to show that j, is injective, it is enough
to show that j,([u]) is of infinite order. Yet this last thing is obvious since
inside Y}, ux intersects Sp transversely at one point.

Thus we get a bijection

Py POG*(—Y] - 5,) — POG*(-Y,| - )

as in corollary 4.10. Here (Y?,%,) or D° = (Y?,%,,7%,m%n) is the special
(marked) closure of (M,~) described above.
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Similarly we have the surface SP*2¢ — M, a marked closure Dpior =
(Ypt2ks Sgs Tpoks Mp+2k, 1), an extension S, o of S inside Y, 4o and a bijec-
tion

P2kt POG* (=Y| = Bg) — POG™ (~Yppan| — Xy)-
Thus we can define

Py ok = Pp+2k © P;1 CPDEH (Y| - By) = POGH(—Y k]| — Xy).

Also from proposition 3.8, lemma 4.9 and the functoriality of the canonical
maps, we know that p has the following significant property: if s € &*(—Y,|—
¥,) and 8" € 6% (=Y, 101 — X,) are supporting spin® structures so that

(I)—Dp,—’DIH_% (E]\//f-(—%,ﬁ;r—n)) N E]/WO(_Y})Jr?kaﬁ/;P—n) # J,

then we must have

P.D.ci(s") = p(P.D.c(s)).

From the explicit description of p in (11), we know that 51,59 € &*(=Y;| - %)
and s7,55 € 6% (=Y, 0;| — Xg4) are supporting spin® structures so that

® 1, Dy (HM oYy, 51T ) 0 HMu(~ Yy, T ) # &
and
B, Dy (HM (=Y, 5237 ) 0 HMo(=Yyp0k, 85T ) # O,
then there exists a 1-cycle x < M so that
P.D.ci(s1) — P.D.ci(s2) = [z] € Hi(Y}) (12)

and
P.D.Cl(ﬁll) — P.D.Cl(HIQ) = [.%'] S Hl(}/})+2k). (13)

Recall in definition 3.3, the grading is obtained by the evaluation of the
first Chern classes of the supporting spin® structures and by theorem 3.4, the
grading should be preserved by the canonical map. Hence the above equalities
(12) and (13 actually implies that there is a fixed integer ly so that for any
l € Z, we have

SHM(—M, —v, SP,1) = SHM(—M, —, SP*% 1 — ).

If we go through the construction of p, we know that p is not only independent
of [ € Z, but also independent of the interior of M and S (and only related
to the data 0S, p, k and ~.) Thus in order to figure out the value of k, we
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can only look at the basic case where M is the complement of a trefoil inside
S3. The convenience is that when we decompose (M,~) along SP for p < 0
then the resulting sutured manifold is taut.

Case 1. If p < 0 and p + 2k < 0. From lemma 3.2 and lemma 4.2 we
know that first non-vanishing degree of SHM(—M, —~, SP) is

while the first non-vanishing degree of SHM(—M, —v, SP*2F) is

n—p—2k—1
2

U= + g(9).

However, from the above discussion we know that
U'=1-1

so lp = k.

Case 2. If p=—landk=1orp=1and k= —1. Thenlp =1=k
from proposition 4.1.

Case 3. If p > 0 and p + 2k > 0. Then we can look at the surface
—S < M. Note positive stabilizations of S are negative stabilizations of —S.
Hence this is reduced to case 1 and we still have [y = k.

Case 4. If p and p + 2k are of difference sign, and is not in case 2. We
can apply case 1,2 and 3 above and conclude that we still have [y = k.

So in summary we always have [y = k and we are done. O

4.3 Sutured monopoles on a solid torus

As a first application of the degree shifting property, we compute the sutured
monopole Floer homology of any valid sutures on a solid torus. The same
result in sutured Heegaard Floer homology can be found in Juhdsz [13].

Suppose V = S x D? is a solid torus. Let A denote a longitude S x {t}
where ¢t € D? and let i denote a meridian {s} x 0D? where s € S'. Suppose
v is a choice of suture on V so that (V) is a balanced sutured manifold.
Then ~ is parametrized by two quantities n and s where n is a positive even
number being the number of components of v and s is a rational number
being the slope of the suture. Then the suture v would be write as V(Tfm). We
will usually write s as g or (q,p). Here p and ¢ are co-prime and p > 0. Note
(q,p) means going around longitude p times and meridian ¢ times.
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Remark 4.11. The suture 7(21 ) in this subsection would be the same as the

suture I', as in formula (4).

Also note that adjacent components of the suture have opposite orienta-
tions. So the slope s and —s are exactly the same. In the present paper,
we want to be in consistence with Honda [10] so we will write the slope as
s = 7% or (g, —p). But in any case it shall be understood that p denote a
non-negative integer.

Proposition 4.12. Suppose (V, 7(2q 7p)) s defined as above. Then we have

Proof. If p = ¢, then p = ¢ = 1 because they are co-prime. Then (V, 7(21 _1))
is diffeomorphic to a product sutured manifold (A x [—1,1],0A x {0}), where
A is an annulus. Thus we know

SHM(-V, = 1)) = R.

From now on we assume that p > q¢. We want to re-interpret the by-pass
exact triangle as follows. We have two basic by-pass exact triangles

SH_M(_V7 _7(21,_1))
LN P2

SHM(=V, =7, ) SHM(=V, =%, 1))
(14)

Here ¢4 = lef,o, Ve = ¢9£,1 and Y49 = ¢-1L-,oo under the notations of

P+,0

(4).
Recall from subsection 2.3 that the maps ¢_ ; (as well as the other two) is
identified with a gluing map as follows. Suppose we have SHM(—V, —7(2170))
and an identification T2 = S! x 0D%. We can glue T? x [0,1] to V by the
identification 0V = S' x D% = T? x {0}. Suppose T? x {0} is equipped
with the suture 7(21,0) and T? x {1} is equipped with the suture 7(21771), then
we can identify (V 7(21771)) with (V u T? x [0, 1],7(21771)). There exists a
compatible contact structure £_ 1 on (7% x [0, 1],7(2170) U 7(217_1)) so that we
have an equality

1][),70 = q)ff,o : SI‘I_M(*VY, *’7(2170)) - SI_I—M(f‘/’ 77(217—1))‘
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Now if we are dealing with other sutures, we can still glue (72 x [0, 1], 7(21 o)

7(21’_1)) to V, but along a diffeomorphism
g:T? > oV

which is not the identity. Such a map also needs to be orientation preserving
and hence is parametrized by an element in SL9(Z). We can pick the map
corresponding to the matrix

A= < q/fq’ 7(/1, )a
p—p P
where p'g —pd = 1,9 <p, ¢ <q,¢" =p—p, and p” = p—p'. (Such
P',q',p",q" are unique.)
Then the suture 7(21,0)
7(21,71) on T? x {1} now becomes the suture 'y(Qq,,ip,). As in formula (14), they
still fit into an exact triangle

on T? x {0} is glued to 'y(Qq _p) on 0V and the suture

SHM(=V, =7 )
Y1 Y2

SHM(~V, =2, )

SHM(_V’ _7(2(]/771),))

(15)

We claim that ¢_ g = 0. Let D, be a meridian disk of V' which intersects

7(2q7_p) at 2p points, then from a similar argument as in proposition 5.5, we
have

Y0

Yo o(SHM(~V, —v2, _y. D77 ) < SHM(=V, =2, _ ), DS 4)

for any 7 € Z.

We will only deal with the case when p’ is odd and p” is even. Other cases
are similar. From the construction of the grading in definition 3.3, we know
that there is a suitable marked closure D, = (Y, R,r,m,n) and a closed
surface Dp/ c Y}y so that the grading is defined via the evaluations of the
first Chern classes of spin® structures on the fundamental class of D,,. From
the construction we know that

X(Dy) = x(Dy) —p' =1-7p"
Hence the adjunction inequality in lemma 2.7 tells us that

SHM(—=V, —=(y._p)s Dprs i) = 0
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if i < l%ﬂ. Then from the degree shifting property in proposition 4.3, we
know that

/1

_ol . 3 p
SHM(=V, =0y _py» D" 8) = SHM(=V, =3, _y, Dpryi + (5)).
Thus we know
SHM(=V, =2, ), D" i) = 0 (16)
if § < 2t
The above argument for D,/ is the same for D;,,. Note p” is assumed to

be even, so we need to do a positive stabilization on D,» to construct the
grading. The adjunction inequality tells us that

SHM(-V, _'}’(Qq//’ip//), D;;/, Z) = 0 (17)

if i > %ﬁ. However, from proposition 6.9 in [16], we know that

/
p
SHM(=V, =Y{gr ) Dyir» ) = SHM(M', ),

where (M',~') is the result of doing a sutured manifold decomposition on
(—V, 77(2q,, 7p,,)) along the surface D;r,,. From lemma 3.2, we know that

"
SHM(—V, ~12_y, D, o) = SHM(M ') = 0. (18)

The degree shifting property in proposition 4.3 implies then

/
o o p—1
SHM(*V, 7’7(2q”,—p”)’ D;;,,p ,Z) = SHM(*V, *W?q//’_p//), D;r//, 1 — )

The above equality, together with (17) and (18), implies that
SHM(*V, 7’7(2q”,—p”)’ D;r,/p ,’L) =0
if § > =242 Compare this with (16), we can see that ¥_ o = 0.

it
Once we conclude that ¢_ o = 0, we can compute SHM(—V, —7(2q _p)) by

induction. Actually the other two slopes (¢’, —p’) and (¢”, —p”) can be written
out explicitly in terms of the continued fraction of (¢, —p), as in Honda [10].
Note we have p > ¢. Suppose

P 1
—— =" 1
q ro —

r3—...
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where it is a finite continued fraction, and r; < —1 for all j. We can write

p
a = [r1,79, ..., Tk]. (19)
Under this notation, we have
/ /
_]i, = [7017702"'7741671]7 - p_// = [7017702"'7701671 + 1]7
q q
and we shall identify [r1,...,7_1,r;, —1] with [ry, ..., 71,7 + 1.] O

Now we will deal with general sutures. There are two types by-passes

relating (V, yfgff))) and (V, V(quf_p))' We call them positive and negative by-

passes according to the figure 9. They give rise to by-pass exact triangles:

SHM(~V, —y("*2)

n n+1
y v

SI‘I—M(*V, *’7(2;71)))

P, (¢.—p)

. J

. )

Positive by-passes Negative by-passes
Figure 9: The positive and negative by-passes.

Remark 4.13. Unlike the case of two sutures, when there are exactly two
different possibilities of by-passes, in the case when v has more than two
components, positive and negative by-passes are not unique. Here we just
pick two specific by-passes so that they are ’adjacent’ to each other. This is
crucial to the proof of lemma 4.14 below.
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Lemma 4.14. For any n and slope (¢, —p), we have

WO g = WU oUT oy = did : SHM(=V, =97 )) — SHM(=V, =77 ).
Proof. We will only prove that ¢ﬁfnl ot 41 =id. The other is the same.

From [3] or [21] we know that a by-pass attached along an arc « can be
thought of as attaching a pair of contact 1-handle and 2-handle. The contact
one handle is attached along the two end points da while the contact two
handle is attached along a Legendrian curve

B=aud,

where o’ is an arc on the contact 1-handle intersecting the dividing set once.

Now ¢ﬁj§11 o9} 41 corresponds to first attaching a by-pass along a4 and
then attaching another one along a_, as in figure 10. However, in terms of
contact handle attachments, the two pairs of handles are disjoint from each
other, so we can reverse the order of attachments: we can first attach a by-pass
along o and then along a,. If we attach a by-pass along a_ first, we will
see as in figure 10 that this is actually a trivial by-pass as discussed in Honda
[11]. In that paper it is proved that such a trivial by-pass would not change
the contact structure. From theorem 2.16, we know that the induced map
between sutured monopole Floer homologies must be the identity. Then the
second by-pass attached along a. will also induces identity map for exactly
the same reason and we conclude that ijnl oYl 4y = id. O

Corollary 4.15. We know that

SHM(~V,—2n_,)) =~ R®""7),

Proof. From lemma 4.14 we know that w?jfnl is surjective while ¢ | ., is
injective. Hence we can conclude the statement by using the by-pass exact
triangles and the induction. U

Corollary 4.16. We have
|mo(Tight (V.73 _)))l = 2" - 1] - [reen + 1] .

Proof. First assume n = 1. In [10], Honda explained how can we construct
any possible tight contact structures on a solid torus with convex boundary
and dividing set 'y(Qq _p) First we shall start with the standard tight contact

structure on (V, 7(21 _1)). Then we can glue k different layers T2 x [i — 1,1]
for 1 < i < k to V one by one, so that on 7% x [i — 1,i], T? x {i — 1} has
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Qy

(

)

Above: first attach along o then o

Q4

Below: first attach along «, then a_

(

Figure 10: Reversing the order of doing by-pass attachments. Bottom right picture:
we can isotope a_ to this new position where we can see directly that the by-pass
is trivial.

the dividing set 7(217_1), while 72 x {i} has the dividing set 7(2171_”). We
glue T2 x {0} to AV via identity, while glue 72 x {i} < T2 x [i,i + 1] to
T? x {i} = T? x [i — 1,i] so that the dividing sets on these two surfaces are
identified.

Each layer T? x [i — 1,i] is further decomposed into the combination
of =1 —r; (or —rg for the last layer) many by-passes. There are two by-
passes, one corresponding to the map ¢_; in formula (15) and the other
corresponding to some other 1, 1 in a similar by-pass exact triangle and
should be completely analogue to the one discussed above. Use the inductive
step in [10] that Honda used to construct contact structures, we will see
by above discussion that all such contact structures have distinct contact
elements. Hence there are at least |r; + 1] - ... [rg—1 + 1| - |rx| many different
contact structures.

When n is bigger than 1, we still proceed by induction. Suppose for n = [,

there are my = 2=+ |ry +1|-...-[rp_1 + 1| - |r%| many different non-zero contact
elements ¢, , ...,wgml e SHM(-V, 'y(qu 7p)). From above discussion we know
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that TM_F 141 are both injective, and

141 1 I+1 1 ,
Vi oy =0, 9L oYy = id.

The first equality is the exactness of the by-pass triangle and the second is
lemma 4.14. Hence we know that inside SHM(—V, v 2 )), there are mj;4 =

(a,—p
2Ly 4+ 1| - oo - |rp—1 + 1| - |rx| many different contact elements
l l
wi,l+1(¢§1 )’ ey wi,l-i-l (¢§ml )
as they are all distinct. Hence we are done. U

Remark 4.17. When n = 1, the above argument gives an alternative way to
provide a tight lower bound of |mq(Tight(V, 7(2q,—p)))" which is originally done
by Honda [10].

When n > 1, as we have mentioned before, there are not only two by-
passes, so this lower bound in general should not be tight. However, one
could try to study the impact of all other by-pass attachments to see if we
could improve the lower bound.

Remark 4.18. We can use a meridian disk of the solid torus to define a grading
on SHM(-V, —'y(Qq"_p)). The above method is also capable of computing the
graded homology.

5 The direct system and the direct limit

5.1 The construction

Suppose Y is a closed oriented 3-manifold and K < Y is an oriented knot
with a Seifert surface S < Y, i.e., S is an embedded oriented surface so that
0S = K. Suppose p € K is a fixed base point. Suppose ¢ : S' x D? <> Y be
an embedding as in subsection 2.2, that is, we shall require

(St % {0}) = k, and p({1} x {0}) = p.

Then we have a 3-manifold with boundary Y, = Y\int(im(y)). The Seifert
surface S induces a framing on 0Y,,. We call the meridian p, and the longi-
tude A,. Let I', , be a collection of two disjoin parallel oppositely oriented
simple closed curves on 0Y,, each of class +(\, — nu,). Then we have a
balanced sutured manifold (Y,,I', ).

Suppose ¢’ is another embedding, then we also have ((Yy/,T'y ). Sup-
pose f; is the ambient isotopy defined as in subsection 2.2, relating ¢ and ¢'.
We have the following lemma.
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Lemma 5.1. The diffeomorphism fi is a diffeomorphism from (Y,,I', ) to
(Yeo” Fn,go’)'

Proof. It is enough to show that f; sends the framing (p,, A,) on 0Y, to the
framing (p1yr, Ayr) on 0Yr.

By construction, fi sends p, to pr. So suppose fi sends Ay, to 2 +y iy

The fact that fi is a diffeomorphism implies that x = 1. Suppose y # 0,
then we know that f; is a diffeomorphism between balanced sutured manifolds
(Yo, T'np) and (Yo, 'y o), for any n € Z. Pick n large enough so that n > 0
and n —y > 0. Note by construction f; restricts to identity outside a tubular
neighborhood N of K < Y. So it is free to assume that Y = S2 and K is the
unknot. Then the above diffeomorphism actually gives us a diffeomorphism

fi: (V, Fn) - (V, any),

where V is a solid torus and I',, is defined as in subsection 2.3. However, we
know that SHM(V,T',,) and SHM(V,T',,_,) are not isomorphic by proposition
4.12. So this gives a contradiction. O

Corollary 5.2. There is a transitive system (of projective transitive sys-
tems) {SHM(Y,, 'y )} and {¥, = SHM(f1)}. So it is valid to define the
canonical module SHM(Y, K, p,n) associated to the quadruple (Y, K,p,n).

Pick a particular embedding ¢ and we can give Sel x D?  a standard

) ()
tight contact structure. Let
st = ker(sin(@)dx + cos(0)dy).

Under this contact structure, the boundary S' x dD? is convex and the di-
viding set consists of two curves of slope —1. We can use ¢ to push forward
this contact structure to a tubular neighborhood of K < Y. We can choose ¢
so that the curve {t} x 0D? is mapped to the longitude A, defined as above.
The the dividing set is mapped to two curves of slope —1 on JY,, under the
framing (e, Ay)-

The knot K is Legendrian under this local contact structure. Let K, be
the (n — 1)-th negative stabilization of K, then we can remove a stardard
neighborhood ¢/(S' x D?) < int(im(y)) of K,, the new boundary torus is
convex and having dividing set being two curves of class Ay, — npug. Thus
we get the balanced sutured manifold (Y,/,T', ). From corollary 5.2 we
can identify all (Y,/,I';, /) as (Y(K) = Y\int(N(K)),T',) for a fixed tubular
neighborhood N(K) of K, and I',, consists of two curves of class (A — nu),
where 1 and A are the meridian and longitude of the framing on Y (K) which
is induced by S. Also let 'y, denote two meridians p. We can further assume
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that there is a contact structure defined in a collar of 0Y (K) < Y (K) so
that 0Y (K) is convex with the dividing set I',, or I'y,. Then we can apply
positive and negative by-pass attachments to (Y (K),T',,), and there are exact
triangles as in formula (4).

Lemma 5.3. The maps ¢y in the exact triangle (4) induce maps between
SHM(-Y, K,p,n), SHM(-Y, K,p,n—1) and KHM(Y, K, p). Note forn = o0,
we are using a pair of meridians so we have SHM(-Y, K, p,0) = KHM(-Y, K, p).

Proof. Recall (Y(K),T';) = (Yy,I'y ), and the by-pass attachments are
realized by contact handle attachments. If we have a different embedding
¢”, then the two balanced sutured manifolds (Y,/,I',, ,v) and (Y », T, .») are
related by an isotopy f;. To prove the lemma, we need to show that SHM( f1)
commute with the contact handle attaching maps. This follows from lemma
3.16 in [20] or a similar result in the instanton settings from [4]. O

With the above lemma at hand, we can focus on (Y (K),I'),) from now
on.

Definition 5.4. Define the minus version of monopole knot Floer homology
of a based knot K < —Y, which is denoted by KHM ™ (-Y, K, p), to be the
direct limit of the direct system

wz,n+l
——>

- SH_M(*Y(K)’FVL) SH_M(*Y(K)’FnJrl) ERGE

where the maps ¢ , ;| are defined in the exact triangle (4). By corollary
2.22 the maps {wi,nﬂ}neﬂr induce a map on KHM™, which we call U:

U :KHM (-Y, K,p) — KHM ™ (-Y, K, p).

We also want to construct a grading on the direct limit KHM ™ (-Y, K, p).
Suppose S, is the Seifert surface of K so that S,, intersects I'), at 2n points.
Then we have the following proposition.

Proposition 5.5. Suppose n is even, then we have for any i € Z
V% 1 (SHM(=Y (K), =T, Sy, 7)) © SHM(=Y (K), =Ts1, Snt1,4)-
Suppose n is odd, then we have for any i € Z

P} 1 SHM(=Y(K), =Ty, Si2,i)) © SHM(=Y (K), —Lpy1, Sip ).

n+1’
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Figure 11: The solid vertical arc represents the surface S5 = S, and the dashed arc
represents Sj.

Proof. We only prove the case when n is even and we are dealing with
L i1 Other cases are similar except for a possibly more complicated use
of the degree shifting property. From figure 11, it is clear that the surface
Snt+1 < (Y(K),T',41) can also be obtained from the surface S,, by a negative
stabilization:

SnJrl = S; .

Thus we know that for any i € Z
SHM(-Y(K),-T4,S,, ,i) = SHM(-Y (K),—T}, Spt1,1).

Now for S,; = Sp+1 < (Y(K),T',,), we can choose some auxiliary data to
construct a marked closure

D; = (Yn7> R, rp, mp, 77)3
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so that there is a closed surface S, < Y, and it induces a grading on
SHM(Y (K),T',,) which is just the one associated to S, . (See definition 3.3.)

We can obtain (Y (K),T',+1) by attaching a by-pass disjoint from S,.
From [3], we know the map @™ 41 associated to the by-pass can be described
as follows. There is a curve § < (m,(Y(K))) < Y,;” so that a 0-framed Dehn
surgery on f3, with respect to the 0Y (K) framing, will result in a 3-manifold
Y, 4+1. Since 3 is disjoint from im(r,), the data R, r, and 7 can be copied
and we get a marked closure

Dn+1 = (YnJrla Ra Tn+1, Mp41, 77)

which is a marked closure of (Y(K),I';,+1). The surgery description above
results in a cobordism W from Y, to ¥, and the cobordism map associated
to this cobordism actually induces the by-pass attaching map ¢” ;. This
cobordism W is obtained from Y, x [0,1] by attaching a 4-dimensional 2-
handle along the curve g c Y, x {1}.

It is the key observation that S, = S,41 is disjoint from the region we
attach the by-pass and hence is disjoint from the curve 8 along which we do
the Dehn surgery. As a result, the surface S, remains as a closed surface

Sp+1 € Y41 and hence induces a grading on SHM(Y (K),T',,11). If we check
the definitions, then it is clear that this grading induced by S, is just the
one associated to the surface Sy,11 < (Y(K),T'pi1).

There is a 3-dimensional cobordism S, x [0,1] € W from S, = Y, to
Spi1 € Y41, hence we conclude that

¢ﬁ,n+1(SI—I—M(Y<K)7 P7N S;7 Z)) = SI—I—M(Y(K)7 Fn-‘rla Sn+17 Z)
So we are done. O

The following figures 12 and 13 might be helpful for figuring out how does
Y 41 change the gradings. In the figures, &' = k + g(9).
Now we can do a degree shifting as follows:

SHM(—Y (K), =T, ST™ i)[o(n)] = SHM(=Y (K), =Ty, ST i + o(n)).
Here 7(n) = —1 if n is even and 7(n) = 0 if n is odd. Also

n—1+7(n)

o(n) = 5

We will simply write

SHM(=Y (K), =I'n, 5;)[0]
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D, Doy 1 Dy, Dy, Doy 1
¥ O—0 O, O
¥-10—0 O.. “O0—O
KF—20—0 Q\j*O—»O

N
~

2-kK O—0 O\\\\\\O—’O
1- O—0O O\\\\\\O—’O
¥ O 0—0

Figure 12: The map ¢+ from SHM(—Y (K), —T'9;) to SHM (=Y (K), —I'9x11). The
map qﬁkzk +1 1s depicted on the left and gbik% 41 on the right. They are represented
by the solid arrows. The circles () denote the graded homologies. The dashed lines
represent the degree shifting when using different surfaces to construct the grading.

and the direct system becomes

= SHM(=Y(K), —T', §7)[0] 2= SHM(—Y (K), ~Ts1, 57 )[0] — ..

It is straight forward to prove that after the shifting ¢ , ., is degree pre-
serving and ¢ , ., shifts the degree down by 1. Thus we conclude:

Proposition 5.6. If S is a Seifert surface of K < Y, then S induces a
grading on KHM™ (=Y, K, p), which we write as

mi(*yy K’p’ S’ Z)
and the map U shift the degree down by 1.

5.2 Basic properties

Proposition 5.7. Suppose Y is a closed oriented 3-manifold and K 'Y is
a knot so that there exists an embedded disk S = D? with 0S = K. Then

m_(_yv K, p) = SH_M(_Y(l)v _5) ®R R[U]

Here p € K is any choice of base point. (Y (1),0) is the balanced sutured
manifold obtained from Y by removing a 3-ball and pick one simple closed
curve on the spherical boundary as the suture.
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Doy D;k2—1 D;k Do, D;lf—l D;k D;k
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Figure 13: The maps ¢4 from SHM(—Y (K), —T'9x—1) to SHM(—-Y (K), —T'9).

Proof. First assume that Y = S3, then (Y (1),6) is a product sutured mani-
fold and (Y(K),T',,) = (V, 7(21 7n)), where (V, 7(21 7n)) is the balanced sutured
manifold defined in subsection 4.3. From proposition 4.12, we know that

SHM(-V, fwfl,,n)) ~ R™.

Suppose S, is the Seifert surface of K surface intersecting I'), = 721 —n) at 2n
points, then the argument in the proof of proposition 4.12 can also be applied
to calculate the graded homology and we conclude

SHM(=V, =7{; _py: Sp2i)[0] = R
for all ¢ such that 1 —n < i < 0. Moreover, the map
Y g1 s SHM(=V, *’7(217_71)’ Sp)le] — SHM(-V, *7(21,_n_1), Sni1)lo]

is of degree —1 and is an isomorphism for all ¢ such that 1 —n < i < 0. Thus
we conclude that the direct limit

KHM ™ (-S3, K, p) = R[U].
When Y is an arbitrary 3-manifold, we know that
(Y(K), L) = ((Y(1),8) 0 (=S*(K), =7, ) © by

where h is a contact 1-handle, defined as in [1] or [20], which connects the
two disjoint balanced sutured manifolds ((Y(1),8) and (—S3(K), —7(21 7n)).
Thus we know that

SHM(~Y (K), ~T'n) = SHM(=Y (1), ~6) ® (—S°(K), =1 _n))-
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Moreover, the the above isomorphism commute with the maps ¢ 4
on SHM(-Y(K),—TI',) and the maps id ® ¢} ,,; on SHM(-Y (1), —6) ®
(—S93(K), 77(217_71)) as the corresponding contact handle attachments are dis-
joint from each other. Thus we conclude that

m_(_yv K, p) = SH_M(_Y(l)v _5) ®R[U]
U

Proposition 5.8. The direct system stabilizes, that is, for any fized i € 7,
there is a large enough N, so that for alln > N, we have an isomorphism

P i1 SHM(=Y(K), =T, Sy, 1) [o]=SHM(=Y (K), —Tyi1, Sy 41, 1) 0]

n
Proof. We will need to use the following exact triangle again.

n+1
—,00

SHM(=Y (K), =I'n11) SHM(-Y (K), ~T'o)

R %

SHM(-Y (K), —I'n)

We will deal with the case that n = 2k is even here, and the other case is
exactly the same. When n is even, we know from proposition 5.5 that

¢" 1 (SHM(=Y(K), =T, S;,4)) © SHM(=Y (K), =T'ny1, Sni1,0).-
By a similar argument, we have
¢ L (SHM(=Y (K), —Ths1, Snt1,4)) © SHM(=Y (K), —T', S, 4)
where S, intersects the suture I'y; twice. Proposition 4.3 then implies that
SHM(-Y (K),Ts, =S, " i) = SHM(-Y(K), —T'y, Se,i — k).

However, the adjunction inequality in lemma 2.7 tells us that if i—k < —g(S),
then
SHM(-Y(K), T4, Se,i — k) = 0.

Thus for large enough 4, the map
¢" i1 SHM(=Y(K), =Ty, S, i) — SHM(Y (K), T y1, Sny1, ).

is injective by the exactness, and by a similar argument it is also surjective.
O
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Corollary 5.9. Under the above conditions, there exists an integer Ny, so
that for any i < Ny, the U map induces an isomorphism:

KHM (-Y,K,p,S,i) *x KHM™ (=Y, K,p,S,i — 1)
Proof. The proof is exactly the same as the above proposition. ]

Corollary 5.10. For a knot K < Y, a Seifert surface S of K and a fixed
point p € K, we have

KHM (=Y, K,p,S,i) =0
fori> g and
KHM™(-Y, K,p, S, g) = KHM(-Y, K,p, S, g).
Here g is the genus of the Seifert surface.

Proof. The first statement that
KHM™ (=Y, K,p,S,i) =0

for i > g follows from the adjunction inequality in lemma 2.7.

For the second part of the statement, suppose n = 2k + 1 is odd and the
other case is exactly the same. Suppose (M’ ,+') is obtained by a sutured
manifold decomposition of S, ¢ (Y(K),T',). It is straight forward to check
that if we decompose SHM(Y (K),T'y) along Sy, then we will get exactly the
same balanced sutured manifold (M’,~"). Hence from proposition 6.9 in [16],
we know that

SH_M(—Y(K)7 _Pna Sn+17g(S)+k+1) = m(M/7’Y/) = M(_Yy K7p7 50079(5))

Then the corollary follows from proposition 5.8 the way we shift the degree
in definition 5.4. ]

Suppose K c Y is a fibred knot with fibre S of genus g. Suppose (S, h) is
an open book corresponding to the fibration of K < Y so that it support a
contact structure £ on Y. We call h not right-veering if there is an arc « < .S
and one end point p € da so that near p < S, h(a) is to the left of a. See
figure 14. See [6] for more details.

Corollary 5.11. Under the above setting, if h is not right-veering, we have
mi(*x K’p’ S’ g) = R’

and the generator is in the kernel of the U map.
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Figure 14: Not right-veering

Proof. This result is essentially the same as in Baldwin and Sivek [6]. The
only difference is that we translate it into our language involving KHM . [

Proposition 5.12. We have an ezact triangle:

KHM(-Y, K, p) KHM(-Y, K, p)

\/

KHM(-Y, K, p)

Proof. We will use the by-pass exact triangle

wn+l
’ n+1 SHM
(wi\ %
SHM(—
(21)

The maps {qﬁn +1nez, induce the U map. By a similar argument, the maps

SHM(—Y (K Y(K),—T'x)

{ :L_T:é}}nez_'_ and {¢F , }nez, induce the maps ¢» and ¢’ in the statement of
the proposition. Then it is formal to check that the by-pass exact triangles
(21) for all n € Z will induce the desired one as stated in the proposition. [

Suppose K < Y is a knot and 0S5 = K is a Seifert surface. Let Y(K) be
a knot complement. Let A and p represent the longitude and meridian on
0Y (K) respectively, according to the framing induced S. We can do a Dehn
surgery along the knot K and get a surgery manifold

Yy =Y (K) v St x D2,
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Suppose pg = ¢({1} x ID?) = goA — pop and Ay = ¢(S' x {1}) = 1o — sop.
This result in a surgery of slope *Z—S- Now A4 and pg will form another
framing on Y (K), so that 1, is the meridian of the knot K, = S x {0} < Y.
Note Y(K) is also a knot complement of K4 < Yy4. Hence we can use the
new framing to construct a minus version of knot monopole Floer homology
KHM™ (=Yg, Yy) of (Yy, Ky). Here we will omit the choice of base points.
The construction is exactly the same as in definition 5.4. The Seifert surface
S for the original knot K will still induces a grading on KHM™ (=Y}, Kj).
We can also shift the degree properly just as we did above.

Proposition 5.13. For any fized i € Z, there exists N so that for any surgery
slope 72—8 < —N, we have

KHM ™ (=Y, K, S,i) =~ KHM (=Y, Ky, S, ).

Proof. We will use the framing (A, ) intricately and write both the curve
g\ — pp or the slope fg as (g, —p). We will use y(gr—pp) V(g,—p) to denote the
suture consisting of two curves of slope (¢, —p). Again v, _, = I', in the
construction of knot monopole Floer homology.

From the stabilization property in proposition 5.8, we know that there
exists Ny such that for any n > Ny, we have

—KHMi(_Y; K7 S7 Z) = —SHM(_Y<K)7 _f)/(l,fn)a ST7 Z)[U] (22)

Here S™ and o are defined as above. The degree shifted on SHM(—Y (K), —v(1,—n))
can be described more explicitly in the following way: there is a grading 7g
so that
SH—M(*Y(K)’ —7(1,-n)> ST, Z.0)[0] = SH—M(M/’ 7/)’
where (M’,~") is the balanced sutured manifold obtained from (=Y (K), —v(1,—n))
by performing a sutured manifold decomposition along S. This isomorphism
is guaranteed by proposition 6.9 in [16]. We shift the degree so that ig = g(.59),
the genus of S.

Remark 5.14. Here the exact value o of the degree we shall shift down depends
on n. In principle, it depends on the slope (¢, —p), or the p value, according
to the frame (\, u). However, we will always omit n or p from the notation.

Now by a similar stabilization property, there exists No so that for any

n > Ny, we have

KHM™ (—Yy, Ky, S, i) = SHM(-Y (K), — ST.i)o].  (23)

Ap—nftgp)?

Hence to prove the theorem, it is suffice to prove that for large enough n and
large enough surgery slope, we have

SI—I—M(*Y(K)a —Y(1,—n)> ST, Z)[U] = SI—I—M(*Y(K)a *7()\¢fn,u¢)a ST’ Z)[U]
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Now fix an ny > N, and write Ay — napg = gA — pp. From the proof
of proposition 4.12, we can construct two sequences of slopes {(q;, fp;»)} and
{(p}, —q})} inductively as follows. Let (¢4, —py) = (¢, —p). For any j > 1,
suppose we have the continued fraction of (q;;p fp;;l) to be

(q;{—17 _pg_l) = [7"17 vy Tl—2,Tk—1, Tk]7

then define

(q;/’ _p;/) — [7"17 s T—2, Te—1, Tk + 1], (q;, —p;) = [Tla ---7741672774]?*1]'

Note we identify [ri,...rx_2,7k—1, —1] as [r1,...,7k—2,7k—1 + 1]. We end the
sequence when

(@1, =Ph—1) = [r1] = (1,m1). (24)
Here r; < —2 is the first term in the continued fraction of (¢, —p) = (Ay —

Nofle)-
The sequences of slopes fit into by-pass exact triangles:

SI‘I—M(*Y(K), 77(q’.

17171’3'71))
SHM(=Y(K), =Y(g7 p)) on SHM(=Y (K), =¥, .p))

(25)
If Y = 53 and K is the unknot, then Y =Y for k = 0,1,2 in the previous
exact triangle (15). As above, we know that

7/)]',0 : (SI—I—M(—Y(K), 77(q; ,p;.), S ) Z/) - SI—I—M(iy(K)a 77(q;’,p;,’)’ S+pj ) i,)a

T,Z)j,l : S:[—I—M(iy(K)?ily( 3/),54‘10;,2'/) —»SI—I—M(—Y(K) )’S’ i/)a

aj.p I (C/ A

¢j,2 : SI—I—M(*Y(K)a 77@9,1,?;,1)’ S’ i/) - (SI—I_M(*Y(K)a *V(q;,,p;.)a S_p;{’ i/)'

Note in the above formula, we assume that pg_l is odd. When it is even, we
shall use SHM(—Y (X)), )y 1) S—,1') instead, and there shall be some
adjustions on the other two terms but the argument is essentially the same.
Also from the construction, we have an equality

Pi_1 =D+ 0] (26)

just as in the proof of proposition 4.12.
On this particular grading ¢’, the three maps 1; 0, ¥;1 and ;2 also form
an exact triangle. Note in the above formula, we use 7 because we haven’t
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apply the shifting o as in (22) and (23). If we track the way we shift the
degree via o, we know that we shall look at the degree ¢ in this un-shifted
version, so that
p;‘_1
2
i,e., the grading whose difference from the top grading is the same as that
of i. Here i is pre-fixed by the hypothesis of the proposition and i’ actually
depends on the indices j but we omit it from the notation.
Note in the sequence of slopes {(q}, —pj)}, we have

—i' = g(S) —1, (27)

(40, —po) = (¢, —p) = Ap — napie, and (g1, —pp_1) = [r1] = (1,7r1).

If we could prove that for any j, the map ;2 is an isomorphism in at
degree i’ described as above, then we know that

KHM™ (=Yy, Ky, S, i) = SHM(=Y (K), =Yz, —napy). S )[0]
= SHM(~Y (K), =Y\ s—nopg): S5 7)
= SHM (=Y (K), =Y(xtrip)s ST, 1)
= SHM(=Y (K), =Y(xtr1p), 57 8)[0].
Here 71 is defined as in (24). If further we had 1 < —N7, then we know from
(22) that
KHM™ (=Y, Ky, 8,7) = SHM(=Y (K), =34 1100 57 1) o]

KHM™ (-Y, K, S, )

12

and we were done.
Hence there are two things to show:
(1). All the maps ;2 are isomorphisms.
(2). For ’small’ enough surgery slopes (qo, —po), we have . < —Nj.
We show the second statement first. By definition, we have

Ty = —([SJ + 1) and D _ S0+ 1P (28)

q 7o+ mn2go
If we choose large enough ns (we can freely make ng larger), then we know
that » »
0
- =z|—]—-L 29
=1, (29)
Hence for any surgery slope —Z—g < —Ny, (2) is true.
To deal with (1), we apply the argument in the proof of proposition 4.12
again, and look at the map

7/)]',0 : (SI—I—M(—Y(K), 77(q; ,p;.), S_p;{’ Z/) - SI—I—M(iy(K)a 77(q;’,p;’)’ S+p9 ) Zl)
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The difference from previous argument is that now .S is not always a disk, so
the degree shifting property may not distinguish all the non-zero gradings of

o

SI—I—M(_Y(K)a _fY(q;,p;% STF )

from that of

SI‘I_M(*Y(K), 77(q;.’ S+p;)a

;)

and as a result, 1;; need not to be identically zero. However, the overlap
only happens in the few bottom non-zero gradings in

SI—I—M(_Y(K)7 _7(q3 ,p;.)a S )7
while the desired grading i’ is quite near the top as in (27). This idea is
realized in details as follows.

From now on we still assume that p;;l and p;- are both odd. Other cases
are similar. To use the surface S to construct a grading in

SH_M(—Y(K)7 _’Y(qg,—pg)%

we shall first perform a positive stabilization to get S* since [S q;_/7_p;_/)\ =
2p} and pf is even. There is a marked closure

D= (Y R,7,m,n)

of (=Y (K), 77((1}’,—17}’)) so that S extends to a closed surface S < Y’. From
definition 3.3, we know that

X(S) =2—29(5) =1 —(pj + 1) = —29(S) — p].

Hence from the adjunction inequality, we know that for any i” > ¢(S) + %

SHM(—Y(K), —’Y(q// //)7 S+”L'”) = 0

3 °Pj

1—p3

The degree shifting property tells us that for any i > ¢(S) + % + —2,

/

SHM(*Y(K), 77(q” //), S+pj , ’L'”) = 0.

jPj
Hence to show that

W2 : SHM(-Y (K) ) ,1') = (SHM(=Y (K), =g, 1), S, 7).

’ 77(Q;,17p;',1
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is an isomorphism, it is suffice to show that for the particular grading ¢’
defined by (27), we have

/! /
p;  1-p;
> g(S) + =L + ——L,
i g()—|—2—|— 5

This is equivalent to

Applying equality (26), this is also equivalent to
Py >29(S) —i+ 1.
From (26), (28) and (29) we know that for any j,

o,

/ / /
Pj ZPjy1 ZPp—1= —T1 2 lf}o

Hence we can pick the constant
N = max{Ny,2¢g(S) —i+ 1}
in the hypothesis of the proposition and we are done. O

Remark 5.15. By a similar argument, we could prove that actually Nj de-
pends only on ¢(5).

At last, we would like to introduce the following definition.

Definition 5.16. Suppose K < Y is an oriented knot and S is a Seifert
surface of K. We can define the tau invariant 7(Y,K,S) of K < Y with
respect to S as follows:

7(Y,K,S) = —max{i|3z e KHM~ (Y, K, p, S, i), U’z # 0 for any j > 0.}
Here the base point can be fixed arbitrarily.

Question 5.17. What properties does 7(Y, K, S) have?
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6 Instantons and knot Floer homology

6.1 Instanton Floer homology and the generalized
eigenspace decomposition

Suppose Y is a closed, connected and oriented 3-manifold. Suppose w is a
fixed Hermitian line bundle whose first Chern class ¢;(w) has an odd pairing
with the fundamental class of some surface.

Suppose E is an U(2)-bundle whose determinant line bundle A%FE is iso-
morphic to w. Let gg be the bundle of traceless skew-Hermitian endomor-
phisms of E, and let Ag be the (SO(3)) connections on gr. Let Gg be the
group of determinant one transformations and let Bg = Ag\Gg. Then we can
use the Chern-Simons functional to construct a well defined SO(3) instanton
Floer homology over C which we denote by I“(Y).

If x € Y is a point, then there is an action p(x) on I“(Y). The action
w(x) has eigenvalue 2 and —2. By slightly abusing the notation, from now on
we use the same notation I*(Y’) to denote only the generalized eigenspace of
u(x) with corresponding to eigenvalue 2.

Suppose X < Y is a closed oriented embedded surface inside Y. Then
there is also an action p(X) on I¥(Y). We have the following result about
the eigenvalues:

Proposition 6.1 (Kronheimer, Mrowka, [16]). The eigenvalues of the action
w(K) on I°(Y) belongs to the set of even integers ranged from 2 — 2g(X%) to
29(%) —2.

If ¥ and X' are two such embedded surfaces, then the action p(X) and
1(X") commute. Then we can look at the simultaneous generalized eigenspace.
Similar to corollary 7.6 in Kronheimer and Mrowka [16], we can make the fol-
lowing definition.

Definition 6.2. Suppose we have a function A\ : Ha(Y;Z) — 27, then we
can define

= () keruo) = M)
oeHa(Y;Z) N>0

Such a function A is a called an eigenvalue function.

If the embedded surface 3 represents a zero class in Ha(Y;Q), then the
action p(X) is actually the zero action. This means that if 1“(Y")y # 0 then
we can lift A to a linear map (which we will use the same notation to denote)

A Ha(Y;Q) — Q.
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Thus we can think of A as an element of H2(Y;Q). So from now on we will
consider A € H2(Y; Q). We have a decomposition

V)= @ I’V

AeH2(Y;Q)

Suppose R < Y is a closed oriented embedded surface inside Y, then as
we did in definition 2.4, we can define the following.

Definition 6.3. Suppose the pair (Y, R) is as above. Then we can define the
set

H*(YIR) = {Ae HX(Y;Q)|M([R]) = 29(R) — 2, I*(Y)x # 0},
The elements A € H*(Y|R) are called supporting eigenspace functions.

We have the following lemma which is the instanton correspondence to
lemma 4.8 for monopole theory.

Lemma 6.4. Suppose (W,v) is a cobordism between (Y,w) and (Y',w'). Sup-
pose A € H*(Y;Q) and N € H*(Y';Q) are two eigenvalue functions. Suppose
1:Y > W and i :Y' — W are the inclusion map.

LW, )(I°(Y)5) 0 1 (Y")x # {0},

then there must be an element 7 € H*(W; Q) so that i*(7) = X and (i')*(7) =
N.

Proof. For a second homology class ¢ and a rational number r € Q we can
define

I“(Y,o,1) = U ker(u(o) —r)V.
NZ=0

By definition we know that

FOy= (] Ve o).
oeH2(Y;Q)

Similarly we can define I*'(Y’, 0", 1").
Suppose there are no such 7 as in the statement of the lemma, then we
can regard an element 7 € H2(W;Q) as a map

T: Hy(W;Q) — Q

and thus the non-existence of 7 implies that there is a class o9 € Ha(Y;Q)
and a class o(, € Ho(Y’; Q) so that

ix(00) = ii(00) € Hay(W),
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while
Aoo) # N (o).

Thus we know that
W) (I (V)3) © T, ) (I (Y, 00, A(00))) < I (V", 0, Aloo).
The last inclusion follows from lemma 2.6 in [6]. However, A(o) # X (¢”) so
I/ (Y', iy Moo)) o I (V" 0, N (o)) = {0,
Thus we conclude
I, 0)(I°(V)3) ~ I (V) = {0},

So we are done. O

6.2 The sutured instanton Floer homology

Suppose (M, ) is a balanced sutured manifold, then as we did for monopole
theory, we can construct a closure of (M,~) and apply the instanton Floer
homology. Pick a connected auxiliary surface 7' of large enough genus, we
can get a pre-closure

M=MuT x[-1,1], oM = R, U R_.

For the construction in instanton theory, we also need to pick a point pe T
so that there are corresponding points py € Ry. When choosing the gluing
diffeomorphism h : Ry — R_ so that h(p;) = p—. Thus we know that inside
the closure (Y, R) there is a closed curve p x S < Y. Let w be a complex
line bundle over Y whose first Chern class is dual to the curve p x S'. Then
we can make the following definition.

Definition 6.5 (Kronheimer, Mrowka [16]). Define the sutured instanton
Floer homology of (M,~) to be

SHI(M,y) =I*(YIR)= @ I°(Y)x
\ef*(Y|R)

Baldwin and Sivek [2] also made refinements of closures and constructed
canonical maps for the sutured instanton Floer homology.

Definition 6.6. A marked odd closure D = (Y, R,r,m,n,«) of (M,~) is a
tuple so that (Y, R,r,m,n) is a marked closure of (M,~) as in definition 2.9,
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the simple closed curve « is disjoint from im(m), and a nr(R x [—1,1]) is of
the form r(p x [—1,1]).

We can pick a complex line bundle w whose first Chern class is dual to
a un. Then we can define

SHI(D) = I“(Y|r(R x {0})).

Theorem 6.7 (Baldwin, Sivek [2]). Suppose (M,~) is a balanced sutured
manifold and D, D' are two marked odd closures of (M,~). Then there is a
canonical map

$pp : SHI(D) — SHM(D'),
which is an isomorphism well defined up to multiplication by a non-zero ele-
ment in C. Furthermore, the canonical map satisfies the same functoriality

properties as the canonical map for sutured monopole Floer homology in the-
orem 2.10.

Hence we have a well defined projective transitive system
SHI(M, )

associated to (M, ). For a knot, there is a similar discussion as in subsection
2.2 and we have a well defined projective transitive system

KHI™ (Y, K, p)

associates to a triple (Y, K, p) for a knot K < Y and a base point p € K.
There are similar results for the contact gluing maps and by-pass exact
triangles.

Theorem 6.8 (Li [20]). There is a gluing map for sutured instanton Floer
homology, satisfying the same properties as in theorem 2.16.

Theorem 6.9 (Baldwin, Sivek [6]). Suppose (M,~1), (M,72) and (M,~y3)
are three balanced sutured manifolds which are related in the same way as in
theorem 2.17. Then there is still a by-pass exact triangle

SHI(— M, —1) fiz

ﬂ(iMa 772)

P31 )23
ﬂ(iM’ 773)

where the maps 1;; comes from the gluing maps in sutured instanton Floer
homology, just as the monopole case in subsection 2.3.
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6.3 Statement of results

With lemma 6.4 and theorem 6.9 in place of lemma 4.8 and theorem 2.17,
we can recover all results we did in this paper for sutured monopole Floer
homology. We will present those results without further proofs.

Proposition 6.10. Suppose (M,~) is a balanced sutured manifold and D
and D' are two marked odd closures of the same genus. Then the canonical
map ®p pr for sutured instanton Floer homology can be interpreted in terms
of the Floer excision cobordism, as in proposition 3.8 for sutured monopole
Floer homology.

Theorem 6.11. Suppose (M,~) is a balanced sutured manifold and S is a
properly embedded surface inside M so that 0S is connected and |0S nvy| = 2n
with n odd. Then S induces a grading on SHI(M,~y) which we denote by

@(M,’}/, S,Z)

Proposition 6.12. Suppose (M,~) is a balanced sutured manifold so that M
is the complement of a non-homologous knot K < X and v has two compo-
nents. Suppose S is a Seifert surface of K, viewed as a properly embedded
surface in M, so that [0S n | = 2n. Then for any p,l,k € Z such that n + 1
s odd, we have

SHI(—M, —,8%,1) = SHI(—M, —, Sp+2k,l — k).

Proposition 6.13. Suppose V is a solid torus and v is a suture on 0V with
2n components and slope g, then

SHI(—V, —v) = 2" leD),

Theorem 6.14. Suppose K is a non-homologous knot inside an closed con-
nected oriented 3-manifold Y and p € K is a base point. Then there is a
projective C-vector space KHI™ (Y, K, p), whose elements are well defined up
to multiplication by a non-zero element in C, associated to the triple (Y, K, p).
Also there is a homomorphism

U :KHI (Y, K,p) — KHI (Y, K, p).

If S is a Seifert surface of K then S induces a Z grading on KHI™ (Y, K, p)
so that U is of degree —1. Furthermore, analogous results to proposition 5.7,

proposition 5.8, corollary 5.9, corollary 5.10, proposition 5.12, proposition
5.13 also hold for KHI (Y, K, p).
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