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Direct systems and knot Floer homology

Zhenkun Li

Abstract

In this paper we construct possible candidates for the minus version of
monopole or instanton knot Floer homology. We use a direct system which
was introduced by Etnyre, Vela-Vick and Zarev [7]. If K Ă Y is a knot then
we can construct a direct system based on a sequence of sutures on BY pKq
and the direct limit is of our interests. We prove that a Seifert surface of the
knot will induce an Alexander grading and there is a U map on the direct
limit shifting the degree down by 1. We prove some basic properties and
compute the case of unknots. We also use the techniques developed in this
paper to compute the sutured monopole and instanton Floer homology of a
solid torus with any valid sutures.
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1 Introduction

1.1 Statement of result

Floer homologies have become very important tools in the study of 3-manifolds,
since the first construction by Floer [8]. Among them two major branches
are the monopole, which was introduced by Kronheimer and Mrowka [15]
and the Heegaard Floer, which was introduced by Oszváth and Szabó [23]
or Rasmussen [24]. For a closed oriented 3-manifold Y , there are four flavors
of homologies associated to Y in each of the two theories, and they have
been known to be isomorphic by works of Kutluhan, Lee and Taubes in [18]
and subsequent papers. If there is a knot K inside a 3-manifold Y , then
there are corresponding four flavors of homologies of the pair pY,Kq in the
Heegaard Floer theory. See Oszváth and Szabó [22]. However, some corre-
sponding constructions in the monopole and instanton theory are missing.
The only monopole or (non-singular) instanton Floer homology for knots in
3-manifolds is the sutured version constructed by Kronheimer and Mrowka
[16], and is refined by Baldwin and Sivek [2]. The monopole version is proved
to be isomorphic to the hat version of the knot Heegaard Floer homology by
Baldwin and Sivek [5] or Lekili [19]. In this paper, we are going to construct
homologies associated to a based non-homologous knot, which are candidates
for the monopole and instanton correspondences of the minus version of the
knot (Heegaard) Floer homology.

Theorem 1.1. Suppose Y is a closed connected oriented 3-manifold and
K Ă Y is an oriented knot. Suppose S is a Seifert surface of K and p P K
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is a fixed base point. Then we can associate the triple pY,K, pq a module
KHM´pY,K, pq over the mod 2 Novikov Ring R. It is well defined up to
multiplication by a unit in R. The Seifert surface S induces a Z grading
on KHM´pY,K, pq, which we denote by KHM´pY,K,P, S, iq. Moreover, the
following properties hold:

(1). For i ą g “ gpSq, KHM´pY,K, p, S, iq “ 0.
(2). There is a map

U : KHM´pY,K, pq Ñ KHM´pY,K, pq

which is of degree ´1.
(3). There exists an N0 P Z, such that if i ă N0, then

U : KHM´pY,K, p, S, iq – KHM´pY,K, p, S, i ´ 1q.

(4). There exists an exact triangle

KHM´pY,K, pq
U // KHM´pY,K, pq

ψvv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

KHMpY,K, pq

ψ1

hh❘❘❘❘❘❘❘❘❘❘❘❘❘

(5). If Y “ S3 and S realizes the genus of the knot, then we have

KHM´pY,K, p, S, iq ‰ 0

for i “ gpSq and i ă N0 with the same N0 as in (3).

Theorem 1.2. With the same setting as in theorem 1.1, we can construct
KHI´pY,K, pq using instanton Floer homology so that all the properties (1)-
(5) in the above theorem hold.

It worth mentioning here that Kutluhan [17] constructed another minus
version of knot monopole Floer homology in a different way. He used the
holonomy filtration for the construction.

1.2 Outline of the proof

We shall only present in this susbeciton with the monopole case. The con-
struction of KHM´pY,K, pq is based on the sutured monopole Floer homol-
ogy. A sutured manifold pM,γq is a compact oriented 3 manifold with an
oriented 1-submanifold γ on BM which we call the suture. The suture di-
vides BM into two parts, according to the orientations of the suture and the
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3-manifold, which we call R´pγq and R`pγq respectively. Sutured manifolds
were first introduced by Gabai [9]. Kronheimer and Mrowka then carried
out the construction of the monopole Floer homology on balanced sutured
manifolds in [16].

A sutured manifold pM,γq is called balanced if M,R˘pγq have no closed
components and χpR´pγqq “ χpR`pγqq. To define the sutured monopole
Floer homology for such an pM,γq, Kronheimer and Mrowka constructed a
closed 3-manifold Y together with a distinguishing surface R out of pM,γq.
The pair pY,Rq is called a closure of pM,γq. Sometimes we simply call Y
a closure. The genus of the closure refers to the genus of the surface R.
To construct the closure, one need to first find an oriented surface T whose
boundary is diffeomorphic to γ, and then glue T ˆ r´1, 1s to M with BT ˆ
r´1, 1s identified with an annular neighborhood of γ Ă BM . The surface T

is called an auxiliary surface. The new 3-manifold after the gluing is called
a pre-closure and has two boundary components, R` and R´, of the same
genus. So we can pick a diffeomorphism h from R` to R´ to glue the two
boundary components together to get the closure pY,Rq. We call h a gluing
diffeomorphism.

To study the naturality of the sutured monopole Floer homology, Baldwin
and Sivek [1] constructed canonical maps between two different closures of
a same balanced sutured manifold pM,γq. Their construction is only well-
defined up to multiplication by a unit, so the closures and canonical maps
form a projective transitive system and will result in a canonical module
SHMpM,γq, whose elements are well defined only up to a unit.

The construction of the (canonical) module KHM´pY,K, pq was inspired
by Etnyre, Vela-Vick and Zarev [7], where they use a sequence of balanced
sutured manifolds pY pKq,Γnq, and gluing maps in sutured (Heegaard) Floer
theory, which was introduced by Honda, Kazez and Matić [12], to construct a
direct system. They proved that the direct limit is isomorphic to the classical
minus version of knot Heegaard Floer homology. Here Y pKq “ Y zintpNpKqq
is the knot complement, and Γn consists of two curves on BY pKq – T 2, which
are of class ˘p´n, 1q under a framing induced by some Seifert surface. We are
going to construct the same direct system in sutured monopoles. In details,
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there is a commutative diagram

SHMp´Y pKq,´Γnq
ψn

´,n`1 //

ψn
`,n`1

��

SHMp´Y pKq,´Γn`1q

ψn`1

`,n`2

��

SHMp´Y pKq,´Γn`1q
ψn`1

´,n`2 // SHMp´Y pKq,´Γn`2q

(1)

where the balanced sutured manifolds are described as above, and the maps
come from gluing maps in sutured monopoles constructed by the author in
[20].

The knot Floer homology KHMpY,K, pq introduced by Kronheimer and
Mrowka [16] is based on the balanced sutured manifold pY pKq,Γ8q, where
Γ8 consists of two meridians on BY pKq.

The commutativity of the above diagram (1) is guaranteed by the func-
toriality of the gluing map. The crucial difference from Etnyre, Vela-Vick
and Zarev [7] is that because of the involvement of closures, the construction
of the grading in sutured monopoles is a delicate issue. We construct the
grading in the direct limit in two steps.

The first step is to construct a grading on each SHMpY pKq,Γnq, using a
Seifert surface S, for any n. For a fixed n, the boundary of the Seifert surface
S intersects Γn at least 2n times. To construct such a grading, we work with
the general case where pM,γq is an arbitrary balanced sutured manifold, S is
a properly embedded surface whose boundary has only one component, and
BS intersects γ transversely at 2n points.

For the case n “ 1, the construction has already been carried out by
Baldwin and Sivek [6]. When n “ 1, we can pick a properly embedded arc
α Ă T , where T is an auxiliary surface of pM,γq. When glue T ˆ r´1, 1s to
M , we shall require that the end points of α are glued to the two intersec-
tion points BS X γ and hence α ˆ r´1, 1s is glued to S along Bα ˆ r´1, 1s.

Then S becomes a new surface rS inside the pre-closure ĂM . Note ĂM has
two boundary components R˘ and the two boundary components of rS are
contained in two different boundary components of ĂM . Then we shall pick a
gluing diffeomorphism h : R` Ñ R´ which also identifies the two boundary
components of rS. Hence rS becomes a closed surface S̄ inside the closure Y of
pM,γq. The grading can thus be defined by looking at the pairing of the first
Chern classes of the spinc structures on Y with the fundamental class of S̄.
This idea was first introduced by Kronheimer and Mrowka [16] and Baldwin
and Sivek [6] proved that the definition of the grading is independent of all
choices made in the construction, and hence is well defined in SHMpM,γq.
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For a general n, the basic idea is the same but there are more choices to
be made and thus many new issues arise. For example, now we will need n

arcs α1, ..., αn instead of just one and we shall determine which arc is going
to connect which two intersection points of BS with γ, and thus leading to
an interesting combinatorial problem. We will deal with it in subsection 3.3.
Along with the proof, we will also need to use a new interpretation of Baldwin
and Sivek’s canonical maps between different closures. We will use just the
Floer excisions introduced by Kronheimer and Mrowka [16] to construct an
equivalent canonical map. This will be covered in subsection 3.2.

In the above construction, actually the closed surface S̄ could only be
constructed out of S when n is odd. If n is even, then we need to perturb S

to create a new pair of intersection points. There are two different ways of
perturbations, which we call positive and negative stabilizations, and write
S` and S´ respectively. Based on S` and S´, we can construct two different
gradings on SHMpY pKq,Γnq. The relation between the two gradings will be
the key to the second step of constructing the grading for the direct limit.
Also using the degree shifting property, we can compute the sutured monopole
Floer homology of a solid torus with any valid suture.

Proposition 1.3. Suppose V is a solid torus and γ is a suture on BV with
2n components and slope p

q
, then

SHMp´V,´γq – Rp2n´1¨|p|q.

Similarly, in instanton theory, we can get

Proposition 1.4. Suppose V is a solid torus and γ is a suture on BV with
2n components and slope p

q
, then

SHIp´V,´γq – Cp2n´1¨|p|q.

The second step of constructing the grading for the direct limit is to prove
that maps in the commutative diagram (1) will shift the grading in a desired
way. To be explicit, ψn

´,n`1 shall be of degree 0 while ψ
n
`,n`1 shall be of degree

´1. The construction of the maps ψn
˘,n`1 rely on the by-pass attachments,

which are realized by contact handle attachments in sutured monopoles, as
introduced by Baldwin and Sivek [3].

It is a basic observation that the region we attach contact handles is dis-
joint from the Seifert surface S, hence if we look at the grading associated to
the ’correct’ surfaces, then ψn

´,n`1 and ψn
`,n`1 will both preserve the degree.

However the ’correct’ surfaces involves both positive and negative stabiliza-
tions, while in order to define a canonical grading on SHMpY pKq,Γnq, we only
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use negative stabilizations. Hence the problem is reduced to understanding
the degree shifting between S` and S´.

To understand this degree shifting property, we need a better understand-
ing of the construction of the closures, and how spinc structures on different
closures are related by canonical maps. In particular, we prove the following
result.

Proposition 1.5. Suppose pY pKq,Γnq is the balanced sutured manifold de-
scribed as above, and Yn is a closure of pY pKq,Γnq. Suppose s1 and s2
are two spinc structures on Yn, so that both of them support the sutured
monopole Floer homology of pY pKq,Γnq, then in terms of Poincáre duals
of first Chern classes of the spinc structures, the difference between s1 and s2
lies in H1pY pKqq. More precisely, there is a 1-cycle x Ă Y pKq, so that

P.D.pc1ps1q ´ c1ps2qq “ rxs P H1pY q.

We will deal with the basic properties of the direct limit in subsection 5.2.
Most of them have been stated in theorem 1.1. Besides them, we can also
prove that the direct system stabilizes:

Proposition 1.6. For a fixed i P Z, there exists N1 P Z, such that for
n ą N1, we have an isomorphism:

ψn
´,n`1 : SHMp´Y pKq,´Γn, iq – SHMp´Y pKq,´Γn`1, iq.

Moreover, a similar result in instanton theory also holds.

The techniques used in computing the sutured Floer homology of a solid
torus can also be applied to knot complements. As a result, we obtain the
following.

Proposition 1.7. Suppose K Ă Y is a knot and S Ă Y is a Seifert surface of
K. Suppose Yφ is the manifold obtain from Y by doing a Dehn surgery along
K with slope ´p

q
with p, q ą 0. We also have the dual knot Kφ Ă Y . Then

for any fixed i, there exists N P R, such that if the surgery slope ´p
q

ă N ,
then we have

KHM´p´Yφ,Kφ, S, iq – KHM´p´Y,K, S, iq.

Moreover, a similar result in instanton theory also holds.

7
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1.3 Future questions

The first to be asked is how the projective module KHM´pY,K, pq is related
to HFK´pY,Kq. In [7] Etnyre, Vele-Vick and Zarev used a similar direct
system and they have proved that the direct system is isomorphic to HFK´.
The sutured monopoles and sutured Heegaard Floer homology homologies of
pY pKq,Γnq are isomorphic, and the gluing maps in sutured monopole and
Heegaard Floer settings also share many similarities in their constructions.
See the author’s previous paper [20] and Juhász and Zemke [14]. Hence we
would like to make the following conjecture:

Conjecture 1.8. There is an isomorphism

KHM´pY,K, pq – HFK´pY,Kq b R,

where HFK´ uses Z2 coefficients.

In the paper we construct an Alexander Z-grading, but it is still unknown
whether there are other gradings. In particular, we would like to ask the
following.

Question 1.9. Can we construct a Z2 grading on KHM´ based on the canon-
ical Z2 grading on the monopole Floer homology?

Throughout the paper we use mod 2 Novikov rings for local coefficients.
It might be interesting to ask whether we could use other coefficients. There
are two directions to think about. The first is try to work in characteristic
0. The reason why we need to work in characteristic 2 is that the current
version of surgery exact triangle in the monopole theory is only proved with-
out taking orientations into account. However, the construction of by-pass
exact triangles in [3] relies on surgery exact triangles and without by-pass
exact triangles, we cannot obtain stabilization properties as well as exact tri-
angles relating KHM´pY,K, pq and KHMpY,K, pq. The second direction is
to try to deal with the situation when local coefficients are absent. For tech-
nical reasons, if we want to construct the canonical maps between closures
of different genus, then local coefficients are necessary. However, our present
construction for the grading involves the usage of closures with arbitrarily
large genus. In summary, we would like to ask the following question:

Question 1.10. Can we construct the same direct system with grading, and
having the same nice properties (1)-(5) as in theorem 1.1, but using Z coef-
ficients?

8
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For knot monopole Floer homologies, there is currently no construction for
the cobordism maps. The cobordism maps for KHMpY,K, pq or KHIpY,K, pq
can be obtained directly from the cobordism maps for sutured monopole Floer
homology and the same construction in sutured Heegaard Floer homology,
but the construction of cobordism maps for KHM´pY,K, pq or KHI´pY,K, pq
are different, since we need to construct a sequence of maps related to the
direct system to induce one on the direct limit.

Question 1.11. Can we construct cobordism maps for KHM´pY,K, pq and
KHI´pY,K, pq?

In the Heegaard Floer theory, we have surgery formulas relating the knot
Floer homology with the Heegaard Floer homology of the surgery manifold
when surge along a knot. It might be useful to develop a similar formula
in the monopole theory and the instanton theory. The latter might be of
more interests as the instanton theory is closely related to representations of
fundamental groups. We would like to ask

Question 1.12. Can we develop a surgery formula for KHM´ or SHI´?

In the paper we analyze spinc structures of closures of knot complements.
It is natural to ask whether the same conclusion holds for general balanced
sutured manifolds, and what if we look directly at spinc structures, not just
their first Chern classes. Recall if the first homology of the closure does not
have 2-torsions, then the spinc structures and their first Chern classes are in
one to one correspondence. However this is not true if 2-torsion do exist.

Question 1.13. Suppose pM,γq is a balanced sutured manifold, and Y is a
closure of Y . Suppose s1 and s2 are two spinc structures, both supporting
the sutured monopole Floer homology of pM,γq. Then their difference can
be interpreted as a line bundle L over Y . Is it always true that L can be
trivialized on Y zintpMq?

If the answer to the above question is affirmative, or we could at least
deal with knot complements, then we can further study the following question.
Suppose pM,γq is a balanced sutured manifold and Y1 and Y2 are two different
closures between them. Kronheimer and Mrowka [16] proved that the sutured
monopole Floer homology of pM,γq defined using Y1 and Y2 are isomorphic.
The above question serves as a refinement of their proof of isomorphism: not
only the total homologies are isomorphic, but also the spinc structures have
a one-to-one correspondence. So we can ask further:

Question 1.14. Can we see this isomorphism in the chain level? In details,
if we choose suitable auxiliary data for both Y1 and Y2, can we directly relate
the solution of Seiberg-Witten equations and flow lines between them?

9
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Kronheimer and Mrowka’s proof that the sutured monopole Floer homol-
ogy is independent of the closures gives some intuition that the essential data
are all contained in the original balanced sutured manifold pM,γq. The above
question might offer more evidence for this intuition. For a knot complement,
there is a particular closure described as follows. Suppose pY pKq,Γnq is de-
scribed as above, and Σ is a closed connected oriented surface of large enough
genus. Let α be a non-separating simple closed curve on Σ. In ΣˆS1, identify
α with α ˆ ttu for some t P S1, and we can remove a tubular neighborhood
of α Ă Σ ˆ S1 and glue it to Y pKq:

Y “ Y pKq Y
φ
Σ ˆ S1zintpNpαqq.

Proposition 1.5 implies that any spinc structures on Y which support the
sutured monopole Floer homology of pY pKq,Γnq would restrict to a unique
spinc structure on Σ ˆ S1zintpNpαqq. We know that H1pΣ ˆ S1q has no 2-
torsions so there is a unique spinc structure on ΣˆS1 whose first Chern class
is the Poincáre dual of p2gpΣq´2q many copies of the curve tsuˆS1 Ă ΣˆS1.
We call this spinc structure also s0 and the unique one on Σ ˆ S1zintpNpαqq
is just the restriction of s0.

We could guess that the sutured monopole Floer homology of pY pKq,Γnq
might be obtained by glue the solutions to Seiberg-Witten equations on Y pKq
and pΣ ˆ S1zintpNpαqq, s0q together along the boundary torus. If one can
describe what happens explicitly, then it would shed some light on a more
analytical way of constructing sutured monopole Floer homology (which may
have better naturality), all flavors of knot monopole Floer homology and even
a Bordered theory in monopole Floer homology.

Acknowledgements. This material is based upon work supported by
the National Science Foundation under Grant No. 1808794. The author
would like to thank his advisor Tom Mrowka for his invaluable helps. The
author would like to thank John Baldwin, Mariano Echeverria, Jianfeng Lin,
Langte Ma, and Donghao Wang, Yi Xie for helpful conversations.

2 Prelimilaries

2.1 Balanced sutured manifolds and monopoles

We will start with the definition of balanced sutured manifolds.

Definition 2.1. A balanced sutured manifold is a pair pM,γq of a compact ori-
ented 3-manifold M with non-trivial boundary and an oriented 1-submanifold

10
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γ Ă BM . On BM , let Apγq “ γ ˆ r´1, 1s be an annular neighborhood of γ,
and let

Rpγq “ BMzintpApγqq.

They shall satisfy the following requirements:
(1). Both M and Rpγq have no closed components.
(2). If we orient BRpγq “ BApγq “ γ ˆ t˘1u in the same way as γ, then

the orientation on BRpγq shall induce a unique orientation on Rpγq. This
orientation is called the canonical orientation on Rpγq. Use R`pγq to denote
the part of Rpγq whose canonical orientation coincides with the boundary
orientation of BM and R´pγq the rest.

(3). We have that
χpR`pγqq “ χpR´pγqq.

To define the sutured monopole Floer homology, we need to construct a
closed 3-manifold out of a balanced sutured manifold pM,γq. Let T be a
connected oriented surface, so that:

(1). There is an orientation reversing diffeomorphism

f : BT Ñ γ.

(2). There is a simple closed curve c Ă T so that rcs ‰ 0 P H1pT q.
(3). T has genus at least 2.
When we choose such a T , we can use f to glue T to M :

ĂM “ M Y
f
T ˆ r´1, 1s.

The manifold ĂM is called a pre-closure of pM,γq and it has two boundary
components:

B ĂM “ R` Y R´,

where
R˘ “ R˘pγq Y

f
T ˆ t˘1u.

Let h : R` Ñ R´ be an orientation preserving diffeomorphism, then we can
form a closed 3-manifold as

Y “ ĂM Y
idYh

R` ˆ r´1, 1s,

where h : R`ˆt1u Ñ R´ Ă B ĂM is the map just defined and id : R`ˆt´1u Ñ

R` Ă B ĂM is the identity on R`. Let R “ R` ˆ t0u Ă Y , and we make the
following definition:

11
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Definition 2.2. The pair pY,Rq is called a closure of the balanced sutured
manifold pM,γq. The choices T, f, c, h are called the auxiliary data. In par-
ticular, the surface T is called an auxiliary surface and h is a gluing diffeo-
morphism.

Remark 2.3. Throughout this paper, we shall require that T is connected and
has large enough genus. However, in general, the choice of auxiliary surface
shall have more freedoms. See [16].

To use local coefficients, we shall also need to choose a non-separating
simple closed curve η Ă R. The coefficient ring we use for the present paper
will be the mod 2 Novikov ring. For detailed definitions, readers are referred
to [3].

Definition 2.4. Suppose pY,Rq is a closure of pM,γq as above. If R is
connected, we define the set of top spinc structures as follows:

SpY |Rq “ tspinc structure s on Y|c1psqrRs “ 2gpRq ´ 2.u

If in any case R is disconnected and let R1, ..., Rn be its components, then
we define

SpY |Rq “
nč

i“1

SpY |Riq.

For later references, we also define the set of spinc structures which support
the sutured monopole Floer homology as follows:

S˚pY |Rq “ ts P SpY |Rq|~HM ‚pY, s; Γηq ‰ 0u.

For monopoles on closed 3-manifolds, readers are referred to [15].

Definition 2.5. The sutured monopole Floer homology of pM,γq is defined
to be

SHMpM,γq “ HMpY |R; Γηq,

where
HMpY |R; Γηq “

à

sPSpY |Rq

~HM‚pY, s; Γηq

The following lemmas from Kronheimer and Mrowka [16] will be useful.

Lemma 2.6. Suppose Y is a surface bundle over S1 whose fibres are closed
connected oriented surfaces of genus at least 2. Let R be a fibre and η Ă R be
a non-separating simple closed curve. Then there is a unique spinc structure
s on Y so that

(1). We have c1psqrRs “ 2gpRq ´ 2.

12
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(2). We have ~HM‚pY, s; Γηq ‰ 0.
Moreover, for this spinc structure we have

~HM‚pY, s; Γηq – R,

where R is the mod 2 Novikov ring which we use for the local coefficients.

Lemma 2.7. Suppose Y is a closed oriented 3-manifold and R Ă Y is an
embedded closed connected oriented surface of genus at least one. Suppose s

is a spinc structure such that

|c1psqrRs| ą 2gpRq ´ 2,

then we have
~HM‚pY, s; Γηq “ 0,

for any choice of local coefficients.

Floer excisions were introduced into sutured monopoles by Kronheimer
and Mrowka [16]. We will summarize the results we need in the rest of the
subsection.

For i “ 1, 2, suppose Yi is a closed connected oreinted 3-manifold and
Ri Ă Yi is an embedded closed connected oriented homologically essential
surface of genus at least 2. Let ηi Ă Ri be a non-separating simple closed
curve. When cutting Yi open along Ri, we get

rYi “ YizintpNpRiqq,

where NpRiq is a product neighborhood of Ri Ă Yi. The manifold rYi has two
boundary components

B rYi “ Ri,` Y Ri,´.

We orient Ri,˘ in the same way as Ri. There are parallel copies of ηi, which we
call ηi,˘, on the surfaces Ri,˘. Pick an orientation preserving diffeomorphism

h : R1 Ñ R2,

so that hpη1q “ η2. We can use h to glue R1,` to R2,´ and also R1,´ to R2,`.

Then rY1 and rY2 are glued together to become a connected 3-manifold which
we call Y . Let R Ă Y be the disjoint union of surfaces R1,` and R2,` in Y .
Let η Ă R be the disjoint union of curves η1,` and η2,`.

There is a 4-dimensional cobordism W from Y1 \ Y2 to Y as follows. Let
U be the surface as depicted in figure 1. It has four vertical arcs as part of
the boundary, and we can assume that each one of them is identified with

13
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r0, 1s. Now we can use the identity and h to glue three pieces rY1, rY2 and
R1 ˆ U together to get the desired cobordism. The cobordism W induces a
map as in [16]

HMpW q : HMpY1 \ Y2|R1 Y R2; Γη1Yη2q Ñ HMpY |R; Γηq. (2)

rY1 ˆ r0, 1s R1 ˆ U rY2 ˆ r0, 1s

id

id

h

h

µ2

µ1

µ3

µ4

Figure 1: Gluing three parts together to get W . The middle part is R1 ˆ U , while
the R1,` directions shrink to a point in the figure.

We can also cut along tori. For i “ 1, 2, let Yi be as above. Let Ti Ă Yi

be a torus and Ri Ă Yi be a closed connected oriented surface, so that Ri

intersects Ti transversely along a circle ci. Suppose ηi Ă Ri is a simple closed
curve so that ηi intersects ci transversely at a point pi. Let

h : T1 Ñ T2

be an orientation preserving diffeomorphism so that hpc1q “ c2 and hpp1q “
p2. As above, we can cut Yi open along Ti and re-glue using h to get a
connected 3-manifold Y . There is a distinguishing surface R, obtained by
cutting Ri open along ci and re-glue using h. The curve η1 and η2 are also
cut and re-glued to result in a simple closed curve η Ă R Ă Y . As above,
there is a cobordism map

HMpW q : HMpY1 \ Y2|R1 Y R2; Γη1Yη2q Ñ HMpY |R; Γηq. (3)

For more details of the excision process, readers are referred to Kron-
heimer and Mrowka [16]. In that paper, the follow theorem is proved.

Theorem 2.8. (Kronheimer, Mrowka, [16].) The maps (2) and (3) are both
isomorphisms.

14
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2.2 The naturality of sutured monopoles

Baldwin and Sivek [1] constructed canonical maps for two different closures
of the same balanced sutured manifold. In order to do this, they also refined
the definition of the closure.

Definition 2.9. A marked closure D “ pY,R, r,m, ηq of a balanced sutured
manifold pM,γq consists of the following:

(1). A closed connected oriented 3-manifold Y .
(2). A closed connected oriented surface R.
(3). An orientation preserving embedding

r : R ˆ r´1, 1s ãÑ Y.

(4). An orientation preserving embedding

m : M ãÑ Y zintpimprqq.

(5). A non-separating simple closed curve η Ă R.
They shall satisfy following requirements:
(a). The embedding m extends to a diffeomorphism

M Y
f
T ˆ r´1, 1s Ñ Y zintpimprqq,

for some auxiliary data pT, fq.
(b). The embedding m restricts to an orientation preserving embedding

R`pγq ãÑ rpR ˆ t´1uq.

The genus of the closure is referred to the genus of the surface R. We
define

SHMpDq “
à

sPSpY |rpRˆt0uqq

~HM‚pY, s; Γrpηˆt0uqq.

Theorem 2.10. (Baldwin and Sivek, [2]) Suppose pM,γq is a balanced su-
tured manifold, then for any two marked closures D1 and D2 of pM,γq, there
is a canonical map ΦD1,D2

, well defined up to a unit, from SHMpD1q to
SHMpD2q. The canonical maps satisfy following properties.

(1). If D1 “ D2, then
ΦD1,D2

.
“ id.

Here
.

“ means equal up multiplication by a unit.
(2). Suppose we have a third marked closure D3 for pM,γq, then we have

ΦD1,D3

.
“ ΦD2,D3

˝ ΦD1,D2
.

15
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Hence for a balanced sutured manifold pM,γq, marked closures D and
canonical maps Φ fits into a projective transitive system, which is defined in
[2]. The projective system determines a canonical module, which we shall
denote by

SHMpM,γq.

We can then talk about elements (up to multiplication by a unit) in that
canonical module.

Remark 2.11. There are two ways to think about SHMpM,γq. The first is to
think of it as a module over R but whose elements are only well defined up
to a unit. The second way is to think it as a well defined set, obtained by
a module over R quotient by Rˆ. We will not distinguish between the two
descriptions.

We will have an extra complexity if we deal with knots in 3-manifolds. Let
K Ă Y be a knot. This extra complexity comes from the choices of tubular
neighborhoods of K Ă Y to remove to get knot complements. Fix a point
p P K. Suppose

ϕ : S1 ˆ D2 ãÑ Y

is an embedding, where D2 is the unit sphere in the complex plane, and
S1 “ BD2. We shall require that

ϕpS1 ˆ t0uq “ K and ϕpt1u ˆ t0uq “ p.

Now let Yϕ “ Y zintpimpφqq, and let γϕ “ ϕpt˘1u ˆ BD2q, with opposite
orientations on two components. For each fixed ϕ, we have a well defined
canonical module SHMpY pϕq, γϕq, and we want also relate different choices
of ϕ.

Suppose ϕ1 is another embedding S1 ˆ D2 ãÑ Y , satisfying the same
conditions as ϕ. Pick a tubular neighborhood N of K Ă Y such that
impϕq, impϕ1q Ă N and an ambient isotopy

ft : Y Ñ Y, t P r0, 1s,

such that:
(1). For any t P r0, 1s, ftppq “ p.

(2). For any t P r0, 1s, ft restricts to identity outside N Ă Y .
(3). We have f1pimpϕqq “ impϕ1q.
(4). We have f1pϕpt˘1u ˆ BD2qq “ ϕ1pt˘1u ˆ D2q.
It is clear that f1 : pYϕ, γϕq Ñ pYϕ1 , γϕ1 q is a diffeomorphism between

balanced sutured manifolds. Hence we can define

Ψϕ,ϕ1 “ SHMpf1q : SHMpYϕ, γϕq Ñ SHMpYϕ1 , γϕ1 q.

16



Zhenkun Li 2 PRELIMILARIES

Theorem 2.12. (Baldwin, Sivek, [2]) The map Ψϕ,ϕ1 is well defined, i.e., is
independent of choices of the tubular neighborhood N and the ambient isotopy
ft. Also it has the following properties:

(1). We have Ψϕ,ϕ “ id.

(2). If we have a third embedding ϕ2, then

Ψϕ,ϕ2 “ Ψϕ1,ϕ2 ˝ Ψϕ,ϕ1 .

Thus we know that tSHMpYϕ, γϕqu and tΨϕ,ϕ1u actually form a transitive
system of projective transitive systems. They then lead to a larger projective
transitive system and hence the knot monopole Floer homology KHMpY,K, pq
is well defined (as a projective transitive system).

2.3 Contact structures and contact elements

In this subsection we summarize the results related to contact geometry which
we will use in later sections.

Definition 2.13. A contact sutured manifold pM,γ, ξq is a triple where
pM,γq is a balanced sutured manifold and ξ is a contact structure on pM,γq
so that BM is convex and γ is the dividing set. The contact structure is said
to be compatible with the balanced sutured manifold pM,γq.

Theorem 2.14. (Baldwin, Sivek, [3]) Suppose pM,γ, ξq is a contact sutured
manifold, then we can associate an element

φξ P SHMp´M,´γq

to it. This element is called the contact element.

Definition 2.15. Suppose pM 1, γ1q is a balanced sutured manifold. A sutured
submanifold pM,γq of pM 1, γ1q is another balanced sutured manifold so that
M Ă intpM 1q.

The gluing maps in sutured monopoles were define by the author in [20],
and it will be crucial in the construction of the direct system in section 5.

Theorem 2.16. Suppose pM,γq is a sutured submanifold of pM 1, γ1q and
suppose Z “ M 1zintpMq. Suppose ξ is a contact structure on Z so that
pZ, γ Y γ1, ξq is a contact sutured manifold. Then there is a well defined map

Φξ : SHMp´M,´γq Ñ SHMp´M 1,´γ1q,

so that

17
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(1). If pM 1, γ1q is a sutured submanifold of pM2, γ2q and there is a contact
structure on M2zintpM 1q, making it a contact sutured manifold, then we have
the composition

Φξ1 ˝ Φξ “ ΦξYξ1 : SHMp´M,´γq Ñ SHMp´M2,´γ2q.

Here
.

“ means equal up to multiplication by a unit.
(2). Suppose pM 1, γ1, ξ1q is a contact sutured manifold and ξ1|Z “ ξ, then

we have
Φξpφξ1|M q “ φξ1 .

Suppose we have three balanced sutured manifold pM,γ1q, pM,γ2q and
pM,γ3q, so that the underlining 3-manifold are the same but the sutures are
different. Suppose further that pM,γ1q, pM,γ2q and pM,γ3q are only different
with in a disk D Ă BM , and within the disk D, they are depicted as in figure
2. We say that pM,γ2q is obtained from pM,γ1q by a by-pass attachment
along the arc α. Similarly, pM,γ3q is obtained from a by-pass attachment
from pM,γ2q and pM,γ1q from pM,γ3q. Then we have the following theorem.

pM, γ3q

pM, γ1q pM, γ2q

α
✲

�
�

��✠❅
❅

❅❅■

Figure 2: The by-pass exact triangle.
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Theorem 2.17. [Baldwin, Sivek [3]] There is an exact triangle relating the
sutured monopole Floer homologies of the three balanced sutured manifolds as
follows:

SHMp´M,´γ1q
ψ12 // SHMp´M,´γ2q

ψ23uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

SHMp´M,´γ3q

ψ31

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

In contact geometry, a by-pass is a half disk carrying some particular
contact structure attached along a Legendrian arc to a convex surface. For
details, see Honda [10]. There is a description of the maps in the above
by-pass exact triangle as follows. We deal with the map ψ12, and the other
two are the same. Let Z “ BM ˆ r0, 1s and we can pick the suture γ1 on
BM ˆ t0u as well as the suture γ2 on BM ˆ t1u. Then there is a particular
contact structure ξ12 on Z which corresponds to the by-pass attachment and
makes pZ, γ1 Y γ2q a contact sutured manifold. Hence we can attach Z to M

by the identification BM ˆ t0u “ BM Ă M . The result pM Y Z, γ2q is just
diffeomorphic to pM,γ2q and we have

ψ12 “ Φξ12 .

Here Φξ12 is the gluing map associated to ξ12 as in theorem 2.16.
In section 5, we will use the by-passes on knot complements to construct

the direct system. Let K Ă Y be an oriented knot. Let λ and µ be the
longitude and meridian according to some framing of the knot. Let Γn be
a suture on BY pKq which consists of two curves of class ˘pλ ´ nµq and Γ8

consists of two meridians. In this case BY pKq is a torus, and we have the
following theorem due to Honda [10].

Theorem 2.18. There are two tight and minimal-twisting contact structures
on T 2 ˆ r0, 1s so that for i “ 1, 2, T 2 ˆ tiu is convex with dividing set be-
ing Γn`i. These two contact structures correspond to two different by-pass
attachments on pY pKq,Γnq.

Definition 2.19. We denote the two contact structures as in theorem 2.18
by ξ`n and ξ´,n respectively and call the corresponding two by-passes positive
and negative respectively. The positiveness and the negativeness of the two
by-passes are defined as in figure 3.

Remark 2.20. This definition of the sign is in a way different from the original
one in [10]. However this is the most direct way for us to develop the theory.
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positive by-pass negative by-pass

α` α´

λ

BS BS

´µ

Figure 3: The positive and negative by-pass attachments for pY pKq,Γ3qq. The
squares represent the toroidal boundary of Y pKq. Note the contact structures ξ˘,2

correspond to the by-passes from the bottom one to the top left one in each by-pass
triangle.

There are by-pass exact triangles associated to the positive and negative
by-passes defined as above:

SHMp´Y pKq,´Γn`1q
ψn`1

˘,8 // SHMp´Y pKq,´Γ8q

ψ8
˘,ntt✐✐✐

✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

SHMp´Y pKq,´Γnq
ψn`1

˘,n

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

(4)
Note as the above discussion, ψn`1

˘,n “ Φξ˘,n
. To construct the direct

system, we have the following fact.

Proposition 2.21. [Honda, [10]] On T 2 ˆ r0, 2s, the two contact structures
ξ´,n Y ξ`,n`1 and ξ`.n Y ξ´,n`1 are the same.
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Corollary 2.22. We have a commutative diagram

SHMpY pKq,Γnq
ψn

´,n`1 //

ψn
`,n`1

��

SHMpY pKq,Γn`1q

ψn`1

`,n`2

��

SHMpY pKq,Γn`1q
ψn`1

´,n`2 // SHMpY pKq,Γn`2q

Proof. The corollary follows from proposition 2.21 and theorem 2.16.

There is a second way to interpret the maps ψ˘ associated to by-pass
attachments by Ozbagci [21]. He proved that a by-pass attachment can be
realized by attaching a contact 1-handle followed by a contact 2-handle. In
sutured monopoles, we have maps associated to the contact handle attach-
ments due to Baldwin and Sivek [3] so we can composite those contact handle
attaching maps to define ψ˘. This is actually the original way Baldwin and
Sivek constructed the by-pass maps (when they define by-pass maps, there
was no construction of gluing maps) and proved the existence of the exact
triangle. The two interpretations are the same because of the functoriality of
the gluing maps, and their relation with the contact handle attaching maps.
For details see the author’s previous paper [20]. We will use this second point
of view in the proof of proposition 5.5.

3 An Alexander grading

3.1 Basic constructions

Definition 3.1. Suppose pM,γq is a balanced sutured manifold and S is a
properly embedded oriented surface. A stabilization of S is an isotopy of S
to a surface S1, so that the isotopy creates a new pair of intersection points:

BS1 X γ “ pBS X γq Y tp`, p´u.

We shall require that there are arcs α Ă BS1 and β Ă γ oriented in the same
way as BS1 and γ respectively, such that

(1). We have Bα “ Bβ “ tp`, p´u.
(2). The curves α and β cobounds a diskD so that intpDqXpγYBS1q “ H.
The stabilization is called negative if D can be oriented so that BD “ αYβ

as oriented curves. it is called positive if BD “ p´αq Y β. See figure 4.
We will denote by S˘k the result of doing k many positive or negative

stabilizations of S.
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BS

γ

γ

✟✟✟✟✟✟✯

❍❍❍❍❍❍❥

positive

negative

D

α

β

D

α

β

Figure 4: The positive and negative stabilizations of S.

The next lemma is straightforward.

Lemma 3.2. Suppose pM,γq is a balanced sutured manifold and S is a prop-
erly embedded oriented surface. Suppose S˘ is the result of doing a positive
or negative stabilization on S. Then we have:

(1). If we decompose p´M,´γq along S or S´, then the resulting two
balanced sutured manifolds are diffeomorphic.

(2). If we decompose p´M,´γq along S`, then the resulting balanced
sutured manifold pM 1, γ1q is not taut, as R˘pγ1q would both become compress-
ible.

Suppose pM,γq is a balanced sutured manifold and S is a properly em-
bedded oriented surface. Suppose further that S has precisely one bound-
ary component and BS intersects γ at 2n points. Since γ is parallel to the
boundary of R`pγq, it is non-homologous and hence the algebraic intersec-
tion number of BS with γ on BM must be zero. We shall also assume that
n “ 2k ` 1 is odd as this can be achieved by a negative stabilization of S if
needed. Suppose the intersection points are p1, ..., p2n, and they are indexed
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so that if we travel along the oriented curve BS, starting from p1, then we
will always meet pi before meeting pi`1.

Now pick a connected auxiliary surface T of large enough genus. Let
f : BT Ñ γ be an orientation reversing diffeomorphism and let p1

i “ f´1ppiq.
Suppose α1, ..., αn be n pair-wise disjoint simple arcs on T , so that

(1). We have that rα1s, ..., rαns are linearly independent in H1pT, BT q.
(2). We have that Bα1 “ tp1

1, p
1
2u, and for all 1 ď i ď k, we have

Bα2i “ tp1
4i´1, p

1
4i`2u, Bα2i`1 “ tp1

4i, p
1
4i`1u.

Let

ĂM “ M Y
fˆid

T ˆ r´1, 1s, rS “ S Y
fˆid

p
nď

i“1

αi ˆ r´1, 1sq.

We know that

B ĂM “ R` Y R´, B rS X R˘ “
k`1ď

i“1

Ci,˘.

Here we require that for i “ 1, ..., k ` 1,

α2i´1 ˆ t˘1u Ă Ci,˘.

Pick an orientation preserving diffeomorphism h : R` Ñ R´ so that for
i “ 1, ..., k ` 1,

hpCi,`q “ Ci,´.

Then we can use h to get a closure pY,Rq of pM,γq. The boundary compo-
nents of the surface rS are glued with each other under h so rS results in a
closed surface S̄ Ă Y . From the construction we know that

χpS̄q “ χpSq ´ n.

We pick a non-separating simple closed curve η Ă R, so that η is disjoint
from S̄ XR and also represents a class which is linearly independent from the
classes represented by the components of S̄ X R in H1pRq.

Definition 3.3. We say that the surface S̄ Ă Y is associated to the surface
S Ă M . We can use S̄ to define a grading on SHMpM,γq as follows.

SHMpM,γ, S, iq “
à

sPSpY |Rq
c1psqrS̄s“2i

~HM‚pY, s; Γηq.

We say that this grading is associated to the surface S Ă M . When we use
the language of marked closures, the closure pY,Rq corresponds to a marked
closure D “ pY,R,m, r, ηq and we write the grading as

SHMpD, S, iq.
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The grading on SHMpDq will also induces a grading on SHMpM,γq as in
the following theorem. We also say it is associated to S and write

SHMpM,γ, S, iq.

Theorem 3.4. When S Ă M is fixed, and the number of intersection points
of S with γ is 2n with n odd. Then the grading on SHMpM,γq associated
to S is well-defined. That is, it is independent of all choices made in the
construction of the grading.

Proof. There are four types of choices we made:
I. The starting point p1.
II. The choice of the linearly independent arcs α1, ..., αn on T .
III. The choice of the gluing diffeomorphism h.
IV. The genus of the closure.
The proof of the independence will be the contents of the rest of the

current section. Particularly the results are stated in corollary 3.21, corollary
3.7, proposition 3.9, and lemma 3.5.

In [6], Baldwin and Sivek have already dealt with the choices of type II,
III and IV. Among them the idea for type IV can be adapted to the setting
of the current paper directly, so we will not write the proof again.

Lemma 3.5. The definition of the grading on SHMpM,γq associated to the
surface S Ă M is independent of choices of type IV.

We will deal with choices of type II right now.

Lemma 3.6. Suppose T is a compact connected oriented surface with bound-
ary and of large enough genus. Suppose tα1, ..., αnu is a set of properly em-
bedded simple arcs on T , so that

(1). The arcs α1, ..., αn are pair-wise disjoint.
(2). The arcs represent linearly independent classes rα1s, ..., rαns in H1pT, BT q.
Suppose tα1

1, ..., α
1
nu is another set of properly embedded simple arcs so

that
(3). For i “ 1, ..., n, we have Bαi “ Bα1

i.
(4). The set of arcs tα1

1, ..., α
1
nu also satisfies the above conditions (1) and

(2).
Then there is an orientation preserving diffeomorphism h : T Ñ T so that

h fixes the boundary of T and for i “ 1, ..., n, we have

hpαiq “ α1
i.
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Proof. Suppose N is a product neighborhood of

α1 Y ... Y αn Ă T

Let
rT “ T zintpNq.

The boundary B rT consists of the following:

B rT “ pBT X rT q Y p
nď

i“1

αi,` Y αi,´q.

Here αi,˘ are parallel copies of αi, being part of the boundary of the product

neighborhood N . From condition (2) we know that rT is connected. Also

χp rT q “ χpT q ` n.

Similarly we can pick N 1 to be a product neighborhood of

α1
1 Y ... Y α1

n Ă T,

and have

rT 1 “ T zintpN 1q, B rT 1 “ pBT X rT 1q Y p
nď

i“1

α1
i,` Y α1

i,´q.

By condition (3) we can assume that N X BT “ N 1 X BT , and so there is
an orientation preserving diffeomorphism

f : B rT Ñ B rT 1,

so that
f |BTX rT “ id, fpαi,˘q “ α1

i,˘

for all i “ 1, ..., n. Since we have

χp rT 1q “ χpT q ` n “ χp rT q,

the diffeomorphism f extends to a diffeomorphism

g : rT Ñ rT 1.

After a small perturbation, we can glue rT and rT 1 along αi,˘ and α1
i,˘, and g

is glued to become a diffeomorphism

h : T Ñ T

which is the desired one.
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As discussed in [6], the above lemma together with proposition 3.9 will
result in the following corollary.

Corollary 3.7. The definition of the grading on SHMpM,γq induced by the
surface S Ă M is independent of choices of type II.

We will deal with choices of type III in subsection 3.2 and choices of type
I in subsection 3.3.

3.2 A reformulation of Canonical maps

In this subsection we will give a simpler description of the canonical maps
ΦD,D1 constructed by Baldwin and Sivek in [2] for two different marked clo-
sures of the same genus. For our convenience, we only study the following
special case. It would be essentially the same to deal with a general canonical
map.

Suppose pM,γq is a balanced sutured manifold and T is a connected aux-
iliary surface. Suppose

ĂM “ M Y T ˆ r´1, 1s, BM “ R` Y R´.

Suppose h1, h2 are two different gluing diffeomorphisms and using them we
can get two marked closureD1 “ pY1, R`, r1,m, ηq andD2 “ pY2, R`, r2,m, ηq.
Here we choose the same non-separating simple closed curve supporting the
local coefficients.

Let h “ h´1
1 ˝ h2 and Y h be the mapping torus of h, or to be more

precise, the manifold obtained from R` ˆr´1, 1s by identifying R` ˆt1u with
R` ˆ t´1u via h. Then we can obtain Y2 from Y1 and Y h as follows. Cut Y1

open along R` ˆt0u and cut Y h along R` ˆt0u. We can re-glue them via the
identity on R` to get a large connected manifold. This resulting manifold is
precisely Y2. As in theorem 2.8, there is a cobordism W from Y1 \ Y h to Y2.
Hence W induces a map

HMpW q : HMpY1 \ Y h|R` Y R`q Ñ HMpY2|R`q.

Note from lemma 2.6, we know that

HMpY h|R`q – R.

Let a be a generator of HMpY h|R`q and let ι be the map

ι : HMpY1|R`q Ñ HMpY1|R`q b HMpY h|R`q – HMpY1 \ Y h|R` Y R`q

defined as
ιpxq “ x b a.

We have the following proposition.

26



Zhenkun Li 3 AN ALEXANDER GRADING

Proposition 3.8. Under above notations, the canonical map ΦD1,D2
can be

re-interpreted as
ΦD1,D2

.
“ HMpW q ˝ ι.

Before proving the proposition, we first use it to prove that the definition
of the grading is independent of choices of type III. Suppose pM,γq is a
balanced sutured manifold and S Ă M is a properly embedded surface with
precisely one boundary component, so that BS intersects γ at 2n points for
some odd n “ 2k ` 1. Suppose in the construction of the grading induced by
S, the choices of type I, II, IV are fixed. This means that there is a connected
auxiliary surface T for pM,γq and n arcs α1, ..., αn so that

(1). We have
Bpα1 Y ... Y αnq “ BS X γ.

(2). If we let

BM Y T ˆ r´1, 1s “ R` Y R´, rS “ S
ď

i“1n

pαi ˆ r´1, 1sq,

then we have
B rS X R˘ “ C1,˘, ..., Ck`1,˘.

Then there are two gluing diffeomorphisms h1 and h2 so that for i “ 1, 2

hipC1,` Y ... Y Ck`1,`q “ C1,´ Y ... Y Ck`1,´.

We can use h1 or h2 to glue R` ˆ r´1, 1s to M Y T ˆ r´1, 1s, to get marked
closures D1 “ pY1, R`,m, r1, ηq or D2 “ pY2, R`,m, r2, ηq. Here we choose
the same non-separating simple closed curve η Ă R` for simplicity. We have
the following proposition.

Proposition 3.9. Under the above settings, we have for any i P Z

ΦD1,D2
: SHMpD1, S, iq

–
ÝÑ SHMpD2, S, iq.

As a result, the definition of grading in the projective transitive system SHMpM,γq
is independent of the choices of type III.

Proof. Let h “ h´1
1 ˝h2, and form Y h as in proposition 3.8. From lemma 2.6,

there is a unique spinc structure s0 so that

HMpY h|R`q “ ~HM ‚pY h, s0; Γηq – R.

There are tori inside Y h: the cylinders Ci,` ˆ r´1, 1s Ă R` ˆ r´1, 1s are
glued via h to become a union of tori T . Lemma 2.7 tells us that

c1ps0qrT s “ 0.
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Let S̄1 Ă Y1 and S̄2 Ă Y2 be the surfaces induced by S Ă M in the
construction of the grading. We know that there is a 3-dimensional cobordism
from S1 \ T to S2 inside the the cobordism W . The construction of this
(3-dimensional) cobordism is just the same as that of Floer excisions but
is done with the dimension reduced by 1. If s is a spinc structure on W

which contributes non-trivially to the cobordism map HMpW q, then s should
restricts to s0 on Y h hence we know that

c1psqrS̄2s “ c1psqprS̄1s ` rT sq “ c1psqprS̄1sq ` c1ps0qprT sq “ c1psqprS̄1sq.

Hence HMpW q preserves the grading and so does Φg
D1,D2

by proposition
3.8.

Now we are going to prove proposition 3.8. There are a few preparations
we will need.

Lemma 3.10. In the settings of proposition 3.8, suppose we have a third
gluing diffeomorphism h3, and let h1 “ h´1

2 ˝ h3 and h2 “ h ˝ h1 “ h´1
1 ˝ h3.

Construct W 1, W 2, ι1 and ι2 just in the same ways as we construct W and
ι. Then we have the identity:

HMpW 2q ˝ ι2
.
“ HMpW 1q ˝ ι1 ˝ HMpW q ˝ ι. (5)

Proof. Let Yh1 , Yh2 be the mapping tori of h1 and h2 repsectively. Since h2 “
h˝h1, there is an excision cobordism from Yh\Yh2 to Yh2 just as we construct
W , W 1 and W 2. Call this cobordism ´W_

e and let We be the cobordism from
Yh2 to Yh \ Yh1 , obtained by putting ´W_

e upset down and also reverse the
orientation. By theorem 2.8 and lemma 2.6, it is straightforward to see that

HMpW Y W 1 Y Weq ˝ ι3
.

“ HMpW 1q ˝ ι1 ˝ HMpW q ˝ ι.

Hence to prove (5), it is enough to show that

HMpW Y W 1 Y Weq
.

“ HMpW 2q. (6)

However, we can cut W 1 YW 1 YWe open along a 3-manifold R` ˆ S1, as
depicted in figure 5 and glue back two copies of R` ˆ D2, and the resulting
manifold is exactly W 2. Hence from proposition 2.5 in [16], (6) must hold
and we are done.

Corollary 3.11. If h1 “ h2, then Y h is just the product and we know that

HMpW q ˝ ι
.

“ id.
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R1 ˆ S1

W

Y1

Y h

Yh1

Y2

Yh1

W 1 Y3

Yh2 We

Y1

Figure 5: The union W Y W 1 Y We. The (blue) curve in the middle represents the
3-manifold R1 ˆ S1 to cut along.

Proof. From theorem 2.8 We know that

HMpW q ˝ ι

is an isomorphism. From lemma 3.10, we know that

HMpW q ˝ ι ˝ HMpW q ˝ ι
.

“ HMpW q ˝ ι.

Hence we are done.

Proof of proposition 3.8. Suppose h is decomposed into Dehn twists:

h „ De1
a1

˝ ... ˝ Den
an

as in Baldwin and Sivek [2]. From theorem 2.10 and lemma 3.10, it is suffice
to deal with the case when n “ 1, i.e., there is only one Dehn twist involved.

When e1 “ 1, the Dehn twist is positive. In this case the canonical
map Φg

D1,D2
is constructed using the cobordism W as in the hypothesis of

proposition 3.8, with the boundary component Y h capped off by the total
space of a relative minimal Lefschetz fibration, see lemma 4.9 in [2]. Also
such a Lefschetz fibration would have relative monopole invariant being a
unit in R, as in proposition B1 in [2]. Hence we conclude

Φg
D1,D2

.
“ HMpW q ˝ ι.
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When e1 “ ´1, the Dehn twist is negative. We can also look at the
canonical map Φg

D2,D1
. It corresponds to h´1 and is constructed using a

positive Dehn twist. Suppose we construct W 1 and ι1 out of h´1 just as we
construct W and ι out of h. Then from the above argument we know that

Φg
D2,D1

.
“ HMpW 1q ˝ ι1.

Then the identity
Φg
D1,D2

.
“ HMpW q ˝ ι.

follows from theorem 2.10, lemma 3.10 and corollary 3.11.

3.3 Pairing of the intersection points

In this subsection, we will deal with type I choices, i.e., the starting point p1.
Let us first pick any intersection point of BS with γ as p1. We shall first

relax the requirement in the construction of the grading that Bαi shall be a
pair of special points.

Definition 3.12. Suppose we have a collection of n pair of numbers

P “ tpi1, j1q, ..., pin, jnqu,

so that
ti1, j1, ..., in, jnu “ t1, 2, ..., 2nu,

and for all l “ 1, ..., n, we have

il ı jl pmod 2q.

Then we call such a collection P a pairing of size n.

Suppose pM,γq is a balanced sutured manifold and S Ă M is a properly
embedded oriented surface. Suppose S has only one boundary component
and it intersects γ at 2n “ 4k ` 2 points, and those points are labeled by
p1, ..., p4k`2 in the same way as described in definition 3.3, with an arbitrary
chosen starting point p1. Suppose P “ tpil, jlqu is a pairing of size n, T is
an auxiliary surface of M and α1, ..., αn are pair-wise disjoint simple arcs so
that

(1). The arcs α1,..., αn represents linearly independent classes inH1pT, BT q.
(2). For l “ 1, ..., n, we have

Bαl “ tpil , pjlu.
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Then as in the definition 3.3, we can construct

ĂM “ M Y T ˆ r´1, 1s, rSP “ S Y p
nď

l“1

αl ˆ r´1, 1sq.

We have
B ĂM “ R` Y R´, B rSP X R˘ “ C1,˘ Y Cs˘,˘.

In general, the number of intersection circles s` and s´ are not equal to each
other, and we make the following definition.

Definition 3.13. A pairing P is called balanced if s´ “ s`.

Remark 3.14. Although in order to define balancedness, we need to go through
the construction of pre-closurs of balanced sutured manifolds, it is well defined
on its own (and is independent of all the other choices, such as pM,γq, S, T, p1,
in definition 3.13. Actually the set ts`, s´u only depends on P.)

Another thing to notice is that a pairing could be balanced only if its size
n is odd.

Example 3.15. Here are some examples of the pairings. Assume n “ 2k`1
is odd.

(1). The simplest pairing

P “ tp1, 2q, p3, 4q, ..., p4k ` 1, 4k ` 2qu

has s´ “ 1 and s` “ n, or s´ “ n and s` “ 1, depending on the choice of
the starting point p1, so it is never a balanced paring when n ą 1.

(2). In definition 3.3, we have a paring arising from the construction of
the grading:

Pg “ tp1, 2q, p3, 6q, p4, 5q, ..., p4k ´ 1, 4k ` 2q, p4k, 4k ` 1qu.

This is an example of a balanced pairing, with s` “ s´ “ k ` 1.
(3). There is another very special balanced pairing with s` “ s´ “ 1:

Ps “ tp1, 2k ` 2q, p2, 2k ` 3q, ..., p2k ` 1, 4k ` 2qu.

Now if pM,γq, S and p1 are chosen as above and we are equipped with
a balanced pairing P, then we can repeat the construction in definition 3.3,
and define a grading on the projective transitive system SHMpM,γq. Since
we have had corollary 3.7, proposition 3.9 and lemma 3.5, the grading now
depends only on the choice of S, p1 and P. As S and p1 will actually be fixed
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almost throughout this subsection, we will omit them from the notation and
write, in a moment, the grading as

SHMpM,γ,P, iq.

There is a special operation we could do on balanced pairings. Suppose P
is a balanced pairing and we pick two indices l1 and l2 so that the following
two conditions hold:

(i). The two arcs αl1 ˆ t1u and αl2 ˆ t1u are not contained in the same
boundary components of rSP .

(ii). The two arcs αl1 ˆ t´1u and αl2 ˆ t´1u are not contained in the
same boundary components of B rS.

Then we can do the following operation on P as follows. Suppose in the
two pairs pil1 , jl1q and pil2 , jl2q, il1 and il2 are odd (and the two other numbers
must be even), then we can obtain a new pairing P 1 out of P by removing
the two pairs pil1 , jl1q and pil2 , jl2q from P and add two new pairings pil1 , jl2q
and pil2 , jl1q.

Definition 3.16. We call the above operation the cut an glue on parings.
Two pairings are called equivalent if one is obtained from the other by a cut
and glue operation.

Example 3.17. If n “ 3, P “ tp1, 2q, p3, 6q, p5, 4qu and l1 “ 1, l2 “ 3 (l1 “
1, l2 “ 2 do not meet the requirements of doing the cut and glue operation),
then the resulting pairing P 1 is

P 1 “ tp1, 4q, p3, 6q, p2, 5qu,

and it is balanced.
It is obvious that the equivalence is an equivalent relation. Also the result

of a cut and glue operation on a balanced pairing is still a balanced pairing.

The significance of equivalent pairings is the following.

Lemma 3.18. Suppose a cut and glue operation on a balanced pairing P with
two indices l1 and l2 will result in P 1, then we have for all i,

SHMpM,γ,P, iq “ SHMpM,γ,P 1, iq.

Proof. At this point we have shown that choices of type II, III, an IV do not
make difference on the definition of grading so when fixing P we can freely
choose other auxiliary data to construct the grading. Now let T and α1, ..., αn

be chosen and the pre-closure ĂM as well as the properly embedded surface rSP

have been constructed. We can assume that they are chosen so that there is
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T Σ2

η

αl1

αl2

η

αl1

αl2

c
c1 δ

β

η1

α1
l1

α1
l2

η1

α1
l1

α1
l2

Figure 6: The auxiliary surface T and the surface Σ2

a curve c intersecting each of αl1 and αl2 transversely at one point. See figure
6. The requirement (i) and (ii) make sure that αl1 ˆt˘1u and αl2 ˆt˘1u lie in
four different boundary components of rSP . So we can choose an orientation
preserving diffeomorphism h : R` Ñ R´, where B ĂM “ R` Y R´, so that

hpB rS X R`q “ B rS X R´, hpc ˆ t1uq “ c ˆ t´1u.

Also we can require that

hpαl1 ˆ t1uq “ αl1 ˆ t´1u and hpαl2 ˆ t1uq “ αl2 ˆ t´1u.

Let
Y “ ĂM Y

idYh
R` ˆ r´1, 1s, R “ R ˆ t0u

be a closure of pM,γq. The surface rSP results in a closed surface S̄P Ă Y .
We can also choose a simple closed curve η on R “ R` ˆ t0u, so that η

intersects c ˆ t0u transversely at one point. Hence we get a marked closure
D “ pY,R,m, r, ηq, where m, r are both inclusion.

By definition, we have

SHMpD,P, iq “
à

sPSpY |Rq
c1psqrS̄P s“2i

~HM‚pY, s; Γηq.
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Let Σ2 be a closed connected oriented surface of genus 2. Let c1, δ and β

be three simple closed curves on Σ2 as depicted in figure 6.
Let YΣ be the 3-manifold Σ2ˆS1. There is a torus Σ Ă Y being Σ “ cˆS1

and a torus Σ1 Ă YΣ being Σ1 “ c1 ˆ S1. We can choose an orientation
preserving diffeomorphism h1 : Σ Ñ Σ1 so that for all t P S1 ,we have h1pc ˆ
ttuq “ c1 ˆ ttu as well as

h1pppαl1 X cq Y pαl2 X cqq ˆ ttuq “ pβ X c1q ˆ ttu.

We can use Σ, Σ1 and h1 to do a Floer excision on Y \ YΣ. The result
is a 3-manifold Y 1, with a distinguishing surface R1, obtained from R \ Σ2

by cutting and re-gluing along two curves c and c1. The surface S̄P Ă Y

also becomes a new closed surface S̄P 1 Ă Y 1, obtained from S̄ \ pβ ˆ S1q by
cutting and re-gluing along four curves pαl1 X cq ˆ S1, pαl2 X cq ˆ S1, and
pβ X c1q ˆ S1 (there are two intersection points of β with c1). The curve η

together with δ Ă Σ2 will result in a simple closed curve η1 Ă R1. See figure
6. Hence we get a new marked closure D1 “ pY 1, R1,m1, r1, η1q where m1, r1 are
both inclusions. The Floer excision results in a cobordism W from Y \ YΣ

to Y 1 and then a map

HMpW q : HMpY \ YΣ|R Y Σ2; ΓηYδq Ñ HMpY 1|R1; Γη1 q.

Let a P HMpYΣ|Σ2; Γδq – R be a generator. Then we can define

ι : HMpY |R; Γηq Ñ HMpY 1|R1; Γη1 q

as ιpxq “ x b a and we know that

ΦD,D1 “ HMpW q ˝ ι,

as in [2].
The surface S̄P 1 Ă Y 1 actually arises from the balanced pairing P 1, which

is obtained by doing a cut and glue operation on P with two indices l1 and
l2. Just as we did in the proof of proposition 3.9, we can conclude that for
all i,

ΦD,D1pSHMpD,P, iqq “ SHMpD1,P 1, iq.

Hence we are done.

Definition 3.19. Two balanced pairings P,P 1 are called connected if there
is a sequence of balanced pairings

P0 “ P,P1, ...,Pn “ P 1,

so that for all i “ 0, 1, ..., n ´ 1, Pi and Pi`1 are equivalent.
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Lemma 3.20. The two special balanced pairings Pg and Ps in example 3.15
are connected to each other.

Proof. In example 3.17, we have shown that

tp12q, p3, 6q, p4, 5qu and tp1, 4q, p2, 5q, p3, 6qu

are equivalent. In a similar way, we can also show that

tp16q, p2, 4q, p3, 5qu and tp1, 4q, p2, 5q, p3, 6qu

are equivalent. So

tp12q, p3, 6q, p4, 5qu and tp16q, p2, 4q, p3, 5qu

are connected. The later one can be thought of as slide the arc α1, which
originally joined the points p1 and p2, over the two arcs α2 and α3.

If we skip the pairs p2, 4q, p3, 5q and look at tp1, 6q, p7, 10q, p8, 9qu, then the
above argument applies and we can connect it to tp1, 10q, p6, 9q, p7, 8qu, and
this can be thought of slide α1 over α4 and α5. We can repeat this step for
many times.

Case 1. If n is of the form 4k ` 1. In this case, we can slide α1 over to
join p1 and p4k`2. Hence Pg is connected to a new balanced pairing

P 1 “tp1, n ` 1 “ 4k ` 2q, p2, 5q, p3, 4q, ..., p4k ´ 2, 4k ` 1q, p4k ´ 1, 4kq,

p4k ` 3, 4k ` 6q, p4k ` 4, 4k ` 5q, ..., p8k ´ 1, 8k ` 2q, p8k, 8k ` 1qu.

Then we can do cut an glue operations on pairs p4l ´ 2, 4l ` 1q and p4l ´ 2 `
n, 4l ` 1 ` nq as well as on pairs p4l ´ 1, 4lq and 4l ´ 1 ` n, 4l ` n, for all
1 ď l ď k. The result of these operations is just the special balanced paring
Ps so we are done.

Case 2. If n is of the form 4k ` 3. In this case, we can still slide α1 to
join p1 with p4k`2, so Pg is connected to

P 1 “tp1, 4k ` 2q, p2, 5q, p3, 4q, ..., p4k ´ 2, 4k ` 1q, p4k ´ 1, 4kq,

p4k ` 3, 4k ` 6q, p4k ` 4, 4k ` 5q, ..., p8k ` 3, 8k ` 6q, p8k ` 4, 8k ` 5qu.

Now do another cut and glue operation on pairs p1, 4k ` 2q and p4k `
4, 4k ` 5q, we will get a new balanced pairing

P 1 “tp1, n ` 1 “ 4k ` 4q, p2, 5q, p3, 4q, ..., p4k ´ 2, 4k ` 1q, p4k ´ 1, 4kq,

p4k ` 2, 4k ` 5q, p4k ` 3, 4k ` 6q, ..., p8k ` 3, 8k ` 6q, p8k ` 4, 8k ` 5qu.

There is then an α arc joining p4k`2 and p4k`5, we can slide it over to join
p4k`5 and p2. Similarly there is an α arc joining p4k`3 with p4k`6 and we
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can slide it over to join p4k`3 with p8k`6. Then Pg is connected to a new
balanced pairing

P2 “tp1, n ` 1 “ 4k ` 4q, p2, n ` 2 “ 4k ` 5q, pn “ 4k ` 3, 2n “ 8k ` 6q,

p3, 6q, p4, 5q...p4k ´ 1, 4k ` 2q, p4k, 4k ` 1q

p4k ` 6, 4k ` 9q, p4k ` 7, 4k ` 8q, ..., p8k ` 2, 8k ` 5q, p8k ` 3, 8k ` 4qu.

Finally, we can do cut and glue operations on pairs p4l ´ 1, 4l ` 2q and
p4l ´ 1`n, 4l ` 2`nq as well as on p4l, 4l ` 1q and p4l `n, 4l ` 1 `nq for all
1 ď l ď k, then the final result is Ps and we are done.

Corollary 3.21. The definition of grading on SHMpM,γq is independent of
choices of type I.

Proof. It is straightforward to check if we use the special balanced pairing
Ps, then the surface rSPs is the same for all possible choices of the starting
point p1. Hence the corollary follows from lemma 3.18 and lemma 3.20.

Remark 3.22. We want to use Pg in the definition of grading because it is
more convenient to use this construction to discuss about the positive and
negative stabilizations (see definition 3.1), as we will see in subsection ??.

Though we only discussed some special pairings, we would like to make
the following conjecture. Note the concept of balancedness, equivalence, con-
nectedness defined above can be reached in a purely combinatorial way and
is independent of all the topological input.

Conjecture 3.23. Any two balanced pairings of the same size n, where n is
odd, are connected.

4 The degree shifting property

4.1 A naive version

Suppose pM,γq is a balanced sutured manifold and suppose S is a properly
embedded surface in M with only one boundary component. In definition 3.3,
we constructed a grading on SHMpM,γq associated to S, when |BS Xγ| “ 2n
with n being odd. If n is even, then we introduced in definition 3.1 positive
and negative stabilizations S˘ to increase n by 1. It is a natural question to
ask how the gradings associated to S` and S´ are related to each other. The
following proposition is a first answer to this question.
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Proposition 4.1. Suppose pM,γq is a balanced sutured manifold, S Ă M is
a properly embedded surface with only one boundary component and that BS
intersects γ transversely at 2n points with n “ 2k ą 0 even. Suppose that
the balanced sutured manifold obtained by decomposing p´M,´γq along S is
taut. Suppose S˘ are the positive and negative stabilizations of S. Suppose
S is of genus g and let

gc “ g ` k.

Then we have

SHMp´M,´γ, S´, gcq Ă SHMp´M,´γ, S`, gc ´ 1q.

We need a lemma before the proof of the proposition.

Lemma 4.2. Suppose pM,γq is a balanced sutured manifold and S is properly
embedded surface inside M so that BS is connected and |BS X γ| “ 2n with n

even. Let

gc “
n ´ 1

2
` gpSq,

then we know that
SHMpM,γ, S, iq “ 0

for all i ą gc and

SHMpM,γ, S, gcq – SHMpM 1, γ1q,

where pM 1, γ1q is the balanced sutured manifold obtained from pM,γq by de-
composing along S.

Proof. This follows from the construction of the grading in definition 3.3,
the adjunction inequality in lemma 2.7 and the proof of proposition 6.9 in
Kronheimer and Mrowka [16].

Proof of proposition 4.1. If we have two different negative stabilizations S´
1

and S´
2 , then we know from lemma 3.2 and lemma 4.2 that

SHMp´M,´γ, S´
1 , gcq “ SHMp´M 1,´γ1q “ SHMp´M,´γ, S´

2 , gcq,

where pM 1, γ1q is obtained from p´M,´γq by performing a sutured manifold
decomposition along S. Hence we can choose a special negative stabilization
to deal with.

Suppose the intersection points of BSXγ are labeled as p1, ..., p2n as we did
in definition 3.3. We also pick a suitable p1 so that the new pair of intersection
points created by the positive or negative stabilization lie between p3 and p4.
Let β1 Ă BS be part of BS so that Bβ1 “ tp3, p4u and β1 contains no other
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intersection points pj for j ‰ 3, 4. Let β Ă S be a properly embedded arc so
that Bβ “ tp3, p4u, β and β1 co-bound a disk on D, and when doing positive
and negative stabilizations, the isotopies on S are fixed outside the disk D.
Now if we use the same starting point p1 to label BS˘ X γ, then the new pair
of intersection points are both p4 and p5 in the two cases. See figure 7.

γ

W

S

BM

γ

BM

S

p3

p4

D

β

p3

p6

Figure 7: The negative stabilization of S. Positive stabilizations are similar.

Suppose T is an auxiliary surface of pM,γq with large enough genus.
When constructing the grading using S˘, we also need to choose linearly
independent arcs α1, α2, α

˘
3 , α4..., αn`1 Ă T to connect intersection points

BS˘ X γ, and the special pairing Pg, as defined in example 3.15, to tell us
what exactly are the end points of those arcs αi. Here α˘

3 correspond to the
different surfaces S˘ while T and all other arcs αi can be chosen the same
for both S` and S´. Now in the pre-closure ĂM “ M Y T ˆ r´1, 1s, we have

surfaces rS˘ Ă ĂM. After picking suitable gluing diffeomorphisms h˘, we get
two marked closures

D˘ “ pY ˘, R˘, r˘,m˘, η˘q

so that there are closed surfaces S̄˘ Ă Y ˘, and the gradings are defined by
the pairings between first Chern classes of spinc structures with fundamental
classes of S̄˘. Note the genuses of S̄˘ are both gc “ g ` k ` 1.

From proposition 3.8, we know that the canonical map Φ´D´,´D` can
be interpreted in terms of a Floer excision cobordism W from ´Y ´ \ ´Y h,
where Y h is the mapping torus of h “ ph´q´1 ˝ h`, to ´Y `.
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Now we can construct a special closed surface of genus 2 as follows. Re-
call we have an arc β Ă S, and since the isotopies for positive or negative
stabilizations are supported in the interior of the disk D, β also lies in S̄˘.
Let δ “ β Y pα2 ˆ t0uq Ă S̄˘ be a closed curve. Then the curve δ cuts each
of S̄˘ into two parts. One part contains SzintpDq and the other part is a
connected oriented surface T˘ Ă S̄˘ of genus 1 and with boundary δ. Inside
W , we can define

Σ2 “ T´ Y δ ˆ r0, 1s Y ´T` Ă W.

It is straightforward to see that in W ,

rS̄´s “ rS̄`s ` rΣ2s.

Hence by the adjunction inequality in dimension 4, which is a 4-dimensional
analogue to lemma 2.7, we have

Φ´D´,´D`pSHMp´D, S´, gcqq Ă SHMp´D, S`, gc ` 1q

‘ SHMp´D, S`, gcq

‘ SHMp´D, S`, gc ´ 1q.

The adjunction inequality also implies that SHMp´D, S`, gc ` 1q “ 0. If we
decompose p´M,´γq along S` and suppose pM 1, γ1q is the resulting balanced
sutured manifold, then by lemma 3.2, R˘pγ1q is compressible and so

SHMp´D, S`, gcq – SHMp´M 1,´γ1q “ 0.

The first isomorphism follows from lemma 4.2 and the second equality follows
again from the adjunction inequality in lemma 2.7.

Hence the only possibility left is

Φ´D´,´D`pSHMp´D, S´, gcqq Ă SHMp´D, S`, gc ´ 1q

and we are done.

4.2 Knot complement with two sutures

In this section we shall focus on the case when the balanced sutured manifold
pM,γq is the complement of a non-homologous knot, which means that M “
XpKq “ XzimpNpKqq, where X is a closed connected oriented 3-manifold
and K Ă X is a non-homologous knot. Also we focus on the case where γ has
only two components. Under these conditions, we can prove that the result
of proposition 4.1 holds not only for the top grading but for all gradings.
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Proposition 4.3. Suppose pM “ XpKq, γq is the balanced sutured manifold
described as above. Suppose S is a Seifert surface of the knot K, viewed as
a properly embedded surface in M , so that |BS X γ| “ 2n. Then for any
q, k, l P Z such that n ` q is odd, we have

SHMp´M,´γ, Sq, lq “ SHMp´M,´γ, Sq`2k, l ´ kq.

Note Sq is defined as in definition 3.1 and in particular S0 “ S.

Before proving proposition 4.3, we will first deal with the following related
proposition.

Proposition 4.4. Suppose pY,Rq is a closure of p´M,´γq, and let s1, s2 P
S˚pY |Rq (see definition 2.4) be two spinc structures on Y both supporting
the sutured monopole Floer homology. Then there is a 1-cycle x inside M ,
so that

P.D.c1ps1q ´ P.D.c1ps2q “ rxs P H1pY q.

Note the cycle is contained in M but the identity is on the whole Y .

We shall start by describing the closures of p´M,´γq. Note if pY,Rq is a
closure of pM,γq, then p´Y,´Rq is a closure of p´M,´γq. So in the following
discussion, we shall describe the closures of pM,γq and for p´M,´γq, one can
just reverse the orientations.

Let Σg be a closed oriented connected surface of genus g which is large
enough. Its first homology is generated by the curves a1, b1, ..., ag , bg as in
figure 8.

a1 ag

b1 bg. . .

Figure 8: The surface Σg.

Let T “ ΣgzintpNpa1qq be a surface obtained from Σg by cutting Σg open
along a1, then T can be viewed as an auxiliary surface for pM,γq. Let

ĂM “ M Y T ˆ r´1, 1s
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be a pre-closure of pM,γq. Let

B ĂM “ R` Y R´.

Remark 4.5. For different sutures γ and surfaces S, the genus g of the auxil-
iary surface T might be different in order to construct the grading.

If we choose a special gluing diffeomorphism h0 : R` Ñ R´ so that
hTˆt1u “ id, then we get a special marked closure

D0 “ pY 0, R, r0,m0, ηq.

Similar to the closures described in section 5.1 in [16], the closure pY 0, Rq can
be thought of being obtained as follows. Let Σg be described as above, and
let YΣ “ Σg ˆ S1, where S1 is identified with the unit circle in the complex
plane. Let a1 also denote the curve a1 ˆ t1u Ă YΣ, and Npa1q is a tubular
neighborhood of a1 Ă YΣ. Note a1 Ă Σg so there is a framing on BNpa1q
induced by Σg. Let λa, µa be the meridian and longitude respectively.

Then we actually have

Y 0 “ M Y
φ

pYΣzintpNpa1qqq.

Here
φ : BNpa1q Ñ BM

sends two copies of λa to the suture γ. Note there are canonical ways to
identify R˘ with Σg. So in the marked closure D0, we have R “ Σg.

Note pY0,Σgq is a closure of pM,γq so p´Y0,´Σgq is one for p´M,´γq.

Lemma 4.6. Proposition 4.4 is true for ´Y 0.

Proof. From the Mayer-Vietoris sequece we know that there is an exact se-
quence

H1pT 2q Ñ H1pMq ‘ H1pYΣzintpNpa1qqq Ñ H1pY 0q Ñ 0,

where T 2 “ BM “ BpYΣzintpNpa1qqq. Hence we conclude that

H1pY 0q “ H1pMq ‘ H1pYΣzintpNpa1qqq{ „,

where „ is the relation induced by the gluing map φ :

rλas „ φ˚prλasq, rµas „ φ˚prµasq.

A direct calculation shows that

H1pYΣzintpNpa1qqq “ xrµas, ra1s, rb1s, ..., rags, rbgs, rs0sy,
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where s0 corresponds to the S1 direction in YΣ “ Σg ˆ S1. Hence we can
write

H1pY 0q “ H1pMq ‘ xrb1s, ra2s, rb2s, ..., rags, rbgs, rs0sy. (7)

This is because a1 and µa are absorbed into H1pMq.
Suppose s P S˚p´Y 0| ´ Σgq, then we can express P.D.c1psq in terms of

the above basis. The coefficient for rss can be fixed by the evaluation

c1psqr´Σgs “ 2g ´ 2.

There are no rb1s, ra2s, rb2s...rags, rbgs terms because we have tori a1ˆS1, b2 ˆ
S1..., ag ˆ S1 Ă Y 0 and the adjunction inequality in lemma 2.7 rules out
those possibilities. The rest terms must then lie in H1pMq. So if further we
look at the difference of two supporting spinc structures, the difference (of
the Poincaré dual of their first Chern class) must lie in M .

Now we want to deal with other closures of p´M,´γq. As above, we have
the pre-closure

ĂM “ M Y T ˆ r´1, 1s,

where T “ ΣgzNpa1q. Also recall

B ĂM “ R` Y R´.

Note as in the above discussion, there are canonical ways to identify R` and
R´ with Σg. Now we can pick any orientation preserving diffeomorphism
h : R` Ñ R´ to get a closure pY,Σgq of pM,γq, or a marked closure

D “ pY,Σg, r,m, ηq.

In particular, the special marked closure D0 in lemma 4.6 corresponds to
taking h “ h0 “ id.

Let Y h be the mapping torus of the diffeomorphism h : Σg Ñ Σg, then
we can reinterpret Y as

Y “ M Yφ pY hzintpNpa1qqq.

From proposition 3.8, we know that the canonical map ΦD0,D can be obtained
from a cobordism W from Y 0 \ Y h to Y . The cobordism W arises from the
Floer excision as in subsection 2.2. The computation of the first homologies
of Y , Y h and W1 are straightforward and we can describe them as follows

H1pY q “ H1pMq ‘ xrµas, ra1s, rb1s, ..., rags, rbgs, rssy{ „φ,h (8)

H1pY hq “ xra1s, rb1s..., rags, rbgs, rsshy{ „h (9)
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H1pW q “ H1pMq ‘ xrµas, ra1s, rb1s, ..., rag s, rbgs, rs0s, rshsy{ „φ,h . (10)

Here s is a circle intersecting Σg once. We can isotope h so that h has a fixed
point p P Σg, then inside Y , there is a circle s “ tpu ˆ S1. The class sh is
similar. The relations „φ,h are

ra1s „ φ˚pra1sq, rµas „ φ˚prµasq, rais „ hpraisq, rbis „ hprbisq.

The relations „h are

rais „ hpraisq, rbis „ hprbisq.

From the above description, the following lemma is straightforward.

Lemma 4.7. The inclusion i : Y ãÑ W induces injective maps

i˚ : H1pY q ãÑ H1pW q.

Lemma 4.8. Suppose pW,νq is an oriented cobordism between two oriented
3-manifolds with local coefficients systems pY, ηq and pY 1, η1q. Suppose s is a
spinc structure on Y and s1 is a spinc structure on Y 1, so that

~HMpW,νqp~HM ‚pY, s; Γηqq X ~HM‚pY 1, s1; Γη1 q ‰ t0u,

then we know that

i˚pP.D.c1psqq “ i1˚pP.D.c1ps1qq P H1pW q.

Here i : Y Ñ W and i1 : Y 1 Ñ W 1 are the inclusions.

Proof. This is straightforward since the monopole cobordism map is con-
structed through spinc structures on the cobordism W . So

~HMpW,νqp~HM ‚pY, s; Γηqq X ~HM‚pY 1, s1; Γη1 q ‰ t0u

means that there exists a spinc structure sW which restricts to s on Y and to s1

on Y 1. Then the dual of c1psq P H2pW q has boundary P.D.c1psq´P.D.c1ps1q P
H1pBW q which means that

i˚pP.D.c1psqq “ i1˚pP.D.c1ps1qq P H1pW q.

Recall we have defined S˚p´Y 0| ´ Σgq to be the set of supporting spinc

structures as in definition 2.4. We can also define

PDS˚p´Y 0| ´ Σgq “ tP.D.c1psq|s P S˚p´Y 0| ´ Σgqu.

We can definePDS˚p´Y |´Σgq similarly. Then we have the following lemma.
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Lemma 4.9. Suppose we have the closures

´D0 “ p´Y 0,´Σg, r,m,´ηq, ´ D “ p´Y,´Σg, r,m,´ηq

for p´M,´γq, the mapping torus Y h and the cobordism W from Y 0 \ Y h to
Y defined as above. Suppose sh is the unique supporting spinc structure on
´Y h satisfying the conclusion of lemma 2.6. Then there exists a map

ρ : PDS˚p´Y 0| ´ Σgq Ñ H1pY q

so that PDS˚p´Y | ´ Σgq Ă impρq and ρ satisfies the following property p˚q:
suppose we have spinc structures s P S˚p´Y 0| ´ Σgq and s1 P S˚p´Y | ´ Σgq,
so that

~HMp´W qp~HM‚p´Y 0, s; Γ´ηqb~HM‚p´Y h, sh; Γ´ηqqX~HM‚p´Y, ρpsq; Γ´ηq ‰ H,

then
P.D.c1ps1q “ ρpP.D.c1psqq.

Proof. Suppose s P S˚p´Y 0| ´ Σgq is any supporting spinc structure. We
define the image ρpP.D.c1psqq as follows. Pick any spinc structure sW on
´W so that

(1). We have ~HMp´W, sW , νq ‰ 0.
(2). We have sW |´Y 0 “ s. Then we define ρpP.D.c1psqq “ P.D.c1psW |´Y q.

We now show that this map is well defined. Suppose we have another spinc

structure s1
W on ´W so that condition (1) and (2) also satisfied, then we

need to show that

P.D.c1psW |´Y q “ P.D.c1ps1
W |´Y q.

Let i : Y Ñ W be the inclusion. We know that there is an exact sequence

H2pW,Y q
B
ÝÑ H1pY q

i˚
ÝÑ H1pW q.

By lemma 4.7 and the exactness, we know that impBq “ kerpi˚q “ 0. However,
clearly we have

BpP.D.c1psW q ´ P.D.c1ps1
W qq “ P.D.c1psW |´Y q ´ P.D.c1ps1

W |´Y q,

thus we conclude that

P.D.c1psW |´Y q “ P.D.c1ps1
W |´Y q.

The property p˚q follows from the construction of ρ and lemma 4.8. The
fact that PDS˚p´Y | ´ Σgq Ă impρq follows directly from the fact that ´W

induces an isomorphism as in theorem 2.8.
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Proof of proposition 4.4. We want a more explicit description of the map ρ

in lemma 4.9. Using the notations in that lemma, we have a supporting spinc

structure s on ´Y 0 and a (unique) supporting spinc structure sh on ´Y h.
We can write

P.D.c1psq “ rxs ` p2 ´ 2gqrs0s,

where rxs P H1pMq Ă H1pY 0q and s0 is the class as in (7), by lemma 4.6.
Also we can write

P.D.c1pshq “ ryhs ` p2 ´ 2gqrshs,

where ryhs is a linear combination of the classes ra1s, ..., rbgs in H1pY hq, which
is described in (9).

Now we claim that

ρpP.D.c1psqq “ rxs ` ryhs ` p2 ´ 2gqrss P H1pY q.

This is because the cycles x Ă Y 0 and x Ă Y co-bound annuli xˆr0, 1s inside
W , yh Ă Y h and yh Ă Y co-bound annuli yh ˆ r0, 1s inside W and s0 Ă Y 0,
sh Ă Y h, s Ă Y co-bound a pair of pants in side W . Thus inside W we can
find an explicit (relative) 2-cycle c so that

c X Y 0 “ Bc X Y 0 “ P.D.c1psq, c X Y h “ Bc X Y h “ P.D.c1pshq.

Thus as in the proof of lemma 4.9, the injectivity in lemma 4.7 implies that

ρpP.D.c1psqq “ rxs ` ryhs ` p2 ´ 2gqrss. (11)

With this explicit formula, proposition 4.4 follows directly.

Corollary 4.10. If the inclusion j : M Ñ Y induces an injective homomor-
phism

j˚ : H1pMq Ñ H1pY q,

then the map ρ in lemma 4.9 is in fact a bijection:

ρ : PDS˚p´Y 0| ´ Σgq Ñ PDS˚p´Y | ´ Σgq.

Proof. It is straightforward from (10) to check that when j˚ is injective, the
inclusion j0 : M Ñ W also induces an injective homomorphism

j0˚ : H1pMq Ñ H1pW q.

Then the injectivity follows directly from (11), since ryhs and p2 ´ 2gqrss in
that formula are fixed and the only variance is rxs which is represented by a
cycle in M .
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Proof of proposition 4.3. Now we have a balanced sutured manifold pM,γq
where M “ XpKq is the complement of a non-homologous knot K Ă X and
γ has two components. Also we have a Seifert surface S of K which can be
viewed as a properly embedded surface in M . Let |BS X γ| “ 2n. For any p

so that n ` p is odd, we can do p-stabilization as in definition 3.1 and apply
the construction in definition 3.3 to construct a grading

SHMp´M,´γ, Sp, lq

on SHMp´M,´γq. As in definition 3.3, we can construct a marked closure

Dp “ pYp,Σg, rp,mp, ηq

so that Sp Ă M extends to a closed surface S̄p Ă Yp.
We claim that the inclusion j : M Ñ Yp for any p satisfies the condition

in lemma 4.10, that is,
j˚ : H1pMq Ñ H1pYpq

is injective. So then we can apply the corollary.
To prove this claim, first note that M “ XpKq so we can compute directly

that
H1pMq “ H1pXq ‘ xrµKsy,

where µK is a meridian circle of K inside M “ XpKq. From the discussion
above, we know that

Yp “ M Y
φ

pY hpzintpNpa1qqq,

where hp : Σg Ñ Σg is some orientation preserving diffeomorphism and

H1pYpq “ H1pMq ‘ xrµas, ra1s, ..., rbg s, rspsy{ „φ,hp

as in (8). Thus we know that the relations „φ,hp
only affects rµks P H1pMq

but not anything in H1pXq. Hence to show that j˚ is injective, it is enough
to show that j˚prµksq is of infinite order. Yet this last thing is obvious since
inside Yp, µK intersects S̄p transversely at one point.

Thus we get a bijection

ρp : PDS˚p´Y 0| ´ Σgq Ñ PDS˚p´Yp| ´ Σgq

as in corollary 4.10. Here pY 0,Σgq or D0 “ pY 0,Σg, r
0,m0, ηq is the special

(marked) closure of pM,γq described above.
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Similarly we have the surface Sp`2k Ă M , a marked closure Dp`2k “
pYp`2k,Σg, rp`2k,mp`2k, ηq, an extension S̄p`2k of S inside Yp`2k and a bijec-
tion

ρp`2k : PDS˚p´Y 0| ´ Σgq Ñ PDS˚p´Yp`2k| ´ Σgq.

Thus we can define

ρ
p
p`2k “ ρp`2k ˝ ρ´1

p : PDS˚p´Yp| ´ Σgq Ñ PDS˚p´Yp`2k| ´ Σgq.

Also from proposition 3.8, lemma 4.9 and the functoriality of the canonical
maps, we know that ρ has the following significant property: if s P S˚p´Yp|´
Σgq and s1 P S˚p´Yp`2k| ´ Σgq are supporting spinc structures so that

Φ´Dp,´Dp`2k
p~HM‚p´Yp, s; Γ´ηqq X ~HM‚p´Yp`2k, s

1; Γ´ηq ‰ H,

then we must have
P.D.c1ps1q “ ρpP.D.c1psqq.

From the explicit description of ρ in (11), we know that s1, s2 P S˚p´Yi|´Σgq
and s1

1, s
1
2 P S˚p´Yi`2k| ´ Σgq are supporting spinc structures so that

Φ´Dp,´Dp`2k
p~HM ‚p´Yp, s1; Γ´ηqq X ~HM‚p´Yp`2k, s

1
1; Γ´ηq ‰ H

and

Φ´Dp,´Dp`2k
p~HM‚p´Yp, s2; Γ´ηqq X ~HM‚p´Yp`2k, s

1
2; Γ´ηq ‰ H,

then there exists a 1-cycle x Ă M so that

P.D.c1ps1q ´ P.D.c1ps2q “ rxs P H1pYpq (12)

and
P.D.c1ps1

1q ´ P.D.c1ps1
2q “ rxs P H1pYp`2kq. (13)

Recall in definition 3.3, the grading is obtained by the evaluation of the
first Chern classes of the supporting spinc structures and by theorem 3.4, the
grading should be preserved by the canonical map. Hence the above equalities
(12) and (13 actually implies that there is a fixed integer l0 so that for any
l P Z, we have

SHMp´M,´γ, Sp, lq “ SHMp´M,´γ, Sp`2k, l ´ l0q.

If we go through the construction of ρ, we know that ρ is not only independent
of l P Z, but also independent of the interior of M and S (and only related
to the data BS, p, k and γ.) Thus in order to figure out the value of k, we
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can only look at the basic case where M is the complement of a trefoil inside
S3. The convenience is that when we decompose pM,γq along Sp for p ď 0
then the resulting sutured manifold is taut.

Case 1. If p ă 0 and p ` 2k ă 0. From lemma 3.2 and lemma 4.2 we
know that first non-vanishing degree of SHMp´M,´γ, Spq is

l “
n ´ p ´ 1

2
` gpSq,

while the first non-vanishing degree of SHMp´M,´γ, Sp`2kq is

l1 “
n ´ p ´ 2k ´ 1

2
` gpSq.

However, from the above discussion we know that

l1 “ l ´ l0

so l0 “ k.
Case 2. If p “ ´1 and k “ 1 or p “ 1 and k “ ´1. Then l0 “ 1 “ k

from proposition 4.1.
Case 3. If p ą 0 and p ` 2k ą 0. Then we can look at the surface

´S Ă M . Note positive stabilizations of S are negative stabilizations of ´S.
Hence this is reduced to case 1 and we still have l0 “ k.

Case 4. If p and p ` 2k are of difference sign, and is not in case 2. We
can apply case 1,2 and 3 above and conclude that we still have l0 “ k.

So in summary we always have l0 “ k and we are done.

4.3 Sutured monopoles on a solid torus

As a first application of the degree shifting property, we compute the sutured
monopole Floer homology of any valid sutures on a solid torus. The same
result in sutured Heegaard Floer homology can be found in Juhász [13].

Suppose V “ S1 ˆ D2 is a solid torus. Let λ denote a longitude S1 ˆ ttu
where t P BD2 and let µ denote a meridian tsu ˆ BD2 where s P S1. Suppose
γ is a choice of suture on V so that pV, γq is a balanced sutured manifold.
Then γ is parametrized by two quantities n and s where n is a positive even
number being the number of components of γ and s is a rational number
being the slope of the suture. Then the suture γ would be write as γnpq,pq. We

will usually write s as p
q
or pq, pq. Here p and q are co-prime and p ě 0. Note

pq, pq means going around longitude p times and meridian q times.
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Remark 4.11. The suture γ2p1,´pq in this subsection would be the same as the

suture Γp as in formula (4).
Also note that adjacent components of the suture have opposite orienta-

tions. So the slope s and ´s are exactly the same. In the present paper,
we want to be in consistence with Honda [10] so we will write the slope as
s “ ´p

q
or pq,´pq. But in any case it shall be understood that p denote a

non-negative integer.

Proposition 4.12. Suppose pV, γ2pq,´pqq is defined as above. Then we have

SHMp´V,´γ2pq,´pqq “ Rp.

Proof. If p “ q, then p “ q “ 1 because they are co-prime. Then pV, γ2p1,´1qq

is diffeomorphic to a product sutured manifold pAˆ r´1, 1s, BAˆ t0uq, where
A is an annulus. Thus we know

SHMp´V,´γ2p1,´1qq – R.

From now on we assume that p ą q. We want to re-interpret the by-pass
exact triangle as follows. We have two basic by-pass exact triangles

SHMp´V,´γ2p1,´1qq

ψ˘,2

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

SHMp´V,´γ2p1,0qq

ψ˘,1

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

SHMp´V,´γ2p0,´1qqψ˘,0

oo

(14)
Here ψ˘,0 “ ψ8

˘,0, ψ˘,1 “ ψ0
˘,1 and ψ˘,2 “ ψ1

˘,8 under the notations of
(4).

Recall from subsection 2.3 that the maps ψ´,1 (as well as the other two) is
identified with a gluing map as follows. Suppose we have SHMp´V,´γ2p1,0qq

and an identification T 2 “ S1 ˆ BD2. We can glue T 2 ˆ r0, 1s to V by the
identification BV “ S1 ˆ BD2 “ T 2 ˆ t0u. Suppose T 2 ˆ t0u is equipped
with the suture γ2p1,0q and T 2 ˆ t1u is equipped with the suture γ2p1,´1q, then

we can identify pV, γ2p1,´1qq with pV Y T 2 ˆ r0, 1s, γ2p1,´1qq. There exists a

compatible contact structure ξ´,1 on pT 2 ˆ r0, 1s, γ2p1,0q Y γ2p1,´1qq so that we
have an equality

ψ´,0 “ Φξ´,0
: SHMp´V,´γ2p1,0qq Ñ SHMp´V,´γ2p1,´1qq.
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Now if we are dealing with other sutures, we can still glue pT 2ˆr0, 1s, γ2p1,0qY

γ2p1,´1qq to V , but along a diffeomorphism

g : T 2 Ñ BV

which is not the identity. Such a map also needs to be orientation preserving
and hence is parametrized by an element in SL2pZq. We can pick the map
corresponding to the matrix

A “

ˆ
q ´ q1 ´q1

p1 ´ p p1

˙
,

where p1q ´ pq1 “ 1, p1 ď p, q1 ď q, q2 “ p ´ p1, and p2 “ p ´ p1. (Such
p1, q1, p2, q2 are unique.)

Then the suture γ2p1,0q on T 2 ˆt0u is glued to γ2pq,´pq on BV and the suture

γ2p1,´1q on T 2 ˆ t1u now becomes the suture γ2pq1,´p1q. As in formula (14), they
still fit into an exact triangle

SHMp´V,´γ2pq,´pqq

ψ´,2

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

SHMp´V,´γ2pq2,´p2qq

ψ´,1

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

SHMp´V,´γ2pq1,´p1qqψ´,0

oo

(15)
We claim that ψ´,0 “ 0. Let Dp be a meridian disk of V which intersects

γ2pq,´pq at 2p points, then from a similar argument as in proposition 5.5, we
have

ψ´,0pSHMp´V,´γ2pq1,´p1q,D
´pp´p1q
p1 , iqq Ă SHMp´V,´γ2pq1,´p1q,D

`pp´p2q
p1 , iq

for any i P Z.
We will only deal with the case when p1 is odd and p2 is even. Other cases

are similar. From the construction of the grading in definition 3.3, we know
that there is a suitable marked closure Dp1 “ pYp1 , R, r,m, ηq and a closed
surface D̄p1 Ă Yp1 so that the grading is defined via the evaluations of the
first Chern classes of spinc structures on the fundamental class of D̄p1 . From
the construction we know that

χpD̄p1q “ χpDp1q ´ p1 “ 1 ´ p1.

Hence the adjunction inequality in lemma 2.7 tells us that

SHMp´V,´γ2pq1,´p1q,Dp1 , iq “ 0
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if i ă 1´p1

2
. Then from the degree shifting property in proposition 4.3, we

know that

SHMp´V,´γ2pq1,´p1q,D
´p2

p1 , iq “ SHMp´V,´γ2pq1,´p1q,Dp1 , i ` p
p2

2
qq.

Thus we know
SHMp´V,´γ2pq1,´p1q,D

´p2

p1 , iq “ 0 (16)

if i ă 1´p1`p2

2
.

The above argument for Dp1 is the same for D`
p2 . Note p2 is assumed to

be even, so we need to do a positive stabilization on Dp2 to construct the
grading. The adjunction inequality tells us that

SHMp´V,´γ2pq2,´p2q,D
`
p2 , iq “ 0 (17)

if i ą p2

2
. However, from proposition 6.9 in [16], we know that

SHMp´V,´γ2pq2,´p2q,D
`
p2 ,

p2

2
q – SHMpM 1, γ1q,

where pM 1, γ1q is the result of doing a sutured manifold decomposition on
p´V,´γ2pq2,´p2qq along the surface D`

p2 . From lemma 3.2, we know that

SHMp´V,´γ2pq2,´p2q,D
`
p2 ,

p2

2
q – SHMpM 1, γ1q “ 0. (18)

The degree shifting property in proposition 4.3 implies then

SHMp´V,´γ2pq2,´p2q,D
`p1

p2 , iq “ SHMp´V,´γ2pq2,´p2q,D
`
p2 , i ´

p1 ´ 1

2
q.

The above equality, together with (17) and (18), implies that

SHMp´V,´γ2pq2,´p2q,D
`p1

p2 , iq “ 0

if i ě 1´p1`p2

2
. Compare this with (16), we can see that ψ´,0 “ 0.

Once we conclude that ψ´,0 “ 0, we can compute SHMp´V,´γ2pq,´pqq by

induction. Actually the other two slopes pq1,´p1q and pq2,´p2q can be written
out explicitly in terms of the continued fraction of pq,´pq, as in Honda [10].
Note we have p ą q. Suppose

´
p

q
“ r1 ´

1

r2 ´ 1
r3´...

,
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where it is a finite continued fraction, and rj ă ´1 for all j. We can write

´
p

q
“ rr1, r2, ..., rks. (19)

Under this notation, we have

´
p1

q1
“ rr1, r2..., rk´1s, ´

p2

q2
“ rr1, r2..., rk´1 ` 1s,

and we shall identify rr1, ..., rj´1, rj ,´1s with rr1, ..., rj´1, rj ` 1.s

Now we will deal with general sutures. There are two types by-passes
relating pV, γ2n`2

pq,´pqq and pV, γ2npq,´pqq. We call them positive and negative by-

passes according to the figure 9. They give rise to by-pass exact triangles:

SHMp´V,´γ2n`2
pq,´pqq

ψn`1

˘,n

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

SHMp´V,´γ2npq,´pqq

ψn
˘,n`1

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

SHMp´V,´γ2npq,´pqqψn
˘,n

oo

(20)

Positive by-passes Negative by-passes
Figure 9: The positive and negative by-passes.

Remark 4.13. Unlike the case of two sutures, when there are exactly two
different possibilities of by-passes, in the case when γ has more than two
components, positive and negative by-passes are not unique. Here we just
pick two specific by-passes so that they are ’adjacent’ to each other. This is
crucial to the proof of lemma 4.14 below.
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Lemma 4.14. For any n and slope pq,´pq, we have

ψn`1
´,n ˝ψn

`,n`1 “ ψn`1
`,n ˝ψn

´,n`1 “ id : SHMp´V,´γ2npq,´pqq Ñ SHMp´V,´γ2npq,´pqq.

Proof. We will only prove that ψn`1
´,n ˝ ψn

`,n`1 “ id. The other is the same.
From [3] or [21] we know that a by-pass attached along an arc α can be

thought of as attaching a pair of contact 1-handle and 2-handle. The contact
one handle is attached along the two end points Bα while the contact two
handle is attached along a Legendrian curve

β “ α Y α1,

where α1 is an arc on the contact 1-handle intersecting the dividing set once.
Now ψn`1

´,n ˝ψn
`,n`1 corresponds to first attaching a by-pass along α` and

then attaching another one along α´, as in figure 10. However, in terms of
contact handle attachments, the two pairs of handles are disjoint from each
other, so we can reverse the order of attachments: we can first attach a by-pass
along α´ and then along α`. If we attach a by-pass along α´ first, we will
see as in figure 10 that this is actually a trivial by-pass as discussed in Honda
[11]. In that paper it is proved that such a trivial by-pass would not change
the contact structure. From theorem 2.16, we know that the induced map
between sutured monopole Floer homologies must be the identity. Then the
second by-pass attached along α` will also induces identity map for exactly
the same reason and we conclude that ψn`1

´,n ˝ ψn
`,n`1 “ id.

Corollary 4.15. We know that

SHMp´V,´γ2npq,´pqq – Rp2n´1¨pq.

Proof. From lemma 4.14 we know that ψn`1
˘,n is surjective while ψn

˘,n`1 is
injective. Hence we can conclude the statement by using the by-pass exact
triangles and the induction.

Corollary 4.16. We have

|π0pTightpV, γ2npq,´pqqq| ě 2n´1 ¨ |r1 ` 1| ¨ ... ¨ |rk´1 ` 1| ¨ |rk|.

Proof. First assume n “ 1. In [10], Honda explained how can we construct
any possible tight contact structures on a solid torus with convex boundary
and dividing set γ2pq,´pq. First we shall start with the standard tight contact

structure on pV, γ2p1,´1qq. Then we can glue k different layers T 2 ˆ ri ´ 1, is

for 1 ď i ď k to V one by one, so that on T 2 ˆ ri ´ 1, is, T 2 ˆ ti ´ 1u has
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Above: first attach along α´ then α`

Below: first attach along α` then α´

α`
α´

α`

α´ α´

Figure 10: Reversing the order of doing by-pass attachments. Bottom right picture:
we can isotope α´ to this new position where we can see directly that the by-pass
is trivial.

the dividing set γ2p1,´1q, while T 2 ˆ tiu has the dividing set γ2p1,1´riq. We

glue T 2 ˆ t0u to BV via identity, while glue T 2 ˆ tiu Ă T 2 ˆ ri, i ` 1s to
T 2 ˆ tiu Ă T 2 ˆ ri ´ 1, is so that the dividing sets on these two surfaces are
identified.

Each layer T 2 ˆ ri ´ 1, is is further decomposed into the combination
of ´1 ´ ri (or ´rk for the last layer) many by-passes. There are two by-
passes, one corresponding to the map ψ´,1 in formula (15) and the other
corresponding to some other ψ`,1 in a similar by-pass exact triangle and
should be completely analogue to the one discussed above. Use the inductive
step in [10] that Honda used to construct contact structures, we will see
by above discussion that all such contact structures have distinct contact
elements. Hence there are at least |r1 ` 1| ¨ ... ¨ |rk´1 ` 1| ¨ |rk| many different
contact structures.

When n is bigger than 1, we still proceed by induction. Suppose for n “ l,
there are ml “ 2l´1 ¨ |r1`1| ¨ ... ¨ |rk´1 `1| ¨ |rk | many different non-zero contact
elements ψξ1 , ..., ψξml

P SHMp´V, γ2lpq,´pqq. From above discussion we know

54



Zhenkun Li 5 THE DIRECT SYSTEM AND THE DIRECT LIMIT

that ψl
˘,l`1 are both injective, and

ψl`1
˘,l ˝ ψl

˘,l`1 “ 0, ψl`1
¯,l ˝ ψl

˘,l`1 “ id.

The first equality is the exactness of the by-pass triangle and the second is
lemma 4.14. Hence we know that inside SHMp´V, γ2l`2

pq,´pqq, there are ml`1 “

2l ¨ |r1 ` 1| ¨ ... ¨ |rk´1 ` 1| ¨ |rk| many different contact elements

ψl
˘,l`1pφξ1q, ..., ψl

˘,l`1pφξml
q

as they are all distinct. Hence we are done.

Remark 4.17. When n “ 1, the above argument gives an alternative way to
provide a tight lower bound of |π0pT ightpV, γ2pq,´pqqq|, which is originally done

by Honda [10].
When n ą 1, as we have mentioned before, there are not only two by-

passes, so this lower bound in general should not be tight. However, one
could try to study the impact of all other by-pass attachments to see if we
could improve the lower bound.

Remark 4.18. We can use a meridian disk of the solid torus to define a grading
on SHMp´V,´γ2npq,´pqq. The above method is also capable of computing the
graded homology.

5 The direct system and the direct limit

5.1 The construction

Suppose Y is a closed oriented 3-manifold and K Ă Y is an oriented knot
with a Seifert surface S Ă Y , i.e., S is an embedded oriented surface so that
BS “ K. Suppose p P K is a fixed base point. Suppose ϕ : S1 ˆ D2 ãÑ Y be
an embedding as in subsection 2.2, that is, we shall require

ϕpS1 ˆ t0uq “ k, and ϕpt1u ˆ t0uq “ p.

Then we have a 3-manifold with boundary Yϕ “ Y zintpimpϕqq. The Seifert
surface S induces a framing on BYϕ. We call the meridian µϕ and the longi-
tude λϕ. Let Γn,ϕ be a collection of two disjoin parallel oppositely oriented
simple closed curves on BYϕ, each of class ˘pλϕ ´ nµϕq. Then we have a
balanced sutured manifold pYϕ,Γn,ϕq.

Suppose ϕ1 is another embedding, then we also have ppYϕ1 ,Γn,ϕ1qq. Sup-
pose ft is the ambient isotopy defined as in subsection 2.2, relating ϕ and ϕ1.
We have the following lemma.
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Lemma 5.1. The diffeomorphism f1 is a diffeomorphism from pYϕ,Γn,ϕq to
pYϕ1 ,Γn,ϕ1q.

Proof. It is enough to show that f1 sends the framing pµϕ, λϕq on BYϕ to the
framing pµϕ1 , λϕ1 q on BYϕ1 .

By construction, f1 sends µϕ to µϕ1 . So suppose f1 sends λϕ to xλϕ1 `yµϕ1

The fact that f1 is a diffeomorphism implies that x “ 1. Suppose y ‰ 0,
then we know that f1 is a diffeomorphism between balanced sutured manifolds
pYϕ,Γn,ϕq and pYϕ1 ,Γn´y,ϕ1q, for any n P Z. Pick n large enough so that n ą 0
and n´y ą 0. Note by construction f1 restricts to identity outside a tubular
neighborhood N of K Ă Y . So it is free to assume that Y “ S3 and K is the
unknot. Then the above diffeomorphism actually gives us a diffeomorphism

f1 : pV,Γnq Ñ pV,Γn´yq,

where V is a solid torus and Γn is defined as in subsection 2.3. However, we
know that SHMpV,Γnq and SHMpV,Γn´yq are not isomorphic by proposition
4.12. So this gives a contradiction.

Corollary 5.2. There is a transitive system (of projective transitive sys-
tems) tSHMpYϕ,Γn,ϕqu and tΨϕ,ϕ1 “ SHMpf1qu. So it is valid to define the
canonical module SHMpY,K, p, nq associated to the quadruple pY,K, p, nq.

Pick a particular embedding ϕ and we can give S1
θ ˆ D2

px,yq a standard
tight contact structure. Let

ξst “ kerpsinpθqdx ` cospθqdyq.

Under this contact structure, the boundary S1 ˆ BD2 is convex and the di-
viding set consists of two curves of slope ´1. We can use ϕ to push forward
this contact structure to a tubular neighborhood of K Ă Y . We can choose ϕ
so that the curve ttu ˆ BD2 is mapped to the longitude λϕ defined as above.
The the dividing set is mapped to two curves of slope ´1 on BYϕ under the
framing pµϕ, λϕq.

The knot K is Legendrian under this local contact structure. Let Kn be
the pn ´ 1q-th negative stabilization of K, then we can remove a stardard
neighborhood ϕ1pS1 ˆ D2q Ă intpimpϕqq of Kn, the new boundary torus is
convex and having dividing set being two curves of class λϕ1 ´ nµϕ1 . Thus
we get the balanced sutured manifold pYϕ1 ,Γn,ϕ1q. From corollary 5.2 we
can identify all pYϕ1 ,Γn,ϕ1q as pY pKq “ Y zintpNpKqq,Γnq for a fixed tubular
neighborhood NpKq of K, and Γn consists of two curves of class pλ ´ nµq,
where µ and λ are the meridian and longitude of the framing on BY pKq which
is induced by S. Also let Γ8 denote two meridians µ. We can further assume
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that there is a contact structure defined in a collar of BY pKq Ă Y pKq so
that BY pKq is convex with the dividing set Γn or Γ8. Then we can apply
positive and negative by-pass attachments to pY pKq,Γnq, and there are exact
triangles as in formula (4).

Lemma 5.3. The maps ψ˘ in the exact triangle (4) induce maps between
SHMp´Y,K, p, nq, SHMp´Y,K, p, n´1q and KHMpY,K, pq. Note for n “ 8,
we are using a pair of meridians so we have SHMp´Y,K, p,8q “ KHMp´Y,K, pq.

Proof. Recall pY pKq,Γnq “ pYϕ1 ,Γn,ϕ1q, and the by-pass attachments are
realized by contact handle attachments. If we have a different embedding
ϕ2, then the two balanced sutured manifolds pYϕ1 ,Γn,ϕ1q and pYϕ2 ,Γn,ϕ2q are
related by an isotopy ft. To prove the lemma, we need to show that SHMpf1q
commute with the contact handle attaching maps. This follows from lemma
3.16 in [20] or a similar result in the instanton settings from [4].

With the above lemma at hand, we can focus on pY pKq,Γnq from now
on.

Definition 5.4. Define the minus version of monopole knot Floer homology
of a based knot K Ă ´Y , which is denoted by KHM´p´Y,K, pq, to be the
direct limit of the direct system

... Ñ SHMp´Y pKq,Γnq
ψn

´,n`1

ÝÝÝÝÑ SHMp´Y pKq,Γn`1q Ñ ...

where the maps ψn
´,n`1 are defined in the exact triangle (4). By corollary

2.22 the maps tψn
`,n`1unPZ`

induce a map on KHM´, which we call U :

U : KHM´p´Y,K, pq Ñ KHM´p´Y,K, pq.

We also want to construct a grading on the direct limit KHM´p´Y,K, pq.
Suppose Sn is the Seifert surface of K so that Sn intersects Γn at 2n points.
Then we have the following proposition.

Proposition 5.5. Suppose n is even, then we have for any i P Z

ψn
˘,n`1pSHMp´Y pKq,´Γn, S

˘
n , iqq Ă SHMp´Y pKq,´Γn`1, Sn`1, iq.

Suppose n is odd, then we have for any i P Z

ψn
˘,n`1pSHMp´Y pKq,´Γn, S

˘2
n , iqq Ă SHMp´Y pKq,´Γn`1, S

˘
n`1, iq.
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λ

´µ
S3

S3 S3

S2

φ2

´,3
ÝÝÑ

õ

Figure 11: The solid vertical arc represents the surface S3 “ S´
2 and the dashed arc

represents S2.

Proof. We only prove the case when n is even and we are dealing with
φn

´,n`1. Other cases are similar except for a possibly more complicated use
of the degree shifting property. From figure 11, it is clear that the surface
Sn`1 Ă pY pKq,Γn`1q can also be obtained from the surface Sn by a negative
stabilization:

Sn`1 “ S´
n .

Thus we know that for any i P Z

SHMp´Y pKq,´Γn, S
´
n , iq “ SHMp´Y pKq,´Γn, Sn`1, iq.

Now for S´
n “ Sn`1 Ă pY pKq,Γnq, we can choose some auxiliary data to

construct a marked closure

D´
n “ pY ´

n , R, rn,mn, ηq,
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so that there is a closed surface S̄´
n Ă Y ´

n and it induces a grading on
SHMpY pKq,Γnq which is just the one associated to S´

n . (See definition 3.3.)
We can obtain pY pKq,Γn`1q by attaching a by-pass disjoint from Sn`1.

From [3], we know the map φn
´,n`1 associated to the by-pass can be described

as follows. There is a curve β Ă pmnpY pKqqq Ă Y ´
n so that a 0-framed Dehn

surgery on β, with respect to the BY pKq framing, will result in a 3-manifold
Yn`1. Since β is disjoint from imprnq, the data R, rn and η can be copied
and we get a marked closure

Dn`1 “ pYn`1, R, rn`1,mn`1, ηq

which is a marked closure of pY pKq,Γn`1q. The surgery description above
results in a cobordism W from Y ´

n to Yn`1 and the cobordism map associated
to this cobordism actually induces the by-pass attaching map φn

´,n`1. This
cobordism W is obtained from Y ´

n ˆ r0, 1s by attaching a 4-dimensional 2-
handle along the curve β Ă Y ´

n ˆ t1u.
It is the key observation that S´

n “ Sn`1 is disjoint from the region we
attach the by-pass and hence is disjoint from the curve β along which we do
the Dehn surgery. As a result, the surface S̄´

n remains as a closed surface
S̄n`1 Ă Yn`1 and hence induces a grading on SHMpY pKq,Γn`1q. If we check
the definitions, then it is clear that this grading induced by S̄n`1 is just the
one associated to the surface Sn`1 Ă pY pKq,Γn`1q.

There is a 3-dimensional cobordism S̄´
n ˆ r0, 1s Ă W from S̄´

n Ă Y ´
n to

S̄n`1 Ă Yn`1, hence we conclude that

φn
´,n`1pSHMpY pKq,Γn, S

´
n , iqq Ă SHMpY pKq,Γn`1, Sn`1, iq.

So we are done.

The following figures 12 and 13 might be helpful for figuring out how does
ψn

˘,n`1 change the gradings. In the figures, k1 “ k ` gpSq.
Now we can do a degree shifting as follows:

SHMp´Y pKq,´Γn, S
τpnq
n , iqrσpnqs “ SHMp´Y pKq,´Γn, S

τpnq
n , i ` σpnqq.

Here τpnq “ ´1 if n is even and τpnq “ 0 if n is odd. Also

σpnq “
n ´ 1 ` τpnq

2
.

We will simply write

SHMp´Y pKq,´Γn, S
τ
nqrσs
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k1

k1 ´ 1

k1 ´ 2

...

2 ´ k1

1 ´ k1

´k1

D´
2k D2k`1

© ©✲

© ©✲

© ©✲

© ©✲

© ©✲

©

D´
2k D`

2k D2k`1

© ©✲

© ©✲

© ©✲

© ©✲

© ©✲

© ©

©

©

©

©

...
...

...
...

...

Figure 12: The map φ˘ from SHMp´Y pKq,´Γ2kq to SHMp´Y pKq,´Γ2k`1q. The
map φ2k

´,2k`1 is depicted on the left and φ2k
`,2k`1 on the right. They are represented

by the solid arrows. The circles © denote the graded homologies. The dashed lines
represent the degree shifting when using different surfaces to construct the grading.

and the direct system becomes

... Ñ SHMp´Y pKq,´Γn, S
τ
nqrσs

φn
´,n`1

ÝÝÝÝÑ SHMp´Y pKq,´Γn`1, S
τ
n`1qrσs Ñ ...

It is straight forward to prove that after the shifting φn
´,n`1 is degree pre-

serving and φn
`,n`1 shifts the degree down by 1. Thus we conclude:

Proposition 5.6. If S is a Seifert surface of K Ă Y , then S induces a
grading on KHM´p´Y,K, pq, which we write as

KHM´p´Y,K, p, S, iq

and the map U shift the degree down by 1.

5.2 Basic properties

Proposition 5.7. Suppose Y is a closed oriented 3-manifold and K Ă Y is
a knot so that there exists an embedded disk S “ D2 with BS “ K. Then

KHM´p´Y,K, pq – SHMp´Y p1q,´δq bR RrU s.

Here p P K is any choice of base point. pY p1q, δq is the balanced sutured
manifold obtained from Y by removing a 3-ball and pick one simple closed
curve on the spherical boundary as the suture.
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k1

k1 ´ 1

k1 ´ 2

...

2 ´ k1

1 ´ k1

´k1

D2k´1 D´2
2k´1 D´

2k

© ©✲

© ©✲

© ©✲

© ©✲

©

©

©

©

©

D2k´1 D`2
2k´1 D`

2k D´
2k

©

© ©✲

© ©✲

© ©✲

© ©✲

©

©

©

©

©

©

©

©

©

...
...

...
...

...
...

...

Figure 13: The maps φ˘ from SHMp´Y pKq,´Γ2k´1q to SHMp´Y pKq,´Γ2kq.

Proof. First assume that Y “ S3, then pY p1q, δq is a product sutured mani-
fold and pY pKq,Γnq “ pV, γ2p1,´nqq, where pV, γ2p1,´nqq is the balanced sutured
manifold defined in subsection 4.3. From proposition 4.12, we know that

SHMp´V,´γ2p1,´nqq – Rn.

Suppose Sn is the Seifert surface of K surface intersecting Γn “ γ2p1,´nq at 2n
points, then the argument in the proof of proposition 4.12 can also be applied
to calculate the graded homology and we conclude

SHMp´V,´γ2p1,´nq, S
τ
n, iqrσs – R

for all i such that 1 ´ n ď i ď 0. Moreover, the map

ψn
`,n`1 : SHMp´V,´γ2p1,´nq, S

τ
nqrσs Ñ SHMp´V,´γ2p1,´n´1q, S

τ
n`1qrσs

is of degree ´1 and is an isomorphism for all i such that 1´n ď i ď 0. Thus
we conclude that the direct limit

KHM´p´S3,K, pq – RrU s.

When Y is an arbitrary 3-manifold, we know that

pY pKq,Γnq “ ppY p1q, δq \ p´S3pKq,´γ2p1,´nqqq Y h,

where h is a contact 1-handle, defined as in [1] or [20], which connects the
two disjoint balanced sutured manifolds ppY p1q, δq and p´S3pKq,´γ2p1,´nqq.
Thus we know that

SHMp´Y pKq,´Γnq – SHMp´Y p1q,´δq b p´S3pKq,´γ2p1,´nqq.
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Moreover, the the above isomorphism commute with the maps ψn
˘,n`1

on SHMp´Y pKq,´Γnq and the maps id b ψn
˘,n`1 on SHMp´Y p1q,´δq b

p´S3pKq,´γ2p1,´nqq as the corresponding contact handle attachments are dis-
joint from each other. Thus we conclude that

KHM´p´Y,K, pq – SHMp´Y p1q,´δq b RrU s.

Proposition 5.8. The direct system stabilizes, that is, for any fixed i P Z,
there is a large enough N , so that for all n ą N , we have an isomorphism

φn
´,n`1 : SHMp´Y pKq,´Γn, S

τ
n, iqrσs–SHMp´Y pKq,´Γn`1, S

τ
n`1, iqrσs.

Proof. We will need to use the following exact triangle again.

SHMp´Y pKq,´Γn`1q
ψn`1

´,8 // SHMp´Y pKq,´Γ8q

ψ8
´,ntt✐✐✐

✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

SHMp´Y pKq,´Γnq
ψn`1

´,n

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

We will deal with the case that n “ 2k is even here, and the other case is
exactly the same. When n is even, we know from proposition 5.5 that

φn
´,n`1pSHMp´Y pKq,´Γn, S

´
n , iqq Ă SHMp´Y pKq,´Γn`1, Sn`1, iq.

By a similar argument, we have

φn`1
´,8pSHMp´Y pKq,´Γn`1, Sn`1, iqq Ă SHMp´Y pKq,´Γ8, S´n

8 , iq

where S8 intersects the suture Γ8 twice. Proposition 4.3 then implies that

SHMp´Y pKq,Γ8,´S´n
8 , iq “ SHMp´Y pKq,´Γ8, S8, i ´ kq.

However, the adjunction inequality in lemma 2.7 tells us that if i´k ă ´gpSq,
then

SHMp´Y pKq,´Γ8, S8, i ´ kq “ 0.

Thus for large enough i, the map

φn
´,n`1 : SHMp´Y pKq,´Γn, S

´
n , iq Ñ SHMpY pKq,Γn`1, Sn`1, iq.

is injective by the exactness, and by a similar argument it is also surjective.
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Corollary 5.9. Under the above conditions, there exists an integer N0, so
that for any i ă N0, the U map induces an isomorphism:

KHM´p´Y,K, p, S, iq – KHM´p´Y,K, p, S, i ´ 1q

Proof. The proof is exactly the same as the above proposition.

Corollary 5.10. For a knot K Ă Y , a Seifert surface S of K and a fixed
point p P K, we have

KHM´p´Y,K, p, S, iq “ 0

for i ą g and

KHM´p´Y,K, p, S, gq – KHMp´Y,K, p, S, gq.

Here g is the genus of the Seifert surface.

Proof. The first statement that

KHM´p´Y,K, p, S, iq “ 0

for i ą g follows from the adjunction inequality in lemma 2.7.
For the second part of the statement, suppose n “ 2k ` 1 is odd and the

other case is exactly the same. Suppose pM 1, γ1q is obtained by a sutured
manifold decomposition of Sn Ă pY pKq,Γnq. It is straight forward to check
that if we decompose SHMpY pKq,Γ8q along S8, then we will get exactly the
same balanced sutured manifold pM 1, γ1q. Hence from proposition 6.9 in [16],
we know that

SHMp´Y pKq,´Γn, Sn`1, gpSq`k`1q “ SHMpM 1, γ1q – KHMp´Y,K, p, S8, gpSqq.

Then the corollary follows from proposition 5.8 the way we shift the degree
in definition 5.4.

Suppose K Ă Y is a fibred knot with fibre S of genus g. Suppose pS, hq is
an open book corresponding to the fibration of K Ă Y so that it support a
contact structure ξ on Y . We call h not right-veering if there is an arc α Ă S

and one end point p P Bα so that near p Ă S, hpαq is to the left of α. See
figure 14. See [6] for more details.

Corollary 5.11. Under the above setting, if h is not right-veering, we have

KHM´p´Y,K, p, S, gq – R,

and the generator is in the kernel of the U map.
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hpαq α

p

Figure 14: Not right-veering

Proof. This result is essentially the same as in Baldwin and Sivek [6]. The
only difference is that we translate it into our language involving KHM´.

Proposition 5.12. We have an exact triangle:

{KHMp´Y,K, pq
U // {KHMp´Y,K, pq

ψuu❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

KHMp´Y,K, pq

ψ1

ii❘❘❘❘❘❘❘❘❘❘❘❘❘❘

Proof. We will use the by-pass exact triangle

SHMp´Y pKq,´Γn`1q
ψn`1

`,8 // SHMp´Y pKq,´Γ8q

ψ8
`,ntt✐✐✐

✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

SHMp´Y pKq,´Γnq
ψn`1

`,n

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

(21)
The maps tφn

`,n`1unPZ`
induce the U map. By a similar argument, the maps

tφn`1
`,8uunPZ`

and tφ8
`,nunPZ`

induce the maps ψ and ψ1 in the statement of
the proposition. Then it is formal to check that the by-pass exact triangles
(21) for all n P Z` will induce the desired one as stated in the proposition.

Suppose K Ă Y is a knot and BS “ K is a Seifert surface. Let Y pKq be
a knot complement. Let λ and µ represent the longitude and meridian on
BY pKq respectively, according to the framing induced S. We can do a Dehn
surgery along the knot K and get a surgery manifold

Yφ “ Y pKq Y
φ
S1 ˆ D2.
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Suppose µφ “ φpt1u ˆ BD2q “ q0λ ´ p0µ and λφ “ φpS1 ˆ t1uq “ r0λ ´ s0µ.
This result in a surgery of slope ´p0

q0
. Now λφ and µφ will form another

framing on BY pKq, so that µφ is the meridian of the knot Kφ “ S1ˆt0u Ă Yφ.
Note Y pKq is also a knot complement of Kφ Ă Yφ. Hence we can use the
new framing to construct a minus version of knot monopole Floer homology
KHM´p´Yφ, Yφq of pYφ,Kφq. Here we will omit the choice of base points.
The construction is exactly the same as in definition 5.4. The Seifert surface
S for the original knot K will still induces a grading on KHM´p´Yφ,Kφq.
We can also shift the degree properly just as we did above.

Proposition 5.13. For any fixed i P Z, there exists N so that for any surgery
slope ´p0

q0
ă ´N , we have

KHM´p´Y,K, S, iq – KHM´p´Yφ,Kφ, S, iq.

Proof. We will use the framing pλ, µq intricately and write both the curve
qλ´ pµ or the slope ´p

q
as pq,´pq. We will use γpqλ´pµq γpq,´pq to denote the

suture consisting of two curves of slope pq,´pq. Again γp1,´pq “ Γn in the
construction of knot monopole Floer homology.

From the stabilization property in proposition 5.8, we know that there
exists N1 such that for any n ą N1, we have

KHM´p´Y,K, S, iq – SHMp´Y pKq,´γp1,´nq, S
τ , iqrσs. (22)

Here Sτ and σ are defined as above. The degree shifted on SHMp´Y pKq,´γp1,´nqq
can be described more explicitly in the following way: there is a grading i0
so that

SHMp´Y pKq,´γp1,´nq, S
τ , i0qrσs – SHMpM 1, γ1q,

where pM 1, γ1q is the balanced sutured manifold obtained from p´Y pKq,´γp1,´nqq
by performing a sutured manifold decomposition along S. This isomorphism
is guaranteed by proposition 6.9 in [16]. We shift the degree so that i0 “ gpSq,
the genus of S.

Remark 5.14. Here the exact value σ of the degree we shall shift down depends
on n. In principle, it depends on the slope pq,´pq, or the p value, according
to the frame pλ, µq. However, we will always omit n or p from the notation.

Now by a similar stabilization property, there exists N2 so that for any
n ą N2, we have

KHM´p´Yφ,Kφ, S, iq – SHMp´Y pKq,´γpλφ´nµφq, S
τ , iqrσs. (23)

Hence to prove the theorem, it is suffice to prove that for large enough n and
large enough surgery slope, we have

SHMp´Y pKq,´γp1,´nq, S
τ , iqrσs – SHMp´Y pKq,´γpλφ´nµφq, S

τ , iqrσs.
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Now fix an n2 ą N2, and write λφ ´ n2µφ “ qλ ´ pµ. From the proof
of proposition 4.12, we can construct two sequences of slopes tpq1

j ,´p1
jqu and

tpp2
j ,´q2

j qu inductively as follows. Let pq1
0,´p1

0q “ pq,´pq. For any j ě 1,
suppose we have the continued fraction of pq1

j´1,´p1
j´1q to be

pq2
j´1,´p2

j´1q “ rr1, ..., rk´2, rk´1, rks,

then define

pq2
j ,´p2

j q “ rr1, ..., rk´2, rk´1, rk ` 1s, pq1
j ,´p1

jq “ rr1, ..., rk´2, rk´1s.

Note we identify rr1, ...rk´2, rk´1,´1s as rr1, ..., rk´2, rk´1 ` 1s. We end the
sequence when

pq1
k´1,´p1

k´1q “ rr1s “ p1, r1q. (24)

Here r1 ď ´2 is the first term in the continued fraction of pq,´pq “ pλφ ´
n2µφq.

The sequences of slopes fit into by-pass exact triangles:

SHMp´Y pKq,´γpq1
j´1

,p1
j´1

qq

ψj,2

**❱❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱

SHMp´Y pKq,´γpq2
j ,p

2
j qq

ψj,1
44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

SHMp´Y pKq,´γpq1
j ,p

1
jqqψj,0

oo

(25)
If Y “ S3 andK is the unknot, then ψj,k “ ψ´,k for k “ 0, 1, 2 in the previous
exact triangle (15). As above, we know that

ψj,0 : pSHMp´Y pKq,´γpq1
j ,p

1
jq, S

´p2
j , i1q Ñ SHMp´Y pKq,´γpq2

j ,p
2
j q, S

`p1
j , i1q,

ψj,1 : SHMp´Y pKq,´γpq2
j ,p

2
j q, S

`p1
j , i1q Ñ SHMp´Y pKq,´γpq1

j´1
,p1

j´1
q, S, i

1q,

ψj,2 : SHMp´Y pKq,´γpq1
j´1

,p1
j´1

q, S, i
1q Ñ pSHMp´Y pKq,´γpq1

j ,p
1
jq, S

´p2
j , i1q.

Note in the above formula, we assume that p2
j´1 is odd. When it is even, we

shall use SHMp´Y pKq,´γpq1
j´1

,p1
j´1

q, S
´, i1q instead, and there shall be some

adjustions on the other two terms but the argument is essentially the same.
Also from the construction, we have an equality

p1
j´1 “ p1

j ` p2
j (26)

just as in the proof of proposition 4.12.
On this particular grading i1, the three maps ψj,0, ψj,1 and ψj,2 also form

an exact triangle. Note in the above formula, we use i1 because we haven’t
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apply the shifting σ as in (22) and (23). If we track the way we shift the
degree via σ, we know that we shall look at the degree i1 in this un-shifted
version, so that

p1
j´1

2
´ i1 “ gpSq ´ i, (27)

i,e., the grading whose difference from the top grading is the same as that
of i. Here i is pre-fixed by the hypothesis of the proposition and i1 actually
depends on the indices j but we omit it from the notation.

Note in the sequence of slopes tpq1
j ,´p1

jqu, we have

pq1
0,´p1

0q “ pq,´pq “ λφ ´ n2µφ, and pq1
k´1,´p1

k´1q “ rr1s “ p1, r1q.

If we could prove that for any j, the map ψj,2 is an isomorphism in at
degree i1 described as above, then we know that

KHM´p´Yφ,Kφ, S, iq – SHMp´Y pKq,´γpλφ´n2µφq, S
τ , iqrσs

“ SHMp´Y pKq,´γpλφ´n2µφq, S
τ , i1q

– SHMp´Y pKq,´γpλ`r1µq, S
τ , i1q

– SHMp´Y pKq,´γpλ`r1µq, S
τ , iqrσs.

Here r1 is defined as in (24). If further we had r1 ă ´N1, then we know from
(22) that

KHM´p´Yφ,Kφ, S, iq – SHMp´Y pKq,´γpλ`r1µq, S
τ , iqrσs

– KHM´p´Y,K, S, iq

and we were done.
Hence there are two things to show:
(1). All the maps ψj,2 are isomorphisms.
(2). For ’small’ enough surgery slopes pq0,´p0q, we have r1 ă ´N1.
We show the second statement first. By definition, we have

r1 “ ´pt
p

q
u ` 1q and

p

q
“

s0 ` n2p0

r0 ` n2q0
. (28)

If we choose large enough n2 (we can freely make n2 larger), then we know
that

t
p

q
u ě t

p0

q0
u ´ 1. (29)

Hence for any surgery slope ´p0
q0

ă ´N1, (2) is true.
To deal with (1), we apply the argument in the proof of proposition 4.12

again, and look at the map

ψj,0 : pSHMp´Y pKq,´γpq1
j ,p

1
jq, S

´p2
j , i1q Ñ SHMp´Y pKq,´γpq2

j ,p
2
j q, S

`p1
j , i1q.
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The difference from previous argument is that now S is not always a disk, so
the degree shifting property may not distinguish all the non-zero gradings of

SHMp´Y pKq,´γpq1
j ,p

1
jq, S

´p2
j q

from that of
SHMp´Y pKq,´γpq2

j ,p
2
j q, S

`p1
j q,

and as a result, ψj0 need not to be identically zero. However, the overlap
only happens in the few bottom non-zero gradings in

SHMp´Y pKq,´γpq1
j ,p

1
jq, S

´p2
j q,

while the desired grading i1 is quite near the top as in (27). This idea is
realized in details as follows.

From now on we still assume that p1
j´1 and p1

j are both odd. Other cases
are similar. To use the surface S to construct a grading in

SHMp´Y pKq,´γpq2
j ,´p2

j qq,

we shall first perform a positive stabilization to get S` since |S X γpq2
j ,´p2

j q| “

2p2
j and p2

j is even. There is a marked closure

D “ pY 1, R, r,m, ηq

of p´Y pKq,´γpq2
j ,´p2

j qq so that S extends to a closed surface S̄ Ă Y 1. From

definition 3.3, we know that

χpS̄q “ 2 ´ 2gpSq ´ 1 ´ pp2
j ` 1q “ ´2gpSq ´ p2

j .

Hence from the adjunction inequality, we know that for any i2 ą gpSq `
p2
j

2
,

SHMp´Y pKq,´γpq2
j
,p2

j
q, S

`, i2q “ 0.

The degree shifting property tells us that for any i2 ą gpSq `
p2
j

2
`

1´p1
j

2
,

SHMp´Y pKq,´γpq2
j ,p

2
j q, S

`p1
j , i2q “ 0.

Hence to show that

ψj,2 : SHMp´Y pKq,´γpq1
j´1

,p1
j´1

q, S, i
1q Ñ pSHMp´Y pKq,´γpq1

j ,p
1
jq, S

´p2
j , i1q.
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is an isomorphism, it is suffice to show that for the particular grading i1

defined by (27), we have

i1 ą gpSq `
p2
j

2
`

1 ´ p1
j

2
.

This is equivalent to

p1
j ` p1

j´1 ´ p2
j

2
ą 2gpSq ´ i ` 1.

Applying equality (26), this is also equivalent to

p1
j ą 2gpSq ´ i ` 1.

From (26), (28) and (29) we know that for any j,

p1
j ě p1

j`1 ě p1
k´1 “ ´r1 ě t

p0

q0
u.

Hence we can pick the constant

N “ maxtN1, 2gpSq ´ i ` 1u

in the hypothesis of the proposition and we are done.

Remark 5.15. By a similar argument, we could prove that actually N1 de-
pends only on gpSq.

At last, we would like to introduce the following definition.

Definition 5.16. Suppose K Ă Y is an oriented knot and S is a Seifert
surface of K. We can define the tau invariant τpY,K, Sq of K Ă Y with
respect to S as follows:

τpY,K, Sq “ ´maxti|Dx P KHM´pY,K, p, S, iq, U jx ‰ 0 for any j ě 0.u

Here the base point can be fixed arbitrarily.

Question 5.17. What properties does τpY,K, Sq have?
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6 Instantons and knot Floer homology

6.1 Instanton Floer homology and the generalized

eigenspace decomposition

Suppose Y is a closed, connected and oriented 3-manifold. Suppose ω is a
fixed Hermitian line bundle whose first Chern class c1pωq has an odd pairing
with the fundamental class of some surface.

Suppose E is an Up2q-bundle whose determinant line bundle Λ2E is iso-
morphic to ω. Let gE be the bundle of traceless skew-Hermitian endomor-
phisms of E, and let AE be the (SOp3q) connections on gE. Let GE be the
group of determinant one transformations and let BE “ AEzGE. Then we can
use the Chern-Simons functional to construct a well defined SOp3q instanton
Floer homology over C which we denote by IωpY q.

If x P Y is a point, then there is an action µpxq on IωpY q. The action
µpxq has eigenvalue 2 and ´2. By slightly abusing the notation, from now on
we use the same notation IωpY q to denote only the generalized eigenspace of
µpxq with corresponding to eigenvalue 2.

Suppose Σ Ă Y is a closed oriented embedded surface inside Y . Then
there is also an action µpΣq on IωpY q. We have the following result about
the eigenvalues:

Proposition 6.1 (Kronheimer, Mrowka, [16]). The eigenvalues of the action
µpKq on IωpY q belongs to the set of even integers ranged from 2 ´ 2gpΣq to
2gpΣq ´ 2.

If Σ and Σ1 are two such embedded surfaces, then the action µpΣq and
µpΣ1q commute. Then we can look at the simultaneous generalized eigenspace.
Similar to corollary 7.6 in Kronheimer and Mrowka [16], we can make the fol-
lowing definition.

Definition 6.2. Suppose we have a function λ : H2pY ;Zq Ñ 2Z, then we
can define

IωpY qλ “
č

σPH2pY ;Zq

ď

Ně0

kerpµpσq ´ λpσqqN .

Such a function λ is a called an eigenvalue function.

If the embedded surface Σ represents a zero class in H2pY ;Qq, then the
action µpΣq is actually the zero action. This means that if IωpY qλ ‰ 0 then
we can lift λ to a linear map (which we will use the same notation to denote)

λ : H2pY ;Qq Ñ Q.
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Thus we can think of λ as an element of H2pY ;Qq. So from now on we will
consider λ P H2pY ;Qq. We have a decomposition

IωpY q “
à

λPH2pY ;Qq

IωpY qλ.

Suppose R Ă Y is a closed oriented embedded surface inside Y , then as
we did in definition 2.4, we can define the following.

Definition 6.3. Suppose the pair pY,Rq is as above. Then we can define the
set

H˚pY |Rq “ tλ P H2pY ;Qq|λprRsq “ 2gpRq ´ 2, IωpY qλ ‰ 0u,

The elements λ P H˚pY |Rq are called supporting eigenspace functions.

We have the following lemma which is the instanton correspondence to
lemma 4.8 for monopole theory.

Lemma 6.4. Suppose pW,νq is a cobordism between pY, ωq and pY 1, ω1q. Sup-
pose λ P H2pY ;Qq and λ1 P H2pY 1;Qq are two eigenvalue functions. Suppose
i : Y Ñ W and i1 : Y 1 Ñ W are the inclusion map.

IpW,νqpIωpY qλq X Iω
1

pY 1qλ1 ‰ t0u,

then there must be an element τ P H2pW ;Qq so that i˚pτq “ λ and pi1q˚pτq “
λ1.

Proof. For a second homology class σ and a rational number r P Q we can
define

IωpY, σ, rq “
ď

Ně0

kerpµpσq ´ rqN .

By definition we know that

IωpY qλ “
č

σPH2pY ;Qq

IωpY, σ, λpσqq.

Similarly we can define Iω
1

pY 1, σ1, r1q.
Suppose there are no such τ as in the statement of the lemma, then we

can regard an element τ P H2pW ;Qq as a map

τ : H2pW ;Qq Ñ Q

and thus the non-existence of τ implies that there is a class σ0 P H2pY ;Qq
and a class σ1

0 P H2pY 1;Qq so that

i˚pσ0q “ i1˚pσ1
0q P H2pW q,
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while
λpσ0q ‰ λ1pσ1

0q.

Thus we know that

IpW,νqpIωpY qλq Ă IpW,νqpIωpY, σ0, λpσ0qqq Ă Iω
1

pY 1, σ1
0, λpσ0qq.

The last inclusion follows from lemma 2.6 in [6]. However, λpσq ‰ λ1pσ1q so

Iω
1

pY 1, σ1
0, λpσ0qq X Iω

1

pY 1, σ1
0, λ

1pσ1
0qq “ t0u.

Thus we conclude

IpW,νqpIωpY qλq X Iω
1

pY 1qλ1 “ t0u.

So we are done.

6.2 The sutured instanton Floer homology

Suppose pM,γq is a balanced sutured manifold, then as we did for monopole
theory, we can construct a closure of pM,γq and apply the instanton Floer
homology. Pick a connected auxiliary surface T of large enough genus, we
can get a pre-closure

ĂM “ M Y T ˆ r´1, 1s, B ĂM “ R` \ R´.

For the construction in instanton theory, we also need to pick a point p P T

so that there are corresponding points p˘ P R˘. When choosing the gluing
diffeomorphism h : R` Ñ R´ so that hpp`q “ p´. Thus we know that inside
the closure pY,Rq there is a closed curve p ˆ S1 Ă Y . Let ω be a complex
line bundle over Y whose first Chern class is dual to the curve p ˆ S1. Then
we can make the following definition.

Definition 6.5 (Kronheimer, Mrowka [16]). Define the sutured instanton
Floer homology of pM,γq to be

SHIpM,γq “ IωpY |Rq “
à

λPH˚pY |Rq

IωpY qλ.

Baldwin and Sivek [2] also made refinements of closures and constructed
canonical maps for the sutured instanton Floer homology.

Definition 6.6. A marked odd closure D “ pY,R, r,m, η, αq of pM,γq is a
tuple so that pY,R, r,m, ηq is a marked closure of pM,γq as in definition 2.9,
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the simple closed curve α is disjoint from impmq, and αX rpRˆ r´1, 1sq is of
the form rpp ˆ r´1, 1sq.

We can pick a complex line bundle ω whose first Chern class is dual to
α \ η. Then we can define

SHIpDq “ IωpY |rpR ˆ t0uqq.

Theorem 6.7 (Baldwin, Sivek [2]). Suppose pM,γq is a balanced sutured
manifold and D, D1 are two marked odd closures of pM,γq. Then there is a
canonical map

ΦD,D1 : SHIpDq Ñ SHMpD1q,

which is an isomorphism well defined up to multiplication by a non-zero ele-
ment in C. Furthermore, the canonical map satisfies the same functoriality
properties as the canonical map for sutured monopole Floer homology in the-
orem 2.10.

Hence we have a well defined projective transitive system

SHIpM,γq

associated to pM,γq. For a knot, there is a similar discussion as in subsection
2.2 and we have a well defined projective transitive system

KHI´pY,K, pq

associates to a triple pY,K, pq for a knot K Ă Y and a base point p P K.
There are similar results for the contact gluing maps and by-pass exact

triangles.

Theorem 6.8 (Li [20]). There is a gluing map for sutured instanton Floer
homology, satisfying the same properties as in theorem 2.16.

Theorem 6.9 (Baldwin, Sivek [6]). Suppose pM,γ1q, pM,γ2q and pM,γ3q
are three balanced sutured manifolds which are related in the same way as in
theorem 2.17. Then there is still a by-pass exact triangle

SHIp´M,´γ1q
ψ12 // SHIp´M,´γ2q

ψ23vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

SHIp´M,´γ3q

ψ31

hh❘❘❘❘❘❘❘❘❘❘❘❘❘

where the maps ψij comes from the gluing maps in sutured instanton Floer
homology, just as the monopole case in subsection 2.3.
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6.3 Statement of results

With lemma 6.4 and theorem 6.9 in place of lemma 4.8 and theorem 2.17,
we can recover all results we did in this paper for sutured monopole Floer
homology. We will present those results without further proofs.

Proposition 6.10. Suppose pM,γq is a balanced sutured manifold and D

and D1 are two marked odd closures of the same genus. Then the canonical
map ΦD,D1 for sutured instanton Floer homology can be interpreted in terms
of the Floer excision cobordism, as in proposition 3.8 for sutured monopole
Floer homology.

Theorem 6.11. Suppose pM,γq is a balanced sutured manifold and S is a
properly embedded surface inside M so that BS is connected and |BSXγ| “ 2n
with n odd. Then S induces a grading on SHIpM,γq which we denote by

SHIpM,γ, S, iq.

Proposition 6.12. Suppose pM,γq is a balanced sutured manifold so that M
is the complement of a non-homologous knot K Ă X and γ has two compo-
nents. Suppose S is a Seifert surface of K, viewed as a properly embedded
surface in M , so that |BS X γ| “ 2n. Then for any p, l, k P Z such that n ` i

is odd, we have

SHIp´M,´γ, Sp, lq “ SHIp´M,´γ, Sp`2k, l ´ kq.

Proposition 6.13. Suppose V is a solid torus and γ is a suture on BV with
2n components and slope p

q
, then

SHIp´V,´γq – Cp2n´1¨|p|q.

Theorem 6.14. Suppose K is a non-homologous knot inside an closed con-
nected oriented 3-manifold Y and p P K is a base point. Then there is a
projective C-vector space KHI´pY,K, pq, whose elements are well defined up
to multiplication by a non-zero element in C, associated to the triple pY,K, pq.
Also there is a homomorphism

U : KHI´pY,K, pq Ñ KHI´pY,K, pq.

If S is a Seifert surface of K then S induces a Z grading on KHI´pY,K, pq
so that U is of degree ´1. Furthermore, analogous results to proposition 5.7,
proposition 5.8, corollary 5.9, corollary 5.10, proposition 5.12, proposition
5.13 also hold for KHI´pY,K, pq.
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[18] Çağatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes. Hf=hm i
: Heegaard floer homology and seiberg–witten floer homology. arXiv
preprint arXiv:1007.1979, 2010.

[19] YankıLekili. Heegaard-Floer homology of broken fibrations over the cir-
cle. Adv. Math., 244:268–302, 2013.

[20] Zhenkun Li. Gluing maps and cobordism maps for sutured monopole
floer homology. arXiv preprint arXiv:1810.13071, 2018.

[21] Burak Ozbagci. Contact handle decompositions. Topology Appl.,
158(5):718–727, 2011.
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