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ON FINITE ENERGY MONOPOLES ON Cx X

DONGHAO WANG

ABSTRACT. Let X = C x X be the product of the complex plane
and a compact Riemann surface. We establish a classification theo-
rem of solutions to the Seiberg-Witten equation on X with finite an-
alytic energy. The spin bundle ST — X splits as LT @ L~. When
2 —2g < c1(ST)[Z] < 0, the moduli space is in bijection with the mod-
uli space of pairs ((L",d), f) where (LT, ) is a holomorphic structure
on L* and f: C — H°(X,LT,0) is a polynomial map. Moreover, the
solution has analytic energy —4n2d - ¢ (ST)[Z] if f has degree d.

When c1(ST) = 0, all solutions are reducible and the moduli space
is the space of flat connections on /\2 St

We also estimate the decay rate at infinity for these solutions.
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1.1. Motivation in Floer Homology. The purpose of this paper is to
give a complete classification of finite energy monopoles on X = C x X.
This classification problem arises naturally in the context of Floer theory of
3-manifolds with cylindrical ends.

The Seiberg-Witten Floer Homology is defined for arbitrary closed ori-
ented 3-manifold Y by Kronheimer-Mrowka in [KMO07] and has greatly in-
fluenced the study of 3-dimensional topology. The underlying idea is to
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construct infinite dimensional Morse theory: solutions to the 3-dimensional
Seiberg-Witten equation on Y are critical points of the Chern-Simons-Dirac
functional £, and solutions to the 4-dimensional equation on R x Y are
viewed as negative gradient flowlines of £. We take the chain group to be
the free abelian group generated by critical points of £. Differentials are
given by counting numbers of flowlines that connect critical points with ad-
jacent indices. In order to make this picture work, suitable perturbations of
L are needed.

One reason to develop a relative version of Floer theory for 3-manifolds
with boundaries is to give a gluing formula for the absolute version, which
may facilitate computations in some cases. This version may also give topo-
logical applications in its own right. This goal is partly accomplished for Hee-
gaard Floer Homology, which was developed by Ozsvath and Szab6 [OS04b)]
as a symplectic geometric replacement for gauge theory. Their construc-
tion relies on Gromov’s theory of pseudo-holomorphic curves. Some gen-
eralizations for 3-manifolds with boundaries include Knot Floer Homology
[OS04a, Ras03] and Bordered Floer Homology [LOTO8]. It is now known
that Heegaard Floer Homology and Seiberg-Witten Floer Homology are
equivalent [CGH10][KLT10]. However, the gauge theoretic counterparts of
Knot Floer Homology and Bordered Floer Homology are still missing.

Some attempts that avoid analytic technicalities have been made towards
this direction. In [KM10], the Seiberg-Witten Floer Homology were devel-
oped for balanced sutured 3-manifolds and a version of Knot Floer Homol-
ogy was defined. On the other hand, Nyugen [Ngul2, Ngul8] studied the
monopole equation on Y directly and developed analytic foundations for
constructing Floer theories with the Lagrangian boundary condition on 3.

We shall now describe a more direct approach to this problem. Suppose we
wish to define Floer-theoretic invariants for a compact oriented 3-manifold
Y with boundary ¥. We allow ¥ to have multiple connected components
(X1, ,%). We attach cylindrical ends to Y and study the monopole
equation on Y* = Y [];, R29 x ¥. In this case, the moduli space of finite
energy solutions on Y is automatically compact and in general has positive
formal dimensions. It is also known that each solution will converge to a
vortex on X; as it approaches infinity along each boundary end.

So far we do not know any means to produce invariants of Y out of this
picture. Suppose we go one step further and consider the moduli space of
finite energy monopoles on R x Y*, which is expected to produce differentials
and plays a role in the definition of Floer theory. We would hope this mod-
uli space has a nice compactification. However, for a sequence of solutions
on R x Y* it is possible that some amount of energy escapes through the
cylindrical ends of Y*, which makes the moduli space non-compact. It is
believed that finite energy monopoles on X = C x X should serve as models
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for these escaping “bubbles” and contribute to correction terms in the defi-
nition of differentials. The purpose of this paper is then to give a complete
classification of these monopoles on X = C x 3.

1.2. Statement of Main Results. Let X = C x X be the product of the
complex plane C and ¥, endowed with the product metric. On the complex
plane C, it is the standard Euclidean metric and X is any compact Riemann
surface with a Hermitian metric. Let g = g(X) be the genus of X. The main
result of this paper establishes a bijection between the moduli space of finite
energy monopoles and an object that is algebraic in nature.

Theorem 1.1. When 2 —2g < ¢1(S1)[X] < 0, there is a bijection between
sets:

{solutions to the Seiberg- Witten equation (1.1) of finite energy}/¥ <>
{@B,f): f#0:C— H°X,L",dp) is a polynomial map}/%c(L).

Furthermore, for the finite energy monopole (A, ®) that corresponds to (0p, f),
its analytic energy Equn(A, ®) equals —4m2d - c1(ST)[X] and the zero locus of
the spin section Z(®T) agrees with Z(f). Here, d = deg(f) is the degree of

1.

Fixing the degree d of f, the object on the right corresponds to the space of
divisors of the line bundle 77 O(d) @ 5. — CP! x ¥ that are nonzero at the
fiber at infinity {oo} x X, . allowed to vary for all holomorphic structures on
Lt — 3. If in addition f # 0 for any z € C, this is the space of holomorphic
maps of degree d from CP! to Sym™ ¥ where m = ¢;(L)[X] > 0.

To clarify our notations, recall that a spin® structure s on X is a pair
(S,p) where S = ST @ S~ is the spin bundle, and the bundle map p :
T*X — Hom(S, S) defines the Clifford multiplication. An element (A4, ®) in
the configuration space C(X,s) consists of a smooth spin® connection A and
a smooth section ® of ST. Let A’ be the induced connection on A S+ and
FXt be the self-dual part of the curvature form Fy:. The Seiberg-Witten
equation is defined on C(X,s) by the formula:

{ 3P(Fy) — (29%) =0,

(L.1) D@ =0.

where D7 is the Dirac operator and (®®*)o is the traceless part of ®®* as a
bundle map ST — ST. This equation is also called the monopole equation
and solutions are called monopoles. We write §(A, ®) for formulae on the
right and (1.1) is equivalent to §(A, ®) = 0.

The gauge group ¢4 = Map(X, S!) acts naturally on C(X,s):

G >5u:C(X,s) = C(X,s), (A,®) — (A—utdu,ud).

The monopole equation (1.1) is invariant under gauge transformations.



4 DONGHAO WANG

We are interested in the space of solutions to (1.1) modulo gauge assuming
finiteness of the analytic energy:

1 1 K
(1.2) Ean(A, @) = / “|Fp]? + VAR + —|@* + —|0%
x4 4 2

where K is the Gaussian curvature of ¥. This is the main object that
appears on the left hand side of the bijection in Theorem 1.1.

To justify the choice of &, recall that for a closed 4-manifold X, (A, ®)
solves the monopole equation (1.1) if and only if it minimizes the analytic
energy; indeed, we have the energy formula

Eun(A,®) — Erp = /X 13(4, )2

where the topological energy &, depends only on characteristic classes of
S*. A similar energy formula in the context of the non-compact manifold
X = C x ¥ is proved in Lemma 5.3, where the topological energy &, =
—47%d - ¢1(ST)[¥] and d is an integer. Therefore, a monopole on X is not
necessarily a global minimizer of the analytic energy, but it does minimize
Eun in a suitable smaller variational space.

To explain the second object in Theorem 1.1, let dvolc and dvoly, denote
volume forms on C and X respectively. Since the symplectic form w =
dvolc + dvols; on X is parallel, the spin bundle ST splits as L™ & L™: they
are F2i eigenspace of p(w). The spin section ® then decomposes as (¢4, P_)
with @4 € I'(X, L*). The first observation is that finite energy monopoles
are in fact vortices on X:

Theorem 1.2. If there exists a smooth solution (A, ®) to the monopole
equation (1.1) on X with ® # 0 and E.n (A, ®) < 0o, then 0 < |c1(ST)| <
2g — 2. In addition, if c1(ST) > (resp. <) 0, then 4 (resp. ®_) = 0.

Here, ¢1(S™) is the Chern class associated to ST. The same symbol is
used to denote the pairing c¢1(ST)[X] € Z. Reducible solutions occur only if
c1(ST) = 0. The converse is also true:

Theorem 1.3. If ¢;(ST) = 0, then ® = 0 and the induced connection A
on N* ST is flat.

Replacing the complex structure on X by its complex conjugate will inter-
change the bundles L™ and L~. We focus on the case when 2—2g < ¢1(S™) <
0 and ®_ = 0. Choose a holomorphic structure g on Lt and let Vg be the
Chern connection associated to dg . We say a map f: C — H°(X, L, 0p)
is a polynomial map of degree d if f is a polynomial function on C with
coefficients in H(X, Lt,dp). That is to say, we can find v; € H*(X, Lt, 0p)
for 0 <4 < d such that for any z € C,
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The group of complex gauge transformations %c(3) = Map(X, C*) acts on
the pair (Vp,, f) by the formula:

Ge(X)du=wus-e: (Vg f) = (Vp, —uj 'duy +i*do,u - f).

where o is real and u; € Map(2,S'). Therefore, the second object in
Theorem 1.1 is the quotient space of pairs (0p, f) by complex gauge trans-
formations.

We also complexify the gauge group ¢ and define its action on C(X,s)
by the same formula of ¥¢(X). Then ¥ = ¢ x Conf(X) where Conf(X) =
Map(X, R, ) corresponds to conformal transformations on S*. What is hid-
den behind the correspondence in Theorem 1.1 is that for any pair (Vp, f),
we can find a conformal transformation e such that

0 0
+\ o,
(A, 07) =e (VB+8u+av’f)

is a finite energy monopole. This is also true in the opposite direction. For
precise statements, see Theorem 3.1 and Theorem 5.1.

To analyze the dynamics of (A, ®) at infinity, define the configuration
space C(3, L") in the same manner of C(X,s). Then any solution (B, o) €
C(X,L™) to the vortex equation on X

i*Fp+ 3K+ 10> =0
(1.3) { o — 0

gives a solution to (1.1) on X. Indeed, one can pull back (B, o) over C. This
corresponds to the case when deg(f) = 0 and &, (A, ®) = 0.

It is convenient to introduce the quotient space B(X, LT) = C(X, L") /4 (X).
For each k > 2 define a metric on B(X, L") by the formula

dy,([a], [b]) == Lo [u-a—"blr2
where [a] and [b] denote equivalent classes of a,b € C(X, L™).

When deg(f) = d > 0, by Bradlow’s theorem [Bra90], there is a solution
(B, o) to (1.3) such that Z(o) = Z(y4) where 74 is the leading coefficient of
f. We know that di((A, ®")|yxx, (B,0)) = 0 as z — co. The question is
what is the decay rate. Suppose

f= ’Yd(zd tag 2+ ad_msz_mH) + ’yd_mzd_m + -

where aqg_; € C are complex numbers and 74_,, is the highest coefficient
that is not proportional to 4. In general, the zero locus Z(f)|(.1x5, as a
divisor on ¥, converges to Z(4) at rate 1/|z|"™. Therefore,

dk((A7 (I)+)‘{z}><27 (B7 U))

can not decay faster than 1/|z|™*!. On the other hand, this decay rate
1/]z|™ is also achieved:
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Theorem 1.4. Suppose the polynomial map f is given by
f=7az +ag_127 4 ag 1 2T F 2T

and yq_m is not proportional to vg. For the monopole (A, ®%1) that corre-
sponds to (Bo, f) and any k > 2, there exists Cy, > 0 such that for any

z € C,
Ck

2™

dk((Av (I)+)’{z}><27 (B7 U)) <

In the generic case, v4_1 is not proportional to 74, so m = 1. Theorem
1.4 states that generically we will only have 1/|z| decay. The only chance to
obtain exponential decay is to let m = d. In this case, Z(f) does not change
among different fibers.

Theorem 1.5. Suppose f = ~4- fo where fo: C — C is a monic polynomial
of degree d. Then for the monopole (A, ®T) that corresponds to (By, f), there
exists s(k, By, f) and C(k, By, f) > 0 such that

di((A, @) (zyxm (B, 0)) < Ce*,

In particular, when c¢;(LT)[X] = 0 or 1, solutions to the Seiberg-Witten
equation (1.1) have exponential decay.

Remark. The reason to pass to the quotient space B(X, L) is to identify
(A, )|y« with (A, e®T)[,y.x for any € € S'. In fact, if we take
into account this argument, by imposing a proper gauge fixing condition for
(A, ®T), we have for z = |z|e? € C,

(A7 cI)-i_)‘{Z}XZ ~ ewd(B7 U)

as |z| — oo where d = deg f. But the decay rate of their difference would
depend on the gauge fixing condition.

In view of the previous subsection, we would expect some nice Floer
theories to be developed on Y* when ¢ (L") = 0,1. The first reason is
that in these cases, bubbles have exponential decay at infinity, as asserted
in Theorem 1.5.

The second reason is that we have a natural compactification for these
bubbles. Since a degree d polynomial on C is determined by its zero locus,
we only need a compactification for Sym? C modulo translations.

However, the situation is different when dim H°(X, L*,0p) > 2. Let us
take v1,72 € H such that they are linearly independent. Let t € C be a
complex number and consider the family of sections

fi(z) = mz + tye.
The sequence of monopoles that correspond to (Ay, f;) does not have a good
limit in any naive sense. This sequence is constructed by rescaling the z-
coordinate on C, yet the rescaling process does not preserve the metric.
Therefore, there are several natural questions to be answered based on
our work:
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e What is the compactification of the moduli space of finite energy
monopoles on X in general, based on Theorem 1.17

e How to compactify the moduli space of finite energy monopoles on
R xY*? When Y = [0,1] x ¥ and Y* = R x X, this question is
reduced to the previous one.

1.3. Connection to Previous Work. This is a good time to recall clas-
sification theorems in dimension 2 and draw a comparison. The classical
vortex equation on C was designed for a mathematical model of supercon-
ductors, also called the first order Ginzburg-Landau equation. Let L — C
be the trivial complex line bundle over C. A configuration (B,~) € C(C, L)
consists of a smooth unitary connection B and a smooth section v of L. We

set K = —1 in (1.3) and this term is no longer interpreted as the Gaussian
curvature:
. 1 2 _
(14) { *ZFB + 2(|7| _ 1) 07
opvy = 0.

The analogous correspondence, established by Taubes [Tau80] for Y = C,
states that

Theorem 1.6 ([Tau80, JT80]). There is a 1-1 correspondence between sets
{degree d polynomials on C}—{0}/C* <> { Vortices on C of energy nd}/4(C).

When Y = ¥ is a compact Riemann surface, let L be a complex line
bundle over ¥ of degree d := ¢;(L), with a Hermitian metric. In this case,
the equation (1.4) is subject to a solvability constraint and we have a similar
correspondence established by Bradlow [Bra90]:

Theorem 1.7 ([Bra90, Theorem 4.3]). When the solvability constraint 0 <
d < Vol(X)/4m is satisfied, there is a bijection between sets

{@B, f): f#0€ HYY,L,0p)}/%c (%) + { Vortices on ¥ of energy nd}/% ().

In both cases, sets on the left are identified with the space of effective
divisors of degree d and are isomorphic to Sym? ¥ and Sym?C respectively.

In fact, Bradlow [Bra90] defined the generalized vortex equation for any
closed Kéahler manifold M and any Hermitian vector bundle E™ — M:

iAFp + 3y ®~* = §Ip € End(E, E)
8% = O, 83’}’ =0.

where B € A(FE) is a unitary connection and v € I'(M, E). The second and
the third equations state that dp is integrable and v is holomorphic with
respect to B. In light of Theorem 1.2, Theorem 1.1 also gives a classification
for vortices on X = C x X when F is a line bundle. For details, see Section
2.2.

For both Theorem 1.6 and 1.7, backward maps are easier to define, while
constructing vortices out of holomorphic sections is hard. In [Bra90], Brad-
low proved the general existence of solutions using Kazdan-Warner’s the-
orem [KW74] for any closed Kéhler manifold when dim £ = 1. However,
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we do not have a direct generalization of this theorem for our non-compact
4-manifold X. Several different proofs [Bra9l, GP93] to Theorem 1.7 were
found later. Finally, a direct gauge-theoretic proof was discovered by Garcia-
Prada [GP94] where variational principle was applied to the Yang-Mills-
Higgs functional. Appendix B contains a brief review of his approach. Many
of his insights have their roots in symplectic geometry, but we will not em-
phasis this perspective. Using his method, we will recover Taubes’ theorem
in Appendix C. In [Tau80], Taubes established his theorem using variational
principle on the Sobolev space L?(C). Since we will work with LZ(C), our
proof will become simpler.

In fact, when ¥ has constant Gaussian curvature K = —1 and (LT, 0) is
the trivial holomorphic line bundle over ¥, H%(3, L*,0) = C and we will
recover Taubes’ theorem from Theorem 1.1.

Finally, for vortices on C, there is an exponential decay result established
by Jaffe and Taubes:

Theorem 1.8 ([JT80], p.59, Theorem 1.4). Let (B,v) be a smooth finite
energy solution of the vortex equation (1.4). Given any € > 0, there exists
M = M(e, (B,7)) < oo such that

1
0 < #iFp = 5 (1= |yf?) < Mem00k,

Our proof of Theorem 1.4 and Theorem 1.5 will rely on this result. Our
results, however, provide another perspective for Theorem 1.8: we have
exponential decay for vortices on C because for nonzero constant functions
on X, their zero loci do not change among different fibers (since they are

empty).

The same classification problem is also asked for the anti-self-dual connec-
tions on the trivial SU(2)-bundle over X. Wehrheim established an energy
identity in [Weh06]. She showed that the energy of an anti-self-dual con-
nection, if finite, must be an integer after suitable normalization. But a
classification result is still missing.

1.4. Strategy of Proof. This paper contains several independent proofs
and they could be read separately:

In Section 2, we will cover some preliminaries and prove the positivity of
the analytic energy &,,. This is not so obvious at the first glance because
the Gaussian curvature shows up in (1.2) and it is negative in general. As
an application, we will prove Theorem 1.2. In Section 2.2, we will summa-
rize some useful facts about the vortex equation on X, which will be the
foundation of subsequent sections.

In Section 3, we will establish the first part of Theorem 1.1: “Vortices=
Polynomials”. By the compactness Lemma 2.2 in Section 2, when a solution
(A, @) is restricted to fibers {z} x 3, a subsequence will converge to a vortex
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on Y. The main obstacle is to show that this limit is independent of sub-
sequences and hence (A, ®)|r.1 x5 — (Bo,7) as z — oo for a fixed solution
(B,7) to (1.3). For this part, we will borrow ideas from [Weh06].

Section 4 is devoted to the case when ¢ (S™) = 0. It is a simple application
of maximum principle.

In section 5, we prove the second half of Theorem 1.1, “Polynomials= Vor-
tices”, by following Garcia-Prada’s approach [GP94]. Our existence proof
of monopoles on X, to a large extent, is an enhanced version of Appendix
C. To find the correct conformal factor «, we start with an initial guess «q
so that

o 0
. L00 | _
(A1, 1) == e - (Vp, + 50 av’f)'

has finite analytic energy. A second conformal factor «; is applied to
minimize (o) = Eun(e*t - (A1, ®1)). The most technical part of the
proof is an a priori estimate which allows us to control L% norm of a4 in
terms of £(ay). Thus, there is a weakly convergent subsequence in {a;,} if
lim £(ay,) = inf E(ar). We will also establish the smoothness and uniqueness
of the solution.

Section 6 is devoted to the proof of the technical estimate. It is accom-
plished in two steps: using the energy equation to control [|Axalls and
estimating |lall2 by decomposing « into high frequency and low frequency
modes. Since the dimension is higher, each step here is more technical than
the proof in Appendix C.

In Section 7, we establish the power law and exponential decay of finite
energy monopoles in different cases. We prove Theorem 1.4 and Theorem
1.5. The idea is to construct an approximating solution ag using Theorem
1.8 and to show the correction term a1 = a — ag has desired decay. Some
elementary PDE lemmas will be used here. In the simplest form, these
lemmas state that for a suitable function u € C*°(R?,R) that satisfies

(Agz + Du(z) = k(2) + (howu)(2)

where h : R — R is a function such that |h(x)| < C|x|? for some ¢ > 1 and
C > 0, the decay (power law or exponential) of the function k : R? — R
will produce roughly the same decay for u. For details, see Lemma 7.2 and
Lemma 7.3.

Some analytic results are collected in Appendix A. We state a weak
version of Trudinger’s inequality that is used elsewhere in this paper.

Acknowledgments. I am extremely grateful to my advisor, Tom Mrowka,
for suggesting this project and for his invaluable support. I would like to
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upon work supported by the National Science Foundation under Grant No.
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2. MONOPOLES < VORTICES

In this section, we establish some basic properties of finite energy monopoles.
In Section 2.1, we describe spin® structures on X and establish positiv-
ity of the analytic energy. We shall prove Theorem 1.2 which asserts that
monopoles of finite analytic energy on X = C x ¥ are degenerate, in the
sense that either &, = 0 or ®_ = 0. Once this reduction to vortices is
made, we will not work with spin® structure any longer. In Section 2.2, we
collect some useful facts about the vortex equation on X which form the
foundation of later sections.

2.1. Preliminaries. Since X = C x X is a complex manifold, it is en-
dowed with the complex orientation. The spin¢ structure of X can be
described concretely. The decomposition ST = Lt @& L~ is parallel, so
any spin® connection A must split as

_ (Va, 0
V= ( : w) |
Let z = u+iv be the coordinate function on C. The Clifford multiplication
p:T*X — Hom(S,S) can be constructed by setting:

pa(du) = @ —gd>, pa(dv) = (0 001> L St@ST 5 STesT,

o1
where o7 = <(Z) Bz : St — ST is the first Pauli matrix. The bundle L™
is isomorphic to Lt ® A" ¥ and under this identification,
._ -1, _ 0 —L(\/i’wo’l) ). oo+ +
patw) =l patw) = (b TR ) a5t s,

for any x € ¥ and w € T, X.

We can regard L™ and L~ as bundles on X and they pull back to the spin
bundle over X via the projection map X — >. Choose a unitary connection
By on Lt — X. Then the Levi-Civita connection on /\0’1 3 and B, induces
a unitary connection B_ on the line bundle L~ = LT @ A%' £. We obtain
a background connection Ag on ST by the setting

d d
VAO:VBO-F%-F%

where By = (B4, B_) is the unitary connection on ST — Y. One can easily
check that Ag is a spin® connection. Any other spin® connection A is differed
from Ay by an imaginary 1-form a € I'(X,i7*X). Their curvature tensors
are related by

Fy = FAO + da ® Idg.

Using the product structure on X, the covariant derivative V 4 = (VS, V%)
is decomposed into C-direction part and X-direction part. The curvature
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tensor F4 is decomposed accordingly as:
Fo=F3 +F§+ F}

where F}" is the mixed term. Similar decomposition applies to the induced
curvature form Fy: on A\* S+ =Lt @ L™

Fy = thdvolz + Fftdvolc + Fji,
where F7; € I'(X,iQ!(C) A QY(X)). Our description of F4 then shows

1
(2.1) F7 = §F;(; ® Idg.
and

F~ 0 1pY 11K 0
2.2 Fy =4+ :<2 At T3 . >
22) A < 0 FE) 0 1% - LK

In particular, we obtain that

(2.3) (ST =a(A2ST[E] =2 (L) +1—¢g) =2(c1(L7) — 1 +g).

To establish Theorem 1.2, we need a more useful expression of &,,. The
following lemma establishes the positivity of the analytic energy:

Lemma 2.1. Quer each fiber {z} x X, we have energy identity:
1 1 K 1 1
[ 1w+ 1Va0P 4 Jlaft+ Tiap = [ LFGE+ IFRE + V5P
.4 4 2 5 4 4
+ [ [0 Plo-? + |D%ap
1.
+ [ FR o~ oo PP
2

where D% = > i=12P3(€i)Vay, is the Dirac operator on X. Here, {e;,e2} is
any orthonormal frame at some point p € 3.

In particular, Lemma 2.1 implies that the analytic energy (1.2) is always
a non-negative number.

Proof. The Dirac operator Di interchanges bundles L™ and L. In other

words, we have
> 0 D~

Under the isomorphism L~ = Lt @ A>T and LT =2 L~ @ A"’ %, Dt and
D™ are written as

Dt = \/§5A+ = \/§(VA+)O’1, D™ = \/58147 = \/§(VA7)1’0.
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Therefore, it is sufficient to prove
1
[1Drap = [ 95,042 + (@, - iFR)®),
2 ) 2
1
[iprei= [ V5o,
b b 2
By (22), FY, = 3(Fy +iK) and Fj = 3(Fj — iK). At this stage,

we apply Weitzenbock formulas: for any line bundle L — X, a unitary
connection B and a section o € C*(%, L), we mush have

2/ \33012:/ V0|2 — (0,iFp0),
> >

2/ |8Ba|2:/ Vs0l? + (0, iFp0).
b b

(K +iFT)®).

O

Lemma 2.2. If (A, ®) is any smooth solution to (1.1) with 4, (A, ) < o0,
there is a constant C = C'(Eyn(A, ®)) > 0 such that for any z € C,

/ @2 < C.
{z}x%

Proof. This is a consequence of Lemma 2.1 and the classical compactness
theorem. Let n = (ny,n9) € Z x Z C C. Then for (z,2) € X’ := B(0,10) x
> C X, set

(A, @) (z,2) := (A, ®)(z — n,x).

Then (A, ®,) solves (1.1) on X’. In light of Lemma 2.1,
1 1 K
Ean(An, Op) = / Z|FAn|2 + |vAn<I>|2 + 1|<I>n|4 + E|(I)n|2 < Ean(4, P).
X/

By [KMO07, Theorem 5.1.1], after proper gauge transformations, a subse-
quence of (A, ®,,) will converge in C*°-topology in the interior. This shows

[Pl zoo(B(0,5)x%)

is uniformly bounded by some constant C' > 0. It is clear that C' can be
made to be independent of (A, ®) and to depend only on £.

Finally, let (Ao, Poo) be the limit of this subsequence on B(0,5) x X.
Then (A, ®) solves equation (1.1) and its analytic energy is zero. By the
computation in Section 3, (A, ®) is a constant family of vortices on B(0,5).
In other words, up to a gauge transformation,

d d
Ao, Poc) = (VE+ — + —
( ) ) (VA+dU+dU70)
where the pair (V%, o) is independent of z € C. This observation will be
useful later. In fact, it is the fundamental issue to be resolved in Section 3

that this limit is independent of the subsequence we choose. O
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Now we have the ammunition to attack Theorem 1.2. We start with a
weak statement.

Proposition 2.3. If (A, ®) is any smooth solution to the monopole equation
(1.1) on X with Eun(A, P) < 0o, then either 4 =0 or ®_ =0.

Proof. Define a complex-valued function G on C by the formula
Gt = [ wrene)
{z}xX

for any z € C. We compute 0G:

Lemma 2.4. There is an identity:
0G(:) == [ (DT @+ D P o Plo- )
{z}xZ

In particular, OG is real and non-positive.

Proof. Let TZ and —CZ denote the covariant derivative V, » and V, » re-
. . . 7 Ou > Ov
spectively. The second equation of (1.1) implies

D D .
%@+01%®+D‘4@—0

In particular, this shows

D D _ D D
(2.4) (G Tiz)by=-D 0, (o —iz )b =-D'®..

Since DV is the adjoint of D~ as operators on L?(X), we have

o 0 N
M +Z%)/{Z}X2<D Py, Q)

D D
- — 4+i—)Dt®_, P_ DTo,, (— —i—)d_
/{Z}Xg<(du+zdv) . >+/{M< i)
D

_ D
—— [t e @) [ (2 i DR ).
{2}x¥ {z}xx du

0G(2) = (

dv
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By the formula D% = p3(e;)Va,e, and (2.1), the commutator can be
computed as

D D D D
— —0,—)D3-D
(Ju ~ o1 g DA~ DG torg)
D
= Z p3 ez VA ez] o1 - p3(ei)[d_7vA,ei]
1=1,2 v
9 9
= > pales FA ei) — o1 - p3(ei) Fy (%,ei)
1=1,2

1 o 9
:5 :Z: ez FAt 6)—0’1-p3(€i)FAt(%7ei)

1

= —Spa(Ff)ls+ = —§p4<<Fz%>+> — (@0

At the last step, we used the first equation of (1.1). Here, II denotes the
projection map from a 2 by 2 matrix to its off-diagonal part. Therefore,

D D
— Do, & d_3* )0 o, 2P|
J I e R e AL
Write G = X 4+ ¢Y with X,Y real. Then Lemma 2.4 implies

X — 0,Y <0,0,Y +0,X =0.

Set K(z fo Xdu — Ydv. By the second equation, this integral is
independent of the path we choose. Therefore,

X =0,K,)Y = -0,K.
and )
AcK = (-0? — 0*)K = —9G > 0.
By Lemma 2.2 and the Cauchy-Schwartz inequality, we have
IVK|* = |G|> < ||D+<1>+H%2 1@ |Z2(sy < CAK.
Our goal is to show K = 0. Let Z(r faB 0.r) AK > 0. Then integra-
tion by parts shows

R
ogW(R)::/ Z(r)dr:/ AK:(/ i VK
0 B(0,R) &B(0,R)

< (2773)%(/ VKP)E < (2xCR AK)} < R} Z(R)3.
9B(0,R) 9B(0,R)

Suppose W (rg) > 0 for some ry. Then for r > r,

In'(r) < C3 (—%)l,

and hence for any 1 > 19 > 71,

In(ry) — In(rg) < Cg( L 1 >
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Therefore, W (r) must blow up in finite time if W (r) #Z 0. Hence, AK =0

and
DT®, =0, D”®_=0, |®,||P_| =0.

This shows over each fiber, ®, and ®_ are either holomorphic or anti-
holomorphic with respect to some connections. They have discrete zero
locus unless the whole section is zero. Therefore, either ®, or ®_ is zero
over that fiber. By (2.4), they are also holomorphic or anti-holomorphic on
C x {z} for any = € 3, so one of them is identically zero on X. O

To prove Theorem 1.2, it remains to verify that if any finite energy mono-
pole exists, then we have the constraint 0 < |¢1(S1)| < 29 — 2 and the sign
of ¢1(S™) will determine which of @, and ®_ vanishes.

Proof of Theorem 1.2. In light of Lemma 2.2, a subsequence of (4,,, ;) will
converge t0 (Ao, Poo) on B(0,5) x 3 and the energy of this limit vanishes:
Ean(Aso, Poy) = 0. By Lemma 2.1, for this limit, we must have

IS+ [P P~ [P 2 =0,

If ¢1(ST) < 0 and @, = 0, then integrating over X yields a contradiction:

0>— / D |2 = /zFAt = —2mc1(ST) > 0.

Therefore, ¢1(S*) < 0 implies ®_ = 0. Since DT®, o, = 0 and this
section is nonzero, we must have ¢ (L1) > 0. By (2.3), this forces ¢1(S™) >
2 — 2g. The case when ¢;(S™) > 0 is dealt with similarly. O

2.2. Vortices and the energy equation. From now on, we will assume
2—2g < ¢1(ST) < 0and ®_ = 0. For simplicity, we will change our notation.
Let L =L" and 0 = . We will use A to denote a unitary connection on
L and use A for the induced spin® connection on St = L @& (L @ \"!' %).
Recall that the curvature form F4 is divided into three parts:

Fa = Fidvoly + F§dvolc + F1!

where F' € T'(X,iQY(C) A Q(2)) is the mixed term. Then the monopole
equation (1.1) is simplified as

1 1
(2.5a) i(FY + FY) + SK+ 51012 =0,
(2.5b) dao =0,
(2.5¢) F7 e A~ (X).

This is precisely the vortex equation on X (compare [Bra90]). The last
equation (2.5¢) is equivalent to 03 = 0, or F22 = 0, i.e., 04 is integrable.
Since V4 = (V§, V%), the second equation (2.5b) is equlvalent to two equa-
tions:

5%0’ =0= 5%0.
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By Lemma 2.1, for a smooth configuration (A, o), its analytic energy is
given by the formula,

1 1 K
(2.6) Ean(A, o) = / liF4 + —Kdvolg\2 + \VAUIQ + —]0]4 + —\0\2,
X 2 4 2
— / FSP2 4 |FPP + (Vo + 2550
X
-y 1 1 212
+iFy + =K + §|0| .

2

The energy formula in below concerns the analytic energy on a compact
region X, := B(0,r) x ¥ C X. This is just the energy equation for the
Seiberg-Witten map (see [KMO7, Proposition 4.5.2]), but this particular
expression will be convenient to use:

Lemma 2.5. Let Fy = Fy — i%dvolg. Define
1 K
£(r) :/ P4+ [V aol + ol + o2,
. 1 2
Suppose the configuration (A, o) satisfies (2.5b) and (2.5¢), then
1 1
E(r) = / i(FX + F§5) + =K + = || + /
. 2 2 ox

Proof. We expand the bracket:

(O',VA’ﬁO'> —I—/ FA /\FA.

T XT

1 1 1 1 . 1
i(FT + FS) + S K+ 5\0\212 = |iF} + S+ 5\0\212 +2(iFg, 5\0\2>
. 1 .
+|FS)? + 26 F§, S+ iFY).
Step 1. The Weitzenbock formula shows that over C:
(2.7) 0=2(89)*9% = (Vv9)*Ve — iF§o.

Take inner product with ¢ and do integration by parts:

/ iFS|of? = / V5ol - / (0, 1.10).
X X 0X,

Step 2. Since F}' is imaginary and anti-self-dual, we have

FyANF) = 2/ FS(FY - %K)dvolx - / F' A «F7
Xr Xr

1
= —2/ (GFS,iFy + 5 ) dvolx +/ |F72.
T XT
Now we use Lemma 2.1 or formula (2.6) to conclude. O

For the rest of the paper, we will not work with spin® structures and the
Seiberg-Witten equation (1.1); at least, not in a direct way. Instead, the
equation (2.5) will become the main object of study.
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3. VORTICES = POLYNOMIALS

It is the object of this section to show any smooth solution (A,o) to
equation (2.5) with finite energy comes from a holomorphic line bundle ¥
and a polynomial map f provided that 0 < ¢;(L) < g — 1. This proves one
direction of Theorem 1.1. First, we recall some definitions.

Let .2 = (L,0%) be a holomorphic structure on L — . Then H(X,.%)
is a complex vector space of finite dimension. The Chern connection on
£ — ¥ is the unique unitary connection By = Vg such that

Vg’l = 5,5/”

Note that .Z pulls back to a holomorphic line bundle on X. By abuse of
notation, we still denote it by 2. A polynomial map f : C — H(%, %)
is regarded as a holomorphic section oy of .Z — X by setting og(z,x) =
f(2)(x). The connection By also induces a unitary connection on X by the
formula:

0 0
VAO =Vo+ % + %
and 4, = 0.

An element in the configuration space C(X, L) consists of a pair (A, o)
where A is a smooth unitary connection of L and o € I'(X, L) is a smooth
section. Thus, C(X,L) = A(X,L) x I'(X, L). The gauge group % (X) =
Map(X,C*) = ¥4(X) x Conf(X) acts on C(X, L) by the formula

(31) g=wu-e":(A,0)— (A+ixcdea+ixsdsa —u tdu,u-e®o).

for any a € C*°(X,R) and u € C*°(X, S'). Whenever a subscript C, ¥ or X
is used, it denotes the operator on corresponding manifolds. For instance,
dc and x¢ denote the exterior differential and the Hodge *-operator on C.
The same holds for X.

When u € 4(X) the gauge action on A(X, L) is defined by pulling back
connections:

VU(A) = UVA(U_l-).
But this is not the case when e* € Conf(X). In fact, (3.1) is designed by
requiring two properties:
(1) u(A) is a unitary connection. In other words, u(A) — A is an imagi-
nary 1-form on X.
(2) Dyayo = uda(u~'o). That is to say, the (0,1)-part of u(A) is the
pull back of the (0,1)-part of A.
Under the action of Conf(X), the curvature form and the covariant deriv-
ative are changed by the formula:

(3.2) g=¢€":Fy— Fy— (iAca)dvolc — (iAxa)dvoly, + F~ («),
Va0 — (V0 + 2(da)0 @ o).
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where F'~ () reflects the change of the mixed term (the F*-part). It lies in
A~ (X) C A%(X). Indeed,

) = i(— *¢ +*x)dedsa
and xx F~(a) = —(*c#*x)F~ (o) = —F~ («). This shows that for any a €
I'(X,C), if a configuration (A, o) Satlsﬁes equations (2.5b) and (2.5¢), so

does e - (A, 0).
The main result of this section is the following theorem:

F~(«

Theorem 3.1. Suppose 0 < ¢1(L) < g — 1 and (A, o) is any smooth so-
lution to (2.5) with finite analytic energy, then there is a complex gauge
transformation e* with o € C*°(X,C) such that

“- (A, U) = (A0700)7

where (Ao, 00) is the configuration induced from some pair (£, f). The pair
(&, f) is unique up to complex gauge transformation on X.

The case when ¢;(L) = g — 1, i.e. ¢1(ST) = 0 is dealt with in the next
section.

Proof. Write V 4 as
0 0
VA—VB+6 —I—hdu—l—a——l—gdv

where for each z € C, B(z) is a unitary connections on L — ¥ and f,g €
C>(X,iR) are smooth functions. Then

dg 0Oh 0B 0B
Fy = Fgdvol = — —)duANdv+duN (= —dsh)+dv A (— — .
A BU02+(au (%)U v+ adu (8u sh) +dv (av dsg)

We start by analyzing the equation (2.5¢). In light of the decomposition
above, this equation is equivalent to

0 0
(3.3) (% + *Ea

Suppose a background unitary connection By on L is chosen. Then in
terms of Hodge decomposition, we have

B(z) — By = b*(2) + b"(2) + b*(2)

where b!,b" and b? are imaginary exact, harmonic and co-exact 1-forms on
3. respectively. We impose the following gauge fixing condition:

)B =dxh+ *Edgg.

(3.4) bt =0.

This can be achieved since b'(z) = ids3(z) for a unique function 3(z) €
(ker Ay)* where Ay is the Hodge Laplacian operator on ¥ and (ker Ay)*
denotes the L2-orthogonal complement of the kernel. The function 8 €
C>(X,R) is smooth since b' is. Then we can work instead with e*’ - (4, o).
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Suppose the gauge fixing condition (3.4) has been imposed. Equation
(3.3) implies
0 0
— —)bh =0
(au R 81))
On the other hand, by identity (2.6),

HVbhH%Z((C) < HFITH2L2(X) < gan(Aya') < o0.

This shows that the function b" : C — (H'(X,iR),*x) is holomorphic
and its derivative lies in L?(C). Therefore, b" is a constant function on C.
By changing the background connection, we assume b* = 0.

Now it remains to analyze b*>. We know b?(2) = —i*x dga(z) for a unique
function a(z) € (ker Ag)t. The function a € C*®(X,R) is smooth. By
comparing exact and co-exact parts of the equation (3.3), we have

J . J
dg(%za +9) =0, dg(%za —h)=0.

This shows

o 0 .
(3.5) VA:VB—I—%—I—%—Z*CdCa—I—w.

for some imaginary 1-form w € I'(C,iT*C). Let (A',0’) = e*- (4,0). By
(3.1), we have
o 0
VA/—V()—F%"F%-FM
Let V,, = V%,. Then the equation (2.5b) implies dp,0’(z) = 0 for each
z € C. Thus, we obtain a map

f':C— H%,L,0p,)

and J, f' =0 by (2.5b).

At this moment, it suffices to show that we can eliminate w by applying
a further conformal transformation and obtain (V,, f’) from the trivial con-
nection and a polynomial map. However, it is hard to do this directly. The
main obstacle is to verify the following property:

Lemma 3.2. There exists a section v # 0 € HY(X,.%,0p,), a positive
number ¢ > 0 and a sequence of numbers ryp11 > 1, > 0 with lim, oo 7y, =0
such that f1 = (f’,v) has finitely many zeros on C and |f1(z)| > ¢ for any
z € 0B(0,1y,).

This lemma, is hard because we need to connect the finiteness of zeros of
f1 with the finiteness of &,,. It is not clear to the author whether there is
a clean and straightforward solution. In fact, by (2.6), the finiteness of &,
implies F,,, 0, f" € L*(C).

Question 3.3. Suppose d + w is a unitary connection of the trivial line
bundle on C and f': C — C" is a holomorphic section with respect to
w, i.e. O,f = 0. If F,,V,f € L*(C), then there exists a real valued
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function a € T(X,R) such that e*-(V,, ') = (d, fo) where d is the exterior
differential and fy is a polynomial map.

The author does not know if this question could be answered by us-
ing complex analysis of one variable. Lemma 3.2 is easily proven when
dim H°(%, &, 530) = 1 since in this case the vortex moduli space is a single
point and we conclude by the compactness argument used in Lemma 2.2.

We shall prove Theorem 3.1 assuming Lemma 3.2. The proof of Lemma
3.2 is postponed to the end of section. The following lemma is a direct
consequence of the proof of Lemma 2.2:

Lemma 3.4. The sections a,0 € L°(X) for any k > 0. In particular,
e L>(C).

Take a complex gauge transformation u = e+ with oy, 8; € C*®°(C, R).
Consider u - (w, f1). The connection form w is changed into

w + i(xcdcar — dcpBr).

To make it zero, we need to solve the equation
(3.6) daq +ify) = Wl

In general, this equation can not be solved on C. But the 0-Poincaré
lemma says that we can alway solve it on B(0,2R) for any R > 0. Suppose
up is such a solution on B(0,2R). Then n; := wj - f1 is holomorphic on
B(0, R) and the zero locus Z(f) = Z(n) is discrete on B(0, R). Since R is
arbitrary, Z(f1) is discrete. By Lemma 3.2, Z(f1) is also finite, so it lies in
a compact region of C. Set

=] (-2
z€Z(f)

The function u := fi/f> is non-vanishing on C and d,u = 0. Since C is
simply connected, u = €¢ for some smooth ¢ : C — C. Then

ou+whu =0= 9(—¢) = "
This shows ( is a global solution to the equation (3.6). Since on each
circle 9B(0,7y,), |fi| > ¢ > 0, we can find C > 0 such that

le=¢@)| = |fo/ f1] < C|2|¢

for any n and z € [0B(0,ry,)|. B
Now consider (d,n) := ¢ ¢(V,, f'). Then 0n = 0. By Lemma 3.4, f; €
L*>(C). Thus,

(3.7) In(z)] < Ch|z|”

for any n and z € 9B(0,7,). Apply maximal principle to 7/z? on the
annulus B(0,7,41)\B(0,7,). We conclude that 7/2¢ is uniformly bounded
when |z| > 7;. Hence, /2% extends to oo and 7 is a polynomial map. This
completes the proof of Theorem 3.1. O
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Now we turn to the proof of Lemma 3.2. We start with a lemma that
generalizes the classical theorem in complex analysis:

Lemma 3.5. Suppose d+w is a unitary connection on the trivial line bundle
on C and a complex-value function f: C — C is a holomorphic with respect

tow, i.e, Opf = (df +w® f)% = 0. If f is non-vanishing on |z| = R, then
1 Vof

~ 2mi ser [ “

Proof. The 0-Poincaré lemma allows us to find a complex gauge transforma-

tion u such that 7 = w - f is holomorphic on B(2R,0). Then n and f have

the same zero locus Z(n) = Z(f). Because the 1-form udu~! is closed on
B(0, R), we have,

#{z € B(0,R) : f(z) = 0}

1 Vof 1 a1 / dn B
— —wW=— —_ = — — 4 udu
21 Ji=r f 2w Jiy=r [ 2mi Ji=r 7

1

_ o _
“3mi o #Z(f) N B(0, R).

O

From now on, we borrow ideas from Wehrheim’s paper [Weh06]. We use
the polar coordinate (r,6) on C. Write V4 as

0 10
VA:VB+(E+h)®dr+(;@+g)®rd9.

and we compute its curvature form,

B 10B
Fy = Fgdvols, + ngvolc +dr A (8— —dyh) +rdd A (_8_ —dxng).
or r 06
If we regard (A,o) as configuration on R x S! x ¥ and ignore the dr
component of V 4, we get a family of configurations on Y = S x 3. Let us

denote them by (A,,o,). Then

0
V%J(Q,x) = vB(T’ﬂ,SE)? VZJ(G,U’U) = % + rgd@, 0-7“(9733) = O'(?",@,l‘).

If we decompose F4, into its ¥-part and its mixed part, we obtain

0B

F3.(0) = Fppou), Fi, =doA (%

Note there are two different metrics on R x Y. One is the product metric,

the other is induced from polar coordinates. Whenever the symbol Y is used,

we indicate the first metric, while the second is used implicitly for 0.X,. For
any r > 0, define T'(r) by the formula:

—rdyg).

= . 1 1
| rERP 4 VS 4 2850 i + 3K + 5l
0X,
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Note that T'(r) controls the analytic energy of (A,,0,) on Y when r > 1.
Indeed,

= ) 1 1
un(Arsr) i = [ FL P 4195, 08 + 205 o0 + 5 + 5K + 5o PP
Y
m|2 C |12 2 8% |2 1. % 1 1 2|2
< T‘FA‘ +7"VAO" +—‘8AO" +—‘ZFA+—K+—’U’ ’
X, r T 2 2
< T(r).

In addition, for r > 1,

Eumldo) = [ e = [T o,

r

This implies

Lemma 3.6. There exists a sequence of numbers r,, > 1 such that lim,_ oo 7, =
oo and limy, 0o T'(1,) = 0.

Recall that F/y = Fy — i%dvolg. Let a = A — Ag. Then Fy = F1/40 + da.

Since V4 50 = —i/r - V49,0 and le40 contains only dvoly, component, by
Lemma 2.5:
1
e0)=—1 [ t0iVano)+ [ Finmi- [ FiaE,
T Jox, X, X,

= /Y _<UT7iv?4TUT> +aA (2F//40 + dCL)

Note that
a = —i*x¢cdca—1x*y dyva + w.

Let a, = alax,,wr = wlpp(o,) and &(r) = [¢ wr. For each configuration
(A,,0,) on Y, we apply the gauge fixing condition:

(3.8) wy, = w(r)dl

This can be achieved since w, — @(r) = df, for some 3. € T'(S1,iR)
and we can work with e’ - (A,,0,) instead. Note that (3.4) and (3.8) are
different from the Coulomb gauge fixing condition on Y. In terms of the
Hodge decomposition of Q!(Y,iR), write

1 h 2
ar — Wwr = a, +a, + a;

where a!,al and a? are exact, harmonic and co-exact parts of a, — w, re-

spectively. Since pull-backs from S' or ¥ generate the space of harmonic
I-forms on Y, a? = 0. The exact component a} is nonzero in general. By
the gauge fixing condition (3.8), we have

/ a N (2F), + da) = —4r%ici (ST@(r) + H(a?).
Y
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Here, H(a?) is a function that involves a only. Indeed,

H(af) = / (=i *c deca) A (2Ff40 + 2iAyadvoly).

T

It depends only on the co-exact component a? and is continuous with respect
to L%p (Y,iQ(Y))-topology.
Since Eqn(Ay,,0r,) < T(ry) — 0, we have

(@2, om)llsry < C

for some uniform C' > 0. See [KMO7, Theorem 5.5.1] for a proof for
4-dimensional equations. By passing to a subsequence, we may assume
(a%n, oy, ) converge weakly in L2. Therefore, the sequence

E(ra) + dnic1(S)@(ra) = H(a2,) - / (00, 1V", o)
Y

converges. Since £(r) has a limit as r — oo, limw(r,) exists. This implies
that for some proper gauge transformations ePr and an L%—conﬁguration
(Aoo,000) O Y,

w—IL2
(3.9) & (Ar01) “ (Aser 020)
and &, (A, 00) = 0. Thus, for some m € Z,

0 .
(3.10) A = 20 + B) — imdf, 0o = ™ . 5

and (B(,~) is a vortex on X, i.e. this pair solves the vortex equation (1.3).

At this moment, we do not know e’7o,, — 0. in L-norm since in
dimension 3, L? ++ L>. We only need a weaker result and it is almost there.
We examine the exact part of a, — w, more carefully:

1

Lemma 3.7. ||a;

r2yy = 0 as rp — oo.

Proof. The exact part of a, — w, arises form —i ¢ dcalsx, . Indeed,
5y(—i *3 dza) =0

where dy is the formal adjoint of the exterior differential dy. Therefore,

/ lal]? < r/ | — i *c deal® < 7"/\1_1/ |dedsal?
. X, 0X,

where we used the fact that a(z) € (ker Ay)* and ); is the first positive
eigenvalue of Ay. On the other hand, since FJ' = i(xc — *x)dcdsa,

1
Lo 2/ 2 :2/ \dedsol2.
r X, X,

The last equality follows from the fact that over each fiber {z} x X, xcdcdsa
is an exact form while *ydcdya is co-exact, so they are orthogonal.
Finally, T(r,) — 0 implies [la;, |/12(y) — 0. O

Now we are ready to prove Lemma 3.2.
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Proof of Lemma 3.2. We take 83, € (ker Ay)’ such that dy 3, = al. By
Lemma 3.7, [|Bn[|r2(yy — 0 as n — oo. This shows that gauge fixing con-

ditions (3.4) and (3.8) are satisfied for the limit (A, 0s), so (3.10) holds
without further gauge transformations. Let

1a(6) = / (0, 050), 1(0) = / (O Toc),
{0}x= {6}x>

then I,,l/, € L¥(S'). Moreover, 1,(f) converges to the constant function
H’yH%Z(Z) in L°°(S")-topology. Since 3, is imaginary, |e®» — 1| < C|8,]| for
some C' > 0. Thus,

(3.11) = Ll g2z g1y < CullBallz vy = 0-

Indeed, by Lemma 3.4, 0 € L*°(X) and 0o € L>(Y), so

1,(6) — (6 \—\/ am,aoo\<c/ 1Bal.
G}XE {0} x%

To deal with the derivative, note that %(ln —1!) is bounded by
dBy, B -B d B
——e"" 0y, ,000)| + e " —1)—(e"0r,), 000
], I+l (e =D (o) o)

The first term is controlled in the same way. For the second, we use the
multiplicative structure L8 x L? < L3/2 and Sobolev embedding theorem
L? — L% in dimension 3. This proves estimate (3.11).

By the gauge fixing condition (3.4), B{ — By is a co-exact 1-form on X.
Then B — By = —i *y dus for a unique function as, € (ker A)L. Let
v = e*®0gs. Then 53011 = 0. Recall that o/ = e*o, and for any z € C,

fi(z) = /{ et

By Lemma 3.4, o € L™(X). Since as € L>(X), for any z = r,e? € C,

|f1(2)] > co|l,(0)].

This implies that when n > 0, |f1(rne?)| > ¢ for some ¢ > 0, since the
same holds for 1,,(6) and 1, (9).

Finally, we need to verify that f; has finitely many zeros. We apply
Lemma 3.5 and give an upper bound for that integral. The contribution
from the connection form is settled since it is just w,, and lim®,  exists.
Since | f1] > ¢, for r = ry,

| / Vofi/fi] < 2 / V2, il < 098, iz,
aB(0,r)

It is sufficient to estimate ||V, ol|2. By (3.2),
Vo' = (VS0 + 2(dca)’ @ o).
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By Lemma 3.4, a,0 € L>®(X). It suffices to estimate the L?>-norms of VGo
and dca. For the first term,

/ VY0 < / rVol? < T(r).
Y 0X,

For the second, it was done in proof of Lemma 3.7. This completes the proof
of Lemma 3.2 O

4. WHEN ¢1(ST) =0

In this section, we discuss the case when ¢;(S*) = 0 and prove Theo-
rem 1.3. In this case, finite energy monopoles are necessarily reducible and
they are identified with the moduli space of flat connections on A% S*. We
reformulate the result in terms of the vortex equation:

Theorem 4.1. Any finite energy solution (A,o) to the equation (2.5) is
reducible, i.e., 0 = 0 on X. In addition, A, the induced connection on

N2 ST, is flat.

Proof. We shall use notations from the last section. Since ¢;(S1) = 0, we
can choose a background connection By on ¥ such that :F'g, + %K =0 and,
after imposing the gauge fixing condition (3.4), the connection A is given by

0 0
Va=Vo+ —+ — —iscdeca—ix*xdsa+ w.
ou  Ov
for some smooth function a € C®(X) with 5, a( = 0 on each fiber.

Here, w € T'(C,¢T*C) is an imaginary 1 form. Therefore FA = F, +iAca.
Integrating equation (2.5a) over each fiber, we obtain

o_/zFA+/ iFT 4 K /1012_zvoz(z)F +rer(ST) + /\0\2
:z'Vol(E)Fw—l——/ lo|?.

This shows iF,, < 0. Let (A',0’) = e*- (A, o) and set T'(z f{z}XZ lo’|2.
By the proof of Lemma 2.2, we have
T(z),a = 0

as z — 00. Indeed, for a solution (A, o) on X5 = B(0,5) x X of the equation
(2.5) with zero analytic energy, we necessarily have 0 = 0 and « = 0 since
c1(ST) = 0. In particular, T € L>°(C) is a bounded function.

Since VG, = V,, and 9,0’ = 0, by Weitzenbock formula (2.7),

AcT = —2/ Vo' + (VEVLo',0') < 2/<2‘Fw0’,0’> <0.
) b

Therefore, T" is a bounded subharmonic function on C, so T is constant.
Because lim, ,, T(z) =0, T = 0. It follows that F,, = 0.
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Finally, equation (2.5a) shows that —Axa = 0, so « cannot attain its
maximum or minimum in the interior of any bounded domain. But @ — 0
as z — 00. Thus, « =0 and A is flat. O

5. POLYNOMIALS = VORTICES

So far, we have not seen any smooth solution to equation (1.1) or (2.5) on
X = C x X that has nonzero energy. In Section 5.1, we take up the task of
constructing solutions. Starting with a polynomial map f: C — H(%,.%),
we produce a vortex (A,0) such that Z(o) = Z(f). This solution exists,
a priori, in the Fréchet space L%J we(X), but we will show it is smooth and
unique in Section 5.2. There is a tedious a priori estimate that appears in
variational principle and we postpone its proof to the next section.

5.1. Existence of solutions. Let us recall some setup from the previous
section. Let .2 = (L,0¢) be a holomorphic structure on L — X and let
f:C — H°X,.%) be a nonzero polynomial map of degree d. This means
there are some global sections v; € H°(%,.%),0 < i < d with 74 # 0 such
that

d
f(2) =Y w2
i=0

for any z € C. Suppose a Hermitian metric h on L is fixed. The Chern
connection on .Z is the unique unitary connection By = V such that

Vg’l = ég

We impose an extra condition on the pair (By = Vj,~4): this configura-
tion solves the vortex equation (1.3) on X:

{ «iFp + 3K + 3|o> =0,

(5.1) 0o = 0.

This can be achieved by applying an element in ¢ (X) since the solvability
constraint

1
O>7T01(S+)=/iFB+§KdUOl(C
P

is satisfied. For a proof, see [Bra90, Theorem 4.3], [GP94, Theorem] or
Theorem B.1.

The line bundle .Z pulls back to a holomorphic line bundle on X = C x 3
and f is regarded as a section on X by setting o¢(z,z) = f(z)(x). The
connection By induces on X a unitary connection:

0 0
VAO—VQ-F%-F%.

The conformal transformation is defined on the configuration space C(X, L)
by the formula:

(5.2) g=e":(A,0)—= (A+ixcdca+ixydya,e®o).
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The curvature and covariant derivative are transformed accordingly:
(5.3) g=¢€": Fa— Fp—iAcadvolc — iAsadvoly, + F~ ()
Vao = e*(Vao +2(d)"’ o)
where F'~ («) reflects the change of the mixed term (the F{*-part) and it lies

in A=(X) c A%(X). Note that for (A,0) = e* - (Ag, 0p), equations (2.5b)
and (2.5¢) are automatically satisfied.

Theorem 5.1. For any polynomial map f of degree d, we can find & €
C>®(X) such that (A, o) = e* - (Ag,00) solves the equation (2.5a):

. 1 1
(5.4) i(FY 4+ FS) + S+ 5|a|2 =0.

and its analytic energy Eun(A, o) equals —4n?d - c1(S). In particular, (A, o)
gives a finite energy monopole on X.

Remark. For (A,0) = (Ap,74), that is, we extend 74 to be constant in
variable z € C, this pair solves equation (2.5) since (By,~q) solves (5.1).
This corresponds to the case when d = 0 in Theorem 5.1.

Before we start the actual proof, let’s sketch a strategy to find such an &:

Step 1. Choose a background conformal transformation «g € C*°(X) and

set
(A1,01) = €% - (Ao, 00).

At this step, the configuration (Aj,01) is not necessarily a solution to
(5.4). Tt is close to an actual solution so that the analytic energy &, (A1, 01)
is finite. Moreover, the next step needs to be achieved:

Step 2. We find another conformal factor @ € L3(X) such that (Aq,04) :=
e - (Ay,01) solves (5.4). Take & = ap + .

Definition 5.2. We define the moment map p as
p L3(X) — LX(X),
1 1
a i(FY +F5)+ S+ §|aa|2
1
= p(0) + (Aca + Axa) + 5(620‘ — Do

The second step amounts to finding o € L3(X) so that u(a) = 0. The
definition of p depends on ag. We wish u to be well-defined so that we may
apply variational principle to || u(c)||3. Our target a would be the minimizer
of this functional. The first guess for «y is

d
a =3 log(|z[> + 1).

But in general, this choice does not guarantee that u is a well-defined map
from L3(X) to L?(X).
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Lemma 5.3. We can find ag € C®(X) so that for any a € L3(X), u(a) is
square-integrable and the energy E(a) 1= Eqn(An, 0q) is finite. Furthermore,
for this ag and u, the energy equation

(55 J W@ = EunlAas o) = Eup

is valid. The topological energy is defined by the formula
Etop = —4m2d - ¢1(ST)

which depends only the degree of f and c1(S™).

Proof. Write g = 8 + § with

d
B=—3log(ls] +1)
and § to be determined later. To start, let’s make p(0) € L*(X):
1 1
p(0) = (F3, + F4,) + 5K + 5o

. 1 1
= Ac(B+0) + Axnd + *xiFp, + §K + §|0'1|2

1
= Ac(B+6) +Axd + §(|0'1|2 — val?).

where we used the fact that (By,74) solves the vortex equation (5.1).
If 6 = 0, then 01 = o0, = f(2)/(1 + |z|2)% € L*(X) and by direct
computation:

2d

2|2*"*Re(27a, Ya-1)n 1
2 2 — ’ -
‘U*‘ "Yd’ (1+‘Z’2)d +O(1+‘Z’2).

If we know v4_1 = 0, then |07]? — |74| € L*(X) and we are done. To deal
with the general case, note that the unbounded operator

T = As + |ya)? : LA(Z) — LA(%)

is self-adjoint on L2(X) and is invertible. Set

P 2d—2
) = T el ) € O ).

Then we have,
1 1 1
Axd + 5 (o1 = al’) = Axd + Slow (€ = 1) + S (|l — hal®).

1
= (|owl* = [7al*)0 + §|0*|2(€25 —25—1)
1
1+ |z[2

+ 5. — bl +27(9)) € O(r ).
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To check Acé € L%(X), it suffices to compute:

A 22472 p¥Tlcosf  4dr?3(2r2 — (d — 1)) cos §
Ca+1ed - AT T (1 + r2)dt2
where r = |z| and u = rcosf. This function has enough decay at co and
lies in L?(X).
To show () € L?(X) in general, it suffices to check:

Axa, %(620‘ _jou|? € L*(X).
The first follows from the fact that o € LZ(X). The second comes from
Trudinger’s inequality (Theorem A.2) and the fact that o1 € L*°(X).
It remains to prove (5.5): it will imply that analytic energy &,,(a) is
finite. We first do the case when o € C°(X). In light of Lemma 2.5, it
suffices to show

(5.7) lim (0a,Va,i0a) =0,

T—00 aXT

5.8 lim Fl\ ANFl, = —47%d-c;(ST).
Ao Aa

r—00 X
T

Suppose supp(a) C B(0,79) for some ryg > 0 and take r > rg. Then
(Ap,00) = (A1,01). Let (As,04) = €P - (Ag, 09). By formula (3.2),

Vi i0a = Va,01 = € (Va.o.+2(d5)00,).
Since 01,04,0 € L>(X) and
Va0, = €’ (dog + 2(dB)000)

. —Yd-1- r229=2 4 lower order terms
(1 + [2]2)(d+2)/2

1
cdz € O(——)
1472
r2d=1cos 9 1
( (1+47r2)d ) € (1+r2)'

Therefore, the boundary term goes to zero in (5.7).

To compute the topological energy oy, by formula (5.6), we have

/ F\ AF) = -2

1
AcB - (iFg, + = K)dvolx
, X, 2

= —27T61(S+)/ AcB — —4n?d - ¢1(ST)
B(0,r)

as r — o0o. Let y = A, — Ax. Then
| FrnBL = Fi AR = [ n(du2rh),
r aXr

When r > rg, @« = 0. We reduce to the case when A, = A;. Since
lu| < |do| ~ 1/(1 +r?) and the curvature term dp + 2F)_ is uniformly
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bounded on X, the integral above decays as 1/r as r — oo. Therefore,
formula (5.8) is also valid.

We showed that the energy equation (5.5) holds for any o € C°(X). It
also holds for any o € L3(X) since C2°(X) is dense in L3(X) and all terms
in (2.6), as functions in «, are continuous in L% (X)-topology. We may need
Theorem A.3 to verify the continuity. O

The next theorem is an a priori estimate and the proof is technical. Its
proof is postponed to the next section. We will finish the proof of Theorem
5.1 assuming Theorem 5.4.

Theorem 5.4. For any a € L3(X), define £(a) = Eun(Aa,04). There
is a function n : R™ — R such that for any C > 0, if E(a) < C, then
lallzz < n(C).

Proof of Theorem 5.1. Let a = inf,cr2(x)€(c). This number is finite since
£(0) < oo. Therefore, there exists a sequence {a,,} C L3(X) such that
a = lim,_, £(ay,). By Lemma 5.4, ||oanL§(X) are uniformly bounded, and
we can find a weakly convergent subsequence. We assume it is the sequence
itself. Let as be their limit. Note that u : L3(X) — L?(X) is weakly

—12
continuous. Indeed, by Theorem A.4, o, N Qs implies

w—L>2 w—L2
L2(X) L(X)

Axa, —— Axan, e —1 e* —1.

This shows £(as) < liminf E(a,) = a, so E(ax) = a. Now consider the
linearized operator of p at as (see Theorem A.3):

Dp: L3(X) — LA(X),y = Axy + 2oy 2.

Since aw is a critical point of &£, for any v € L3(X), we have

d
(5.9) 0= —&(aco + )0 = 2{u(ac), Du).
Lemma 5.5. For any o € L3(X), the operator

Do s L3(X) = LX),y = Axy + 2oy [3y.
is self-adjoint.
Proof. The operator D,u is well-defined. Indeed, by Theorem A.2, o €
L3(X) implies a,e?® — 1 € LP(X) for 2 < p < oo. In particular, e**, v €
LA(X). Since o1 € L®(X) and L* x L* < L?, we have

o1 [*y = |1y + (€ = 1)]o1 [Py € L*(X).

Note that D,p is clearly symmetric. It suffices to show that it agrees

with its adjoint. We need to show v € L?(X) and Duu(y) € L?(X) implies

v € LZ(X). This can be done directly, but we proceed using Friedrichs
extension theorem. Define the norm A on C°(X) by the formula

I3 = )3 + /X de? + [ae® o 2.
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The Hilbert space H obtained by the completion with respect to || - ||.4 is
embedded as a subspace of L?(X). Then by Friedrichs extension theorem,
D, is self-adjoint on the space

D={xecH:3C>0,(z,y)a <Clyll2, for any y € H}.

We need to identify D with L3(X). Tt is clear that L3(X) C D. For the
reversed inclusion, take any y € C°(X) and x € D. Then integration by
parts shows

<LZ', y>A = <Docu(‘7:)7 y>2
and by Riesz representation theorem, Dyu(x) € L*(X). Since v € H —
L}(X) and L3(X) < LYX), e**o1]?x € L*(X). Therefore, Axz =
Dop(x) — **|oy >z € L?. This completes the proof of the lemma. O

By lemma 5.5, y := p(as) lies in the domain of the adjoint operator
(Dy)* = Dy, s0y € LE(X). Let v = y in (5.9) and integration by parts
shows:

0 = [ldyll3 + llye®o1lf3.
Therefore, p(as) =y =0. O

As long as the a priori estimate, Theorem 5.4, is established, the proof of
Theorem 5.1 is quite formal. We will tackle this technical theorem in the
next section.

5.2. Smoothness and uniqueness. For the rest of the section, we prove
the smoothness and uniqueness of the solution obtained in Theorem 5.1.

Lemma 5.6. The solution & = o+ «q obtained in the proof of Theorem 5.1
is smooth.

Proof. Note that the equation p(«) = 0 is equivalent to
1
(5.10) Axa = —p(0) — §(e2a — Doy

Both (0) and |o1]? are smooth functions on X. Since a € L3(X),
Trudinger’s inequality (Theorem A.2) implies e>* — 1 € LP(X) for any
2 < p < 0. Then elliptic regularity shows

= Lgloc(X)

for any 2 < p < o0, so a, €2* € L (X). This implies
d(e*™ — 1) = 2¢**da € L} (X).
and
V2(e* — 1) = 4e**da @ da + 2¢**V?a € L} (X).
We use induction to prove that for each k > 2,
a, e ¢ L%,loc(X)'

The initial step & = 2 is done. Suppose the statement is true for some k > 2.
By elliptic regularity and the induction hypothesis that e2* € Lz’l oer (5.10)
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implies o € Li+27loc. To verify e2* € Lz+2’loc, it suffices to note that Lz+2
is an algebra for any k£ > 0 and the expansion
[o¢]
200 (2a)m
€ = Z ml

m=0

converges in L% +2’loc—top010gy for any a € L% 42 Joct The induction step is
accomplished. Since o € Lz’l oc for any k > 2, « is smooth. O

Lemma 5.7. The solution & = o + «qg obtained in Theorem 5.1 is also
UNIQUE.

Proof. Let o’ = a + ag be the solution obtained in the proof of Theorem
5.1. We need to show for any o/ € C*®(X) such that (A,0) = e®" - (Ag, 00)
solves equation (2.5a) and has finite analytic energy, o’ = /.

Let v = o’ — o/, then ~ is smooth and u(y + a) = pu(a) = 0. This shows

(5.11) Axy+ %ew(e% — o2 = 0.

Since (A,0) = e - (A, 00) = ¥ =20 - (A1, 01) has finite analytic energy,
by the proof of Lemma 2.2, [|a” — agl| Lo ({23 xx) — 0 as z — co. The reason
is that when we properly translate (A, o) to the origin and get a sequence
of solutions (A,,0,) on X’ = B(0,10) x X, we impose Coulomb-Neumann
gauge fixing condition (with respect to (Ap,~4)) on B(0,10) C C. Asn — oo,
these solutions will converge in the interior in C*°-topology to (Ag,~4). This
gives the desired convergence.

Therefore, we have, in addition to (5.11), that

(5.12) y=(" —ap) —a—0

as |z| = oco. Then the maximal principle implies v = 0. Indeed, suppose
~v > 0 somewhere, then by (5.12), it attains its maximum at some point
p € X and hence Axvy(p) > 0. If Axvy(p) > 0, then (5.11) is violated at
p. The case when Ax~v(p) = 0 is tricker: we need to add a perturbation.
For details, see [JT80, Chapter VI.3, Proposition 3.3]. This shows v < 0.
Similarly, by analyzing the minimum of ~, we conclude v > 0, so v =0. O

6. PROOF OF THEOREM 5.4

Theorem 5.4 states that the L?-norm of u(a) controls the L3-norm of a
for any o € L3(X). The proof is achieved by two steps:

Step 1. Estimate ||Axal|o.

Step 2. Estimate ||a|2.

The first step is a consequence of the energy formula (2.6), but we need
to work very carefully. The second step is trickier: it involves decomposing
the function « into its high frequency and low frequency modes.

If one carries out the same proof for the vortex equation on ¥ and C,
an a priori estimate like Theorem 5.4 will be needed as well. For details,
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see Theorem B.2 and C.3. In both cases, the first step is trivial. On X,
the second step is false, but we can still make it work by using a smaller
variational space. On C, the second step is processed similarly as we did
here, yet it is simpler.

We establish Theorem 5.4 in a sequence of lemmas. We start with Step
1.

Lemma 6.1. There exist a,b > 0 such that for any o € L(X) with £(a) <
C, we have

Proof. It suffices to find a,b > 0 so that
”ACQH%Z(X)v ”AEQH%Z(X) <aC +b.
By (2.6), we know that

> / |F§1:a|2 = / |A(cOé + A((j()é0|2.
X X
Now, the elementary inequality,
1
(6.1) (a+b)? > §a2 — b

implies that |Acall3 < 2(E(a) + [|Acaoll?).
To analyze the term [[Axallz is harder. The energy formula (2.6) also
implies

) 1 1
>/ |ZF§ 4——K+—|0a|2|2
e TR T

1 1
= [ I@sa+ 5@ = DlorP) + 5 = PP
X

Then the inequality (6.1) implies

1
28(a) + 2|1 [* — [all3 = /X |Asa+ 5(620‘ = D)o
Therefore, Lemma 6.1 follows from a fiber-wise estimate and it is the
content of the next lemma. O

Lemma 6.2. For each z € C, let (Bi(2),01(2)) = (V%,,01(2)) € C(%,L)
be the configuration on the fiber {z} x ¥. There exists ¢ > 0 such that for
any o € L3(X) and z € C,

/ Asa + Do) > c/ Asal2.
b

Remark. Though the proof below is messy, the underlying idea should be
clear. This lemma is true because for each individual o1(z), the statement
is true for its linearized operator. Equations (6.6) and (6.7) below are steps
where we pass to linearized operators. This resolves the case when ||[Asnal|a
is small. When |Axalls is large, this estimate is true due to the energy
equation.
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Proof. The family of configurations (B1(z), 01(z)) admits a natural compact-
ification; we extend it to CP! by setting

(B1(00),01(c0)) = (Bo,va)-
In particular, there is M > 0 such that
Hal(z)”%g(z) + |1 FB, (Z)”ng(z) <M

holds for any z € C. What will be frequently used below is the Sobolev
embedding theorem:

L3(%) = L™®(%).
and the fact that this embedding is compact.

To start, we have a nice energy equation associated to the vortex equation
(1.3), as a special case of Lemma 2.1 or formula (2.6):

_ 1 1
/ 2\830[2 + | xiFp + §K+ 5’0’2’2
pX
= / ’VBU!2 + | *xiFp + _K’2 + _(’0’2 +K)2 _IR2
p)) 2 4 4
We apply this equation to (B,0) = e* - (B1,01) = (B1 + i * dsa,e® - 01)
and get
; 1 Lo 19 902
(6.2) | Ay + *iFp, + §K_|_ 5101‘ 2|
b

1 1
> / Ay + %iFp, + =K|* — ~ K>
5 2 4

where we used the fact that dp,01 = 0, so dgo = 0. Then the Cauchy-
Schwartz inequality and (6.1) imply

1 1 1
2/ |Asa + §(e2a —D)o1?)? + 2/ [ #iFp, + 5K + 5\01”2 > LHS of (6.2),
% %

and
2 - Lo 1o
RHS of (6.2) |Ago¢| |*ZF31 —|—§K| +ZK ).
Finally, we get
1
(6.3) 4/ Asat 5(@ ~ Dior? + N > / Asal?,
b b

for some N > 0 independent of z € CP!.

Suppose Lemma 6.2 is violated. Then, for each n > 0, there is (ay,, z,) €
L3(¥) x C such that

1
(6.4) / [Ason + (" ~ Do () P < / Asr]?.
>
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Let 0, = 01(2,). By (6.3), we must have [ |Axa,|? < 25N < 5N
when n > 5. This shows the sequence 3, := Axaq, is bounded in L?(X)
and we can find a weakly convergent subsequence. Since this is a compact
family of configurations, we can further assume that for this subsequence
Zn = Zoo, 50 {|on|?} is convergent in L. Write a,, = Gf, + 8,, where
G : L*(%)*+ — L3(X)* is the Green operator and 4, is the average of a,, on
Y. By (6.4), we know that the sequence of functions

1 1 1
(6.5)  gn = Asay, + 5(62% —Don|? =6, — 5|an|2 + §|an|2e205ne25n.

converges strongly to 0 in L?(X). Since L% — L*(X) is compact, {Gf3,}
and hence {e%P7} is convergent in L>°(X). This shows, |o,|2e?" is weakly
convergent in L?(X).

This convergence can be made to be strong; indeed, we can write o,, =
rnoy, with 7, = ||lon|l2 and ||o,|l2 = 1. Then r, > 0, otherwise we would
have [y, |Avay|? < L [ |Asan|? in (6.4). By passing to a subsequence, we
can assume {o/,} converges strongly. Now {a, := r,e’} is a sequence of
bounded real numbers and there is a converging subsequence.

72

All these things imply that 5, =L, Boo as n — 00. We may assume
{rn} converges as well. Set ro, = limr, and ay, = lima,. There are two
cases to be dealt with.

Case 1. If roo = 0, i.e., 0 := 0(200) = 0. Let n — oo in (6.5) and we
get,

1
Boo = —§ago\0’oo\2ecb°° <0.

But fz Boo = 0 and hence aoo = 0, B = 0. Write 3, = 8,8, with ||}, ]|2 = 1.
Then,

2 2
(6.6) g+ a2

Sn 2 S, 2 s, "

2snGBl, _
= L2t + 5
By (6.4), |lgn/snl3 < 1/n-||B,]32 — 0. Now the second term on right
hand side of (6.6) converges to 0 in L*°(X) because lima, = 0. Since
{x, = (a2 —12)/s,} is a sequence of uniformly bounded real numbers, by
passing to a further subsequence, we can assume they converge to z,, € R.
This implies 8], — (., with

1
0= Bl + Soolohel

Due to the same reasoning as above, xo = 0, so 8., = 0. But this is
impossible, since |||z = lim || 5} ]]2 = 1.
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Case 2. If roo # 0, then {d,} has a finite limit, say, limd,, = oo € R.
Therefore, lim a,, = ay 1= GPso + doo and

1
0= (Ayas + 5(62%" — 1D)|oso]?, aso)

200

. o . _ / . /
Since rog > 0, we have as = 0. Now, write an = tnaj, with [ag, |12

1
= \Vozoo\2 + =72 /(62%0 — 1)0400\0’00\2.
b

Il
=

—12
Choose a subsequence so that o/, ——2 o/, Now
6.7 In _ Asal + =" g 12,
(67 N
and by (6.4) ||gn/snl3 < 1/n - ||Ascl,||3 — 0. The second term on right

-L
hand side converges in L™ to o/ |0s|? since t,, — 0. This shows o, T,
al, and
0 = Agaly + 0002y
This is impossible: since |0s|? Z 0, the operator Ay +|os|? is injective on
L3. This implies o/, = 0. But Hozfx,HLg = lim Ha%HLE = 1. This completes
the proof of Lemma 6.2. O
Proof of Theorem 5.4. In light of Lemma 6.1, it suffices to work out Step 2:
find a function n : R™ — R™ such that
lefl2 < n(C)

for any o € L3(3) with £(a) < C. We know that for some a,b > 0,

(6.8) IAxal3, (€2 = Dorf?|3 < aC +b.

Write o = ag + g with oy constant on each fiber {z} x ¥. In other word,

ay(z) = /{z}xz alz,-)

and «ag(z) is orthogonal to constant functions on each fiber. The high fre-
quency part ag is relatively easy to control:

Allazllz < [|Asasllz = [|[Asal2 < VaC +b.

where \; is the first positive eigenvalue of Ay.

To work out ||aq]|2 is harder. We will decompose C as the union of the
good set Ay and the bad set As. A point z € C lies in the good set A if
over the fiber {z} x X, either of the situations occurs:

(1) |lea]l2 < ||aee||2- This means « has large fluctuation on that fiber, so
lallz < [[Asallz.

(2) |leall2 > |lae||2, but a1 (z) > —1. This means « is almost a constant
function on that fiber and its value is not very negative, so |a| <
le® —1].



ON FINITE ENERGY MONOPOLES ON C x X 37

Let Ay be the complement of A;. On the good set Ay, we control
|l p2(a, x5 by terms in (6.8). For the bad set Az, we will control its area
and show that «q cannot concentrate on As.

Lemma 6.3. There is a constant L > 0 such that for any o € L3(%)

satisfying
[ 1ol =L [ 1asaP,
b b

we have || — on]|oc < %|a| where oy € R is the average of a on .

Proof. Write o = a1 + as. Then we have
ooty < (1t 55) [ 18sal? < 70+ )il
< 0+ VolDanl + sl
If L>2(1+ )\i%), then we do rearrangement and obtain
Cloul > VEllallz > Lol

Here, C1 is the constant in the Sobolev embedding L3(X) < L®(%). Now
it suffices to take L > max{(2CC1)?,2(1 + Xlg)} O
1

Now we decompose C into good and bad sets:
A ={z€C| af? < L/ Asal® + M €2 — 12|y [4)
{z}x% {z}x% {z}x%
Ap = Af.
In this definition, L is the constant that appears in Lemma 6.3 and M is a

large constant to be determined later.
Our goal is to show for some 7;(C) > 0,

(6.9) /(C\Aca1\2,[4 ]a1]2,Area(A2) <m(C).

The first follows from (6.8). The good set A; is easy to handle: [, laf? <
n2(C) for some 1y, again, by (6.8). As for the bad set, we need to analyze
the zero locus of o1. Set

Ze(o1) = {p = (2,2) € X : o1 (p)* < ¢}
and
Ze={x € : |y(z)]* < 2¢}.
We choose € to be a small number so that Area(Z,) < +Area(X). Since

o1(z) as sections on ¥ approach 4 in L> norm as z — oo, for some large
number R(e) > 0, we know

Z.(01) C B(0,R) x SUC X Z.
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Now take any z € A3 — B(0, R). By Lemma 6.3, we have
1 3
Soa(2)] < la(z,2)] < Slon(2)]

for any x € X. If a1(2) > —1, then a(z,z) > —2. This means over the fiber
{z} x X, we have

9 9
/Mﬁéi/mﬁé—/lmPSB/IMQ
s 4 /s 2 )z Ze

18 x 25 450
< X / ’620—1‘2’01’4§—/’620—1‘2’01‘4.
Z¢ )

= €2
where the penultimate inequality comes from
|z| < 5le® — 1]

when z > —4. Take M = 450/¢2. We conclude that if z € Ay — B(0, R),
then ay(z) < —1 and hence a(z,2) < —3. This shows

/{} 2‘6204_1‘2’0,1‘4 2
z}X

As a consequence, we obtain,

Vol(%) -1 — e 1262

N =

[l — 1fjo1 [*]13
Cq
Thus, (6.9) is proven. The next step is to control [la|lf2(c). This is

Area(Ay) < Area(B(0, R)) +

< n3(C).

closely related to uncertainty principle: if |a|? concentrates on a region of
finite area, say Ao, then its Fourier transformation cannot concentrate near
the origin. Thus, L? norm of o is controlled by the L? norm of derivatives.

Theorem 5.4 then follows from the next lemma by setting F = A,. U

Lemma 6.4. Suppose subset E C R™ is measurable and its volume m(E) <
S. Then for some C(S) > 0, we have for any f € L3(R"),

1fll2 < CUISNL2ee) + I1ASIl2)-

Proof. We decompose f as the sum of low-frequency and high frequency
parts. That is to say, f = fr + fg where

fo=xffu=01-x7F
and x is a cut-off function with x = 1 on B(0,7) and suppx C B(0,2r).

Here, r is a small number to be determined later. The high frequency part
is easy to deal with:

A 1 A 1
I felle = [ frll2 < ;|H§\2fHH2 < ;HAJC”}

Write T' = ||fr]l2- Then we can control L* norm of the derivative in
terms of 7"

IV frlloo < WELfLll < 1€l XBo2m Iz fLll2 < 7O T.
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Fix R > 0 so that m7R? > 2S5 = 2m(FE). If for some z € E, |fr(z)| = N >
2rC1TR, then for any 2’ € B(z, R), we have |f1(2')| > $N. This implies

mR?2 N
il 2 [ RGPz TGPz s aTry
B(0,R)—E 2 2

)

Therefore, either 7' < HfL|]L2(Ec)/(\/§7’ClR) or
1 fL(2)|| oo (my < 2rCiTR.

But the second case implies
2= 1P < [ 5P +s-@om? 12
E‘C

It suffices to choose 0 < r < 1 so that (2C1R)%S - r? < i. Therefore, in
either case,

T2 < Cz/ | f?
EC

for some Cy > 0. Finally, one notices that ||fLllz2(ge)y < | fullr2mey +
I fllz2gey < N fulle + 1 fllL2(Ee)- U

Remark. Lemma 6.4 is closely related to Amrein-Berthier theorem:

Theorem 6.5 (Amrein-Berthier [AB77]). Suppose subsets E, F C R™ are
measurable of finite volume, then for some C(E,F) > 0,

[ fll2 < CUIfllz2(mey + ”JE”L2(FC))7

for any f € L?(R™), where E¢ and F° are complements of E and F respec-
tively.

To see their relation, let ' = B(0, 1) and note that

12y < WER SN2 = IAcS 2.

However, it is not clear from this theorem that for fixed subset F, the
constant C' could be independent of the shape of E and only depends on
the volume of E. Since our problem is simpler, we decided to give a direct
proof to Lemma 6.4 as above.

7. EXPONENTIAL DECAY AND POWER LAW DECAY

The purpose of section is to prove Theorem 1.4 and Theorem 1.5 which
predict power law decay and exponential decay for finite energy monopoles
in different cases. We start with the second theorem to explain ideas
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7.1. Exponential Decay. We reformulate Theorem 1.5 as follows:

Theorem 7.1. Let (By,vq) be a solution to the vortex equation (5.1). Let
fo= Z?:o a;z' be a monic polynomial function on C and f = foyq. Then
the solution (A,o) = e® - (Ag,00) obtained in Theorem 5.1 converges expo-
nentially to (Bo,vq) as |z| = o0, i.e., for any k > 2, there exists s(k, Ao, f)
and M(k, Ao, f) > 0 such that for any z € C,

(7.1) di((V%,0)(2) = (Bo,7a)) < Me*F.

Recall that the metric dy on B(X,L) = C(X,L)/¥9(X) is defined by the
formula:

di((al ) = min flu-a = bl

for any a,b € C(X, L). Here, [a] denotes the gauge equivalent class of a.
The proof of Theorem 7.1 relies on exponential decay result for vortices
on C. Recall that the classical vortex equation on C is given by the formula:

(7.2) { i, + %(|77|2 —_1) i 0j

where w is a smooth unitary connection to the trivial bundle over C and
1 is a smooth complex-valued function. This equation is invariant under
the gauge action of ¢(C) = Map(C, S'). Then Theorem 1.8 ([[JT80], p.59,
Theorem 1.4]) states that |F,,| = %|[n|* — 1| has exponential decay at infinity
if (w,n) is a solution to (7.2) with finite energy.

The proof of Theorem 7.1 is modeled on the proof of Theorem 5.1 and is
accomplished in two steps

e Find a good approximation o to the actual solution &. For this part,
we need a more clever choice. We employ the existence result (see
[Tau80, Theorem 1] or Theorem B.1) to find the conformal factor ag
such that e* - (d, fo) solves the vortex equation (7.2).

e Show that the correction term o = & — a9 has exponential decay at
infinity.

Proof of Theorem 7.1. Let oy € T'(C,R) be the conformal factor such that
(Vw,n) = e - (d, fo) solves (7.2). We regard o as a function on X that
is constant on each fiber. Let (Aj,01) = e® - (Ag,00), so 01 = nyg and
Acag = i*c F, = 1(1 —|n?). Since (By,74) solves the vortex equations
(5.1) on X, it follows that

1o, 1
_Z — F _K.
2|7d| ixs Fpy + 3
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Consider the moment map defined in Definition 5.2, then
. 1 1
,u(O) = Acag + 1 *x Fp, + §K—|- §|01|2

1 1 1
— (1 — 1nl2) = Sl 4 S22
5 (L= 11") = lval” + 5 hal"In|

= S (1= InP)(1~ ) € A(X).

Hence, the correction term o = & — «g is the unique smooth solution
to the equation p(a) = 0 such that a(z) — 0 as z — oo. Its existence is
established in Theorem 5.1. Note that p(c) = 0 is equivalent to the equation

1
(Ac+ (As+ [al))a = —p(0) = 5(e** = 2a = D]or [* + (hal* = [o1[*)a
=k + h(a),

where k = (1 [n]*)(|7al*e = 5(1 = [al*)) and h(a) = —5(e** —2a —1)|o1 [*.

Let H be the Hilbert space L2(X,C) and L = Ax + |val> : H — H be
the unbounded positive self-adjoint operator. Since (7.1) is satisfied for the
pair (Aj,01), in order to prove Theorem 7.1, it is sufficient to verify the
conditions of the following lemma:

Lemma 7.2. Let H be a separable Hilbert space and L : H — H be a pos-

itive self-adjoint operator (possibly unbounded). Suppose there is a smooth

function u : C — H such that

(U1) (Ac+ L)u =k + h(u).

(U2) lim, o ||ul|% = 0.

(U3) h : H — H is a continuous map and for some ¢ > 1 and C > 0,
[7(u(2)lln < Cllu(2)3, for any = € C.

(Uj) k : C — H is a continuous map such that for some s,M > 0,
|k(2)|lg < Me=1# for any = € C.

Then the function u has exponential decay at co, i.e., for some s', M’ > 0,
lullgg < M'e="1#l for any z € C.

Property (U2) is by the proof of Lemma 2.2. Property (U4) follows from
Theorem 1.8. When k& > 1, L%(E,(C) is a Banach algebra. To work out
property (U3), take ¢ = 2. Since ||a(z)|| is uniformly bounded by some
number Ms > 0, it follows that

2 o 2" 2 - 2m]w2m_2
e =20 — 1 < 3 =l < ol 3o = 2—.
m=2 m=2
Therefore, it remains to prove Lemma 7.2. O

Proof of Lemma 7.2. In order to make things concrete, we first resolve the
special case when H = C and L = X - id¢ is a multiple of the identity map
(A>0). Then u : C — C is a smooth function. The fundamental solution



42 DONGHAO WANG

to the operator Ac + A is given by

1

K(2) = ()" = 52 VAl

where Kj is the modified Bessel function of the second kind. For > 0 (see
[AS64, p.377-378)),

:—ln(g)—’y—i-o(r)asr—)O,
T _, 1 9

~ — 11— — — i
ot g T T s e

where v /~ 0.577 is the Euler-Mascheroni constant. In particular,
e K)(z) € L*(C). Let My := [ |Kx(2)|dz. Then My = My/\.
e K (z) decays exponentially as |z| — oco. For any 0 < € < 1, there
exists C(e) > 0 such that for any r > 0,

1 Ci _(1—ova
[Kx(2)] = K7 (2)] < e 1movAn,
/|z|>r A Jjz1>var A

Let N, = max|,|>, |u(z)|/%. Property (U2) implies lim, ,o, N, = 0 and
for any fixed r, N, is achieved at some point zy with ro := |z9| > r. Let
p=1/q < 1. Since u solves the equation in (U1l), we have

(73)  No=luCo)lx = | /C () (k + h(w)) (20 — 2)dz]l
<| / () (k + h(w) (20 — 2)dz]ln
|z|<(1=p)ro

4l o Kx(2)(k + h(u))(20 — 2)dz|n
< M, max [k(2) + h(uw)(2)lln

|z|>p

+ SLe -0V i [K(2) + h(u) ()

< My(Me™P"0 + ONY. ) + Che~(1=VA1=PIr0

pro

<CYING 4+ Cye

where s; = min{sp, (1 — €)VA(1 — p)} and C3,C; > 0 are independent of
r. The inequality (7.3) implies that u has exponential decay, as we explain
now. Choose > 0 such that 2C3N, < 1. Using the relation p = ¢!, the
inequality (7.3) implies that for any n > 0,

Cgqun < (Cgqunfl)q + 05 . e—squn‘
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Let R = rq™. By induction, it is easy to show
CyNpgn < 20" THCN,)T" + fu( Cr)e™™"

where f,,(C5) is a constant that depends on Cs. Indeed, the base case when
n = 11is by (7.3) and assuming it holds for n > 1, then

C3Nygni1 < (C3Nypgn)? + Cs - 517"
< (2qnfl_1(C3Nr)qn + fn(C5) i e—s17’qn)q + 05 e SITq
< 2qn_1(03Nr)qn+l + fnt41(Cs) - e 51"

where we used the elementary inequality
at+b, al4d!
for a,b > 0 and ¢ > 1. Note that f, is determined by the recursion relation
f1(C5) = Cs, fny1(C5) = 297 f1(C5) + Cs.

This recursion will converge when 0 < C5 < 1. The limit is going to be
the first intersection of the line y = x and the curve y = 297129 4+ C5 in the
first quadrant. We can make C5 small by making s; smaller and choosing a
lager r to start with. Let £ = In(2C35N,.) < 0. Therefore, for some Cg > 0,

C3Ngi < (203N)q" +C6e—is < e(&/r)R +C6€_SIR.

In general, suppose 7¢" < R < rq"*! for some n € Z,. Let R’ = rq™.
Then,

n+1

n+1

O3Np < C3Np < e&/ME | Cge=s1 < E/rOR 4 Cpe=(s1/0R,

Remark. In order to make this proof work, it suffices to choose p such
that ¢~ < p < 1. The only reason to take p = ¢! above is to have a nice-
looking proof. It is hard to estimate the optimal exponent for u through
this iteration process. However, as long as it is known that u does have
exponential decay, one can run through the convolution process and figure
out the optimal exponent. The outcome is roughly:

(1 —¢) max min{sp, VA(1 —p)}.
g~ 1<p<l1

Finally, to work out the general case, we use functional calculus. If the
domain D(L) of L embeds compactly into #, then L has discrete spectrum.
In this case, let 0 < A; < Aj41 be eigenvalues of L and ¢; be their eigenvectors.
The fundamental solution of Ac + L can be described nicely as

Kp(z) =Y K (2)¢: @ ¢} € Hom(H, H).
i=1

In general, Ky (z) = fR K, (z)dE)y where E)’s are spectrum projections as-
sociated to L. It is clear that K (z) is a smooth family of operators on
C — {0} and

KL (2) [l < 1K, (2)]
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for any z # 0. Here, A1 is the first positive eigenvalue of L. The rest of the
proof proceeds as before. O

7.2. Power Law Decay. In general, if the polynomial map f is not a
product, the corresponding solution (A, o) to the monopole equation will
only have power law decay. This is proven by using a generalized version of
Lemma 7.2:

Lemma 7.3. Under the assumption of Lemma 7.2, if property (U}) is re-
placed by

(U4°) k: C — H is a continuous map such that for some M > 0, ||k(z)[|x <
M|z|~™ for any z € C.

Then for some M' >0, |lully < M'|2[~™ for any z € C.

Proof. 1t suffices to modify slightly the proof of Lemma 7.2. The convolution
process (7.3) will give us for any n > 1,

(7.4) C3Npgn < (C3Npgn-—1)? 4 Cs - (rq") ™.
By induction, we have
CsNpgn < 27" H(CaN)T" + fo(C5)(rg™) ™.

where f, is the same function defined in the proof of Lemma 7.2. The initial
step is automatic. For the induction step, note that

C3Npgni1 < (C3Npgn)? + Cs - (an+1)—m
< 2‘1"_1(C3NT,)qn+1 + 2q_1(fn(c5)(an)_m)q + C5(an+1)_m
< 2qvl_1(C«3Nr)qn+1 + fn+1(05)(rqn+1)—m

where we need the inequality that (rg")™™4 < (rq"*t1)=™. Tt is satisfied
when r > 0. Indeed, we take r > 1 such that

(g—DInr>Ing (>Ing+n(l—q)lng).

To make C5 small, we need to replace m by (1—¢€)m in (7.4) and choosing
a possibly larger r to start. Eventually, we get for some Cg > 0,

Ng < C«GR—(l—E)m

for any R > 0. This is not our final result yet. Take ¢ < 1 so that (1—¢)g > 1.
Let R =rq"™ in (7.4):

R
C3Np < (CgCG)q(E)_q(l_E)m +CsR ™ < CyR™™,
when R > 1. The proof of Theorem 7.3 is now accomplished. O

The next theorem is a reformulation of Theorem 7.4:
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Theorem 7.4. Let (By,7q) be a solution to the vortex equation (5.1). Let
f=7az +ag_127 4 ag 12T F 2T

be a polynomial map where a; € C,d—m+1 < i < d—1 are complex
numbers. Then the solution (A,c) = e* - (Ag,00) obtained in Theorem 5.1
converges to (Bo,vq) at the rate |z|™™ as |z| = o0, i.e., for any k > 2, there
exists M(k, Ag,00) > 0 such that for any z € C,

dk((VA(2),0(2)) = (Bo,va) < Mlz|™™.

Proof. Let fo = 2%4-ag_12% " 4ag_me124 ™1 Let o € C°(C,R) such
that (V,,n) := e - (d, fo) solves the vortex equation (7.2). Let (A1,01) =
e . (Ap,00) and @« = & — ap. By the same computation as in the proof of
Theorem 7.1, we have

(Ac + (As + [val*)a = h(a) + k

where h(a) = —1(e?® — 2a — 1)|o1|? and

k=g (U= [1P) + (hal ~ o) e+ 5)

Since 01 = 177q + €*°Yg—mz*"™ + - -+, it follows that
o1 = [val? = (0% = Dva* + 26 Re(nVa, Ya—mzd™™) + O(|2|7™71).

Note that e® ~ |z|~® as z — oco. This implies k(z) decays at the rate
|z|~™ at oco. Now we use lemma 7.3 to conclude. O

APPENDIX A. SOME ANALYTIC RESULTS

In this section, we review some analytic results that were used in Section
5 and Section 6.

In dimension 4, we have Sobolev embedding L2(R?) < L>°(R?) if k > 2.
In the borderline case when k = 2, we have

L3(RY) < LP(RY)

for any 2 < p < co. We will prove a weak version of Trudinger’s inequality.
For the proof of this paper, we will only need these propositions in the
special case when n = 2,4.

Proposition A.1 ([Tayll, Proposition 4.1]). There ezists Cy, > 0 such that
for any 2 <p < oo and u € Li/2(]R"),

]l 1o gny < CpM?

Hu”Li/Q(R”)'
Proposition A.2. For any u € Li/z(R”) and any 2 < p < oo,

e’ — 1€ LP(RM).
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Proof. By Taylor expansion, Stirling’s formula IrmM s e m < m! and
Proposition A.1 , we have

o0

1
e =1y < D7 —lu™ll, = Z HUH;”m < Z Cm (pm) m/2HUI!L2

m=1

eCnp /QIIUHLg/2
Sy

When m > 1, (eC’npl/2Hu||L2/2)/ml/2 < 1, so this series always converges.
U

Proposition A.3. The exponential map:

H:L},»(R") = L*(R"), H(u) =e"—1
is differentiable and Dy H(v) = ve™. In particular, H is continuous.
Proof. Let v € L2/2( ™). Since v,e* — 1 € L*(R"),

lvella = flo(e"” = 1) + vlla < [lvll2 + [|vllafle” — 1]l
This shows D, H (v) := ve" is a bounded linear map from L? /2 tO L2
It suffices to show
H(u+tv) — H(v) — tve® = e¥ - (e — 1 —tv) € O(?).

Using the same argument as above, it suffices to check ||e®’ —1—tv]|o, ||€?* —
1 —tv||4 € O(t?). This is evident from the proof of Proposition A.2. g
Proposition A.4. The exponential map H : L?Lﬂ(Rn) — L%(R") is weakly
continuous.
Proof. Since C°(R™) is dense in L?(R"), it suffices to show that for any
v € C°(R™) and any sequence

2
w—Ln/2

Up — Uo,

we have (H(ug),v) — (H(usx),v) as n — oo. The Sobolev embedding
Li/2 < LP is compact on Br := B(0,R) for any 2 < p < oo and R > 0.
This shows up — U in Lfoc. In addition, for any m > 1,

(A1) up’ ﬂ> us
Indeed, by Holder’s inequality,
p—1
= w2l 2 () = 1wk = veo) O k™ ) L2(8p)
=0 -
< luk = toollLasry P Ikl faon—n [tool]imt) -
m=0

< CH’LLk — uOOHL‘l(BR) — 0.
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In the last step, we used the fact that ||ugl| 2, and hence ||ug| rr are uni-

formly bounded for any fixed 2 < p < .
Finally, by the proof of Proposition A.2, for any ¢ > 0, we can find M > 0
such that for any k£ > 0,

N
e — 1 — Z Wumg < e.
m=1
Combining with (A.1), this implies (e“» — 1,v) — (e%>~ — 1). O

APPENDIX B. THE VORTEX EQUATION ON X

This appendix is based on Gracia-Prada’s paper [GP94].
For a complex line bundle L — X, let’s fix a hermitian metric and consider
the space of smooth unitary connections and the smooth connections:

C(E,L)=AxTI(X,L).
A configuration (A, ®) is called a vortex if it solves the vortex equation:

{*Mh+a@P—D:Q

(B.1) 04P = 0.

Each unitary connection A defines a holomorphic structure on L and the
second equation of (B.1) is saying ® is holomorphic with respect to A.
Consider a, f € I'(X,R). The formula

Yc(X)dg=u-e":C(E,L) - C(E,L)
(A, ®) — (A —utdu + i * do, ue®®)

defines complex gauge transformation on C(X, L), where u € Map(3, S*) and
a € T(X,R). This transformation is designed so that 9y(4)g(®) = (04 ®).

We obtain the space of gauge transformations ¥ (%) by setting v = 0.
The vortex equation (B.1) is invariant under the action of ¥(X).

Theorem B.1. Suppose 0 < deg L := ¢1(L)[X] < ﬁVol(E). Then for any
effective divisor D =Y n;z; with deg D = deg L, there is a unique solution
(A, ®@) to the equation (B.1) up to gauge such that Z(®) = D.

Given any effective divisor D = > n;z; with deg D = deg L := ¢1(L)[X], D
determines a holomorphic structure dp and a canonical holomorphic section
®( with respect to dp. The pair (Op, ®g) is unique up to the action of 4:(%).
We fix a representative (Op,®o). The Chern connection Ay is the unique
unitary connection on L such that 04, = V%’i = Jp. Our goal is to find
another configuration (A, ®) obtained from (Ag, ®¢) by applying an element
in 9c(X) such that the first of (B.1) is satisfied.

Since we are interested in solutions modulo gauge, we are free to set 8 = 0
and think of ¢ = e® as a conformal change on L. The curvature of A and
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the covariant derivative V 4® are transformed accordingly under g:
Faq— Fyq+idx*da
Va® = e*(V4® + 2(da)™’ ® ).

For (A, ®) = g(Ap, ®g), the second of (B.1) is satisfied. Let us define the
moment map by the formula

p: L3(3,R) — L*(Z,R)

o s %iF4 + %(|<1>|2 1) = Aa+ %|<1>0|2(62a 1)+ h
where h = %iFy, + £(|®|> — 1) € C*°(X) is a smooth background function.
It suffices to find « so that
(B.2) p(a) =0.

First, u is well-defined. By Sobolev embedding theorem, L3 < L* in
dimension 2 and hence e* — 1 € L®(X) «+ L2. Secondly, the solution to
equation (B.2), if exist, must be unique. Suppose we have p(a1) = p(ag) =
0, take v = a9 — ;1. Then we have

1
Ay + S|P (7 = 1) = p(az) = p(ar) = 0.

This implies:

1
0= / (7, A + 5[ @o[*e* (27 = 1))
)

1
= [19rP 45 [1mopen - 1)y

Terms in the second line are non-negative. This shows Vy =0 and v is a
constant function on ¥. Since z(e?* —1) =0 iff z =0, v = 0.

To establish the existence of the solution, we apply variational principle.
We define the energy functional:

(B.3) E:Li(Z,R) =R, a— %/E|u(a)|2.

This functional is well-defined on L%, but we will not use this space as
the variational space. For a solution to (B.2) to exist, we necessarily have

1 1 1
0< —/ |®g|%e? = /(— —1Fy) = zVol(¥) — 2mei (L) == ¢
2 /s 2 2

This explains the reason why equation (B.1) is subject to the solvability
condition ¢;(L) < 2=Vol(E). From now on, let’s fix this positive number

¢ > 0 and associate to ¢ a subset of L3(X):
1
(B.4) He=f{a e I3(5): | /Z @262 = c}.

Equivalently, an element « lies in H.. if and only if « € L3 and Js 1) = 0.
We will look for a minimizer of £(«) for a € H..
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In light of the decomposition L3(X) = H+ @R, where H= is the subspace
of L3 that is L?- orthogonal to constant functions, H,. can be viewed as a
graph over H'; indeed, for a« = ag + o1 with ag € R and oy € H+, o € H,
if and only if

1
(B.5) 20 — (—/ ’@0‘26201)_1 - C.
2 s
The crucial step to finding a minimizer of £ is an a priori estimate:

Theorem B.2. There is a function n: R — R such that for any C > 0 and
a € He with €(a) < C, |allz <n(C).

Proof. This is a consequence of the energy equation. The Bogomol'nyi trans-
formation allows us to write for any configuration (A, ®):

/22|5A<1>|2 g+ (1B~ D = an — Eup
where
Ean = /E |Fal” +|Va® + i(l —|®*)?, Eiop = /ZiFA = 2mer (L),
Let (A, ®) = e* - (Ap, Po). It follows that
(B.6) 28(a) = /2 |Aa + %iFa, |* + positive terms — E;p.

Since *iFy, is a smooth function on ¥, (B.6) implies
A2 < aC + b

for some a,b > 0. Suppose A1 is the first positive eigenvalue of A. Since
Aa = Aaq and «q is orthogonal to ker A, it follows that

1
laaflze < Sl Aall
1

Now we know ||a1|zz is controlled by n;(C) for some function 7. By the
solvability constraint (B.5), «q is determined by a7 and so ||«/|| 1z < n(C)
for some 7. O

Proof of Theorem B.1. Let a = infoepm, £(a). We can find a sequence of
elements «,, € H, such that £(a,) — a as n — oo. By Theorem B.2, L%—
norms of a;, are uniformly bounded, so we can find a converging subsequence
in weak L3-topology. Let us assume it is just the sequence itself and let
Qo € L3 be their limit. Since L3 — L% is compact, pu(an) — (o)
weakly in L? and as € H.. This shows £(as) < liminf (o) = a, so
E(ao) = a. Now Theorem B.1 will follow from a lemma. O

Lemma B.3. If a € H. is a critical point of E|m,, then u(a) = 0.
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Proof of Lemma. Let f = u(a). Any v € L3 subject to the constraint:

(B.7) / B[2e>y = 0,
b
lies in the tangent space T, H.. Since « is a critical point, it follows that
d
(B.8) 0= —li=of(a+17) = (f, Dap(7)),

where Do u(y) = Ay + €2¥|®¢|?7 is the linearized operator at a.
Lemma B.4. The linearized operator Dy is self-adjoint on L3(X).

Proof. Tt is clear that D,u is well-defined on L3 and it is symmetric. To
show it is self-adjoint, it suffices to prove show v € L? and D,u(y) € L?
imply v € L3. But this is trivial: €2¥|®q|> € L> implies e2¥|®|?y € L?, so
Ay € L2, O

Now Lemma B.4 and relation (B.8) imply f € L3 since f is in the domain
of the adjoint operator (D,u)*. Let f = fo + f1 with fo constant and f;
subject to constraint (B.7). We take v = f; in (B.8) and integration by
parts shows

0= [ldf |3 + /E 23| 2.

Therefore, fi = 0 and f = fj is a constant function on . On the other
hand, the constraint (B.4) shows

(B.9) Vol(S) - fo = /E f= /2 (@) = 0.
and hence f = fy = 0. O

Let us end this appendix by pointing out what will be modified if ¥ is
replace by C:

e There is no solvability constraint for the vortex equation on C. It is
easier to show for a critical point « of £, () has to be zero.

e Choosing a smaller variational space (B.4) is necessary for the proof
of Theorem B.2. In fact, if we worked with L%, Theorem B.2 would
be false since ap can be arbitrarily negative while p(a) remains
bounded. However, when it is C, L3 is the right space to work
with.

e The spectrum of Laplacian operator on C is continuous. In the
proof of Theorem B.2, we have used discreteness of the spectrum in
an essential way; we used the decomposition L2 = H-@R. On C, we
will apply a cut-off function on the frequency space and decompose
« into high-frequency and low-frequency parts.

e We will establish Theorem B.2 for Y = C (Theorem C.3) and X =
C x 3 (Theorem 5.4), but their proofs will be much harder. It is the
main technical issue when we apply variational principle.
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APPENDIX C. THE VORTEX EQUATION ON C

In this section, we will prove the existence of vortices on C. To start,
let Lo be the trivial line bundle on C with the product metric. Then the
polynomial

m
(I)O = H(Z — Zl)nl
i=1
is a holomorphic section that vanishes at z1,--- , 2z, € C with multiplicity

Ny s Mim-
The vortex equation on C is defined by same formula (B.1) for the trivial
line bundle Lg. For the setup, see Appendix B.

Theorem C.1. For any effective divisor D = > n,z;, there is a unique
solution (A, ®) to the equation (B.1) up to gauge such that Z(®) = D.

Proof. Note that (Ag = d, ®g) is not the solution that we look for: & ¢
L*(C). We choose a background conformal change. Set ag = — Y /" % log(1+
|z — 2;|?). Then we obtain

(Al,(I)l) = e%0. (AQ, (130) = (d+ *dao,H

i=1

(z —2z;)™ )
(1+ |z — 2z|2)m/2”

For (Aj,®;), the second equation of (B.1) is satisfied automatically. We
wish to find a further conformal transformation « so that the first equation
is satisfied for e* - (Ay,®;). This is equivalent to finding o € L3 so that
p(a) + h =0 where

p: L3(C) — L*(C),
1
a— Aa+ §|<I>1|2(e2a —1).

is the moment map and the term h := Aag + 5(|®1/* — 1) comes from
the background configuration (A, ®1). By Trudinger’s inequality (Theorem
A.2), p is well-defined and by direct computation, h € L%(C). Our goal is
to show p gives a bijection between L3(C) and L?(C). In particular, there
is a unique a € L3 such that u(a) = —h.

We start with the easy part of the proof. For any g € L?(C), define the
associated energy functional £, by the formula

1
&) = [ In(e) - of
C
which measures the L? distance between p(a) and g.

Lemma C.2. For any critical point o of €, we must have E4(a) = 0.

Proof. Let f = pu(a) — g. Since « is a critical point, for any v € L3(C),

(1) 0= Hli=0E(@ +17) = (£, Daps(1).
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Since Dyu(7y) = Ay + |®1]%€%* is self-adjoint on L3, (C.1) implies f € L2.
Then we plug v = f into (C.1). Integration by parts shows

0 = [laf|l3 + /C 1B, 262 2,

and f has to be zero everywhere. O

In light of Lemma C.2, it suffices to find a point « that realizes the infimum
of &,. To do this, we construct a minimizing sequence {ay,} C L3 such that
Eg(an) — inf E;. The hardest part of the proof is an a priori estimate, the
counterpart of Theorem B.2 and Theorem 5.4:

Theorem C.3. There is a function n: R — R such that for any C' > 0 and
o € L3(C) with E;(a) < C, we have lellzz < n(C).

Proof. Note that it suffices to prove this theorem for one special g and the
rest will follow by triangle inequality. We choose g = —h and write £ =& _,
for short. By Bogomol'nyi transformation, we have energy equation:

1
(C.2) 2&(a) = —2nd + / |Aa+ %iFa, |> + |VA® > + it e |d)?)?
C

where d = 7" n; is the degree of &g and (A, P) = e* - (A1, P1). Since
1 — |®1|%, xiF4, € L*(C), we know from (C.2) that

/\AaP / 202004 < aC + b

for some a,b > 0. It suffices to control ||a|2. We decompose C into two
parts

(C:AIHA%AI = {Z eC: OZ(Z) > —1,|(I)1|2 > 6}, As :Ai

Then
/||2< /|1—e )[4 22,

Since Z.(®1) := {|®1|*> < €} C C is compact, we take R > 0 such that
Z(®1) C B(0,R). Then

Area(4s\B(0.1) < =gz [ [0 — )P,
Now we are in the place to apply Lemma 6.4. O

Theorem C.3 allows us to find a weakly convergent subsequence among
{an}. Denote this limit by as. We know &£y(aeo) < limEy(ay,) = inf £, and
hence a is a critical point of £;. Now we use Lemma C.2 to conclude. [J

The proof of Theorem 5.4 is modeled on the proof above. It is much
harder to work with X = C x X due to some technical reasons:
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The L?-norm of Axa is not a term in the energy equation. We
worked very hard in Lemma 6.2 to show it is actually controlled by
the analytic energy.

In dimension 4, the thickened zero locus Z (o) = {|o1|?> < €} is
no longer a compact region. This is the reason why there are two
classes of points in the good set A7 in the proof of Theorem 5.4. For
the first class, o has large variation on the fiber. For the second, its

variation is small and hence o does not “see” the zero locus of o1 on
that fiber.
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