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ON FINITE ENERGY MONOPOLES ON C× Σ

DONGHAO WANG

Abstract. Let X = C × Σ be the product of the complex plane
and a compact Riemann surface. We establish a classification theo-
rem of solutions to the Seiberg-Witten equation on X with finite an-
alytic energy. The spin bundle S+

→ X splits as L+
⊕ L−. When

2− 2g ≤ c1(S
+)[Σ] < 0, the moduli space is in bijection with the mod-

uli space of pairs ((L+, ∂̄), f) where (L+, ∂̄) is a holomorphic structure
on L+ and f : C → H0(Σ, L+, ∂̄) is a polynomial map. Moreover, the
solution has analytic energy −4π2d · c1(S

+)[Σ] if f has degree d.
When c1(S

+) = 0, all solutions are reducible and the moduli space

is the space of flat connections on
∧2

S+.
We also estimate the decay rate at infinity for these solutions.
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1. Introduction

1.1. Motivation in Floer Homology. The purpose of this paper is to
give a complete classification of finite energy monopoles on X = C × Σ.
This classification problem arises naturally in the context of Floer theory of
3-manifolds with cylindrical ends.

The Seiberg-Witten Floer Homology is defined for arbitrary closed ori-
ented 3-manifold Y by Kronheimer-Mrowka in [KM07] and has greatly in-
fluenced the study of 3-dimensional topology. The underlying idea is to
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2 DONGHAO WANG

construct infinite dimensional Morse theory: solutions to the 3-dimensional
Seiberg-Witten equation on Y are critical points of the Chern-Simons-Dirac
functional L, and solutions to the 4-dimensional equation on R × Y are
viewed as negative gradient flowlines of L. We take the chain group to be
the free abelian group generated by critical points of L. Differentials are
given by counting numbers of flowlines that connect critical points with ad-
jacent indices. In order to make this picture work, suitable perturbations of
L are needed.

One reason to develop a relative version of Floer theory for 3-manifolds
with boundaries is to give a gluing formula for the absolute version, which
may facilitate computations in some cases. This version may also give topo-
logical applications in its own right. This goal is partly accomplished for Hee-
gaard Floer Homology, which was developed by Ozsváth and Szabó [OS04b]
as a symplectic geometric replacement for gauge theory. Their construc-
tion relies on Gromov’s theory of pseudo-holomorphic curves. Some gen-
eralizations for 3-manifolds with boundaries include Knot Floer Homology
[OS04a, Ras03] and Bordered Floer Homology [LOT08]. It is now known
that Heegaard Floer Homology and Seiberg-Witten Floer Homology are
equivalent [CGH10][KLT10]. However, the gauge theoretic counterparts of
Knot Floer Homology and Bordered Floer Homology are still missing.

Some attempts that avoid analytic technicalities have been made towards
this direction. In [KM10], the Seiberg-Witten Floer Homology were devel-
oped for balanced sutured 3-manifolds and a version of Knot Floer Homol-
ogy was defined. On the other hand, Nyugen [Ngu12, Ngu18] studied the
monopole equation on Y directly and developed analytic foundations for
constructing Floer theories with the Lagrangian boundary condition on Σ.

We shall now describe a more direct approach to this problem. Suppose we
wish to define Floer-theoretic invariants for a compact oriented 3-manifold
Y with boundary Σ. We allow Σ to have multiple connected components
(Σ1, · · · ,Σm). We attach cylindrical ends to Y and study the monopole
equation on Y ∗ = Y

∐

ΣR
≥0 × Σ. In this case, the moduli space of finite

energy solutions on Y is automatically compact and in general has positive
formal dimensions. It is also known that each solution will converge to a
vortex on Σi as it approaches infinity along each boundary end.

So far we do not know any means to produce invariants of Y out of this
picture. Suppose we go one step further and consider the moduli space of
finite energy monopoles on R×Y ∗, which is expected to produce differentials
and plays a role in the definition of Floer theory. We would hope this mod-
uli space has a nice compactification. However, for a sequence of solutions
on R × Y ∗, it is possible that some amount of energy escapes through the
cylindrical ends of Y ∗, which makes the moduli space non-compact. It is
believed that finite energy monopoles on X = C×Σ should serve as models
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for these escaping “bubbles” and contribute to correction terms in the defi-
nition of differentials. The purpose of this paper is then to give a complete
classification of these monopoles on X = C×Σ.

1.2. Statement of Main Results. Let X = C× Σ be the product of the
complex plane C and Σ, endowed with the product metric. On the complex
plane C, it is the standard Euclidean metric and Σ is any compact Riemann
surface with a Hermitian metric. Let g = g(Σ) be the genus of Σ. The main
result of this paper establishes a bijection between the moduli space of finite
energy monopoles and an object that is algebraic in nature.

Theorem 1.1. When 2 − 2g ≤ c1(S
+)[Σ] < 0, there is a bijection between

sets:

{solutions to the Seiberg-Witten equation (1.1) of finite energy}/G ↔
{(∂̄B , f) : f 6= 0 : C → H0(Σ, L+, ∂̄B) is a polynomial map}/GC(Σ).

Furthermore, for the finite energy monopole (A,Φ) that corresponds to (∂̄B , f),
its analytic energy Ean(A,Φ) equals −4π2d · c1(S+)[Σ] and the zero locus of
the spin section Z(Φ+) agrees with Z(f). Here, d = deg(f) is the degree of
f .

Fixing the degree d of f , the object on the right corresponds to the space of
divisors of the line bundle π∗

1O(d)⊗π∗
2L → CP

1×Σ that are nonzero at the
fiber at infinity {∞}×Σ, L allowed to vary for all holomorphic structures on
L+ → Σ. If in addition f 6= 0 for any z ∈ C, this is the space of holomorphic
maps of degree d from CP

1 to SymmΣ where m = c1(L
+)[Σ] ≥ 0.

To clarify our notations, recall that a spinc structure s on X is a pair
(S, ρ) where S = S+ ⊕ S− is the spin bundle, and the bundle map ρ :
T ∗X → Hom(S, S) defines the Clifford multiplication. An element (A,Φ) in
the configuration space C(X, s) consists of a smooth spinc connection A and

a smooth section Φ of S+. Let At be the induced connection on
∧2 S+ and

F+
At be the self-dual part of the curvature form FAt . The Seiberg-Witten

equation is defined on C(X, s) by the formula:

(1.1)

{

1
2ρ(F

+
At)− (ΦΦ∗)0 = 0,

D+
AΦ = 0.

where D+
A is the Dirac operator and (ΦΦ∗)0 is the traceless part of ΦΦ∗ as a

bundle map S+ → S+. This equation is also called the monopole equation
and solutions are called monopoles. We write F(A,Φ) for formulae on the
right and (1.1) is equivalent to F(A,Φ) = 0.

The gauge group G = Map(X,S1) acts naturally on C(X, s):

G ∋ u : C(X, s) → C(X, s), (A,Φ) 7→ (A− u−1du, uΦ).

The monopole equation (1.1) is invariant under gauge transformations.
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We are interested in the space of solutions to (1.1) modulo gauge assuming
finiteness of the analytic energy:

(1.2) Ean(A,Φ) =
∫

X

1

4
|FAt |2 + |∇AΦ|2 +

1

4
|Φ|4 + K

2
|Φ|2.

where K is the Gaussian curvature of Σ. This is the main object that
appears on the left hand side of the bijection in Theorem 1.1.

To justify the choice of Ean, recall that for a closed 4-manifold X, (A,Φ)
solves the monopole equation (1.1) if and only if it minimizes the analytic
energy; indeed, we have the energy formula

Ean(A,Φ)− Etop =

∫

X
|F(A,Φ)|2

where the topological energy Etop depends only on characteristic classes of
S+. A similar energy formula in the context of the non-compact manifold
X = C × Σ is proved in Lemma 5.3, where the topological energy Etop =
−4π2d · c1(S+)[Σ] and d is an integer. Therefore, a monopole on X is not
necessarily a global minimizer of the analytic energy, but it does minimize
Ean in a suitable smaller variational space.

To explain the second object in Theorem 1.1, let dvolC and dvolΣ denote
volume forms on C and Σ respectively. Since the symplectic form ω =
dvolC + dvolΣ on X is parallel, the spin bundle S+ splits as L+ ⊕ L−: they
are ∓2i eigenspace of ρ(ω). The spin section Φ then decomposes as (Φ+,Φ−)
with Φ± ∈ Γ(X,L±). The first observation is that finite energy monopoles
are in fact vortices on X:

Theorem 1.2. If there exists a smooth solution (A,Φ) to the monopole
equation (1.1) on X with Φ 6≡ 0 and Ean(A,Φ) < ∞, then 0 < |c1(S+)| ≤
2g − 2. In addition, if c1(S

+) > (resp. <) 0, then Φ+ (resp. Φ−) ≡ 0.

Here, c1(S
+) is the Chern class associated to S+. The same symbol is

used to denote the pairing c1(S
+)[Σ] ∈ Z. Reducible solutions occur only if

c1(S
+) = 0. The converse is also true:

Theorem 1.3. If c1(S
+) = 0, then Φ ≡ 0 and the induced connection At

on
∧2 S+ is flat.

Replacing the complex structure on X by its complex conjugate will inter-
change the bundlesL+ and L−. We focus on the case when 2−2g ≤ c1(S

+) <
0 and Φ− ≡ 0. Choose a holomorphic structure ∂̄B on L+ and let ∇B be the
Chern connection associated to ∂̄B . We say a map f : C → H0(Σ, L+, ∂̄B)
is a polynomial map of degree d if f is a polynomial function on C with
coefficients in H0(Σ, L+, ∂̄B). That is to say, we can find γi ∈ H0(Σ, L+, ∂̄B)
for 0 ≤ i ≤ d such that for any z ∈ C,

f(z) =

d
∑

i=0

γiz
i.
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The group of complex gauge transformations GC(Σ) = Map(Σ,C∗) acts on
the pair (∇B0 , f) by the formula:

GC(Σ) ∋ u = u1 · eα : (∇B0 , f) 7→ (∇B0 − u−1
1 du1 + i ∗ dα, u · f).

where α is real and u1 ∈ Map(Σ, S1). Therefore, the second object in
Theorem 1.1 is the quotient space of pairs (∂̄B , f) by complex gauge trans-
formations.

We also complexify the gauge group G and define its action on C(X, s)
by the same formula of GC(Σ). Then GC = G ×Conf(X) where Conf(X) =
Map(X,R+) corresponds to conformal transformations on S+. What is hid-
den behind the correspondence in Theorem 1.1 is that for any pair (∇B , f),
we can find a conformal transformation eα such that

(A,Φ+) = eα · (∇B +
∂

∂u
+

∂

∂v
, f)

is a finite energy monopole. This is also true in the opposite direction. For
precise statements, see Theorem 3.1 and Theorem 5.1.

To analyze the dynamics of (A,Φ) at infinity, define the configuration
space C(Σ, L+) in the same manner of C(X, s). Then any solution (B,σ) ∈
C(Σ, L+) to the vortex equation on Σ

(1.3)

{

i ∗ FB + 1
2K + 1

2 |σ|2 = 0
∂̄Bσ = 0

gives a solution to (1.1) on X. Indeed, one can pull back (B,σ) over C. This
corresponds to the case when deg(f) = 0 and Ean(A,Φ) = 0.

It is convenient to introduce the quotient space B(Σ, L+) = C(Σ, L+)/G (Σ).
For each k ≥ 2 define a metric on B(Σ, L+) by the formula

dk([a], [b]) := min
u∈G (Σ)

‖u · a− b‖L2
k(Σ)

where [a] and [b] denote equivalent classes of a, b ∈ C(Σ, L+).
When deg(f) = d > 0, by Bradlow’s theorem [Bra90], there is a solution

(B,σ) to (1.3) such that Z(σ) = Z(γd) where γd is the leading coefficient of
f . We know that dk((A,Φ

+)|{z}×Σ, (B,σ)) → 0 as z → ∞. The question is
what is the decay rate. Suppose

f = γd(z
d + ad−1z

d−1 + · · ·+ ad−m+1z
d−m+1) + γd−mzd−m + · · ·

where ad−i ∈ C are complex numbers and γd−m is the highest coefficient
that is not proportional to γd. In general, the zero locus Z(f)|{z}×Σ, as a
divisor on Σ, converges to Z(γd) at rate 1/|z|m. Therefore,

dk((A,Φ
+)|{z}×Σ, (B,σ))

can not decay faster than 1/|z|m+1. On the other hand, this decay rate
1/|z|m is also achieved:
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Theorem 1.4. Suppose the polynomial map f is given by

f = γd(z
d + ad−1z

d−1 + · · ·+ ad−m+1z
d−m+1) + γd−mzd−m + · · ·

and γd−m is not proportional to γd. For the monopole (A,Φ+) that corre-
sponds to (B0, f) and any k ≥ 2, there exists Ck > 0 such that for any
z ∈ C,

dk((A,Φ
+)|{z}×Σ, (B,σ)) ≤ Ck

|z|m .

In the generic case, γd−1 is not proportional to γd, so m = 1. Theorem
1.4 states that generically we will only have 1/|z| decay. The only chance to
obtain exponential decay is to let m = d. In this case, Z(f) does not change
among different fibers.

Theorem 1.5. Suppose f = γd ·f0 where f0 : C → C is a monic polynomial
of degree d. Then for the monopole (A,Φ+) that corresponds to (B0, f), there
exists s(k,B0, f) and C(k,B0, f) > 0 such that

dk((A,Φ
+)|{z}×Σ, (B,σ)) ≤ Ce−s|z|.

In particular, when c1(L
+)[Σ] = 0 or 1, solutions to the Seiberg-Witten

equation (1.1) have exponential decay.

Remark. The reason to pass to the quotient space B(Σ, L+) is to identify
(A,Φ+)|{z}×Σ with (A, eiθΦ+)|{z}×Σ for any eiθ ∈ S1. In fact, if we take
into account this argument, by imposing a proper gauge fixing condition for
(A,Φ+), we have for z = |z|eiθ ∈ C,

(A,Φ+)|{z}×Σ ∼ eiθd(B,σ)

as |z| → ∞ where d = deg f . But the decay rate of their difference would
depend on the gauge fixing condition.

In view of the previous subsection, we would expect some nice Floer
theories to be developed on Y ∗ when c1(L

+) = 0, 1. The first reason is
that in these cases, bubbles have exponential decay at infinity, as asserted
in Theorem 1.5.

The second reason is that we have a natural compactification for these
bubbles. Since a degree d polynomial on C is determined by its zero locus,
we only need a compactification for Symd

C modulo translations.
However, the situation is different when dimH0(Σ, L+, ∂̄B) ≥ 2. Let us

take γ1, γ2 ∈ H0 such that they are linearly independent. Let t ∈ C be a
complex number and consider the family of sections

ft(z) = γ1z + tγ2.

The sequence of monopoles that correspond to (A0, ft) does not have a good
limit in any naive sense. This sequence is constructed by rescaling the z-
coordinate on C, yet the rescaling process does not preserve the metric.

Therefore, there are several natural questions to be answered based on
our work:
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• What is the compactification of the moduli space of finite energy
monopoles on X in general, based on Theorem 1.1?

• How to compactify the moduli space of finite energy monopoles on
R × Y ∗? When Y = [0, 1] × Σ and Y ∗ = R × Σ, this question is
reduced to the previous one.

1.3. Connection to Previous Work. This is a good time to recall clas-
sification theorems in dimension 2 and draw a comparison. The classical
vortex equation on C was designed for a mathematical model of supercon-
ductors, also called the first order Ginzburg-Landau equation. Let L → C

be the trivial complex line bundle over C. A configuration (B, γ) ∈ C(C, L)
consists of a smooth unitary connection B and a smooth section γ of L. We
set K ≡ −1 in (1.3) and this term is no longer interpreted as the Gaussian
curvature:

(1.4)

{

∗iFB + 1
2 (|γ|2 − 1) = 0,

∂̄Bγ = 0.

The analogous correspondence, established by Taubes [Tau80] for Y = C,
states that

Theorem 1.6 ([Tau80, JT80]). There is a 1-1 correspondence between sets

{degree d polynomials on C}−{0}/C∗ ↔ {Vortices on C of energy πd}/G (C).

When Y = Σ is a compact Riemann surface, let L be a complex line
bundle over Σ of degree d := c1(L), with a Hermitian metric. In this case,
the equation (1.4) is subject to a solvability constraint and we have a similar
correspondence established by Bradlow [Bra90]:

Theorem 1.7 ([Bra90, Theorem 4.3]). When the solvability constraint 0 ≤
d < V ol(Σ)/4π is satisfied, there is a bijection between sets

{(∂̄B , f) : f 6= 0 ∈ H0(Y,L, ∂̄B)}/GC(Σ) ↔ {Vortices on Σ of energy πd}/G (Σ).

In both cases, sets on the left are identified with the space of effective
divisors of degree d and are isomorphic to Symd Σ and Symd

C respectively.
In fact, Bradlow [Bra90] defined the generalized vortex equation for any

closed Kähler manifold M and any Hermitian vector bundle En → M :
{

iΛFB + 1
2γ ⊗ γ∗ = 1

2IE ∈ End(E,E)
∂̄2
B = 0, ∂̄Bγ = 0.

where B ∈ A(E) is a unitary connection and γ ∈ Γ(M,E). The second and
the third equations state that ∂̄B is integrable and γ is holomorphic with
respect to B. In light of Theorem 1.2, Theorem 1.1 also gives a classification
for vortices on X = C×Σ when E is a line bundle. For details, see Section
2.2.

For both Theorem 1.6 and 1.7, backward maps are easier to define, while
constructing vortices out of holomorphic sections is hard. In [Bra90], Brad-
low proved the general existence of solutions using Kazdan-Warner’s the-
orem [KW74] for any closed Kähler manifold when dimE = 1. However,
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we do not have a direct generalization of this theorem for our non-compact
4-manifold X. Several different proofs [Bra91, GP93] to Theorem 1.7 were
found later. Finally, a direct gauge-theoretic proof was discovered by Garcia-
Prada [GP94] where variational principle was applied to the Yang-Mills-
Higgs functional. Appendix B contains a brief review of his approach. Many
of his insights have their roots in symplectic geometry, but we will not em-
phasis this perspective. Using his method, we will recover Taubes’ theorem
in Appendix C. In [Tau80], Taubes established his theorem using variational
principle on the Sobolev space L2

1(C). Since we will work with L2
2(C), our

proof will become simpler.
In fact, when Σ has constant Gaussian curvature K ≡ −1 and (L+, ∂̄) is

the trivial holomorphic line bundle over Σ, H0(Σ, L+, ∂̄) = C and we will
recover Taubes’ theorem from Theorem 1.1.

Finally, for vortices on C, there is an exponential decay result established
by Jaffe and Taubes:

Theorem 1.8 ([JT80], p.59, Theorem 1.4). Let (B, γ) be a smooth finite
energy solution of the vortex equation (1.4). Given any ǫ > 0, there exists
M = M(ǫ, (B, γ)) < ∞ such that

0 ≤ ∗iFB =
1

2
(1− |γ|2) < Me−(1−ǫ)|z|.

Our proof of Theorem 1.4 and Theorem 1.5 will rely on this result. Our
results, however, provide another perspective for Theorem 1.8: we have
exponential decay for vortices on C because for nonzero constant functions
on Σ, their zero loci do not change among different fibers (since they are
empty).

The same classification problem is also asked for the anti-self-dual connec-
tions on the trivial SU(2)-bundle over X. Wehrheim established an energy
identity in [Weh06]. She showed that the energy of an anti-self-dual con-
nection, if finite, must be an integer after suitable normalization. But a
classification result is still missing.

1.4. Strategy of Proof. This paper contains several independent proofs
and they could be read separately:

In Section 2, we will cover some preliminaries and prove the positivity of
the analytic energy Ean. This is not so obvious at the first glance because
the Gaussian curvature shows up in (1.2) and it is negative in general. As
an application, we will prove Theorem 1.2. In Section 2.2, we will summa-
rize some useful facts about the vortex equation on X, which will be the
foundation of subsequent sections.

In Section 3, we will establish the first part of Theorem 1.1: “Vortices⇒
Polynomials”. By the compactness Lemma 2.2 in Section 2, when a solution
(A,Φ) is restricted to fibers {z}×Σ, a subsequence will converge to a vortex
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on Σ. The main obstacle is to show that this limit is independent of sub-
sequences and hence (A,Φ)|{z}×Σ → (B0, γ) as z → ∞ for a fixed solution
(B, γ) to (1.3). For this part, we will borrow ideas from [Weh06].

Section 4 is devoted to the case when c1(S
+) = 0. It is a simple application

of maximum principle.
In section 5, we prove the second half of Theorem 1.1, “Polynomials⇒ Vor-

tices”, by following Garcia-Prada’s approach [GP94]. Our existence proof
of monopoles on X, to a large extent, is an enhanced version of Appendix
C. To find the correct conformal factor α, we start with an initial guess α0

so that

(A1,Φ1) := eα0 · (∇B0 +
∂

∂u
+

∂

∂v
, f).

has finite analytic energy. A second conformal factor α1 is applied to
minimize E(α1) := Ean(eα1 · (A1,Φ1)). The most technical part of the
proof is an a priori estimate which allows us to control L2

2 norm of α1 in
terms of E(α1). Thus, there is a weakly convergent subsequence in {αn} if
lim E(αn) = inf E(α). We will also establish the smoothness and uniqueness
of the solution.

Section 6 is devoted to the proof of the technical estimate. It is accom-
plished in two steps: using the energy equation to control ‖∆Xα‖2 and
estimating ‖α‖2 by decomposing α into high frequency and low frequency
modes. Since the dimension is higher, each step here is more technical than
the proof in Appendix C.

In Section 7, we establish the power law and exponential decay of finite
energy monopoles in different cases. We prove Theorem 1.4 and Theorem
1.5. The idea is to construct an approximating solution α0 using Theorem
1.8 and to show the correction term α1 = α − α0 has desired decay. Some
elementary PDE lemmas will be used here. In the simplest form, these
lemmas state that for a suitable function u ∈ C∞(R2,R) that satisfies

(∆R2 + 1)u(z) = k(z) + (h ◦ u)(z)

where h : R → R is a function such that |h(x)| < C|x|q for some q > 1 and
C > 0, the decay (power law or exponential) of the function k : R2 → R

will produce roughly the same decay for u. For details, see Lemma 7.2 and
Lemma 7.3.

Some analytic results are collected in Appendix A. We state a weak
version of Trudinger’s inequality that is used elsewhere in this paper.

Acknowledgments. I am extremely grateful to my advisor, TomMrowka,
for suggesting this project and for his invaluable support. I would like to
thank Ao Sun and Jianfeng Lin for helpful comments. This material is based
upon work supported by the National Science Foundation under Grant No.
1808794.
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2. Monopoles ⇔ Vortices

In this section, we establish some basic properties of finite energy monopoles.
In Section 2.1, we describe spinc structures on X and establish positiv-
ity of the analytic energy. We shall prove Theorem 1.2 which asserts that
monopoles of finite analytic energy on X = C × Σ are degenerate, in the
sense that either Φ+ ≡ 0 or Φ− ≡ 0. Once this reduction to vortices is
made, we will not work with spinc structure any longer. In Section 2.2, we
collect some useful facts about the vortex equation on X which form the
foundation of later sections.

2.1. Preliminaries. Since X = C × Σ is a complex manifold, it is en-
dowed with the complex orientation. The spinc structure of X can be
described concretely. The decomposition S+ = L+ ⊕ L− is parallel, so
any spinc connection A must split as

∇A =

(

∇A+ 0
0 ∇A−

)

.

Let z = u+iv be the coordinate function on C. The Clifford multiplication
ρ : T ∗X → Hom(S, S) can be constructed by setting:

ρ4(du) =

(

0 −id
id 0

)

, ρ4(dv) =

(

0 σ1
σ1 0

)

: S+ ⊕ S− → S+ ⊕ S−,

where σ1 =

(

i 0
0 −i

)

: S+ → S+ is the first Pauli matrix. The bundle L−

is isomorphic to L+ ⊗∧0,1 Σ and under this identification,

ρ3(w) := ρ4(du)
−1 · ρ4(w) =

(

0 −ι(
√
2w0,1) ·√

2w0,1 ⊗ · 0

)

: S+ → S+,

for any x ∈ Σ and w ∈ TxΣ.

We can regard L+ and L− as bundles on Σ and they pull back to the spin
bundle over X via the projection map X → Σ. Choose a unitary connection
B+ on L+ → Σ. Then the Levi-Civita connection on

∧0,1Σ and B+ induces

a unitary connection B− on the line bundle L− = L+ ⊗∧0,1 Σ. We obtain
a background connection A0 on S+ by the setting

∇A0 = ∇B0 +
d

du
+

d

dv

where B0 = (B+, B−) is the unitary connection on S+ → Σ. One can easily
check that A0 is a spin

c connection. Any other spinc connection A is differed
from A0 by an imaginary 1-form a ∈ Γ(X, iT ∗X). Their curvature tensors
are related by

FA = FA0 + da⊗ IdS .

Using the product structure onX, the covariant derivative∇A = (∇C
A,∇Σ

A)
is decomposed into C-direction part and Σ-direction part. The curvature
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tensor FA is decomposed accordingly as:

FA = FΣ
A + FC

A + Fm
A

where Fm
A is the mixed term. Similar decomposition applies to the induced

curvature form FAt on
∧2 S+ = L+ ⊗ L−:

FAt = FΣ
AtdvolΣ + FC

AtdvolC + Fm
At ,

where Fm
At ∈ Γ(X, iΩ1(C) ∧Ω1(Σ)). Our description of FA then shows

(2.1) Fm
A =

1

2
Fm
At ⊗ IdS .

and

(2.2) FΣ
A =

(

FΣ
A+

0

0 FΣ
A−

)

=

(

1
2F

Σ
At +

i
2K 0

0 1
2F

Σ
At − i

2K

)

.

In particular, we obtain that

(2.3) c1(S
+) = c1(Λ

2S+)[Σ] = 2(c1(L
+) + 1− g) = 2(c1(L

−)− 1 + g).

To establish Theorem 1.2, we need a more useful expression of Ean. The
following lemma establishes the positivity of the analytic energy:

Lemma 2.1. Over each fiber {z} × Σ, we have energy identity:
∫

Σ

1

4
|FAt |2 + |∇AΦ|2 +

1

4
|Φ|4 + K

2
|Φ|2 =

∫

Σ

1

4
|FC

At |2 +
1

4
|Fm

At |2 + |∇C
AΦ|2

+

∫

Σ
|Φ+|2|Φ−|2 + |DΣ

AΦ|2

+

∫

Σ

1

4
|iFΣ

At + |Φ+|2 − |Φ−|2|2.

where DΣ
A =

∑

i=1,2 ρ3(ei)∇A,ei is the Dirac operator on Σ. Here, {ei, e2} is
any orthonormal frame at some point p ∈ Σ.

In particular, Lemma 2.1 implies that the analytic energy (1.2) is always
a non-negative number.

Proof. The Dirac operator DΣ
A interchanges bundles L+ and L−. In other

words, we have

DΣ
A =

(

0 D−

D+ 0

)

.

Under the isomorphism L− ∼= L+ ⊗
∧0,1Σ and L+ ∼= L− ⊗

∧1,0 Σ, D+ and
D− are written as

D+ =
√
2∂̄A+

:=
√
2(∇A+)

0,1, D− =
√
2∂A−

:=
√
2(∇A−

)1,0.
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Therefore, it is sufficient to prove
∫

Σ
|D+Φ+|2 =

∫

Σ
|∇Σ

A+
Φ+|2 + 〈Φ, 1

2
(K − iFΣ

At)Φ〉,
∫

Σ
|D−Φ−|2 =

∫

Σ
|∇Σ

A−
Φ−|2 + 〈Φ, 1

2
(K + iFΣ

At)Φ〉.

By (2.2), FΣ
A+

= 1
2(F

Σ
At + iK) and FΣ

A−

= 1
2(F

Σ
At − iK). At this stage,

we apply Weitzenböck formulas: for any line bundle L → Σ, a unitary
connection B and a section σ ∈ C∞(Σ, L), we mush have

2

∫

Σ
|∂̄Bσ|2 =

∫

Σ
|∇Bσ|2 − 〈σ, iFBσ〉,

2

∫

Σ
|∂Bσ|2 =

∫

Σ
|∇Bσ|2 + 〈σ, iFBσ〉.

�

Lemma 2.2. If (A,Φ) is any smooth solution to ( 1.1) with Ean(A,Φ) < ∞,
there is a constant C = C(Ean(A,Φ)) > 0 such that for any z ∈ C,

∫

{z}×Σ
|Φ|2 < C.

Proof. This is a consequence of Lemma 2.1 and the classical compactness
theorem. Let n = (n1, n2) ∈ Z× Z ⊂ C. Then for (z, x) ∈ X ′ := B(0, 10) ×
Σ ⊂ X, set

(An,Φn)(z, x) := (A,Φ)(z − n, x).

Then (An,Φn) solves (1.1) on X ′. In light of Lemma 2.1,

Ean(An,Φn) :=

∫

X′

1

4
|FAn |2 + |∇AnΦ|2 +

1

4
|Φn|4 +

K

2
|Φn|2 ≤ Ean(A,Φ).

By [KM07, Theorem 5.1.1], after proper gauge transformations, a subse-
quence of (An,Φn) will converge in C∞-topology in the interior. This shows

‖Φn‖L∞(B(0,5)×Σ)

is uniformly bounded by some constant C > 0. It is clear that C can be
made to be independent of (A,Φ) and to depend only on E .

Finally, let (A∞,Φ∞) be the limit of this subsequence on B(0, 5) × Σ.
Then (A,Φ) solves equation (1.1) and its analytic energy is zero. By the
computation in Section 3, (A,Φ) is a constant family of vortices on B(0, 5).
In other words, up to a gauge transformation,

(A∞,Φ∞) = (∇Σ
A +

d

du
+

d

dv
, σ)

where the pair (∇Σ
A, σ) is independent of z ∈ C. This observation will be

useful later. In fact, it is the fundamental issue to be resolved in Section 3
that this limit is independent of the subsequence we choose. �
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Now we have the ammunition to attack Theorem 1.2. We start with a
weak statement.

Proposition 2.3. If (A,Φ) is any smooth solution to the monopole equation
(1.1) on X with Ean(A,Φ) < ∞, then either Φ+ ≡ 0 or Φ− ≡ 0.

Proof. Define a complex-valued function G on C by the formula

G(z) =

∫

{z}×Σ
〈D+Φ+,Φ−〉,

for any z ∈ C. We compute ∂̄G:

Lemma 2.4. There is an identity:

∂̄G(z) = −
∫

{z}×Σ
(|D+Φ+|2 + |D−Φ−|2 + |Φ+|2|Φ−|2).

In particular, ∂̄G is real and non-positive.

Proof. Let D
du and D

dv denote the covariant derivative ∇A, ∂
∂u

and ∇A, ∂
∂v

re-

spectively. The second equation of (1.1) implies

D

du
Φ+ σ1 ·

D

dv
Φ+DΣ

AΦ = 0.

In particular, this shows

(2.4) (
D

du
+ i

D

dv
)Φ+ = −D−Φ−, (

D

du
− i

D

dv
)Φ− = −D+Φ+.

Since D+ is the adjoint of D− as operators on L2(Σ), we have

∂̄G(z) = (
∂

∂u
+ i

∂

∂v
)

∫

{z}×Σ
〈D+Φ+,Φ−〉

=

∫

{z}×Σ
〈(D
du

+ i
D

dv
)D+Φ+,Φ−〉+

∫

{z}×Σ
〈D+Φ+, (

D

du
− i

D

dv
)Φ−〉

= −
∫

{z}×Σ
(|D+Φ+|2 + |D−Φ2

−|2) +
∫

{z}×Σ
〈[D
du

+ i
D

dv
,D+]Φ+,Φ−〉.
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By the formula DΣ
A = ρ3(ei)∇A,ei and (2.1), the commutator can be

computed as

(
D

du
− σ1

D

dv
)DΣ

A −DΣ
A(

D

du
+ σ1

D

dv
)

=
∑

i=1,2

ρ3(ei)[
D

du
,∇A,ei ]− σ1 · ρ3(ei)[

D

dv
,∇A,ei ]

=
∑

i=1,2

ρ3(ei)F
m
A (

∂

∂u
, ei)− σ1 · ρ3(ei)Fm

A (
∂

∂v
, ei)

=
1

2

∑

i=1,2

ρ3(ei)FAt(
∂

∂u
, ei)− σ1 · ρ3(ei)FAt(

∂

∂v
, ei)

= −1

2
ρ4(F

m
At)|S+ = −1

2
ρ4((F

m
At)+) = −(ΦΦ∗)Π.

At the last step, we used the first equation of (1.1). Here, Π denotes the
projection map from a 2 by 2 matrix to its off-diagonal part. Therefore,
∫

Σ
〈[D
du

+ i
D

dv
,D+]Φ+,Φ−〉 = −

∫

Σ
〈(Φ−Φ

∗
+)Φ+,Φ−〉 = −

∫

Σ
|Φ+|2|Φ−|2. �

Write G = X + iY with X,Y real. Then Lemma 2.4 implies

∂uX − ∂vY ≤ 0, ∂uY + ∂vX = 0.

Set K(z) =
∫ z
0 Xdu − Y dv. By the second equation, this integral is

independent of the path we choose. Therefore,

X = ∂uK,Y = −∂vK.

and

∆CK = (−∂2
u − ∂2

v )K = −∂̄G ≥ 0.

By Lemma 2.2 and the Cauchy-Schwartz inequality, we have

|∇K|2 = |G|2 ≤ ‖D+Φ+‖2L2(Σ)‖Φ−‖2L2(Σ) ≤ C∆K.

Our goal is to show K ≡ 0. Let Z(r) :=
∫

∂B(0,r)∆K ≥ 0. Then integra-

tion by parts shows

0 ≤ W (R) :=

∫ R

0
Z(r)dr =

∫

B(0,R)
∆K =

∣

∣

∣

∫

∂B(0,R)
~n · ∇K

∣

∣

∣

≤ (2πR)
1
2 (

∫

∂B(0,R)
|∇K|2) 1

2 ≤ (2πCR

∫

∂B(0,R)
∆K)

1
2 ≤ C2R

1
2Z(R)

1
2 .

Suppose W (r0) > 0 for some r0. Then for r > r0,

ln′(r) ≤ C3

(

− 1

W

)′
,

and hence for any r1 > r2 > r,

ln(r1)− ln(r2) ≤ C3

( 1

W (r2)
− 1

W (r1)

)

.
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Therefore, W (r) must blow up in finite time if W (r) 6≡ 0. Hence, ∆K ≡ 0
and

D+Φ+ ≡ 0, D−Φ− ≡ 0, |Φ+||Φ−| ≡ 0.

This shows over each fiber, Φ+ and Φ− are either holomorphic or anti-
holomorphic with respect to some connections. They have discrete zero
locus unless the whole section is zero. Therefore, either Φ+ or Φ− is zero
over that fiber. By (2.4), they are also holomorphic or anti-holomorphic on
C× {x} for any x ∈ Σ, so one of them is identically zero on X. �

To prove Theorem 1.2, it remains to verify that if any finite energy mono-
pole exists, then we have the constraint 0 < |c1(S+)| < 2g − 2 and the sign
of c1(S

+) will determine which of Φ+ and Φ− vanishes.

Proof of Theorem 1.2. In light of Lemma 2.2, a subsequence of (An,Φn) will
converge to (A∞,Φ∞) on B(0, 5) × Σ and the energy of this limit vanishes:
Ean(A∞,Φ∞) = 0. By Lemma 2.1, for this limit, we must have

iFΣ
At

∞

+ |Φ∞,+|2 − |Φ∞,−|2 ≡ 0.

If c1(S
+) < 0 and Φ+ ≡ 0, then integrating over Σ yields a contradiction:

0 ≥ −
∫

Σ
|Φ∞,−|2 = −

∫

Σ
iFΣ

At
∞

= −2πc1(S
+) > 0.

Therefore, c1(S
+) < 0 implies Φ− ≡ 0. Since D+Φ+,∞ ≡ 0 and this

section is nonzero, we must have c1(L
+) ≥ 0. By (2.3), this forces c1(S

+) ≥
2− 2g. The case when c1(S

+) > 0 is dealt with similarly. �

2.2. Vortices and the energy equation. From now on, we will assume
2−2g ≤ c1(S

+) < 0 and Φ− ≡ 0. For simplicity, we will change our notation.
Let L = L+ and σ = Φ+. We will use A to denote a unitary connection on

L and use Â for the induced spinc connection on S+ ∼= L ⊕ (L ⊗ ∧0,1 Σ).
Recall that the curvature form FA is divided into three parts:

FA = FΣ
A dvolΣ + FC

AdvolC + Fm
A

where Fm
A ∈ Γ(X, iΩ1(C) ∧ Ω1(Σ)) is the mixed term. Then the monopole

equation (1.1) is simplified as

(2.5a)

(2.5b)

(2.5c)

i(FΣ
A + FC

A ) +
1

2
K +

1

2
|σ|2 = 0,

∂̄Aσ = 0,

Fm
A ∈ Λ−(X).

This is precisely the vortex equation on X (compare [Bra90]). The last

equation (2.5c) is equivalent to ∂̄2
A = 0, or F 0,2

A = 0, i.e., ∂̄A is integrable.

Since ∇A = (∇C
A,∇Σ

A), the second equation (2.5b) is equivalent to two equa-
tions:

∂̄C
Aσ = 0 = ∂̄Σ

Aσ.
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By Lemma 2.1, for a smooth configuration (A, σ), its analytic energy is
given by the formula,

(2.6) Ean(A, σ) =
∫

X
|iFA +

1

2
KdvolΣ|2 + |∇Aσ|2 +

1

4
|σ|4 + K

2
|σ|2,

=

∫

X
|FC

A |2 + |Fm
A |2 + |∇C

Aσ|2 + 2|∂̄Σ
Aσ|2

+ |iFΣ
A +

1

2
K +

1

2
|σ|2|2.

The energy formula in below concerns the analytic energy on a compact
region Xr := B(0, r) × Σ ⊂ X. This is just the energy equation for the
Seiberg-Witten map (see [KM07, Proposition 4.5.2]), but this particular
expression will be convenient to use:

Lemma 2.5. Let F ′
A = FA − iK2 dvolΣ. Define

E(r) =
∫

Xr

|F ′
A|2 + |∇Aσ|2 +

1

4
|σ|4 + K

2
|σ|2.

Suppose the configuration (A, σ) satisfies (2.5b) and (2.5c), then

E(r) =
∫

Xr

|i(FΣ
A + FC

A ) +
1

2
K +

1

2
|σ|2|2 +

∫

∂Xr

〈σ,∇A,~nσ〉+
∫

Xr

F ′
A ∧ F ′

A.

Proof. We expand the bracket:

|i(FΣ
A + FC

A ) +
1

2
K +

1

2
|σ|2|2 = |iFΣ

A +
1

2
K +

1

2
|σ|2|2 + 2〈iFC

A ,
1

2
|σ|2〉

+ |FC
A |2 + 2〈iFC

A ,
1

2
K + iFΣ

A 〉.

Step 1. The Weitzenböck formula shows that over C:

(2.7) 0 = 2(∂̄C
A)

∗∂̄C
Aσ = (∇C

A)
∗∇C

Aσ − iFC
Aσ.

Take inner product with σ and do integration by parts:
∫

Xr

iFC
A |σ|2 =

∫

Xr

|∇C
Aσ|2 −

∫

∂Xr

〈σ,∇A,~nσ〉.

Step 2. Since Fm
A is imaginary and anti-self-dual, we have

∫

Xr

F ′
A ∧ F ′

A = 2

∫

Xr

FC
A (F

Σ
A − i

2
K)dvolX −

∫

Xr

Fm
A ∧ ∗Fm

A

= −2

∫

Xr

〈iFC
A , iFΣ

A +
1

2
K〉dvolX +

∫

Xr

|Fm
A |2.

Now we use Lemma 2.1 or formula (2.6) to conclude. �

For the rest of the paper, we will not work with spinc structures and the
Seiberg-Witten equation (1.1); at least, not in a direct way. Instead, the
equation (2.5) will become the main object of study.
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3. Vortices ⇒ Polynomials

It is the object of this section to show any smooth solution (A, σ) to
equation (2.5) with finite energy comes from a holomorphic line bundle L

and a polynomial map f provided that 0 ≤ c1(L) < g − 1. This proves one
direction of Theorem 1.1. First, we recall some definitions.

Let L = (L, ∂̄L ) be a holomorphic structure on L → Σ. Then H0(Σ,L )
is a complex vector space of finite dimension. The Chern connection on
L → Σ is the unique unitary connection B0 = ∇0 such that

∇0,1
0 = ∂̄L .

Note that L pulls back to a holomorphic line bundle on X. By abuse of
notation, we still denote it by L . A polynomial map f : C → H0(Σ,L )
is regarded as a holomorphic section σ0 of L → X by setting σ0(z, x) =
f(z)(x). The connection B0 also induces a unitary connection on X by the
formula:

∇A0 = ∇0 +
∂

∂u
+

∂

∂v
.

and ∂̄A0 = ∂̄L .
An element in the configuration space C(X,L) consists of a pair (A, σ)

where A is a smooth unitary connection of L and σ ∈ Γ(X,L) is a smooth
section. Thus, C(X,L) = A(X,L) × Γ(X,L). The gauge group GC(X) =
Map(X,C∗) = G (X)× Conf(X) acts on C(X,L) by the formula

(3.1) g = u · eα : (A, σ) 7→ (A+ i ∗C dCα+ i ∗Σ dΣα− u−1du, u · eασ).

for any α ∈ C∞(X,R) and u ∈ C∞(X,S1). Whenever a subscript C, Σ or X
is used, it denotes the operator on corresponding manifolds. For instance,
dC and ∗C denote the exterior differential and the Hodge ∗-operator on C.
The same holds for Σ.

When u ∈ G (X) the gauge action on A(X,L) is defined by pulling back
connections:

∇u(A) = u∇A(u
−1·).

But this is not the case when eα ∈ Conf(X). In fact, (3.1) is designed by
requiring two properties:

(1) u(A) is a unitary connection. In other words, u(A)−A is an imagi-
nary 1-form on X.

(2) ∂̄u(A)σ = u∂̄A(u
−1σ). That is to say, the (0, 1)-part of u(A) is the

pull back of the (0, 1)-part of A.

Under the action of Conf(X), the curvature form and the covariant deriv-
ative are changed by the formula:

(3.2) g = eα : FA 7→ FA − (i∆Cα)dvolC − (i∆Σα)dvolΣ + F−(α),

∇Aσ 7→ eα(∇Aσ + 2(dα)1,0 ⊗ σ).
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where F−(α) reflects the change of the mixed term (the Fm
A -part). It lies in

Λ−(X) ⊂ Λ2(X). Indeed,

F−(α) = i(− ∗C +∗Σ)dCdΣα
and ∗XF−(α) = −(∗C∗Σ)F−(α) = −F−(α). This shows that for any α ∈
Γ(X,C), if a configuration (A, σ) satisfies equations (2.5b) and (2.5c), so
does eα · (A, σ).

The main result of this section is the following theorem:

Theorem 3.1. Suppose 0 ≤ c1(L) < g − 1 and (A, σ) is any smooth so-
lution to (2.5) with finite analytic energy, then there is a complex gauge
transformation eα with α ∈ C∞(X,C) such that

eα · (A, σ) = (A0, σ0),

where (A0, σ0) is the configuration induced from some pair (L , f). The pair
(L , f) is unique up to complex gauge transformation on Σ.

The case when c1(L) = g − 1, i.e. c1(S
+) = 0 is dealt with in the next

section.

Proof. Write ∇A as

∇A = ∇Σ
B +

∂

∂u
+ hdu+

∂

∂v
+ gdv.

where for each z ∈ C, B(z) is a unitary connections on L → Σ and f, g ∈
C∞(X, iR) are smooth functions. Then

FA = FΣ
B dvolΣ + (

∂g

∂u
− ∂h

∂v
)du ∧ dv + du ∧ (

∂B

∂u
− dΣh) + dv ∧ (

∂B

∂v
− dΣg).

We start by analyzing the equation (2.5c). In light of the decomposition
above, this equation is equivalent to

(3.3) (
∂

∂u
+ ∗Σ

∂

∂v
)B = dΣh+ ∗ΣdΣg.

Suppose a background unitary connection B0 on L is chosen. Then in
terms of Hodge decomposition, we have

B(z)−B0 = b1(z) + bh(z) + b2(z)

where b1, bh and b2 are imaginary exact, harmonic and co-exact 1-forms on
Σ respectively. We impose the following gauge fixing condition:

(3.4) b1 ≡ 0.

This can be achieved since b1(z) = idΣβ(z) for a unique function β(z) ∈
(ker∆Σ)

⊥ where ∆Σ is the Hodge Laplacian operator on Σ and (ker∆Σ)
⊥

denotes the L2-orthogonal complement of the kernel. The function β ∈
C∞(X,R) is smooth since b1 is. Then we can work instead with eiβ · (A, σ).
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Suppose the gauge fixing condition (3.4) has been imposed. Equation
(3.3) implies

(
∂

∂u
+ ∗Σ

∂

∂v
)bh = 0

On the other hand, by identity (2.6),

‖∇bh‖2L2(C) ≤ ‖Fm
A ‖2L2(X) ≤ Ean(A, σ) < ∞.

This shows that the function bh : C → (H1(Σ, iR), ∗Σ) is holomorphic
and its derivative lies in L2(C). Therefore, bh is a constant function on C.
By changing the background connection, we assume bh ≡ 0.

Now it remains to analyze b2. We know b2(z) = −i∗Σ dΣα(z) for a unique
function α(z) ∈ (ker∆Σ)

⊥. The function α ∈ C∞(X,R) is smooth. By
comparing exact and co-exact parts of the equation (3.3), we have

dΣ(
∂

∂u
iα+ g) = 0, dΣ(

∂

∂v
iα− h) = 0.

This shows

(3.5) ∇A = ∇B +
∂

∂u
+

∂

∂v
− i ∗C dCα+ ω.

for some imaginary 1-form ω ∈ Γ(C, iT ∗
C). Let (A′, σ′) = eα · (A, σ). By

(3.1), we have

∇A′ = ∇0 +
∂

∂u
+

∂

∂v
+ ω

Let ∇ω = ∇C

A′ . Then the equation (2.5b) implies ∂̄B0σ
′(z) = 0 for each

z ∈ C. Thus, we obtain a map

f ′ : C → H0(Σ, L, ∂̄B0)

and ∂̄ωf
′ ≡ 0 by (2.5b).

At this moment, it suffices to show that we can eliminate ω by applying
a further conformal transformation and obtain (∇ω, f

′) from the trivial con-
nection and a polynomial map. However, it is hard to do this directly. The
main obstacle is to verify the following property:

Lemma 3.2. There exists a section v 6= 0 ∈ H0(Σ,L , ∂̄B0), a positive
number c > 0 and a sequence of numbers rn+1 > rn > 0 with limn→∞ rn = 0
such that f1 = 〈f ′, v〉 has finitely many zeros on C and |f1(z)| > c for any
z ∈ ∂B(0, rn).

This lemma is hard because we need to connect the finiteness of zeros of
f1 with the finiteness of Ean. It is not clear to the author whether there is
a clean and straightforward solution. In fact, by (2.6), the finiteness of Ean
implies Fω, ∂ωf

′ ∈ L2(C).

Question 3.3. Suppose d + ω is a unitary connection of the trivial line
bundle on C and f ′ : C → C

n is a holomorphic section with respect to
ω, i.e. ∂̄ωf

′ = 0. If Fω,∇ωf
′ ∈ L2(C), then there exists a real valued
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function α ∈ Γ(X,R) such that eα · (∇ω, f
′) = (d, f0) where d is the exterior

differential and f0 is a polynomial map.

The author does not know if this question could be answered by us-
ing complex analysis of one variable. Lemma 3.2 is easily proven when
dimH0(Σ,L , ∂̄B0) = 1 since in this case the vortex moduli space is a single
point and we conclude by the compactness argument used in Lemma 2.2.

We shall prove Theorem 3.1 assuming Lemma 3.2. The proof of Lemma
3.2 is postponed to the end of section. The following lemma is a direct
consequence of the proof of Lemma 2.2:

Lemma 3.4. The sections α, σ ∈ L∞
k (X) for any k ≥ 0. In particular,

f ′ ∈ L∞(C).

Take a complex gauge transformation u = eα1+iβ1 with α1, β1 ∈ C∞(C,R).
Consider u · (ω, f1). The connection form ω is changed into

ω + i(∗CdCα1 − dCβ1).

To make it zero, we need to solve the equation

(3.6) ∂̄(α1 + iβ1) = ω0,1.

In general, this equation can not be solved on C. But the ∂̄-Poincaré
lemma says that we can alway solve it on B(0, 2R) for any R > 0. Suppose
u1 is such a solution on B(0, 2R). Then η1 := u1 · f1 is holomorphic on
B(0, R) and the zero locus Z(f) = Z(η1) is discrete on B(0, R). Since R is
arbitrary, Z(f1) is discrete. By Lemma 3.2, Z(f1) is also finite, so it lies in
a compact region of C. Set

f2 =
∏

zi∈Z(f)

(z − zi).

The function u := f1/f2 is non-vanishing on C and ∂̄ωu = 0. Since C is
simply connected, u = eζ for some smooth ζ : C → C. Then

∂̄u+ ω0,1u = 0 ⇒ ∂̄(−ζ) = ω0,1.

This shows ζ is a global solution to the equation (3.6). Since on each
circle ∂B(0, rn), |f1| > c > 0, we can find C > 0 such that

|e−ζ(z)| = |f2/f1| < C|z|d

for any n and z ∈ |∂B(0, rn)|.
Now consider (d, η) := e−ζ(∇ω, f

′). Then ∂̄η = 0. By Lemma 3.4, f1 ∈
L∞(C). Thus,

(3.7) |η(z)| < C1|z|d

for any n and z ∈ ∂B(0, rn). Apply maximal principle to η/zd on the
annulus B(0, rn+1)\B(0, rn). We conclude that η/zd is uniformly bounded
when |z| > r1. Hence, η/z

d extends to ∞ and η is a polynomial map. This
completes the proof of Theorem 3.1. �
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Now we turn to the proof of Lemma 3.2. We start with a lemma that
generalizes the classical theorem in complex analysis:

Lemma 3.5. Suppose d+ω is a unitary connection on the trivial line bundle
on C and a complex-value function f : C → C is a holomorphic with respect
to ω, i.e, ∂̄ωf = (df + ω ⊗ f)0,1 = 0. If f is non-vanishing on |z| = R, then

#{z ∈ B(0, R) : f(z) = 0} =
1

2πi

∫

|z|=R

∇ωf

f
− ω.

Proof. The ∂̄-Poincaré lemma allows us to find a complex gauge transforma-
tion u such that η = u · f is holomorphic on B(2R, 0). Then η and f have
the same zero locus Z(η) = Z(f). Because the 1-form udu−1 is closed on
B(0, R), we have,

1

2πi

∫

|z|=R

∇ωf

f
− w =

1

2πi

∫

|z|=R

df

f
=

1

2πi

∫

|z|=R

dη

η
+ udu−1

=
1

2πi

∫

|z|=R

∂η

η
= #Z(f) ∩B(0, R).

�

From now on, we borrow ideas from Wehrheim’s paper [Weh06]. We use
the polar coordinate (r, θ) on C. Write ∇A as

∇A = ∇B + (
∂

∂r
+ h)⊗ dr + (

1

r

∂

∂θ
+ g)⊗ rdθ.

and we compute its curvature form,

FA = FBdvolΣ + FC
AdvolC + dr ∧ (

∂B

∂r
− dΣh) + rdθ ∧ (

1

r

∂B

∂θ
− dΣg).

If we regard (A, σ) as configuration on R × S1 × Σ and ignore the dr
component of ∇A, we get a family of configurations on Y = S1 ×Σ. Let us
denote them by (Ar, σr). Then

∇Σ
Ar

|(θ,x) = ∇B(r,θ,x), ∇θ
Ar

|(θ,x) =
∂

∂θ
+ rgdθ, σr(θ, x) = σ(r, θ, x).

If we decompose FAr into its Σ-part and its mixed part, we obtain

FΣ
Ar

(θ) = FB(r,θ,x), F 1
Ar

= dθ ∧ (
∂B

∂θ
− rdΣg).

Note there are two different metrics on R×Y . One is the product metric,
the other is induced from polar coordinates. Whenever the symbol Y is used,
we indicate the first metric, while the second is used implicitly for ∂Xr. For
any r > 0, define T (r) by the formula:

∫

∂Xr

r|Fm
A |2 + r|∇C

Aσ|2 + 2|∂̄Σ
Aσ|2 + |iFΣ

A +
1

2
K +

1

2
|σ|2|2.
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Note that T (r) controls the analytic energy of (Ar, σr) on Y when r > 1.
Indeed,

Ean(Ar, σr) : =

∫

Y
|F 1

Ar
|2 + |∇θ

Ar
σ|2 + 2|∂̄Σ

Ar
σr|2 + |iFΣ

Ar
+

1

2
K +

1

2
|σr|2|2

≤
∫

∂Xr

r|Fm
A |2 + r|∇C

Aσ|2 +
2

r
|∂̄Σ

Aσ|2 +
1

r
|iFΣ

A +
1

2
K +

1

2
|σ|2|2

≤ T (r).

In addition, for r > 1,

Ean(A, σ) =
∫ ∞

0

d

dr
E(r) ≥

∫ ∞

1

1

r
T (r).

This implies

Lemma 3.6. There exists a sequence of numbers rn > 1 such that limn→∞ rn =
∞ and limn→∞ T (rn) = 0.

Recall that F ′
A = FA − iK2 dvolΣ. Let a = A− A0. Then F ′

A = F ′
A0

+ da.

Since ∇A,~nσ = −i/r · ∇A,∂θσ and F ′
A0

contains only dvolΣ component, by
Lemma 2.5:

E(r) = −1

r

∫

∂Xr

〈σ, i∇A,∂θσ〉+
∫

Xr

F ′
A ∧ F ′

A −
∫

Xr

F ′
A0

∧ F ′
A0

=

∫

Y
−〈σr, i∇θ

Ar
σr〉+ a ∧ (2F ′

A0
+ da).

Note that

a = −i ∗C dCα− i ∗Σ dΣα+ ω.

Let ar = a|∂Xr , ωr = ω|∂B(0,r) and ω̄(r) =
∫

S1 ωr. For each configuration
(Ar, σr) on Y , we apply the gauge fixing condition:

(3.8) ωr = ω̄(r)dθ

This can be achieved since ωr − ω̄(r) = dβr for some βr ∈ Γ(S1, iR)
and we can work with eβr · (Ar, σr) instead. Note that (3.4) and (3.8) are
different from the Coulomb gauge fixing condition on Y . In terms of the
Hodge decomposition of Ω1(Y, iR), write

ar − ωr = a1r + ahr + a2r

where a1r , a
h
r and a2r are exact, harmonic and co-exact parts of ar − ωr re-

spectively. Since pull-backs from S1 or Σ generate the space of harmonic
1-forms on Y , ahr = 0. The exact component a1r is nonzero in general. By
the gauge fixing condition (3.8), we have

∫

Y
a ∧ (2F ′

A0
+ da) = −4π2ic1(S

+)ω̄(r) +H(a2r).
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Here, H(a2r) is a function that involves α only. Indeed,

H(a2r) =

∫

Xr

(−i ∗C dCα) ∧ (2F ′
A0

+ 2i∆ΣαdvolΣ).

It depends only on the co-exact component a2r and is continuous with respect
to L2

1/2(Y, iΩ
1(Y ))-topology.

Since Ean(Arn , σrn) ≤ T (rn) → 0, we have

‖(a2rn , σrn)‖L1
2(Y ) < C

for some uniform C > 0. See [KM07, Theorem 5.5.1] for a proof for
4-dimensional equations. By passing to a subsequence, we may assume
(a2rn , σrn) converge weakly in L2

1. Therefore, the sequence

E(rn) + 4π2ic1(S)ω̄(rn) = H(a2rn)−
∫

Y
〈σr, i∇θ

Ar
σr〉

converges. Since E(r) has a limit as r → ∞, lim ω̄(rn) exists. This implies
that for some proper gauge transformations eβn and an L2

1-configuration
(A∞, σ∞) on Y ,

(3.9) eβn(Arn , σrn)
w−L2

1−−−−→ (A∞, σ∞)

and Ean(A∞, σ∞) = 0. Thus, for some m ∈ Z,

(3.10) A∞ =
∂

∂θ
+B′

0 − imdθ, σ∞ = eimθ · γ

and (B′
0, γ) is a vortex on Σ, i.e. this pair solves the vortex equation (1.3).

At this moment, we do not know eβnσrn → σ∞ in L∞-norm since in
dimension 3, L2

1 6 →֒ L∞. We only need a weaker result and it is almost there.
We examine the exact part of ar − ωr more carefully:

Lemma 3.7. ‖a1rn‖L2(Y ) → 0 as rn → ∞.

Proof. The exact part of ar − ωr arises form −i ∗C dCα|∂Xr . Indeed,

δY (−i ∗Σ dΣα) = 0

where δY is the formal adjoint of the exterior differential dY . Therefore,
∫

Y
|a1r |2 ≤ r

∫

∂Xr

| − i ∗C dCα|2 ≤ rλ−1
1

∫

∂Xr

|dCdΣα|2

where we used the fact that α(z) ∈ (ker∆Σ)
⊥ and λ1 is the first positive

eigenvalue of ∆Σ. On the other hand, since Fm
A = i(∗C − ∗Σ)dCdΣα,

1

r
T (r) ≥

∫

∂Xr

|Fm
A |2 = 2

∫

∂Xr

|dCdΣα|2.

The last equality follows from the fact that over each fiber {z}×Σ, ∗CdCdΣα
is an exact form while ∗ΣdCdΣα is co-exact, so they are orthogonal.

Finally, T (rn) → 0 implies ‖a1rn‖L2(Y ) → 0. �

Now we are ready to prove Lemma 3.2.
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Proof of Lemma 3.2. We take βn ∈ (ker∆Y )
⊥ such that dY βn = a1r. By

Lemma 3.7, ‖βn‖L2
1(Y ) → 0 as n → ∞. This shows that gauge fixing con-

ditions (3.4) and (3.8) are satisfied for the limit (A∞, σ∞), so (3.10) holds
without further gauge transformations. Let

ln(θ) =

∫

{θ}×Σ
〈eβnσrn , σ∞〉, l′n(θ) =

∫

{θ}×Σ
〈σrn , σ∞〉,

then ln, l
′
n ∈ L2

1(S
1). Moreover, ln(θ) converges to the constant function

‖γ‖2L2(Σ) in L∞(S1)-topology. Since βn is imaginary, |eβn − 1| ≤ C|βn| for
some C > 0. Thus,

(3.11) ‖ln − l′n‖L3/2
1 (S1)

≤ C1‖βn‖L2
1(Y ) → 0.

Indeed, by Lemma 3.4, σ ∈ L∞(X) and σ∞ ∈ L∞(Y ), so

|ln(θ)− l′n(θ)| = |
∫

{θ}×Σ
〈(eβn − 1)σrn , σ∞〉| ≤ C

∫

{θ}×Σ
|βn|.

To deal with the derivative, note that d
dθ (ln − l′n) is bounded by

|
∫

{θ}×Σ
〈dβn
dθ

eβnσrn , σ∞〉|+ |
∫

{θ}×Σ
〈(e−βn − 1)

d

dθ
(eβnσrn), σ∞〉|

The first term is controlled in the same way. For the second, we use the
multiplicative structure L6 × L2 →֒ L3/2 and Sobolev embedding theorem
L2
1 →֒ L6 in dimension 3. This proves estimate (3.11).
By the gauge fixing condition (3.4), B′

0 − B0 is a co-exact 1-form on Σ.
Then B′

0 − B0 = −i ∗Σ dΣα∞ for a unique function α∞ ∈ (ker∆)⊥. Let
v = eα∞σ∞. Then ∂̄B0v = 0. Recall that σ′

r = eασr and for any z ∈ C,

f1(z) =

∫

{z}×Σ
〈σ′

r, v〉.

By Lemma 3.4, α ∈ L∞(X). Since α∞ ∈ L∞(Σ), for any z = rne
iθ ∈ C,

|f1(z)| ≥ c2|l′n(θ)|.
This implies that when n ≫ 0, |f1(rneiθ)| > c for some c > 0, since the

same holds for ln(θ) and l′n(θ).

Finally, we need to verify that f1 has finitely many zeros. We apply
Lemma 3.5 and give an upper bound for that integral. The contribution
from the connection form is settled since it is just ω̄rn and lim ω̄rn exists.
Since |f1| > c, for r = rn,

|
∫

∂B(0,r)
∇ωf1/f1| ≤

1

c

∫

S1

|∇θ
ωr
f1| ≤

C

c
‖∇θ

ωr
σ′
r‖L2(Y ).

It is sufficient to estimate ‖∇ωrσ
′
r‖2. By (3.2),

∇ωσ
′ = eα(∇C

Aσ + 2(dCα)
1,0 ⊗ σ).
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By Lemma 3.4, α, σ ∈ L∞(X). It suffices to estimate the L2-norms of ∇C
Aσ

and dCα. For the first term,
∫

Y
|∇θ

Ar
σr|2 ≤

∫

∂Xr

r|∇C
Aσ|2 ≤ T (r).

For the second, it was done in proof of Lemma 3.7. This completes the proof
of Lemma 3.2 �

4. When c1(S
+) = 0

In this section, we discuss the case when c1(S
+) = 0 and prove Theo-

rem 1.3. In this case, finite energy monopoles are necessarily reducible and
they are identified with the moduli space of flat connections on

∧2 S+. We
reformulate the result in terms of the vortex equation:

Theorem 4.1. Any finite energy solution (A, σ) to the equation (2.5) is

reducible, i.e., σ ≡ 0 on X. In addition, Â, the induced connection on
∧2 S+, is flat.

Proof. We shall use notations from the last section. Since c1(S
+) = 0, we

can choose a background connection B0 on Σ such that iFB0 +
1
2K ≡ 0 and,

after imposing the gauge fixing condition (3.4), the connection A is given by

∇A = ∇0 +
∂

∂u
+

∂

∂v
− i ∗C dCα− i ∗Σ dΣα+ ω.

for some smooth function α ∈ C∞(X) with
∫

Σ α(z, ·) = 0 on each fiber.

Here, ω ∈ Γ(C, iT ∗
C) is an imaginary 1-form. Therefore, FC

A = Fω + i∆Cα.
Integrating equation (2.5a) over each fiber, we obtain

0 =

∫

Σ
iFC

A +

∫

Σ
(iFΣ

A +
1

2
K) +

1

2

∫

Σ
|σ|2 = iV ol(Σ)Fω + πc1(S

+) +
1

2

∫

Σ
|σ|2

= iV ol(Σ)Fω +
1

2

∫

Σ
|σ|2.

This shows iFω ≤ 0. Let (A′, σ′) = eα · (A, σ) and set T (z) :=
∫

{z}×Σ |σ′|2.
By the proof of Lemma 2.2, we have

T (z), α → 0

as z → ∞. Indeed, for a solution (A, σ) on X5 = B(0, 5)×Σ of the equation
(2.5) with zero analytic energy, we necessarily have σ ≡ 0 and α ≡ 0 since
c1(S

+) = 0. In particular, T ∈ L∞(C) is a bounded function.

Since ∇C

A′ = ∇ω and ∂̄ωσ
′ = 0, by Weitzenböck formula (2.7),

∆CT = −2

∫

Σ
|∇ωσ

′|2 + 〈∇∗
ω∇ωσ

′, σ′〉 ≤ 2

∫

Σ
〈iFωσ

′, σ′〉 ≤ 0.

Therefore, T is a bounded subharmonic function on C, so T is constant.
Because limz→∞ T (z) = 0, T ≡ 0. It follows that Fω ≡ 0.



26 DONGHAO WANG

Finally, equation (2.5a) shows that −∆Xα ≡ 0, so α cannot attain its
maximum or minimum in the interior of any bounded domain. But α → 0
as z → ∞. Thus, α ≡ 0 and Â is flat. �

5. Polynomials ⇒ Vortices

So far, we have not seen any smooth solution to equation (1.1) or (2.5) on
X = C× Σ that has nonzero energy. In Section 5.1, we take up the task of
constructing solutions. Starting with a polynomial map f : C → H0(Σ,L ),
we produce a vortex (A, σ) such that Z(σ) = Z(f). This solution exists,
a priori, in the Fréchet space L2

2,loc(X), but we will show it is smooth and
unique in Section 5.2. There is a tedious a priori estimate that appears in
variational principle and we postpone its proof to the next section.

5.1. Existence of solutions. Let us recall some setup from the previous
section. Let L = (L, ∂̄L ) be a holomorphic structure on L → Σ and let
f : C → H0(Σ,L ) be a nonzero polynomial map of degree d. This means
there are some global sections γi ∈ H0(Σ,L ), 0 ≤ i ≤ d with γd 6= 0 such
that

f(z) =

d
∑

i=0

γiz
i

for any z ∈ C. Suppose a Hermitian metric h on L is fixed. The Chern
connection on L is the unique unitary connection B0 = ∇0 such that

∇0,1
0 = ∂̄L .

We impose an extra condition on the pair (B0 = ∇0, γd): this configura-
tion solves the vortex equation (1.3) on Σ:

(5.1)

{

∗iFB + 1
2K + 1

2 |σ|2 = 0,
∂̄Bσ = 0.

This can be achieved by applying an element in GC(Σ) since the solvability
constraint

0 > πc1(S
+) =

∫

Σ
iFB +

1

2
KdvolC

is satisfied. For a proof, see [Bra90, Theorem 4.3], [GP94, Theorem] or
Theorem B.1.

The line bundle L pulls back to a holomorphic line bundle on X = C×Σ
and f is regarded as a section on X by setting σ0(z, x) = f(z)(x). The
connection B0 induces on X a unitary connection:

∇A0 = ∇0 +
∂

∂u
+

∂

∂v
.

The conformal transformation is defined on the configuration space C(X,L)
by the formula:

(5.2) g = eα : (A, σ) 7→ (A+ i ∗C dCα+ i ∗Σ dΣα, e
ασ).



ON FINITE ENERGY MONOPOLES ON C×Σ 27

The curvature and covariant derivative are transformed accordingly:

(5.3) g = eα : FA 7→ FA − i∆CαdvolC − i∆ΣαdvolΣ + F−(α)

∇Aσ 7→ eα(∇Aσ + 2(dα)1,0 ⊗ σ)

where F−(α) reflects the change of the mixed term (the Fm
A -part) and it lies

in Λ−(X) ⊂ Λ2(X). Note that for (A, σ) = eα · (A0, σ0), equations (2.5b)
and (2.5c) are automatically satisfied.

Theorem 5.1. For any polynomial map f of degree d, we can find α̃ ∈
C∞(X) such that (A, σ) = eα̃ · (A0, σ0) solves the equation (2.5a):

(5.4) i(FΣ
A + FC

A ) +
1

2
K +

1

2
|σ|2 = 0.

and its analytic energy Ean(A, σ) equals −4π2d · c1(S). In particular, (A, σ)
gives a finite energy monopole on X.

Remark. For (A, σ) = (A0, γd), that is, we extend γd to be constant in
variable z ∈ C, this pair solves equation (2.5) since (B0, γd) solves (5.1).
This corresponds to the case when d = 0 in Theorem 5.1.

Before we start the actual proof, let’s sketch a strategy to find such an α̃:

Step 1. Choose a background conformal transformation α0 ∈ C∞(X) and
set

(A1, σ1) = eα0 · (A0, σ0).

At this step, the configuration (A1, σ1) is not necessarily a solution to
(5.4). It is close to an actual solution so that the analytic energy Ean(A1, σ1)
is finite. Moreover, the next step needs to be achieved:

Step 2. We find another conformal factor α ∈ L2
2(X) such that (Aα, σα) :=

eα · (A1, σ1) solves (5.4). Take α̃ = α0 + α.

Definition 5.2. We define the moment map µ as

µ : L2
2(X) → L2(X),

α 7→ i(FΣ
Aα

+ FC
Aα

) +
1

2
K +

1

2
|σα|2

= µ(0) + (∆Cα+∆Σα) +
1

2
(e2α − 1)|σ1|2.

The second step amounts to finding α ∈ L2
2(X) so that µ(α) = 0. The

definition of µ depends on α0. We wish µ to be well-defined so that we may
apply variational principle to ‖µ(α)‖22. Our target α would be the minimizer
of this functional. The first guess for α0 is

α0 = −d

2
log(|z|2 + 1).

But in general, this choice does not guarantee that µ is a well-defined map
from L2

2(X) to L2(X).
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Lemma 5.3. We can find α0 ∈ C∞(X) so that for any α ∈ L2
2(X), µ(α) is

square-integrable and the energy E(α) := Ean(Aα, σα) is finite. Furthermore,
for this α0 and µ, the energy equation

(5.5)

∫

X
|µ(α)|2 = Ean(Aα, σα)− Etop.

is valid. The topological energy is defined by the formula

Etop = −4π2d · c1(S+)

which depends only the degree of f and c1(S
+).

Proof. Write α0 = β + δ with

β = −d

2
log(|z|2 + 1)

and δ to be determined later. To start, let’s make µ(0) ∈ L2(X):

µ(0) = (FΣ
A1

+ FC
A1

) +
1

2
K +

1

2
|σ1|2

= ∆C(β + δ) + ∆Σδ + ∗ΣiFB0 +
1

2
K +

1

2
|σ1|2

= ∆C(β + δ) + ∆Σδ +
1

2
(|σ1|2 − |γd|2).

where we used the fact that (B0, γd) solves the vortex equation (5.1).

If δ = 0, then σ1 = σ∗ := f(z)/(1 + |z|2) d
2 ∈ L∞(X) and by direct

computation:

(5.6) ∆Cβ =
2d

(1 + r2)2
∈ L2(C)

|σ∗|2 − |γd|2 =
2|z|2d−2Re〈zγd, γd−1〉h

(1 + |z|2)d +O(
1

1 + |z|2 ).

If we know γd−1 ≡ 0, then |σ1|2 − |γd| ∈ L2(X) and we are done. To deal
with the general case, note that the unbounded operator

T = ∆Σ + |γd|2 : L2(Σ) → L2(Σ)

is self-adjoint on L2
2(Σ) and is invertible. Set

δ(z) = − |z|2d−2

(1 + |z|2)dT
−1(Re〈zγd, γd−1〉h) ∈ O(

1
√

1 + |z|2
).

Then we have,

∆Σδ +
1

2
(|σ1|2 − |γd|2) = ∆Σδ +

1

2
|σ∗|2(e2δ − 1) +

1

2
(|σ∗|2 − |γd|2),

= (|σ∗|2 − |γd|2)δ +
1

2
|σ∗|2(e2δ − 2δ − 1)

+
1

2
(|σ∗|2 − |γd|2 + 2T (δ)) ∈ O(

1

1 + |z|2 ).
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To check ∆Cδ ∈ L2(X), it suffices to compute:

∆C

|z|2d−2u

(1 + |z|2)d = ∆C

r2d−1 cos θ

(1 + r2)d
=

4dr2d−3(2r2 − (d− 1)) cos θ

(1 + r2)d+2
.

where r = |z| and u = r cos θ. This function has enough decay at ∞ and
lies in L2(X).

To show µ(α) ∈ L2(X) in general, it suffices to check:

∆Xα,
1

2
(e2α − 1)|σ1|2 ∈ L2(X).

The first follows from the fact that α ∈ L2
2(X). The second comes from

Trudinger’s inequality (Theorem A.2) and the fact that σ1 ∈ L∞(X).
It remains to prove (5.5): it will imply that analytic energy Ean(α) is

finite. We first do the case when α ∈ C∞
c (X). In light of Lemma 2.5, it

suffices to show

(5.7)

(5.8)

lim
r→∞

∫

∂Xr

〈σα,∇Aα,~nσα〉 = 0,

lim
r→∞

∫

Xr

F ′
Aα

∧ F ′
Aα

= −4π2d · c1(S+).

Suppose supp(α) ⊂ B(0, r0) for some r0 > 0 and take r > r0. Then
(Aα, σα) = (A1, σ1). Let (A∗, σ∗) = eβ · (A0, σ0). By formula (3.2),

∇Aα,~nσα = ∇A1σ1 = eδ(∇A∗
σ∗ + 2(dδ)1,0σ∗).

Since σ1, σ∗, δ ∈ L∞(X) and

∇A∗
σ∗ = eβ(dσ0 + 2(dβ)1,0σ0)

=
−γd−1 · r2zd−2 + lower order terms

(1 + |z|2)(d+2)/2
· dz ∈ O(

1

1 + r2
)

d(
r2d−1 cos θ

(1 + r2)d
) ∈ O(

1

1 + r2
).

Therefore, the boundary term goes to zero in (5.7).

To compute the topological energy Etop, by formula (5.6), we have
∫

Xr

F ′
A∗

∧ F ′
A∗

= −2

∫

Xr

∆Cβ · (iFΣ
B0

+
1

2
K)dvolX

= −2πc1(S
+)

∫

B(0,r)
∆Cβ → −4π2d · c1(S+)

as r → ∞. Let µ = Aα −A∗. Then
∫

Xr

(F ′
Aα

∧ F ′
Aα

− F ′
A∗

∧ F ′
A∗

) =

∫

∂Xr

µ ∧ (dµ + 2F ′
A∗

).

When r > r0, α ≡ 0. We reduce to the case when Aα = A1. Since
|µ| < |dδ| ∼ 1/(1 + r2) and the curvature term dµ + 2F ′

A∗
is uniformly
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bounded on X, the integral above decays as 1/r as r → ∞. Therefore,
formula (5.8) is also valid.

We showed that the energy equation (5.5) holds for any α ∈ C∞
c (X). It

also holds for any α ∈ L2
2(X) since C∞

c (X) is dense in L2
2(X) and all terms

in (2.6), as functions in α, are continuous in L2
2(X)-topology. We may need

Theorem A.3 to verify the continuity. �

The next theorem is an a priori estimate and the proof is technical. Its
proof is postponed to the next section. We will finish the proof of Theorem
5.1 assuming Theorem 5.4.

Theorem 5.4. For any α ∈ L2
2(X), define E(α) = Ean(Aα, σα). There

is a function η : R+ → R
+ such that for any C > 0, if E(α) < C, then

‖α‖L2
2
< η(C).

Proof of Theorem 5.1. Let a = infα∈L2
2(X)E(α). This number is finite since

E(0) < ∞. Therefore, there exists a sequence {αn} ⊂ L2
2(X) such that

a = limn→∞ E(αn). By Lemma 5.4, ‖αn‖L2
2(X) are uniformly bounded, and

we can find a weakly convergent subsequence. We assume it is the sequence
itself. Let α∞ be their limit. Note that µ : L2

2(X) → L2(X) is weakly

continuous. Indeed, by Theorem A.4, αn
w−L2

2−−−−→ α∞ implies

∆Xαn
w−L2(X)−−−−−−→ ∆Xα∞, eαn − 1

w−L2(X)−−−−−−→ eα − 1.

This shows E(α∞) ≤ lim inf E(αn) = a, so E(α∞) = a. Now consider the
linearized operator of µ at α∞ (see Theorem A.3):

Dµ : L2
2(X) → L2(X), γ 7→ ∆Xγ + e2α∞ |σ1|2γ.

Since α∞ is a critical point of E , for any γ ∈ L2
2(X), we have

(5.9) 0 =
d

dt
E(α∞ + tγ)|t=0 = 2〈µ(α∞),Dµ〉.

Lemma 5.5. For any α ∈ L2
2(X), the operator

Dαµ : L2
2(X) → L2(X), γ 7→ ∆Xγ + e2α|σ1|2γ.

is self-adjoint.

Proof. The operator Dαµ is well-defined. Indeed, by Theorem A.2, α ∈
L2
2(X) implies α, e2α − 1 ∈ Lp(X) for 2 ≤ p < ∞. In particular, e2α, γ ∈

L4(X). Since σ1 ∈ L∞(X) and L4 × L4 →֒ L2, we have

e2α|σ1|2γ = |σ1|2γ + (e2α − 1)|σ1|2γ ∈ L2(X).

Note that Dαµ is clearly symmetric. It suffices to show that it agrees
with its adjoint. We need to show γ ∈ L2(X) and Dαµ(γ) ∈ L2(X) implies
γ ∈ L2

2(X). This can be done directly, but we proceed using Friedrichs
extension theorem. Define the norm A on C∞

c (X) by the formula

‖x‖2A = ‖x‖22 +
∫

X
|dx|2 + |xeασ1|2.
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The Hilbert space H obtained by the completion with respect to ‖ · ‖A is
embedded as a subspace of L2(X). Then by Friedrichs extension theorem,
Dαµ is self-adjoint on the space

D = {x ∈ H : ∃ C > 0, 〈x, y〉A ≤ C‖y‖2, for any y ∈ H}.
We need to identify D with L2

2(X). It is clear that L2
2(X) ⊂ D. For the

reversed inclusion, take any y ∈ C∞
c (X) and x ∈ D. Then integration by

parts shows
〈x, y〉A = 〈Dαµ(x), y〉2

and by Riesz representation theorem, Dαµ(x) ∈ L2(X). Since x ∈ H →֒
L2
1(X) and L2

1(X) →֒ L4(X), e2α|σ1|2x ∈ L2(X). Therefore, ∆Xx =
Dαµ(x)− e2α|σ1|2x ∈ L2. This completes the proof of the lemma. �

By lemma 5.5, y := µ(α∞) lies in the domain of the adjoint operator
(Dµ)

∗ = Dµ, so y ∈ L2
2(X). Let γ = y in (5.9) and integration by parts

shows:
0 = ‖dy‖22 + ‖yeασ1‖22.

Therefore, µ(α∞) = y ≡ 0. �

As long as the a priori estimate, Theorem 5.4, is established, the proof of
Theorem 5.1 is quite formal. We will tackle this technical theorem in the
next section.

5.2. Smoothness and uniqueness. For the rest of the section, we prove
the smoothness and uniqueness of the solution obtained in Theorem 5.1.

Lemma 5.6. The solution α̃ = α+α0 obtained in the proof of Theorem 5.1
is smooth.

Proof. Note that the equation µ(α) = 0 is equivalent to

(5.10) ∆Xα = −µ(0)− 1

2
(e2α − 1)|σ1|2.

Both µ(0) and |σ1|2 are smooth functions on X. Since α ∈ L2
2(X),

Trudinger’s inequality (Theorem A.2) implies e2α − 1 ∈ Lp(X) for any
2 ≤ p < ∞. Then elliptic regularity shows

α ∈ Lp
2,loc(X)

for any 2 ≤ p < ∞, so α, e2α ∈ L∞
loc(X). This implies

d(e2α − 1) = 2e2αdα ∈ L2
loc(X).

and
∇2(e2α − 1) = 4e2αdα⊗ dα+ 2e2α∇2α ∈ L2

loc(X).

We use induction to prove that for each k ≥ 2,

α, e2α ∈ L2
k,loc(X).

The initial step k = 2 is done. Suppose the statement is true for some k ≥ 2.
By elliptic regularity and the induction hypothesis that e2α ∈ L2

k,loc, (5.10)
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implies α ∈ L2
k+2,loc. To verify e2α ∈ L2

k+2,loc, it suffices to note that L2
k+2

is an algebra for any k > 0 and the expansion

e2α =

∞
∑

m=0

(2α)m

m!

converges in L2
k+2,loc-topology for any α ∈ L2

k+2,loc. The induction step is

accomplished. Since α ∈ L2
k,loc for any k ≥ 2, α is smooth. �

Lemma 5.7. The solution α̃ = α + α0 obtained in Theorem 5.1 is also
unique.

Proof. Let α′ = α + α0 be the solution obtained in the proof of Theorem
5.1. We need to show for any α′′ ∈ C∞(X) such that (A, σ) = eα

′′ · (A0, σ0)
solves equation (2.5a) and has finite analytic energy, α′′ = α′.

Let γ = α′′ − α′, then γ is smooth and µ(γ + α) = µ(α) = 0. This shows

(5.11) ∆Xγ +
1

2
e2α(e2γ − 1)|σ1|2 = 0.

Since (A, σ) = eα
′′ · (A0, σ0) = eα

′′−α0 · (A1, σ1) has finite analytic energy,
by the proof of Lemma 2.2, ‖α′′ −α0‖L∞({z}×Σ) → 0 as z → ∞. The reason
is that when we properly translate (A, σ) to the origin and get a sequence
of solutions (An, σn) on X ′ = B(0, 10) × Σ, we impose Coulomb-Neumann
gauge fixing condition (with respect to (A0, γd)) on B(0, 10) ⊂ C. As n → ∞,
these solutions will converge in the interior in C∞-topology to (A0, γd). This
gives the desired convergence.

Therefore, we have, in addition to (5.11), that

(5.12) γ = (α′′ − α0)− α → 0

as |z| → ∞. Then the maximal principle implies γ ≡ 0. Indeed, suppose
γ > 0 somewhere, then by (5.12), it attains its maximum at some point
p ∈ X and hence ∆Xγ(p) ≥ 0. If ∆Xγ(p) > 0, then (5.11) is violated at
p. The case when ∆Xγ(p) = 0 is tricker: we need to add a perturbation.
For details, see [JT80, Chapter VI.3, Proposition 3.3]. This shows γ ≤ 0.
Similarly, by analyzing the minimum of γ, we conclude γ ≥ 0, so γ ≡ 0. �

6. Proof of Theorem 5.4

Theorem 5.4 states that the L2-norm of µ(α) controls the L2
2-norm of α

for any α ∈ L2
2(X). The proof is achieved by two steps:

Step 1. Estimate ‖∆Xα‖2.
Step 2. Estimate ‖α‖2.
The first step is a consequence of the energy formula (2.6), but we need

to work very carefully. The second step is trickier: it involves decomposing
the function α into its high frequency and low frequency modes.

If one carries out the same proof for the vortex equation on Σ and C,
an a priori estimate like Theorem 5.4 will be needed as well. For details,
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see Theorem B.2 and C.3. In both cases, the first step is trivial. On Σ,
the second step is false, but we can still make it work by using a smaller
variational space. On C, the second step is processed similarly as we did
here, yet it is simpler.

We establish Theorem 5.4 in a sequence of lemmas. We start with Step
1.

Lemma 6.1. There exist a, b > 0 such that for any α ∈ L2
2(X) with E(α) <

C, we have
‖∆Xα‖2L2(X) < aC + b.

Proof. It suffices to find a, b > 0 so that

‖∆Cα‖2L2(X), ‖∆Σα‖2L2(X) < aC + b.

By (2.6), we know that

E(α) >
∫

X
|FC

Aα
|2 =

∫

X
|∆Cα+∆Cα0|2.

Now, the elementary inequality,

(6.1) (a+ b)2 ≥ 1

2
a2 − b2

implies that ‖∆Cα‖22 ≤ 2(E(α) + ‖∆Cα0‖22).
To analyze the term ‖∆Σα‖2 is harder. The energy formula (2.6) also

implies

E(α) >
∫

X
|iFΣ

Aα
+

1

2
K +

1

2
|σα|2|2

=

∫

X
|(∆Σα+

1

2
(e2α − 1)|σ1|2) +

1

2
(|σ1|2 − |γd|2)|2

Then the inequality (6.1) implies

2E(α) + 2‖|σ1|2 − |γd|2‖22 ≥
∫

X
|∆Σα+

1

2
(e2α − 1)|σ1|2|2.

Therefore, Lemma 6.1 follows from a fiber-wise estimate and it is the
content of the next lemma. �

Lemma 6.2. For each z ∈ C, let (B1(z), σ1(z)) = (∇Σ
A1

, σ1(z)) ∈ C(Σ, L)
be the configuration on the fiber {z} × Σ. There exists c > 0 such that for
any α ∈ L2

2(Σ) and z ∈ C,
∫

Σ
|∆Σα+

1

2
(e2α − 1)|σ1(z)|2|2 > c

∫

Σ
|∆Σα|2.

Remark. Though the proof below is messy, the underlying idea should be
clear. This lemma is true because for each individual σ1(z), the statement
is true for its linearized operator. Equations (6.6) and (6.7) below are steps
where we pass to linearized operators. This resolves the case when ‖∆Σα‖2
is small. When ‖∆Σα‖2 is large, this estimate is true due to the energy
equation.
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Proof. The family of configurations (B1(z), σ1(z)) admits a natural compact-
ification; we extend it to CP

1 by setting

(B1(∞), σ1(∞)) = (B0, γd).

In particular, there is M > 0 such that

‖σ1(z)‖2L2
2(Σ) + ‖FB1(z)‖2L2

2(Σ) < M

holds for any z ∈ C. What will be frequently used below is the Sobolev
embedding theorem:

L2
2(Σ) →֒ L∞(Σ).

and the fact that this embedding is compact.

To start, we have a nice energy equation associated to the vortex equation
(1.3), as a special case of Lemma 2.1 or formula (2.6):

∫

Σ
2|∂̄Bσ|2 + | ∗ iFB +

1

2
K +

1

2
|σ|2|2

=

∫

Σ
|∇Bσ|2 + | ∗ iFB +

1

2
K|2 + 1

4
(|σ|2 +K)2 − 1

4
K2.

We apply this equation to (B,σ) = eα · (B1, σ1) = (B1 + i ∗ dΣα, eα · σ1)
and get

(6.2)

∫

Σ
|∆Σα+ ∗iFB1 +

1

2
K +

1

2
|σ1|2e2α|2

≥
∫

Σ
|∆Σα+ ∗iFB1 +

1

2
K|2 − 1

4
K2.

where we used the fact that ∂̄B1σ1 = 0, so ∂̄Bσ = 0. Then the Cauchy-
Schwartz inequality and (6.1) imply

2

∫

Σ
|∆Σα+

1

2
(e2α − 1)|σ1|2|2 + 2

∫

Σ
| ∗ iFB1 +

1

2
K +

1

2
|σ1||2 ≥ LHS of (6.2),

and

RHS of (6.2) ≥ 1

2

∫

Σ
|∆Σα|2 −

∫

Σ
(| ∗ iFB1 +

1

2
K|2 + 1

4
K2).

Finally, we get

(6.3) 4

∫

Σ
|∆Σα+

1

2
(e2α − 1)|σ1|2|2 +N >

∫

Σ
|∆Σα|2,

for some N > 0 independent of z ∈ CP
1.

Suppose Lemma 6.2 is violated. Then, for each n > 0, there is (αn, zn) ∈
L2
2(Σ)× C such that

(6.4)

∫

Σ
|∆Σαn +

1

2
(e2αn − 1)|σ1(zn)|2|2 <

1

n

∫

Σ
|∆Σαn|2.
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Let σn = σ1(zn). By (6.3), we must have
∫

Σ |∆Σαn|2 < n
n−4N ≤ 5N

when n ≥ 5. This shows the sequence βn := ∆Σαn is bounded in L2(Σ)
and we can find a weakly convergent subsequence. Since this is a compact
family of configurations, we can further assume that for this subsequence
zn → z∞, so {|σn|2} is convergent in L∞. Write αn = Gβn + δn, where
G : L2(Σ)⊥ → L2

2(Σ)
⊥ is the Green operator and δn is the average of αn on

Σ. By (6.4), we know that the sequence of functions

(6.5) gn := ∆Σαn +
1

2
(e2αn − 1)|σn|2 = βn − 1

2
|σn|2 +

1

2
|σn|2e2Gβne2δn .

converges strongly to 0 in L2(Σ). Since L2
2 →֒ L∞(Σ) is compact, {Gβn}

and hence {eGβn} is convergent in L∞(Σ). This shows, |σn|2e2δn is weakly
convergent in L2(Σ).

This convergence can be made to be strong; indeed, we can write σn =
rnσ

′
n with rn = ‖σn‖2 and ‖σ′

n‖2 = 1. Then rn > 0, otherwise we would
have

∫

Σ |∆Σαn|2 < 1
n

∫

Σ |∆Σαn|2 in (6.4). By passing to a subsequence, we

can assume {σ′
n} converges strongly. Now {an := rne

δn} is a sequence of
bounded real numbers and there is a converging subsequence.

All these things imply that βn
s−L2

−−−→ β∞ as n → ∞. We may assume
{rn} converges as well. Set r∞ = lim rn and a∞ = lim an. There are two
cases to be dealt with.

Case 1. If r∞ = 0, i.e., σ∞ := σ(z∞) = 0. Let n → ∞ in (6.5) and we
get,

β∞ = −1

2
a2∞|σ′

∞|2eGb∞ ≤ 0.

But
∫

Σ β∞ = 0 and hence a∞ = 0, β∞ ≡ 0. Write βn = snβ
′
n with ‖β′

n‖2 = 1.
Then,

(6.6)
gn
sn

= β′
n +

1

2

e2snGβ′

n − 1

sn
a2n|σ′

n|2 +
1

2

a2n − r2n
sn

|σ′
n|2.

By (6.4), ‖gn/sn‖22 < 1/n · ‖β′
n‖22 → 0. Now the second term on right

hand side of (6.6) converges to 0 in L∞(Σ) because lim an = 0. Since
{xn := (a2n − r2n)/sn} is a sequence of uniformly bounded real numbers, by
passing to a further subsequence, we can assume they converge to x∞ ∈ R.
This implies β′

n → β′
∞ with

0 = β′
∞ +

1

2
x∞|σ′

∞|2.

Due to the same reasoning as above, x∞ = 0, so β′
∞ ≡ 0. But this is

impossible, since ‖β′
∞‖2 = lim ‖β′

n‖2 = 1.
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Case 2. If r∞ 6= 0, then {δn} has a finite limit, say, lim δn = δ∞ ∈ R.
Therefore, limαn = α∞ := Gβ∞ + δ∞ and

0 = 〈∆Σα∞ +
1

2
(e2α∞ − 1)|σ∞|2, α∞〉

= |∇α∞|2 + 1

2
r2∞

∫

Σ
(e2α∞ − 1)α∞|σ′

∞|2.

Since r∞ > 0, we have α∞ ≡ 0. Now, write αn = tnα
′
n with ‖α′

n‖L2
2
≡ 1.

Choose a subsequence so that α′
n

w−L2
2−−−−→ α′

∞. Now

(6.7)
gn
sn

= ∆Σα
′
n +

1

2

e2tnα
′

n − 1

tn
|σn|2,

and by (6.4) ‖gn/sn‖22 < 1/n · ‖∆Σα
′
n‖22 → 0. The second term on right

hand side converges in L∞ to α′
∞|σ∞|2 since tn → 0. This shows α′

n

s−L2
2−−−→

α′
∞ and

0 = ∆Σα
′
∞ + |σ∞|2α′

∞.

This is impossible: since |σ∞|2 6≡ 0, the operator ∆Σ+|σ∞|2 is injective on
L2
2. This implies α′

∞ ≡ 0. But ‖α′
∞‖L2

2
= lim ‖α′

n‖L2
2
= 1. This completes

the proof of Lemma 6.2. �

Proof of Theorem 5.4. In light of Lemma 6.1, it suffices to work out Step 2 :
find a function η : R+ → R

+ such that

‖α‖2 < η(C)

for any α ∈ L2
2(Σ) with E(α) < C. We know that for some a, b > 0,

(6.8) ‖∆Xα‖22, ‖(e2α − 1)|σ1|2‖22 < aC + b.

Write α = α1+α2 with α1 constant on each fiber {z}×Σ. In other word,

α1(z) =

∫

{z}×Σ
α(z, ·)

and α2(z) is orthogonal to constant functions on each fiber. The high fre-
quency part α2 is relatively easy to control:

λ1‖α2‖2 ≤ ‖∆Σα2‖2 = ‖∆Σα‖2 ≤
√
aC + b.

where λ1 is the first positive eigenvalue of ∆Σ.

To work out ‖α1‖2 is harder. We will decompose C as the union of the
good set A1 and the bad set A2. A point z ∈ C lies in the good set A1 if
over the fiber {z} × Σ, either of the situations occurs:

(1) ‖α1‖2 ≪ ‖α2‖2. This means α has large fluctuation on that fiber, so
‖α‖2 . ‖∆Σα‖2.

(2) ‖α1‖2 ≫ ‖α2‖2, but α1(z) > −1. This means α is almost a constant
function on that fiber and its value is not very negative, so |α| .
|eα − 1|.
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Let A2 be the complement of A1. On the good set A1, we control
‖α‖L2(A1×Σ) by terms in (6.8). For the bad set A2, we will control its area
and show that α1 cannot concentrate on A2.

Lemma 6.3. There is a constant L > 0 such that for any α ∈ L2
2(Σ)

satisfying
∫

Σ
|α|2 ≥ L

∫

Σ
|∆Σα|2,

we have ‖α − α1‖∞ < 1
2 |α1| where α1 ∈ R is the average of α on Σ.

Proof. Write α = α1 + α2. Then we have

‖α2‖2L2
2
≤ (1 +

1

λ2
1

)

∫

Σ
|∆Σα|2 ≤

1

L
(1 +

1

λ2
1

)‖α‖22

≤ 1

L
(1 +

1

λ2
1

)(V ol(Σ)|α1|2 + ‖α2‖2L2
2
).

If L > 2(1 + 1
λ2
1
), then we do rearrangement and obtain

C|α1| >
√
L‖α2‖L2

2
>

√
L

C1
‖α2‖∞.

Here, C1 is the constant in the Sobolev embedding L2
2(Σ) →֒ L∞(Σ). Now

it suffices to take L > max{(2CC1)
2, 2(1 + 1

λ2
1
)}. �

Now we decompose C into good and bad sets:

A1 = {z ∈ C|
∫

{z}×Σ
|α|2 < L

∫

{z}×Σ
|∆Σα|2 +M

∫

{z}×Σ
|e2α − 1|2|σ1|4}

A2 = Ac
1.

In this definition, L is the constant that appears in Lemma 6.3 and M is a
large constant to be determined later.

Our goal is to show for some η1(C) > 0,

(6.9)

∫

C

|∆Cα1|2,
∫

A1

|α1|2, Area(A2) < η1(C).

The first follows from (6.8). The good set A1 is easy to handle:
∫

A1
|α|2 <

η2(C) for some η2, again, by (6.8). As for the bad set, we need to analyze
the zero locus of σ1. Set

Zǫ(σ1) = {p = (z, x) ∈ X : |σ1(p)|2 < ǫ}.
and

Zǫ = {x ∈ Σ : |γd(x)|2 < 2ǫ}.
We choose ǫ to be a small number so that Area(Zǫ) <

1
2Area(Σ). Since

σ1(z) as sections on Σ approach γd in L∞ norm as z → ∞, for some large
number R(ǫ) > 0, we know

Zǫ(σ1) ⊂ B(0, R)× Σ ∪C× Zǫ.
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Now take any z ∈ A2 −B(0, R). By Lemma 6.3, we have

1

2
|α1(z)| < |α(z, x)| < 3

2
|α1(z)|.

for any x ∈ Σ. If α1(z) > −1, then α(z, x) > −2. This means over the fiber
{z} × Σ, we have
∫

Σ
|α|2 ≤ 9

4

∫

Σ
|α1|2 ≤

9

2

∫

Zc
ǫ

|α1|2 ≤ 18

∫

Zc
ǫ

|α|2

≤ 18× 25

ǫ2

∫

Zc
ǫ

|e2α − 1|2|σ1|4 ≤
450

ǫ2

∫

Σ
|e2α − 1|2|σ1|4.

where the penultimate inequality comes from

|x| < 5|ex − 1|
when x > −4. Take M = 450/ǫ2. We conclude that if z ∈ A2 − B(0, R),
then α1(z) ≤ −1 and hence α(z, x) ≤ −1

2 . This shows
∫

{z}×Σ
|e2α − 1|2|σ1|4 ≥

1

2
V ol(Σ) · |1− e−1|2ǫ2.

As a consequence, we obtain,

Area(A2) ≤ Area(B(0, R)) +
‖|e2α − 1||σ1|2‖22

C1
≤ η3(C).

Thus, (6.9) is proven. The next step is to control ‖α1‖L2(C). This is

closely related to uncertainty principle: if |α1|2 concentrates on a region of
finite area, say A2, then its Fourier transformation cannot concentrate near
the origin. Thus, L2 norm of α1 is controlled by the L2 norm of derivatives.

Theorem 5.4 then follows from the next lemma by setting E = A2. �

Lemma 6.4. Suppose subset E ⊂ R
n is measurable and its volume m(E) <

S. Then for some C(S) > 0, we have for any f ∈ L2
2(R

n),

‖f‖2 ≤ C(‖f‖L2(Ec) + ‖∆f‖2).
Proof. We decompose f as the sum of low-frequency and high frequency
parts. That is to say, f = fL + fH where

f̂L = χf̂, f̂H = (1− χ)f̂ .

and χ is a cut-off function with χ ≡ 1 on B(0, r) and suppχ ⊂ B(0, 2r).
Here, r is a small number to be determined later. The high frequency part
is easy to deal with:

‖fH‖2 = ‖f̂H‖2 ≤
1

r2
‖|ξ|2f̂H‖2 ≤

1

r2
‖∆f‖2.

Write T = ‖fL‖2. Then we can control L∞ norm of the derivative in
terms of T :

‖∇fL‖∞ ≤ ‖|ξ|f̂L‖1 ≤ ‖|ξ| · χB(0,2r)‖2‖f̂L‖2 ≤ rC1T.
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Fix R > 0 so that πR2 > 2S = 2m(E). If for some z ∈ E, |fL(z)| = N >
2rC1TR, then for any z′ ∈ B(z,R), we have |fL(z′)| > 1

2N . This implies

‖fL‖2L2(Ec) ≥
∫

B(0,R)−E
|fL(z′)|2 ≥

πR2

2
· (N

2
)2 ≥ S · (rC1TR)2.

Therefore, either T < ‖fL‖L2(Ec)/(
√
SrC1R) or

‖fL(z)‖L∞(E) ≤ 2rC1TR.

But the second case implies

T 2 =

∫

|fL|2 ≤
∫

Ec

|fL|2 + S · (2rC1R)2 · T 2.

It suffices to choose 0 < r ≪ 1 so that (2C1R)2S · r2 < 1
2 . Therefore, in

either case,

T 2 ≤ C2

∫

Ec

|fL|2

for some C2 > 0. Finally, one notices that ‖fL‖L2(Ec) ≤ ‖fH‖L2(Ec) +
‖f‖L2(Ec) ≤ ‖fH‖2 + ‖f‖L2(Ec). �

Remark. Lemma 6.4 is closely related to Amrein-Berthier theorem:

Theorem 6.5 (Amrein-Berthier [AB77]). Suppose subsets E,F ⊂ R
n are

measurable of finite volume, then for some C(E,F ) > 0,

‖f‖2 ≤ C(‖f‖L2(Ec) + ‖f̂‖L2(F c)),

for any f ∈ L2(Rn), where Ec and F c are complements of E and F respec-
tively.

To see their relation, let F = B(0, 1) and note that

‖f̂‖L2(F c) ≤ ‖|ξ|2f̂‖2 = ‖∆Cf‖2.

However, it is not clear from this theorem that for fixed subset F , the
constant C could be independent of the shape of E and only depends on
the volume of E. Since our problem is simpler, we decided to give a direct
proof to Lemma 6.4 as above.

7. Exponential Decay and Power Law Decay

The purpose of section is to prove Theorem 1.4 and Theorem 1.5 which
predict power law decay and exponential decay for finite energy monopoles
in different cases. We start with the second theorem to explain ideas
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7.1. Exponential Decay. We reformulate Theorem 1.5 as follows:

Theorem 7.1. Let (B0, γd) be a solution to the vortex equation (5.1). Let

f0 =
∑d

i=0 aiz
i be a monic polynomial function on C and f = f0γd. Then

the solution (A, σ) = eα̃ · (A0, σ0) obtained in Theorem 5.1 converges expo-
nentially to (B0, γd) as |z| → ∞, i.e., for any k ≥ 2, there exists s(k,A0, f)
and M(k,A0, f) > 0 such that for any z ∈ C,

(7.1) dk((∇Σ
A, σ)(z) − (B0, γd)) < Me−s|z|.

Recall that the metric dk on B(Σ, L) = C(Σ, L)/G (Σ) is defined by the
formula:

dk([a], [b]) = min
u∈G (Σ)

‖u · a− b‖L2
k(Σ).

for any a, b ∈ C(Σ, L). Here, [a] denotes the gauge equivalent class of a.
The proof of Theorem 7.1 relies on exponential decay result for vortices

on C. Recall that the classical vortex equation on C is given by the formula:

(7.2)

{

∗iFω + 1
2(|η|2 − 1) = 0,

∂̄ωη = 0.

where ω is a smooth unitary connection to the trivial bundle over C and
η is a smooth complex-valued function. This equation is invariant under
the gauge action of G (C) = Map(C, S1). Then Theorem 1.8 ([[JT80], p.59,
Theorem 1.4]) states that |Fω| = 1

2 ||η|2−1| has exponential decay at infinity
if (ω, η) is a solution to (7.2) with finite energy.

The proof of Theorem 7.1 is modeled on the proof of Theorem 5.1 and is
accomplished in two steps

• Find a good approximation α0 to the actual solution α̃. For this part,
we need a more clever choice. We employ the existence result (see
[Tau80, Theorem 1] or Theorem B.1) to find the conformal factor α0

such that eα0 · (d, f0) solves the vortex equation (7.2).
• Show that the correction term α = α̃− α0 has exponential decay at
infinity.

Proof of Theorem 7.1. Let α0 ∈ Γ(C,R) be the conformal factor such that
(∇ω, η) = eα0 · (d, f0) solves (7.2). We regard α0 as a function on X that
is constant on each fiber. Let (A1, σ1) = eα0 · (A0, σ0), so σ1 = ηγd and
∆Cα0 = i ∗C Fω = 1

2(1 − |η|2). Since (B0, γd) solves the vortex equations
(5.1) on Σ, it follows that

−1

2
|γd|2 = i ∗Σ FB0 +

1

2
K.



ON FINITE ENERGY MONOPOLES ON C×Σ 41

Consider the moment map defined in Definition 5.2, then

µ(0) = ∆Cα0 + i ∗Σ FB0 +
1

2
K +

1

2
|σ1|2

=
1

2
(1− |η|2)− 1

2
|γd|2 +

1

2
|γd|2|η|2

=
1

2
(1− |η|2)(1− |γd|2) ∈ L2(X).

Hence, the correction term α = α̃ − α0 is the unique smooth solution
to the equation µ(α) = 0 such that α(z) → 0 as z → ∞. Its existence is
established in Theorem 5.1. Note that µ(α) = 0 is equivalent to the equation

(∆C + (∆Σ + |γd|2))α = −µ(0)− 1

2
(e2α − 2α− 1)|σ1|2 + (|γd|2 − |σ1|2)α

= k + h(α),

where k = (1−|η|2)(|γd|2α− 1
2 (1−|γd|2)) and h(α) = −1

2(e
2α−2α−1)|σ1|2.

Let H be the Hilbert space L2
k(Σ,C) and L = ∆Σ + |γd|2 : H → H be

the unbounded positive self-adjoint operator. Since (7.1) is satisfied for the
pair (A1, σ1), in order to prove Theorem 7.1, it is sufficient to verify the
conditions of the following lemma:

Lemma 7.2. Let H be a separable Hilbert space and L : H → H be a pos-
itive self-adjoint operator (possibly unbounded). Suppose there is a smooth
function u : C → H such that

(U1) (∆C + L)u = k + h(u).
(U2) limz→∞ ‖u‖H = 0.
(U3) h : H → H is a continuous map and for some q > 1 and C > 0,

‖h(u(z))‖H ≤ C‖u(z)‖qH for any z ∈ C.
(U4) k : C → H is a continuous map such that for some s,M > 0,

‖k(z)‖H ≤ Me−s|z| for any z ∈ C.

Then the function u has exponential decay at ∞, i.e., for some s′,M ′ > 0,
‖u‖H < M ′e−s′|z| for any z ∈ C.

Property (U2) is by the proof of Lemma 2.2. Property (U4) follows from
Theorem 1.8. When k > 1, L2

k(Σ,C) is a Banach algebra. To work out
property (U3), take q = 2. Since ‖α(z)‖H is uniformly bounded by some
number M2 > 0, it follows that

‖e2α − 2α− 1‖H ≤
∞
∑

m=2

2m

m!
‖α‖mH ≤ ‖α‖2H

∞
∑

m=2

2mMm−2
2

m!
.

Therefore, it remains to prove Lemma 7.2. �

Proof of Lemma 7.2. In order to make things concrete, we first resolve the
special case when H = C and L = λ · idC is a multiple of the identity map
( λ > 0). Then u : C → C is a smooth function. The fundamental solution
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to the operator ∆C + λ is given by

Kλ(z) = (
1

|ξ|2 + λ
)∨ =

1

2π
K0(

√
λ|z|)

where K0 is the modified Bessel function of the second kind. For r > 0 (see
[AS64, p.377-378]),

K0(r) =

∫ ∞

0

cos(rt)√
1 + t2

dt =

∫ ∞

0
e−r cosh tdt

= − ln(
r

2
)− γ + o(r) as r → 0 ,

∼
√

π

2r
e−r(1− 1

8r
+

9

128r2
+ · · · ) as r → ∞.

where γ ≈ 0.577 is the Euler-Mascheroni constant. In particular,

• Kλ(z) ∈ L1(C). Let Mλ :=
∫

C
|Kλ(z)|dz. Then Mλ = M1/λ.

• Kλ(z) decays exponentially as |z| → ∞. For any 0 < ǫ ≪ 1, there
exists C1(ǫ) > 0 such that for any r > 0,

∫

|z|>r
|Kλ(z)| =

1

λ

∫

|z|>
√
λr

|K1(z)| ≤
C1

λ
e−(1−ǫ)

√
λr.

Let Nr = max|z|≥r ‖u(z)‖H. Property (U2) implies limr→∞Nr = 0 and
for any fixed r, Nr is achieved at some point z0 with r0 := |z0| ≥ r. Let
p = 1/q < 1. Since u solves the equation in (U1), we have

(7.3) Nr = ‖u(z0)‖H = ‖
∫

C

Kλ(z)(k + h(u))(z0 − z)dz‖H

≤ ‖
∫

|z|<(1−p)r0

Kλ(z)(k + h(u))(z0 − z)dz‖H

+ ‖
∫

|z|>(1−p)r0

Kλ(z)(k + h(u))(z0 − z)dz‖H

≤ Mλ max
|z|≥pr0

‖k(z) + h(u)(z)‖H

+
C1

λ
e−(1−ǫ)

√
λ(1−p)r0 ·max

z∈C
‖k(z) + h(u)(z)‖H

≤ Mλ(Me−spr0 + CN q
pr0) +C2e

−(1−ǫ)
√
λ(1−p)r0

≤ Cq−1
3 N q

pr + C4 · e−s1r.

where s1 = min{sp, (1 − ǫ)
√
λ(1 − p)} and C3, C4 > 0 are independent of

r. The inequality (7.3) implies that u has exponential decay, as we explain
now. Choose r ≫ 0 such that 2C3Nr < 1. Using the relation p = q−1, the
inequality (7.3) implies that for any n > 0,

C3Nrqn ≤ (C3Nrqn−1)q +C5 · e−s1rqn .
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Let R = rqn. By induction, it is easy to show

C3Nrqn ≤ 2q
n−1−1(C3Nr)

qn + fn(C5)e
−s1rqn

where fn(C5) is a constant that depends on C5. Indeed, the base case when
n = 1 is by (7.3) and assuming it holds for n ≥ 1, then

C3Nrqn+1 ≤ (C3Nrqn)
q + C5 · e−s1rqn+1

≤ (2q
n−1−1(C3Nr)

qn + fn(C5) · e−s1rqn)q + C5 · e−s1rqn+1

≤ 2q
n−1(C3Nr)

qn+1
+ fn+1(C5) · e−s1rqn+1

.

where we used the elementary inequality

(
a+ b

2
)q <

aq + bq

2
for a, b > 0 and q > 1. Note that fn is determined by the recursion relation

f1(C5) = C5, fn+1(C5) = 2q−1f q
n(C5) + C5.

This recursion will converge when 0 < C5 ≪ 1. The limit is going to be
the first intersection of the line y = x and the curve y = 2q−1xq +C5 in the
first quadrant. We can make C5 small by making s1 smaller and choosing a
lager r to start with. Let ξ = ln(2C3Nr) < 0. Therefore, for some C6 > 0,

C3NR ≤ (2C3N)q
n
+ C6e

−s1R ≤ e(ξ/r)R + C6e
−s1R.

In general, suppose rqn < R < rqn+1 for some n ∈ Z+. Let R′ = rqn.
Then,

C3NR ≤ C3NR′ ≤ e(ξ/r)R
′

+ C6e
−s1R′ ≤ e(ξ/rq)R + C6e

−(s1/q)R.

Remark. In order to make this proof work, it suffices to choose p such
that q−1 ≤ p < 1. The only reason to take p = q−1 above is to have a nice-
looking proof. It is hard to estimate the optimal exponent for u through
this iteration process. However, as long as it is known that u does have
exponential decay, one can run through the convolution process and figure
out the optimal exponent. The outcome is roughly:

(1− ǫ) max
q−1≤p<1

min{sp,
√
λ(1− p)}.

Finally, to work out the general case, we use functional calculus. If the
domain D(L) of L embeds compactly into H, then L has discrete spectrum.
In this case, let 0 < λi ≤ λi+1 be eigenvalues of L and φi be their eigenvectors.
The fundamental solution of ∆C + L can be described nicely as

KL(z) =

∞
∑

i=1

Kλi
(z)φi ⊗ φ∗

i ∈ Hom(H,H).

In general, KL(z) =
∫

R
Kλ(z)dEλ where Eλ’s are spectrum projections as-

sociated to L. It is clear that KL(z) is a smooth family of operators on
C− {0} and

‖KL(z)‖H→H ≤ |Kλ1(z)|
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for any z 6= 0. Here, λ1 is the first positive eigenvalue of L. The rest of the
proof proceeds as before. �

7.2. Power Law Decay. In general, if the polynomial map f is not a
product, the corresponding solution (A, σ) to the monopole equation will
only have power law decay. This is proven by using a generalized version of
Lemma 7.2:

Lemma 7.3. Under the assumption of Lemma 7.2, if property (U4) is re-
placed by

(U4’) k : C → H is a continuous map such that for some M > 0, ‖k(z)‖H ≤
M |z|−m for any z ∈ C.

Then for some M ′ > 0, ‖u‖H < M ′|z|−m for any z ∈ C.

Proof. It suffices to modify slightly the proof of Lemma 7.2. The convolution
process (7.3) will give us for any n ≥ 1,

(7.4) C3Nrqn ≤ (C3Nrqn−1)q + C5 · (rqn)−m.

By induction, we have

C3Nrqn ≤ 2q
n−1−1(C3Nr)

qn + fn(C5)(rq
n)−m.

where fn is the same function defined in the proof of Lemma 7.2. The initial
step is automatic. For the induction step, note that

C3Nrqn+1 ≤ (C3Nrqn)
q + C5 · (rqn+1)−m

≤ 2q
n−1(C3Nr)

qn+1
+ 2q−1(fn(C5)(rq

n)−m)q + C5(rq
n+1)−m

≤ 2q
n−1(C3Nr)

qn+1
+ fn+1(C5)(rq

n+1)−m

where we need the inequality that (rqn)−mq < (rqn+1)−m. It is satisfied
when r ≫ 0. Indeed, we take r > 1 such that

(q − 1) ln r > ln q (≥ ln q + n(1− q) ln q).

To make C5 small, we need to replace m by (1−ǫ)m in (7.4) and choosing
a possibly larger r to start. Eventually, we get for some C6 > 0,

NR ≤ C6R
−(1−ǫ)m

for any R > 0. This is not our final result yet. Take ǫ ≪ 1 so that (1−ǫ)q > 1.
Let R = rqn in (7.4):

C3NR ≤ (C3C6)
q(
R

q
)−q(1−ǫ)m + C5R

−m ≤ C7R
−m,

when R > 1. The proof of Theorem 7.3 is now accomplished. �

The next theorem is a reformulation of Theorem 7.4:
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Theorem 7.4. Let (B0, γd) be a solution to the vortex equation (5.1). Let

f = γd(z
d + ad−1z

d−1 + · · ·+ ad−m+1z
d−m+1) + γd−mzd−m + · · ·

be a polynomial map where ai ∈ C, d − m + 1 ≤ i ≤ d − 1 are complex
numbers. Then the solution (A, σ) = eα̃ · (A0, σ0) obtained in Theorem 5.1
converges to (B0, γd) at the rate |z|−m as |z| → ∞, i.e., for any k ≥ 2, there
exists M(k,A0, σ0) > 0 such that for any z ∈ C,

dk((∇Σ
A(z), σ(z)) − (B0, γd)) < M |z|−m.

Proof. Let f0 = zd+ad−1z
d−1+· · ·+ad−m+1z

d−m+1. Let α0 ∈ C∞(C,R) such
that (∇ω, η) := eα0 · (d, f0) solves the vortex equation (7.2). Let (A1, σ1) =
eα0 · (A0, σ0) and α = α̃ − α0. By the same computation as in the proof of
Theorem 7.1, we have

(∆C + (∆Σ + |γd|2))α = h(α) + k

where h(α) = −1
2(e

2α − 2α − 1)|σ1|2 and

k = −1

2
(1− |η|2) + (|γd|2 − |σ1|2)(α+

1

2
).

Since σ1 = ηγd + eα0γd−mzd−m + · · · , it follows that

|σ1|2 − |γd|2 = (|η|2 − 1)|γd|2 + 2eα0Re〈ηγd, γd−mzd−m〉+O(|z|−m−1).

Note that eα0 ∼ |z|−d as z → ∞. This implies k(z) decays at the rate
|z|−m at ∞. Now we use lemma 7.3 to conclude. �

Appendix A. Some analytic results

In this section, we review some analytic results that were used in Section
5 and Section 6.

In dimension 4, we have Sobolev embedding L2
k(R

4) →֒ L∞(R4) if k > 2.
In the borderline case when k = 2, we have

L2
2(R

4) →֒ Lp(R4)

for any 2 ≤ p < ∞. We will prove a weak version of Trudinger’s inequality.
For the proof of this paper, we will only need these propositions in the
special case when n = 2, 4.

Proposition A.1 ([Tay11, Proposition 4.1]). There exists Cn > 0 such that
for any 2 ≤ p < ∞ and u ∈ L2

n/2(R
n),

‖u‖Lp(Rn) ≤ Cp1/2‖u‖L2
n/2

(Rn).

Proposition A.2. For any u ∈ L2
n/2(R

n) and any 2 ≤ p < ∞,

eu − 1 ∈ Lp(Rn).
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Proof. By Taylor expansion, Stirling’s formula
√
2πmm+ 1

2 e−m ≤ m! and
Proposition A.1 , we have

‖eu − 1‖p ≤
∞
∑

m=1

1

m!
‖um‖p =

∞
∑

m=1

1

m!
‖u‖mpm ≤

∞
∑

m=1

1

m!
Cm
n (pm)m/2‖u‖mL2

n/2

≤
∞
∑

m=1

1√
2πm

(
eCnp

1/2‖u‖L2
n/2

m1/2
)m.

When m ≫ 1, (eCnp
1/2‖u‖L2

n/2
)/m1/2 < 1, so this series always converges.

�

Proposition A.3. The exponential map:

H : L2
n/2(R

n) → L2(Rn), H(u) = eu − 1

is differentiable and DuH(v) = veu. In particular, H is continuous.

Proof. Let v ∈ L2
n/2(R

n). Since v, eu − 1 ∈ L4(Rn),

‖veu‖2 = ‖v(eu − 1) + v‖2 ≤ ‖v‖2 + ‖v‖4‖eu − 1‖4.
This shows DuH(v) := veu is a bounded linear map from L2

n/2 to L2.

It suffices to show

H(u+ tv)−H(v) − tveu = eu · (etv − 1− tv) ∈ O(t2).

Using the same argument as above, it suffices to check ‖etv−1−tv‖2, ‖etv−
1− tv‖4 ∈ O(t2). This is evident from the proof of Proposition A.2. �

Proposition A.4. The exponential map H : L2
n/2(R

n) → L2(Rn) is weakly

continuous.

Proof. Since C∞
c (Rn) is dense in L2(Rn), it suffices to show that for any

v ∈ C∞
c (Rn) and any sequence

uk
w−L2

n/2−−−−−→ u∞,

we have 〈H(uk), v〉 → 〈H(u∞), v〉 as n → ∞. The Sobolev embedding
L2
n/2 →֒ Lp is compact on BR := B(0, R) for any 2 ≤ p < ∞ and R > 0.

This shows uk → u∞ in Lp
loc. In addition, for any m ≥ 1,

(A.1) umk
L2
loc−−→ um∞.

Indeed, by Hölder’s inequality,

‖umk − um∞‖L2(BR) = ‖(uk − u∞)(

p−1
∑

l=0

ulku
m−1−l
∞ )‖L2(BR)

≤ ‖uk − u∞‖L4(BR)

p−1
∑

m=0

‖uk‖lL4(m−1)‖u∞‖m−1−l
L4(m−1) .

≤ C‖uk − u∞‖L4(BR) → 0.
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In the last step, we used the fact that ‖uk‖L2
n/2

and hence ‖uk‖Lp are uni-

formly bounded for any fixed 2 ≤ p < ∞.
Finally, by the proof of Proposition A.2, for any ǫ > 0, we can find M > 0

such that for any k > 0,

‖euk − 1−
M
∑

m=1

1

m!
umk ‖2 < ǫ.

Combining with (A.1), this implies 〈eun − 1, v〉 → 〈eu∞ − 1〉. �

Appendix B. The vortex equation on Σ

This appendix is based on Graćıa-Prada’s paper [GP94].
For a complex line bundle L → Σ, let’s fix a hermitian metric and consider

the space of smooth unitary connections and the smooth connections:

C(Σ, L) = A× Γ(Σ, L).

A configuration (A,Φ) is called a vortex if it solves the vortex equation:

(B.1)

{

∗iFA + 1
2(|Φ|2 − 1) = 0,

∂̄AΦ = 0.

Each unitary connection A defines a holomorphic structure on L and the
second equation of (B.1) is saying Φ is holomorphic with respect to A.

Consider α, β ∈ Γ(Σ,R). The formula

GC(Σ) ∋ g = u · eα : C(Σ, L) → C(Σ, L)
(A,Φ) 7→ (A− u−1du+ i ∗ dα, ueαΦ)

defines complex gauge transformation on C(Σ, L), where u ∈ Map(Σ, S1) and
α ∈ Γ(Σ,R). This transformation is designed so that ∂̄g(A)g(Φ) = g(∂̄AΦ).

We obtain the space of gauge transformations G (Σ) by setting α = 0.
The vortex equation (B.1) is invariant under the action of G (Σ).

Theorem B.1. Suppose 0 < degL := c1(L)[Σ] <
1
4πV ol(Σ). Then for any

effective divisor D =
∑

nizi with degD = degL, there is a unique solution
(A,Φ) to the equation (B.1) up to gauge such that Z(Φ) = D.

Given any effective divisorD =
∑

nizi with degD = degL := c1(L)[Σ], D
determines a holomorphic structure ∂̄D and a canonical holomorphic section
Φ0 with respect to ∂̄D. The pair (∂̄D,Φ0) is unique up to the action of GC(Σ).
We fix a representative (∂̄D,Φ0). The Chern connection A0 is the unique

unitary connection on L such that ∂̄A0 = ∇0,1
A0

= ∂̄D. Our goal is to find

another configuration (A,Φ) obtained from (A0,Φ0) by applying an element
in GC(Σ) such that the first of (B.1) is satisfied.

Since we are interested in solutions modulo gauge, we are free to set β ≡ 0
and think of g = eα as a conformal change on L. The curvature of A and
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the covariant derivative ∇AΦ are transformed accordingly under g:

FA 7→ FA + id ∗ dα
∇AΦ 7→ eα(∇AΦ+ 2(dα)1,0 ⊗ Φ).

For (A,Φ) = g(A0,Φ0), the second of (B.1) is satisfied. Let us define the
moment map by the formula

µ : L2
2(Σ,R) → L2(Σ,R)

α 7→ ∗iFA +
1

2
(|Φ|2 − 1) = ∆α+

1

2
|Φ0|2(e2α − 1) + h

where h = ∗iFA0 +
1
2 (|Φ0|2 − 1) ∈ C∞(Σ) is a smooth background function.

It suffices to find α so that

(B.2) µ(α) = 0.

First, µ is well-defined. By Sobolev embedding theorem, L2
2 →֒ L∞ in

dimension 2 and hence eα − 1 ∈ L∞(Σ) →֒ L2. Secondly, the solution to
equation (B.2), if exist, must be unique. Suppose we have µ(α1) = µ(α2) =
0, take γ = α2 − α1. Then we have

∆γ +
1

2
|Φ0|2e2α1(e2γ − 1) = µ(α2)− µ(α1) = 0.

This implies:

0 =

∫

Σ
〈γ,∆γ +

1

2
|Φ0|2e2α1(e2γ − 1)〉

=

∫

Σ
|∇γ|2 + 1

2

∫

Σ
|Φ0|2e2α1(e2γ − 1)γ

Terms in the second line are non-negative. This shows ∇γ ≡ 0 and γ is a
constant function on Σ. Since x(e2x − 1) = 0 iff x = 0, γ ≡ 0.

To establish the existence of the solution, we apply variational principle.
We define the energy functional:

(B.3) E : L2
2(Σ,R) → R, α 7→ 1

2

∫

Σ
|µ(α)|2.

This functional is well-defined on L2
2, but we will not use this space as

the variational space. For a solution to (B.2) to exist, we necessarily have

0 <
1

2

∫

Σ
|Φ0|2e2α =

∫

Σ
(
1

2
− iFA) =

1

2
V ol(Σ)− 2πc1(L) := c

This explains the reason why equation (B.1) is subject to the solvability
condition c1(L) < 1

4πV ol(Σ). From now on, let’s fix this positive number

c > 0 and associate to c a subset of L2
2(Σ):

(B.4) Hc = {α ∈ L2
2(Σ) :

1

2

∫

Σ
|Φ0|2e2α = c}.

Equivalently, an element α lies inHc if and only if α ∈ L2
2 and

∫

Σ µ(α) = 0.
We will look for a minimizer of E(α) for α ∈ Hc.
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In light of the decomposition L2
2(Σ) = H⊥⊕R, where H⊥ is the subspace

of L2
2 that is L2- orthogonal to constant functions, Hc can be viewed as a

graph over H⊥; indeed, for α = α0 + α1 with α0 ∈ R and α1 ∈ H⊥, α ∈ Hc

if and only if

(B.5) e2α0 = (
1

2

∫

Σ
|Φ0|2e2α1)−1 · c.

The crucial step to finding a minimizer of E is an a priori estimate:

Theorem B.2. There is a function η : R → R such that for any C > 0 and
α ∈ Hc with E(α) < C, ‖α‖L2

2
< η(C).

Proof. This is a consequence of the energy equation. The Bogomol’nyi trans-
formation allows us to write for any configuration (A,Φ):

∫

Σ
2|∂̄AΦ|2 + | ∗ iFA +

1

2
(|Φ|2 − 1)|2 = Ean − Etop

where

Ean =

∫

Σ
|FA|2 + |∇AΦ|2 +

1

4
(1− |Φ|2)2, Etop =

∫

Σ
iFA = 2πc1(L).

Let (A,Φ) = eα · (A0,Φ0). It follows that

(B.6) 2E(α) =
∫

Σ
|∆α+ ∗iFA0 |2 + positive terms− Etop.

Since ∗iFA0 is a smooth function on Σ, (B.6) implies

‖∆α‖22 < aC + b

for some a, b > 0. Suppose λ1 is the first positive eigenvalue of ∆. Since
∆α = ∆α1 and α1 is orthogonal to ker∆, it follows that

‖α1‖L2 ≤ 1

λ1
‖∆α‖2

Now we know ‖α1‖L2
2
is controlled by η1(C) for some function η1. By the

solvability constraint (B.5), α0 is determined by α1 and so ‖α‖L2
2
< η(C)

for some η. �

Proof of Theorem B.1. Let a = infα∈Hc E(α). We can find a sequence of
elements αn ∈ Hc such that E(αn) → a as n → ∞. By Theorem B.2, L2

2-
norms of αn are uniformly bounded, so we can find a converging subsequence
in weak L2

2-topology. Let us assume it is just the sequence itself and let
α∞ ∈ L2

2 be their limit. Since L2
2 →֒ L∞ is compact, µ(αn) → µ(α∞)

weakly in L2 and α∞ ∈ Hc. This shows E(α∞) ≤ lim inf E(αn) = a, so
E(α∞) = a. Now Theorem B.1 will follow from a lemma. �

Lemma B.3. If α ∈ Hc is a critical point of E|Hc , then µ(α) = 0.
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Proof of Lemma. Let f = µ(α). Any γ ∈ L2
2 subject to the constraint:

(B.7)

∫

Σ
|Φ0|2e2αγ = 0,

lies in the tangent space TαHc. Since α is a critical point, it follows that

(B.8) 0 =
d

dt
|t=0E(α+ tγ) = 〈f,Dαµ(γ)〉,

where Dαµ(γ) = ∆γ + e2α|Φ0|2γ is the linearized operator at α.

Lemma B.4. The linearized operator Dαµ is self-adjoint on L2
2(Σ).

Proof. It is clear that Dαµ is well-defined on L2
2 and it is symmetric. To

show it is self-adjoint, it suffices to prove show γ ∈ L2 and Dαµ(γ) ∈ L2

imply γ ∈ L2
2. But this is trivial: e

2α|Φ0|2 ∈ L∞ implies e2α|Φ0|2γ ∈ L2, so
∆γ ∈ L2. �

Now Lemma B.4 and relation (B.8) imply f ∈ L2
2 since f is in the domain

of the adjoint operator (Dαµ)
∗. Let f = f0 + f1 with f0 constant and f1

subject to constraint (B.7). We take γ = f1 in (B.8) and integration by
parts shows

0 = ‖df1‖22 +
∫

Σ
e2α|Φ0|2f2

1 .

Therefore, f1 ≡ 0 and f ≡ f0 is a constant function on Σ. On the other
hand, the constraint (B.4) shows

(B.9) Vol(Σ) · f0 =
∫

Σ
f =

∫

Σ
µ(α) = 0.

and hence f = f0 = 0. �

Let us end this appendix by pointing out what will be modified if Σ is
replace by C:

• There is no solvability constraint for the vortex equation on C. It is
easier to show for a critical point α of E , µ(α) has to be zero.

• Choosing a smaller variational space (B.4) is necessary for the proof
of Theorem B.2. In fact, if we worked with L2

2, Theorem B.2 would
be false since α0 can be arbitrarily negative while µ(α) remains
bounded. However, when it is C, L2

2 is the right space to work
with.

• The spectrum of Laplacian operator on C is continuous. In the
proof of Theorem B.2, we have used discreteness of the spectrum in
an essential way; we used the decomposition L2

2 = H⊥⊕R. On C, we
will apply a cut-off function on the frequency space and decompose
α into high-frequency and low-frequency parts.

• We will establish Theorem B.2 for Y = C (Theorem C.3) and X =
C×Σ (Theorem 5.4), but their proofs will be much harder. It is the
main technical issue when we apply variational principle.
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Appendix C. The vortex equation on C

In this section, we will prove the existence of vortices on C. To start,
let L0 be the trivial line bundle on C with the product metric. Then the
polynomial

Φ0 =

m
∏

i=1

(z − zi)
ni .

is a holomorphic section that vanishes at z1, · · · , zm ∈ C with multiplicity
n1, · · · , nm.

The vortex equation on C is defined by same formula (B.1) for the trivial
line bundle L0. For the setup, see Appendix B.

Theorem C.1. For any effective divisor D =
∑

nizi, there is a unique
solution (A,Φ) to the equation (B.1) up to gauge such that Z(Φ) = D.

Proof. Note that (A0 = d,Φ0) is not the solution that we look for: Φ0 /∈
L∞(C). We choose a background conformal change. Set α0 = −∑m

i=1
ni
2 log(1+

|z − zi|2). Then we obtain

(A1,Φ1) = eα0 · (A0,Φ0) = (d+ ∗dα0,
m
∏

i=1

(z − zi)
ni

(1 + |z − zi|2)ni/2
).

For (A1,Φ1), the second equation of (B.1) is satisfied automatically. We
wish to find a further conformal transformation α so that the first equation
is satisfied for eα · (A1,Φ1). This is equivalent to finding α ∈ L2

2 so that
µ(α) + h = 0 where

µ : L2
2(C) → L2(C),

α 7→ ∆α+
1

2
|Φ1|2(e2α − 1).

is the moment map and the term h := ∆α0 + 1
2(|Φ1|2 − 1) comes from

the background configuration (A1,Φ1). By Trudinger’s inequality (Theorem
A.2), µ is well-defined and by direct computation, h ∈ L2(C). Our goal is
to show µ gives a bijection between L2

2(C) and L2(C). In particular, there
is a unique α ∈ L2

2 such that µ(α) = −h.
We start with the easy part of the proof. For any g ∈ L2(C), define the

associated energy functional Eg by the formula

Eg(α) =
1

2

∫

C

|µ(α)− g|2

which measures the L2 distance between µ(α) and g.

Lemma C.2. For any critical point α of Eg, we must have Eg(α) = 0.

Proof. Let f = µ(α)− g. Since α is a critical point, for any γ ∈ L2
2(C),

(C.1) 0 =
d

dt
|t=0E(α+ tγ) = 〈f,Dαµ(γ)〉.
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Since Dαµ(γ) = ∆γ + |Φ1|2e2αγ is self-adjoint on L2
2, (C.1) implies f ∈ L2

2.
Then we plug γ = f into (C.1). Integration by parts shows

0 = ‖df‖22 +
∫

C

|Φ1|2e2α|f |2,

and f has to be zero everywhere. �

In light of Lemma C.2, it suffices to find a point α that realizes the infimum
of Eg. To do this, we construct a minimizing sequence {αn} ⊂ L2

2 such that
Eg(αn) → inf Eg. The hardest part of the proof is an a priori estimate, the
counterpart of Theorem B.2 and Theorem 5.4:

Theorem C.3. There is a function η : R → R such that for any C > 0 and
α ∈ L2

2(C) with Eg(α) < C, we have ‖α‖L2
2
< η(C).

Proof. Note that it suffices to prove this theorem for one special g and the
rest will follow by triangle inequality. We choose g = −h and write E = E−h

for short. By Bogomol’nyi transformation, we have energy equation:

(C.2) 2E(α) = −2πd+

∫

C

|∆α+ ∗iFA1 |2 + |∇AΦ|2 +
1

4
(1− e2α|Φ1|2)2

where d =
∑m

i=1 ni is the degree of Φ0 and (A,Φ) = eα · (A1,Φ1). Since
1− |Φ1|2, ∗iFA1 ∈ L2(C), we know from (C.2) that

∫

C

|∆α|2,
∫

C

(1− e2α)2|Φ1|4 < aC + b

for some a, b > 0. It suffices to control ‖α‖2. We decompose C into two
parts

C = A1

∐

A2, A1 = {z ∈ C : α(z) > −1, |Φ1|2 > ǫ}, A2 = Ac
1.

Then
∫

A1

|α|2 ≤ C1

ǫ2

∫

C

|(1− e2α)|Φ1|2|2.

Since Zǫ(Φ1) := {|Φ1|2 ≤ ǫ} ⊂ C is compact, we take R ≫ 0 such that
Zǫ(Φ1) ⊂ B(0, R). Then

Area(A2\B(0, R)) ≤ 1

ǫ2(1− e−2)2

∫

C

|(1 − e2α)|Φ1|2|2.

Now we are in the place to apply Lemma 6.4. �

Theorem C.3 allows us to find a weakly convergent subsequence among
{an}. Denote this limit by α∞. We know Eg(α∞) ≤ lim Eg(αn) = inf Eg and
hence α∞ is a critical point of Eg. Now we use Lemma C.2 to conclude. �

The proof of Theorem 5.4 is modeled on the proof above. It is much
harder to work with X = C× Σ due to some technical reasons:
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(1) The L2-norm of ∆Σα is not a term in the energy equation. We
worked very hard in Lemma 6.2 to show it is actually controlled by
the analytic energy.

(2) In dimension 4, the thickened zero locus Zǫ(σ1) = {|σ1|2 < ǫ} is
no longer a compact region. This is the reason why there are two
classes of points in the good set A1 in the proof of Theorem 5.4. For
the first class, α has large variation on the fiber. For the second, its
variation is small and hence α does not “see” the zero locus of σ1 on
that fiber.
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