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Instantons and Bar-Natan homology
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Abstract. A spectral sequence is established, whose E; page is Bar-Natan’s variant of
Khovanov homology and which abuts to a deformation of instanton homology for knots
and links. This spectral sequence arises as a specialization of a spectral sequence whose

E; page is a characteristic-2 version of F5 homology, in Khovanov’s classification.
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1 Introduction

1.1 Local coefficients

In previous work, the authors introduced an instanton homology, I # (K), for knots
and links K C S°. It was constructed as the Morse homology of a Chern-Simons
functional whose critical points correspond to certain SU(2) representations of
the fundamental group of the link complement. A variant J*(K) was introduced
in [8], and was defined similarly, but with SO(3) in place of SU(2). The coefficient
ring in the present paper will have characteristic 2, and when this is the case, both
I*(K) and J*(K) can be defined for webs (embedded trivalent graphs) rather than
only for links. One of the main results [11] concerning [ %(K) is the existence of a
spectral sequence, abutting to I*(K) and having E; page isomorphic to Khovanov
homology:

Kh(R) = I*(K) (1)

(The notation K denotes the mirror image of K, and it appears here only because
some of the traditional orientation conventions differ.)



In this paper K will nearly always be a knot or link: trivalent spatial graphs
appear only in an auxiliary role. We focus on a variant of I*(K) obtained by
introducing a system of local coefficients on the relevant configuration space of
connections, %ﬁ(K ). In doing so, we build on two earlier papers. First, in [12],
the authors introduced a local coefficient system, denoted here by I,. It is defined
as the pull-back of a local system on S! via a map

he : BHK) > S

which in turn is defined using the holonomy of the connection along K. In char-
acteristic 0, a spectral sequence similar to (1) was established abutting to I*(K; T),
where the role of Kh(K) is taken by Lee homology, a certain deformation of Kho-
vanov homology introduced in [14, 15]. The local system [ is a system of free
modules of rank 1 over the ring Q[Z] = Q[u, u™'], though we will see later how
it may be defined also in characteristic 2.

Second, in [13], a local system Iy was introduced. Its construction is similar to
I, but makes use of the holonomy along the three edges of an auxiliary 6-graph
to define a map

hy : BHEK) — ST x S x S

The result is a system of free rank-1 modules over the ring
F[Z°] = BT T3 T, (2)

where [, is the field of 2 elements.

In this paper, we introduce a local system I' that generalizes both I, (in its
characteristic 2 version) and I'. It is a local system of rank-1 modules over a ring
of Laurent series in 4 variables:

R = U:Z[Toil9T1__Fl» TzilaT:;il]‘ (3)

The local system I}, can be recovered as a specialization of T by setting T; = 1 for
i = 1,2,3, while the local system I} is obtained by setting Ty = 1.

1.2 A spectral sequence from F5 homology

Lee homology, mentioned above, is a member of a larger family of a deformations
of Khovanov homology which are classified in [3] and [6]. In the language and
notation of [6], these are link homologies H(K; F) arising from rank-2 Frobenius
systems F. Among these, one that is shown to be universal in a particular sense



arises from a Frobenius system over the ring Z[h, t]. We will work exclusively
in characteristic 2 and in place of Khovanov’s Z[h, t] we introduce the ring

R5 = [FZ[h9 t]

and a corresponding Frobenius system Fs whose underlying ring is Rs /(X% +hX +
t) and whose comultiplication is given by

A:1—10X+X®1+h(1Q1)
A: XXX +t(1®1).

(The subscript 5 in Rs; and F5 follows the naming convention in [6].) The cor-
responding link homology is denoted here by H(K; Fs). It is a module over Rs
and is equal to F5 when K is the unknot. The first topic of this paper is the con-
struction of an instanton homology I*(K;T) corresponding to the local system
of R-modules I' described above, and the construction of the following spectral
sequence.

Theorem 1.1. For a knot or link in R®, there is a spectral sequence of R-modules,
from the Fs homology (in characteristic 2) to the instanton homology with local
coefficients:

HKK; Fs ® R) = I*(K;T). (4)

Here the base-change homomorphismr : Rs — R is given by

r(h)="P
r(t) =Q
where
P =T\,Ts + LTy T + T,T; T + BT T, ()
and

3
Q=) (TF+T7?).
j=0

Remark. Because R is a free module over Rs, one can take the tensor product
outside and rewrite the spectral sequence as

H(K; Fs) ® ® = I*K;T).



1.3 Bar-Natan homology

By base-change of the coefficient ring via a further ring homomorphismo : R —
S, one obtains specializations of the spectral sequence (4):

H(K; Fs ®por S) = IM(K; T ®, S). (6)

As a particular case of this construction, we can obtain a spectral sequence from
the graded Bar-Natan link homology BN(K) introduced in [3]. There is in fact
some freedom in the construction of such a spectral sequence. To explain this,
recall that in the context of [6] and [3], the homology BN(K) arises from the
Frobenius system Fs by a base-change

Tpn : Rs — Spp
where Sy, = F2[h] and 73, is the homomorphism sending ¢ to 0. We write Fy, =
Fs ®;, Spn for the corresponding Frobenius system, so that BN(K) is short-hand
for H(K; Fyy,). Specifically, the underlying algebra of the Frobenius system Fj,, is
SenlX1/(X* + hX)

and the comultiplication is

A: 1-108X+XQ®1+h(1®1)
A: X X®X.

At the expense of working over a larger ring than Sp,, we can equivalently
consider any ring homomorphism

T: R5 — S
with the following two properties:
(a) the polynomial x? + 7(h)x + 7(t) factorizes:

+rh)x+1(t)=(x+a)x+d), (a,ad €S); (7)

(b) the ring S is a free module over Sy, = [F;[h] via the homomorphism 7 :

h s (h).



When factorization occurs, the Frobenius system F5 ®; S can be described in
terms of a new generator M = X + a’, and the algebra becomes

S[M]/(M? + t(h)M).

Thus the “t” term disappears from the characteristic polynomial of M. The co-
multiplication is

A: 1H1M+Me1+17(h)(1®1)
A: M MQM.

When condition (b) holds, an application of the universal coefficient theorem
shows that
H(K; Fs ®; S) = BN(K) ®;, S

That is, the link homology arising from the Frobenius system F5®,S is isomorphic
to the graded Bar-Natan homology with the coefficients extended trivially from
Spn = F2[h] to S.

With this in mind, we return to the instanton homology I*(K;T) as a module
over R. Suppose we find a ring §, and a base change

c:R—>S,
such that the counterparts of the two conditions above hold:
(a) the polynomial x? + o(P)x + o(Q) factorizes in S[x]:

X +0P)x+0(Q)=(x+A)x+4), (AA €S) (8)
(b) the ring § is a free module over S, = F;[h] via the homomorphism r; :
h — o(P).

If we examine the spectral sequence (6) under these conditions, we see from the
observations above that the link homology that appears on the left (the E; page
of the spectral sequence) is isomorphic to graded Bar-Natan homology with a
trivial extension of coefficients:

H(K; FS ®o’or S) = BN(K_) ®r1 S.

In this way we obtain a spectral sequence from BN(K) ®,, S to I KT ® S).



To be specific about a base change that realizes the requirements (a) and (b),
we can consider
Opn * R — SN )

where Sy = B[T7, T}, T,;—'l] is a ring of Laurent series in three variables, and

opn(Ty) = T
bn( 0) 1 ' (10)
op(T) = T;, i=1,2,3.
We can write
opn(P) = A+ A
Gbn(Q) = AA/’
where .
A=T(TL,T3+T, T,
(LT +T1, 1) (an

A =T, (T, Ts + T,T; 1)

so that the factorization (a) indeed occurs. Putting this together, we have the
following statement.

Corollary 1.2. There is spectral sequence of modules over the Laurent series ring
Sgn in three variables, from the graded Bar-Natan homology in characteristic 2,

BN(K) B, Sgn = Iﬁ(KQFBN),

to the instanton homology group with coefficients in the local system Ign = I’ ®q,,
SgN, where the base change oy, is given by (10).

We shall also introduce a reduced companion of the instanton homology
group I*(K;Tgyn), which we shall denote by I’(K;Tgy). The spectral sequence
of Corollary 1.2 has a reduced companion, whose E, page is the reduced Bar-
Natan homology. Such a reduced instanton homology group can be defined us-
ing any local system of the form I' ®, § provided that the base change o satisfies
0(Ty) = o(Ty). In particular, there is no reduced version of I 4(K;T) itself. Corre-
spondingly, there is no reduced version of the link homology H(K; F5) without
first making a base change so that the polynomial x? + hx + t factorizes.

There are smaller rings S that can be used in place of our Sgy in formulating
this corollary. Notice that a sufficient condition for the factorization (a) to occur
is that that o(Q) = 0. So as another particular example we can take

S =R[T, T



and

1, i=0,1
o(T;) =
(T.) {T, i=273

9 I

Then o(P) = T? + T2 and o(Q) = 0. The homomorphism r; : Sy, — § in this
case is therefore given by

rl(h) = Tz + T_z.

There is also a filtered (as opposed to graded) version of Bar-Natan homology
which we denote by fBN(K). It is obtained via further specialization from (Rs, Fs)
by setting t = 0 and h = 1. The result is a finite-dimensional F, vector space.
For an instanton companion, we may pass to [y, the field of 4 elements or any
extension of [, in which there is a solution ¢ for the equation T? + T™2 = 1. We

define

O'fbn:%—)ﬂi
1 i =0,1 12
L b 150 (12)
{, i=2,3,

sothat Q +— 0and P — 1. There is a corresponding local system of 1-dimensional
[F4-vector spaces,

Iten = I ®qy, Fa.

We then have

Corollary 1.3. For a knot or link K, let fBN(K) denote the filtered Bar-Natan ho-
mology over [F,. Then there is a spectral sequence of vector spaces over [y,

BNEK)®F, = I*(K;Tin),
where Itgn is the local system of [y vector spaces described above.

Since I*(K;T) can be defined for trivalent spatial graphs as well as knots and
links, it would be interesting to know whether there exist corresponding gener-
alizations of the spectral sequence (4) or any of its specializations, where the link
homologies H(K; Fs), BN(K) or fBN(K) are replaced by combinatorial invariants
of spatial graphs. Note however that I*(K;T) is a torsion & -module when K has
vertices (it is annihilated by P), and I %(K;Tygn) is zero.



2 The construction of I*(K;T)

In this section we describe the construction of the local system I' and the in-
stanton homology I*(K; T'). We will lean heavily on the expositions in the earlier
papers [13] and [8], which were concerned with two different specializations for
I.

2.1 Instanton homology with constant coefficients

A trivalent graph, or web, K in a closed oriented 3-manifold Y gives rise to an
orbifold which we will simply denote by (Y, K). The isotropy groups are taken
to be Z/2 along edges of K and Z/2 X Z/2 at the vertices. We refer to such
a special orbifold as a bifold and we consider orbifold SO(3) bundles (or bifold
bundles) E over (Y, K) requiring that the local isotropy groups of the orbifold
act effectively on the SO(3) fibers. Marking data on (Y, K) consists of an open
set U, and a bifold bundle E, — U, \ K, and a bifold connection is marked by
p if an isomorphism o : E, — El|y, is given. An isomorphism t between u-
marked bundles with connection, (E, A, o), (E’, A", ¢’) is an isomorphism of bifold
bundles-with-connection such that the automorphism ¢~ 'z¢” : E, — E,, lifts to
the determinant-1 gauge group. We write

B(Y,K; p)

for the space of isomorphism classes of y-marked bifold bundles with connection.

The marking data p is strong if the automorphism group of every flat -
marked bifold connection is trivial. A sufficient condition is that U, contains
a vertex of K, and in this case there are indeed no connections with non-trivial
stabilizer even in %B(Y, K; ;). With coefficients in the field F, of two elements,
one can construct an SO(3) instanton homology group

J(Y,K); )

for any bifold with strong marking data. The generators of the complex from
which this instanton homology is computed correspond to critical points of a
perturbed Chern-Simons functional on (Y, K; u). We may omit Y from our
notation for both J and 98 when Y is understood (which is often the case when
Y is S%).

Consider next a framed base-point y, € Y with standard neighborhood
B(yo) = B>. We write Y° for the complement of this standard neighborhood:

Y2 =Y\ B(yo)
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Given a web
K cY°,

we may form a new web as a split union
Kf=KU0 (13)

where 6 C B(yp) is a standard theta-graph (three edges and two vertices) con-
tained in the ball. We may then define

JHK) = J(Y, K*); pg) (14)

where the marking data pp consists of the ball Up = B(y,) containing 6, with
Eg the unique trivial bundle on B> \ #. The group J*(K) was defined first in
[8], though the description in that paper was a slight variant of this one. The
description we have just given is from [13], where the equivalence of the two
descriptions is also proved.

In this paper, we will be almost exclusively concerned with the case that the
marking region U, is not just the ball B(y,) but is instead the whole of Y. The
distinguished SO(3) bundle E;, on Y \ K f may in general have non-zero Stiefel-
Whitney class

wy(E,) € HA(Y \ K% Z/2).

We take this class to be represented by w C Y, which is a codimension-2 sub-
manifold with boundary. We make the following assumptions on w:
* o is (the interior of) a union of circles and arcs with end-points on K;

* o is disjoint from the ball B(yy) which contains 6.

We require that o represent wy(E,), in the sense that
w(E,) = PD[w N (Y \ KH)].

Having chosen w, we shall trivialize E, on the complement of w, so that the
obstruction to extending the trivialization across each component of » is non-
zero. We use this trivialization to give a lift of E, to an SU(2) bundle on the
complement of .

Let us write p,, for the marking data obtained in this way from a 1-manifold
wCY\K"
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Definition 2.1. Using the marking data E,, as above, whose Stiefel-Whitney class
is dual to w C Y \ K, we write

(K)o = (Y. KP): o) (15)
for the corresponding instanton homology of the web K C Y°. We also write
BH(K)y = BV, KO o) (16)

for the corresponding configuration space of connections. When o is empty, we
simply omit it from our notation, and write I*(K).

When K is a knot or link, this variant coincides with I*(K),, as introduced in
[11] (though in that paper the coefficient ring was Z). As with J#, the definition
we have presented here is slightly different from the earlier one: the difference
is the use of the graph 6 in place of the Hopf link that was used in [11]. But the
two definitions give isomorphic homology groups, by the arguments from [13].

Because the marking data is all of Y, the gauge theory which underlies this
instanton homology is essentially an SU(2) gauge theory. In particular, we have
the following identification:

Lemma 2.2. The space B*(K), parametrizes equivalence classes of data of the
following sort:

e an SU(2) bundle E over Y \ (K* U w);
o an SU(2) connection A in E; subject to the restrictions,

o the associated SO(3) connection A in the adjoint bundle of E is the restriction
toY \ (K* Uw) of a bifold bundle on the bifold (Y, K*);

o the limiting holonomy of A on small circles linking w is —1.

2.2 The local system

We begin with some motivation of our construction. If 7 denotes the fundamen-
tal group of the configuration space %¥(K),, then there is a tautological local
system over B*(K),, whose fiber at each point is a free rank-1 module for the
group ring F,[x]. It can be realized by defining its fiber at [A] € BH(K),, to be
the vector space of F,-valued functions with finite support on the fiber of the
universal cover th%ﬁ(K )o — BH(K),,. Given any choice of homomorphism

e:1—G
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there is a corresponding local system It of [F;[G] modules. Our instanton homol-
ogy is Z/2 graded, not Z graded, because of non-trivial spectral flow, and there
is an infinite cyclic cover of %B*(K) on which the spectral flow is trivial. Let

ncr

be the fundamental group of this infinite cyclic cover. The instanton homology
groups are essentially unchanged in passing to the cover (the homology becomes
Z graded and 2-periodic, rather than Z/2 graded). Up to isomorphism, the in-
stanton homology groups with coefficients in the local system I, will therefore
depend on the homomorphism € only through the restriction of € to 7’

Although we shall not need a proof, the fundamental group 7 is a free abelian
group of rank 5 when K is a knot and w is empty. It follows in this case that 7z’
has rank 4, and we will therefore capture the most general local system if we
construct a homomorphism

T — 7

which is injective on the subgroup 7’ C .
The construction described in [13] arises from a map

T — 7
presented in terms of an explicit map
(h1, ha, ) : BHK),, — ' x ST x ST,

and this leads to the local system Iy of free rank-1 modules over F,[Z>] as de-
scribed at (2) in the introduction. To recall this briefly from [13], the marking
data y1, means that our gauge theory has structure group SU(2), and at the two
vertices of 0, the structure group of the two fibers E; and E_ is reduced to the
center {+1}. Along each edge of 0, the structure group is reduced to S'. The
holonomy along each edge therefore gives a well defined element of

St/{+1} = R/Z. (17)

Applied to three edges of 6 in turn, one obtains the three components hy, hy, hs.
(The notation for Iy was simply I' in [13]).

When o has no end-points (so is disjoint from K), a very similar construction
from [12], can be adapted to define a map

ho : B*(K),, — S (18)
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To describe this, consider first the case that K is a knot. Choose a framing 7 for K
so as to have well-defined push-off. As explained in [10], the framing allows us to
interpret the orbifold connection [A] as giving rise to a well-defined connection
over the knot K itself, carried by a bundle with an involution g coming from the
orbifold structure. Because of the action of g, the adjoint bundle decomposes as
a sum

Eon

where ¢ is a real line bundle on K, and 7 is a 2-plane bundle. The marking data
allows us to identify the orientation bundle of the knot K with the orientation
bundles of both ¢ and 7, so the connection in the 2-plane bundle 7 has a well-
defined circle-valued holonomy along K. The holonomy of 7 around K is the def-
inition of hy above. If K is a link rather than a knot, we multiply the holonomies
along all the components.

Combining the two previous constructions, we now have a map

(ho, b, by, hs) : BHK),, — R*/Z* (19)

whenever w has no boundary points. In the case that w has boundary on K, the
component iy must be omitted. As in [10], we use an explicit description of the
corresponding local system that depends on the maps h; but does not depend on
a choice of base-point in BH(K),,. We write

R = R[Z*]

and regard this as a subring of [,[R*]. For each u € R*, we have the rank-1
SR -module
T, =TT TR
c F[RY]

and these form a local system over the torus R*/Z*. Pulling this back by the map
(19), we obtain our local system I' over BHK)..
We summarize these constructions as follows:

Notation 2.3. Let K C Y° be a link, let Kf = KU 0, let @ C Y be a 1-manifold
without boundary, disjoint from the ball containing 6. Let %¥(K),, be the associ-
ated space of connections. On BH(K),,, we have a local system I' of (free, rank-1)
modules over

R = R[ZY].
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For any base-change o : R — 8, there is a corresponding system of §-modules,
I, =T ®;S.

If 6(Ty) = 1, then the map hy : BHK), — S'isnot required in the construction of
the local system, and in this case we can form the local system I'; more generally,
when w is allowed to be a manifold with boundary with end-points on K.

Remarks. (i) In the case that « has boundary and o(Ty) = 1, our notation for
the local system I, involves a slight abuse of notation, since we can no longer
write it as I' ®, S. (The local system I' is not defined in this case.) It should more
properly be defined as Iy ®; S, where & : [,[Z%] — S8 is the map through which
o factors.

(ii) The definition of hy above makes use of a framing 7 for the knot (or for
each component of the link). If the framing 7 is changed by 1, then hy changes
to hy + 1/2. (See [10].) Therefore, framings whose difference is even give rise to
the same map hy and identical local systems I'.

(iii) The four maps h; in (19) give a map

¢ m = m(BHK),) - Z*

whenever » has no boundary points. We can say a little more about the kernel
and image of ¢. The space B4 (K),, is connected and can be identified as usual
with a quotient /G, of an affine space of connections by the action of the gauge
group. We can therefore identify 7 as 77(6). When K is a knot, the kernel of the
map ¢ is Z and consists of the components of G represented by gauge transfor-
mations that are supported in the neighborhood of a point in S \ K. The image
of ¢ is a sublattice A C Z* of index 8. In terms of the standard basis v;, this lattice
is generated by the elements

2v;, (i=0,1,2,3), and ©v;+ vy + V3.

For example, the fact that the v, coeflicient is even is a reflection of the fact that
the map hy lifts to the double cover of S'. In turn this lift exists because we can
use the holonomy of the SU(2) connection around the loop K to define a map hy,
rather than use the holonomy of the SO(3) connection which defines hy. In the
same way, the fact that the coefficients of v; and v, have the same parity similarly
means that hy + h; lifts to a double cover, essentially because the corresponding
pair of edges of 6 form a closed loop. Instead of the ring [,[Z*], we could instead
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work with the subring F»[A], which we can identify as the subring generated by
the monomials T** and T\ T, T5.

(iv) The previous remark explains that the circle-valued map hg has a lift ho,
through the double-cover of S 1" and this accounts for a difference in conventions
between the present paper and (for example) the notation in [12]. In [12], the
local system is defined using the map ho, and is described as a module for the
ring of finite Laurent series in a formal variable u. Because of the double cover,
the variable u in that paper corresponds to T? in the present paper, rather than
To. Our present choice of conventions is for consistency with [13].

(v) In the case that K is an n-component link and » has no boundary points,
the fundamental group 7 is free of rank 4 + n and 7’ is free of rank 3 + n. If w has
boundary, and if k is the number of components of K on which dw has an odd
number of points, then the rank of 7’ is 3 + n — k and the torsion subgroup of 7’
is (Z/2)*~1. The proof of these assertions are essentially the same as the results
of section 3.2 of [11].

2.3 The chain complex

Following Notation 2.3 henceforth, we fix a base-change homomorphism o :
R — §, possibly the identity. We fix a 3-manifold Y, a base-point y, € Y, a link
K c Y disjoint from a fixed ball around the base-point, and a representative w
for the Stiefel-Whitney class. If o(Tj) = 1, then we allow w to have boundary on
K.

We can now construct the chain complex and boundary map which will de-
fine a Floer homology group I*(K;T,),, in the usual way for an instanton Floer ho-
mology. While the construction is a straightforward generalization of the treat-
ment in [13] and its predecessors, it is worthwhile to recall a particular point
from [13], namely the proof that #* = 0 given in [13, Lemma 3.1]. From there we
see that, a priori, there is a relation of the form

000 =WI

for some W € S. That is, we may have a “matrix factorization” rather than a
complex. The proofthat W = 0 carries over from [13] without change: it vanishes
because it is a sum of contributions from the vertices of 8, and is independent
of K. Although we will not pursue this further in the present paper, it is worth
observing what happens in a more general situation. Suppose we consider the
case that K is a web rather than a link, and suppose we use each edge e of K to
define a map h, : Qsﬁ(K) — 51, so as to obtain a local system of modules over a
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ring of Laurent series in variables T, indexed by the edges. The term W will have
contributions from possible bubbling at the vertices v of K, so

W:ZWU.
(%

With a little more care, one may explicitly compute W, and it has the form
Wy = p(Tew,1)> Te(v,2)> Te(v,3))
where e(v, i) are the three edges incident at v and
p(Ty, Tp, T3) = T Ts + T, ' T, Y + T T T + T T,

is the same polynomial that defines P. (Our notation here as elsewhere will some-
times not distinguish a generator T; € R from its image under the base-change,
o(T;) € 8.) In this generality, the potential W is non-zero. It becomes zero if
we impose relations on the variables T, so as to ensure (for example) that the
product

Te(v,l)Te(v,Z)Te(v,B)

is independent of the vertex v.

2.4 Functoriality

Let X be an oriented 4-dimensional cobordism from Y, to Y; and let S € X be
a surface (not necessarily orientable) which provides a cobordism between links
Ky € Yy and K; C Y;. Because of the need for a basepoint, we suppose that X
contains an embedded cylinder [0, 1] X B*> whose boundary at the two ends are
the balls B(yy) and B(y;) around the chosen basepoints. We suppose that S is
disjoint from this cylinder, so we may form the larger foam

st=5s U ([0,1]x6)
C X.

The foam S* ¢ X provides an orbifold structure on X, which we write as (X, SH.

The oriented orbifold (X, S*) is a cobordism between the orbifolds (Y;, K ? ). As
a special case of the general machinery of [8] and [11], it defines homomorphisms
on the constant-coefficient instanton homology groups

(X, S) : (Yo, Ko) — IH(Y1, KY).
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More generally, we can again allow bundles with non-zero w; represented as
the dual of a submanifold w. As in [11], we take w to be a surface with corners.
Thus, the boundary of w consists of:

¢ a 1-manifold wy C Y, possibly with boundary on Kj;
e a 1-manifold w; C Y; similarly; and
e a union of arcs and circles in the surface S C Y.

As well as meeting S along its boundary, we allow » to meet S also in its inte-
rior, in transverse points of intersection [11]. We then have the more general
functoriality, with maps

(X, 8), : IH(Yo, Ko)wy — TH(Y1, K1),

We can now introduce the local system [; = T’ ®, S. If 0w meets S, then we
require that o(Ty) = 1, as in Notation 2.3. When the local system is introduced
and o(Ty) # 1 we must also take additional care, because of the role of the fram-
ings. Recall that the map hg : B*(K) — S! depends on a choice of framing of K,
and otherwise has an ambiguity of a half-period. Framings which have different
parities give rise to groups I*(K;I},),, that are isomorphic, but not canonically so
without further choices. This issue is dealt with carefully in [10] (and with some
inessential inaccuracies in [12]). We recall the procedure.

Let us recall first that the construction of I*(K;I,), depends on framing of
K, and that the map that we are seeking to define should therefore be written

(X, 8Ty« IF(Yo, Kos T)2) — IF(Y1, Kis T, (20)

where we have now included the framings of K and K; explicitly in the notation.
At the chain level, the map will be given by a chain map

CH(S; T)w = CH(Yo, Kos o) — CH(Y1, K3 To)T,

whose matrix entry from @ to @; is given by “counting instantons” as usual, and
attaching a “weight” e([A]) € R to each instanton [A] from a; to ;.

To define €([A]), following [10], we note that the framings of K and K; allow
one to define a self-intersection number S-S for the surface S. Given the instanton
[A] on the cylindrical-end orbifold obtained from (X, S), one may define locally
an SO(3) bundle on S with a reducible connection, so that the associated R*
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bundle has locally the form & @ 7 (a line bundle and a 2-plane bundle). Although
the construction is local, the curvature 2-form of the 2-plane bundle 7 exists
globally on S as a 2-form Q with values in the orientation bundle of S. So we

may consider the integral
V()(A) =c / Q,
S

with the normalizing constant ¢ chosen so that vy coincides with the Euler class
of 1 in the closed orientable case. (So ¢ = i/2x if we identify the Lie algebra of
the circle with iR in the usual way.) An application of Stokes theorem gives

vo(A) + (1/2)(S - §) = ho(a1) = ho(a)  (mod Z). (21)

We may define similar quantities v;(A), (i = 1, 2, 3), as the integrals of the curva-
ture on the three edges of . The weight e([A]) is now defined by

6([A]) — TOVO(A)+(1/2)(S-S)T11/1(A)T;Z(A)T;S(A) (22)

These relation (21), and the simpler formulae for the other v;, mean that multi-
plication by (22) is a map from the fiber I} 4, to I; 4, as required. The formula for
the exponent of T is the same as in [10], except for a factor of 2 which stems
from the difference between SU(2) and SO(3), as explained in Remark (ii) at the
end of section 2.2 above.

The result of this construction is a well-defined map (20) between instanton
homology groups. As a special case, we may take K, = K; = K and use the
cylindrical cobordism to obtain canonical isomorphisms

(Y, K;T,)% — I4(Y, K;T,)"

where only the framing has changed. We use these canonical isomorphisms to
treat ] ﬁ(Y, K;T,)l as being independent of the choice of framing 7. Note however,
that if 7y and 7; are framings which are equal mod 2, then the corresponding local
systems are identical, but our chosen canonical isomorphism is not the identity
map: it is multiplication by T, where n is half the difference between the fram-
ings.

Henceforth we will continue to omit 7 from our notation. When the ambient
cobordism X is a cylinder, or is otherwise understood, we will simply write

F(S:Ty)0 : PF(Koi Tp)ay, — TH(K1:Ty) (23)

for the map (20).
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Figure 1: A knot K with base-point p, and the resulting web K9 obtained by adding a
bigon.

2.5 A reduced variant

The instanton homology I¥(K) with constant coefficients has a “reduced” version
I%(K), which is described, for example, in [11]. It depends on a choice of base-
point on the link K, and the relationship of I to I* is similar to the relationship
between the reduced and unreduced versions of Khovanov homology [5]. Given
a base change ¢ : R — § satisfying the extra condition o(Ty) = o(Ty), we
can construct a reduced version | t‘(Y, K;T,), of I r‘(Y, K;T,)., for knots and links
K c Y. We describe the construction here.

LetK C Y be alink. Let p be the base-point on K, and (€, €3, €3) be an oriented
basis of tangent vectors, with €; pointing along K. Making the modification in a
standard ball around p, create a spatial graph with two vertices by replacing an
arc of K adjacent to p with a bigon, as shown in Figure 1. Let K C Y denote the
resulting web. Let B%(Y, K), or just B4(K), denote the space of marked bifold
connections on the corresponding bifold.

We define three circle-valued functions,

(hy, by, hs) : BYK) — R®/ 25,

as follows. First, in the case that K is knot, the web K% is the union of three
oriented arcs ey, e;, e3, where e; and e; comprise the added bigon. All three are
oriented by €;. As before structure group of a connection [A] € B%(K) reduces to
S! along the arcs, and the holonomy of [A] along the three arcs defines the maps
h;, just as in the case of B(K). If K is a link, let

ho: BUK) > R/Z

be obtained from the holonomy along the remaining components of K (those
that do not contain p). In the case of a knot, just take A to be constant. In either
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case, we now have a map
(ho, hy, ha, hs) - R4/Z4,

from which we can construct a local system of &-modules I over B9(K) as be-
fore. In the case that the base-change ¢ : & — § has o(Ty) = o(T}), the local
system is pulled back from R*/Z> via the map

R*/7* - R®/7*

which adds the first two components. We shall consider only cases such as this
when discussing reduced instanton homology in this paper, in order to have the
components of K on an equal footing. We then define I%(K;I,) using the Morse
homology of the peturbed Chern-Simons functional on B%(K), with coefficients
in I.

This reduced instanton homology is functorial for “based” cobordisms of
links. Given links (Y, Ky) and (Y3, K7), with framed base-points py and p; on
the links, the appropriate morphism is given by a cobordism of pairs, (X, S) to-
gether with an arc y C S joining the base-points and a framing (€, €;, €3) of the
normal to y in X such that ¢ is tangent to S. Equivalently, we can think of an
embedding of [0,1] x B® in X which intersects S in the image of the standard
[0,1] x B!. Given such data, we can perform the bigon addition (Figure 1) in a
one-parameter family along the image of [0, 1] X B, to obtain an embedded foam

S% with boundary Kg UK ? The foam gives rise to homomorphisms
(X, S;T,) : I'(Yo, Ko; Ty) — (Y1, Ky T)

where the matrix entries at the chain level are given by the same formulae (22) as
in the non-reduced case, with the v; being the curvature integrals over the facets
of S,

2.6 The Kiinneth theorem for reduced homology

Given links K; and K3, each with a framed basepoint, there is a natural construc-
tion of the connected sum K; # K3, also as a link with framed base-point. To
spell this out, let (€1, €;, €3) be the framing at the base-point of K, with €; point-
ing along the knot. Using the framing, parameterize a standard ball Bs ; around
the base-point. Construct Bs; similarly. Remove the interiors and form the con-
nected sum by identifying the 2-sphere 0Bs;; with dB;; using the orientation-
reversing diffeomorphism given by reflection in the €; direction. Take the base-
point on the new link to be the image of the point €; on dBs ;.
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The construction of K; # K, from the two framed knots is functorial. That is,
given cobordisms S; from K to K; for i = 1, 2, and given framed arcs y = (y1, y2)
joining the framed basepoints, we can form a cobordism

Sy #, S,

from K| # K, to K; # K, by performing the connected-sum construction in an
interval family. The reduced instanton homology for a connected sum of framed
knots is described as a tensor product by a Kiinneth theorem:

Proposition 2.4. Let (Cy, 0) and (C,, 0) be the differential S-modules arising from
the Floer complexes for the homology groups I*(Ky; Ty) and I*(K; T,). Then the Floer
complex for K; # K, is chain-homotopy equivalent to the tensor product C; ®s Cs.

In particular, if 8 is a principal ideal domain, then there is a split exact sequence
of 8-modules,

0 — IF(Ky; Ty) ®s I'(Ky; Ty) — I3(Ky # Ky T,)

; (29
—> Tor{ (IN(Ky; T,), I(K»; T,)) — 0.
The exact sequence, but not the splitting, is natural with respect to the maps induced
by cobordisms S, S, and Sy #, S, as constructed above.

Proof. This a standard application of excision, as we now describe. The symme-
tries in the argument are more apparent in a more general version, so we consider
four pairs (Y3, K;), k = 1, .. .,4, where each K is a based link. For each i # j, there
is a connect-sum of pairs,

(Y3, Kij) = (Y3, Ki) # (Y}, K)),
where the 3-manifolds and the links are both summed at the base-points. Let CEj
denote the chain group of free S-modules arising as the instanton Floer complex
for this connected sum of based pairs, with coefficients in the local system I}.
The more general statement is then that there is a chain-homotopy equivalence,
Cl ®s Cl, ~ Cl, @ C! 25
12 ®s C3y 13 ®s Coys (25)

and that the resulting maps on homology are natural for cobordisms. The state-
ment of the original proposition arises as a special case, when each Y; is %, and



22

Figure 2: The cobordism U from two copies of an interval I to another two.

K3 and K4 are both the U.Ilkl’lOt, so that (Ylg,K13) = (Y1,K1), (Y24,K24) = (Yz,Kz),
and Cg =S

We now recall Floer’s excision argument, particularly in the versions de-
scribed in [8, Proposition 4.2] and [13, Proposition 3.3]. Let U be as in Figure 2, a
2-dimensional cobordism from the 1-dimensional manifold-with-boundary I U I
to I U I. Take the product with S to obtain a cobordism from I X $? U I x 5% to
I x S U I x S?. Then attach four copies of [0,1] X B® to obtain a cobordism W
from S U 3 to S? U S3. Inside W there is an embedded foam, ®, formed from
three copies of U. The pair (W, ®) is a cobordism

(S%,0) U (S, 0) to (S%,0)U (S, 0).

On one facet of the three facets of ®, let y;, i = 1,.. ., 4, be four arcs as shown in
Figure 3. A regular neighborhood of y; in (W, ®) is a standard pair [0, 1] x (B>, B!)
along which we form a sum with [0, 1]X (Y}, K;). The result is a cobordism of pairs,
(X,¥) from

(Yiz, K},) U (Y34, K3,) to (i3, Kjy) U (Yo, K,).
As in the proof of [13, Proposition 3.3], this cobordism of pairs gives rise to a map

on the instanton chain complexes with local coefficients, in this case a chain map

lez ®s C§4 - C?3 ®s Cg4'
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Figure 3: The foam ® C W and the four arcs along which the pairs [0, 1] X (Y;, K;) are
summed.

By the same construction, a map in the other direction is constructed. The fact
that the composite of the two, in either order, is chain-homotopic to the identity
is proved by the usual argument, as in [13] for example. m]

3 Operators on I*(K;T)

We continue with the notation of the previous sections. We write Y° c Y for
the complement of a ball around a basepoint in Y, and we consider a link K C
Y°, along with the union K¥ = K U @ in Y. The space of connections B*(K),,
carries a system of local coefficients Iy, as in Notation 2.3), and I ﬁ(K ;Ty)e is the
instanton homology for the perturbed Chern-Simons functional on B (K),, with
coefficients in the local system.

3.1 Operators from characteristic classes of the basepoint bundle.

Given an point y in the smooth part of the orbifold (Y, K), there is a basepoint
SO(3)-bundle E, on the configuration space, with Stiefel Whitney classes

w1, Wa, s € H'(BH(K),; Z/2).
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Figure 4: Links or webs K3, K; and K| differing by the unoriented skein moves, in two
different views.

(See [13, section 4].) For the instanton homology I #(K;T,), these characteristic
classes give rise to linear operators,

wi : MK T, — (K T,),.

The definition of these for the similar case of J#(K;I}) is presented in [13] and
needs essentially no change. As in [13], we have:

Lemma 3.1. On Iﬁ(K ;Is)w the operators wy and ws are zero, while w, is multi-
plication by o(P) € 8, where P € R is the element given by the expression in
(5). O

3.2 A two-dimensional cohomology class

Let a be an arc in Y with endpoints {p, g} on K U 6. The interesting case will be
when p and g lie on different components, for example on K and 0 respectively.
We require that p and g lie on the interior of edges, not at the vertices of the
graph. We also require that p and g do not lie at endpoints of w (if any). There is
a universal R3 bundle

E — ax %ﬁ(K)w.
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The restriction, E,, of E to the endpoint {p} x B (K),, carries an involution on the
R? fibers, because of the Z /2 stabilizer at this singular point of the orbifold, so E,
contains a distinguished real line subbundle, the +1 eigenspace of the involution:

L, C E, — B (K),.
This line bundle is trivial. Indeed, we have:

Lemma 3.2. Given the condition that p is not a boundary point of w, a choice of
orientation o, for L, is determined by an orientation of K at p. If p, and p, lie
either side of a single endpoint of v on K, and if K is given the same orientation at
p1 and p, then the corresponding orientations oy, 0p, of L, = L, are opposite.

Proof. We use the characterization of %B*(K),, in Lemma 2.2. The connection
[A] € B¥(K), has a preferred lift to an SU(2) connection Ain U, \ K for some
neighborhood U, of p in Y. After orienting (the normal bundle to) K, we can
consider the limiting holonomy of A around small circles linking p € K, which
is an element of order 4 in SU(2). The 2-sphere which parametrizes elements
of order 4 is identified with the unit sphere in the R3 bundle, and under this
identification the limiting holonomy is an element of [, O

With the lemma in mind, we introduce the following notation.

Definition 3.3. A dot on K is a chosen point p on K, not a boundary point of
w, together with a choice of orientation o, for the line bundle L, — BHK)o.
We may omit explicit mention of 0,, and simply refer to p as a dot. If p is a dot,
we write p for dot with the same underlying point and the opposite orientation
for the line bundle. We note that a choice of orientation of L, is equivalent to a
choice of orientation of K near p.

Suppose now that p and q are dots, and let us return to the arc a joining
them as introduced above. The dot p determines a distinguished section of L,
and hence a distinguished section i, of the R* bundle E,. Similarly, using the dot
g, we obtain a distinguished section i;. Changing the sign of the second one, we
obtain a distinguished section

I= (ip’ _iq)

of the restriction of E to da x BF(K).
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The distinguished section on the boundary allows us to define a relative Euler
class; or a top Stiefel-Whitney class

W3 = W3(|Ea I)
€ H’ ((a, da) x BHK); [Fz) .
We now take the slant product with the relative fundamental class of the arc to
obtain a class on B#(K),:

Definition 3.4. For an arc a as above whose endpoints p and g are dots, we
define a 2-dimensional cohomology class with [, coefficients on %#(K),, as

A =ws/[a, dal

€ H? (973“(1(); [Fz) . (26)

The next lemma shows that the arc a itself plays only an auxiliary role in this
construction.

Lemma 3.5. In the above construction, the class A depends only on the dots p, q. It
does not otherwise depend on the arc a.

Proof. Consider the universal R® bundle
E — (Y \K) x BHK),.
The assertion to be proved is equivalent to the statement that
ws(E)/[b] =0
€ H* (%ﬂ(K)w, [Fz) .

for any 1-cycle b in Y \ K. The bundle has trivial w, on Y \ K, so each irreducible
connection lifts to an SU(2) connection with stabilizer +1. This means that w,([E)
can be represented by a 2-cocycle which is pulled back from %#(K),,. The class
wjs is obtained by applying a Bockstein homomorphism to w;. So the class ws(E)

is also pulled back from BH(K),. It follows that ws(E)/[b] is zero, for all 1-cycles
bin Y \ K (and incidentally all 2-cycles also). ]

The lemma allows us to write the class as a function of the two dots,

Apg € H (%ﬁ(K); [Fz) , 27)
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The next lemma asks how A,, changes if we change the orientation o, at one
endpoint: that is we replace g by g. We introduce the following notation: we
write

Lemma 3.6. Let p and q be dots, and let Ap; and A;uq be the resulting classes, as
above. Then these classes satisfy the relations:

Apg + A, = Wz([E )
Pq {Jq q (28)

Proof. Because of the independence of the choice of arc, and the way the signs

are used in the definition of I above, the first relation is equivalent to saying

Aqq = WZ(IEq)a

where the left-hand side can be computed using the constant arc from q to gq.
The general statement at the level of characteristic classes is the following.
Suppose we have an R® bundle E — T with a section iy. Consider the pull-back
m*(E) to [0,1] X T with a section I which is equal to iy on {0} X T and —iy on
{1} X T. Then the result of slanting ws(z*(E), I) with the fundamental class of
[0, 1] is wy(E):
w3("(E), 1)/[0, 1] = wa(E).

This can be verified by pulling back E to S' X T and tensoring by the M&bius
bundle pon S 1 in which case the assertion is:

ws(7"(E) ® p)/[S'] = wa(E).

In this form, the verification is straightforward, using the splitting principle. This
completes the proof of the first relation.

To set the second relation in a more general context, consider again an R*
bundle E — T with two non-vanishing sections iy and i;. Let I be a path of
sections, from iy to —iy, through sections which may vanish: we take explicitly

I(t) = (1 — t)ip — tiy.
Similarly, let I’(s) be the path from iy to i; given by

I'(s) = (1 — s)ig + siy.
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We have cohomology classes by
A = W3(E$ I)/[()’ 1]
€ HX(T; Fy)
A =ws(E, I')/[0,1]
€ HY(T; ),

where we now interpret I and I’ as sections on [0, 1] X T that are non-zero at the
boundaries. To show that A" = 0, it is sufficient to show that there is no (¢, s) in
the interior of [0, 1] X [0, 1] for which the sections I(t) and I’(s) have a common
zero in T. A necessary condition for a common zero is that the determinant of
the matrix

is zero. But the determinant is s + t — 2st which is strictly positive on the interior
of [0, 1] X [0, 1]. The result follows. O

Corollary 3.7. The class A, satisfies the relation
Aoy + wa(Eg)Apg = 0.

Proof. This is an immediate corollary of the two relations in the lemma. O

3.3 Operators from the two-dimensional classes

In the usual way, and following the exposition in [13], the cohomology class 1,4
gives rise to an operator

Apg : Y, K3 Ty) = TH(Y, K3 T, (29)

In a little more detail, let a be the chosen arc joining the two dots, regarded
as subset of the cylinder X = R x Y, in the slice where the R coordinate is
zero. Following [13, section 4.3], let Z C X be a subset of X which includes a
neighborhood of a and such that the restriction map

H'(Y\K;F) - H'(Z\ K; )

is injective. The latter condition means there is a well-defined restriction map
for marked connections,

M(a, ) — B (Z; piz)
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where p7 is the intersection with Z of the marking data R X p,. Because Z
contains a neighborhood of 4, the class A,, can be defined on RB*(Z; y17), where
it is dual to a stratified codimension-2 subvariety V. The matrix entries of A, at
the chain level are defined by counting points of the intersections

M(a, )NV

and weighting them using the local system. As in [13], the necessary compact-
ness results hold because the cohomology class has dimension 2 and Z can be
chosen so that it meets the foam only in the faces (at neighborhoods of p and q).

Using notation that is parallel to the notation for 4,4 and A7, we write A},
for the operator of the same form as (29), but using ¢ in place of q. The rela-
tions in Lemma 3.6, satisfied by 4, and A;,,, give rise to relations satisfied by the
corresponding operators on Floer homology.

Lemma 3.8. Let Apq and A}, be the operators on I*(K;T,),, arising from a pair of
dots {p, q} as above. Then these operators satisfy the relations:

Apg + Npy = o(P)
quA,pq = O-(qu)’

where P is the element of R given by (5), and

(30)

Qpg = Ty, + Tp) + (T + T2,

»

In the above formula, T, and T, are the variables from {Ty, T1, T, Ts} associated
to the edges of KU 0 on which p and q lie. Thus, m;, = 1,2 or 3 if p lies on the edge
e1, ez ores of 0, and my, = 0 if p lieson K.

Proof. By an excision argument [11], it is sufficient to prove this in the case that
w is empty. It is then sufficient to consider the case that the base-change ¢ is the
identity.

The first of the two relations follows from the corresponding formula for
Apg + A},q in Lemma 3.6, together with the formula w, = P from Lemma 3.1.

The second relation, for the product, is more subtle, because it involves a 4-
dimensional moduli space, and there is a contribution from codimension-4 bub-
bling which may occur at the endpoints p and g of the arc a C Z.

As in [18] and [13], the contribution from the bubbles at p and g are universal
quantities, so that the relation for the product has the general shape

Apgyy = F(T,) + F(Ty,)
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where F is universal and is a finite Laurent series in one variable. To compute
F, we take as a special case that situation that K is empty and p and g lie on
the edges e; and e; of 0, respectively. In the ring [T, T;, T;*'] then, we have
elements A and A’ with relations
A+AN =P
= T\LT + VT, ' T, + LT T + T T,
and

AN = F(Ty) + F(Ty).

The only way to solve the constraint that AA” is function of T; and T, only is to

have the general shape
A =T{G(T1,T»)

A, = T;aH(Tl, Tz),

for some Laurent polynomials G and H in two variables. The shape of the for-
mula for A + A’ tells us that a must be +1 and that A and A’ must consist of the
corresponding monomials from the formula for P. Thus

A=T(MNTL+T'T, ")

31
N =T, T T, + TL T, ) G

or vice versa. Either way, we have F(T) = T? + T2 O

As with the cohomology classes themselves, we have an immediate corollary
of the lemma, for the operator Apq:

Corollary 3.9. The operator A, satisfies the relation
ALy + 0(P)Apg + 0(Qpg) = 0.

To create an operator that treats the three edges of 6 symmetrically, we make
the following definition.

Definition 3.10. Fix once and for all a dot p,, on each edge of e,, of the 6, for
m = 1,2, 3. Then, given a dot g on the link K, we define

Ng = Dpg + Npyg + Dpygs

with Af defined similarly.
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Corollary 3.11. The operator Ay above satisfies the relation
A2+ 0(P)Ag +0(Q) =0,
where P and Q are given by the formulae in (5). Furthermore Ag + A = o(P).

Proof. We are in characteristic 2, where squaring is linear. The Q that appears in
the quadratic relations is now the sum of the terms Q,,, form = 1,2, 3. O

3.4 Surfaces with dots

The operators Ay on [ #(K;T,), that we have defined can be combined - in the
usual way — with the functorial maps obtained from cobordisms S between knots
and links. Thus, suppose we are given a cobordism (X, S) from (Y, Ky) to (Y1, K3)
as in (23), and let g be a dot on S. As before, this means a point with a choice of
orientation o4 of the line bundle L;. We then obtain a map

F((S:9):To)w : IH(Koi Ts)y — (K13 Ty), - (32)

If q can be joined by a path on S to a point g, € K (respectively, a point q; € K3),
then this map is equal to the composite,

F(S;Ty)w © Mgy

respectively
Ag, 0 TH(S; Ty,

The functorial properties of I* extend to this larger category in which the mor-
phisms are “cobordisms with dots”. We note that, as with the case of dots on a
link K, an orientation of the line bundle L, is equivalent to a choice of orienta-
tion for a neighborhood of g in S. So a dot can be regarded as point in S together
with an orientation of TS.

4 Double points and handles

As in section 2.4, let Y, and Y; be 3-manifolds with basepoints, containing links
Ky, Kj, and let wy, w; be representatives for the Stiefel-Whitney class. We con-
tinue to use I, to denote I' ®, §, and we consider again a map

F(X,8:T,)0 : P (Ko: Ty)o, — (K1 Ty)o, (33)
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arising from a bifold cobordism (X, S) and a choice of Stiefel-Whitney class rep-
resented by a surface w with boundary. We continue to assume that S is a surface
rather than a more general foam, and we recall that w is allowed to have part of
its boundary on S if o(Ty) = 1. Implicit in our notation is an embedding of
[0,1] x B? in X, containing the cylindrical foam [0, 1] x 6, disjoint from S and w.

Asin [11, 8, 13], we can consider how the map Iﬁ(X, S; T, ), changes when we
modify the topology of S in standard ways.

4.1 Connect sum with RP?

In S%, there are two standard copies of RP? (see [11] for example), which we call
R, and R_. These have self-intersection numbers

R+‘R+:+2
R_-R_=-2.

From (X, S) we can form a new cobordism as a connected sum,
(X,S) = (X,S) # (S, R,).
Lemma 4.1. In the case S = S # R., orS =S #R_, we have
I*(X,S;T,), = 0.

We postpone the proof until after the statement of the next lemma.

If 0(Ty) = 1, then we can use more general representatives for classes wy.
In particular, a circle representing the generator of H;(R.) bounds a disk in the
complement of R, in $*. Let us write 7 for this disk. It represents a non-zero mod-
2 class in the homology of the complement. In the complement of S = S#R., we
can then use the Stiefel-Whitney class represented by w + 7.

Lemma 4.2. Suppose that o(Ty) = 1 in the ring S. Then in the case thatS = S#R,,
we have
Iﬁ(X, S; rcr)w+7r = Iﬁ(X’ S; Fcr)w‘

In the case that S = S # R_, we have
Iﬁ(X’ §§ ra)a)+rr = O-(P) Iﬁ(X’ S; ra)a)a

where P € R is the element given by the formula (5).
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Proof of the two lemmas. There are four assertions altogether: two surfaces R.,
and two choices of Stiefel-Whitney class. In each case, we have a connected sum
with (5%, R.) along (S°, S!). We apply the usual stretching argument, and we con-
sider the possible weak limit on (5%, R..). The gluing parameter in the connected
sum is S!, so we will have non-zero contributions only when the weak limit on
(5%, R.) is an anti-self-dual connection with S? stabilizer. However, there are no
non-zero harmonic 2-forms on these orbifolds, so the only possibility is a flat con-
nection. There is a unique flat SO(3) bifold connection [A.] on (5%, R.) because
the fundamental group of the complement is cyclic of order 2. Its Stiefel-Whitney
class is represented by z. This proves the first lemma: there is no contribution
for the Stiefel-Whitney class .

The anti-self-dual connection [A.] is unobtructed in the case of R, and has
a 2-dimensional obstruction space in the case of R_, as explained in [11, section
2.7]. So for R, we have

Iﬂ(Xa S# R+§r0)a)+7r = Iﬁ(X, S§r0)a)-

In the case of R_, we can identify the 2-dimensional gluing obstruction with the
2-plane bundle 7, and the effect of gluing is the same as cutting down by w,(#).
Lemma 3.1 tells us this is multiplication by o(P). ]

4.2 Connect sum with T?

Let T be a standard unknotted torus in R>, and regard T by inclusion as a sub-
manifold of S*. We may form a connected sum

(X,9) = (X,S) # (S4, 7).

Lemma 4.3. When (X, S) is formed from (X, S) by a connected sum with the stan-
dard torus T as above, we have

*(X,S;T,), = o(P)I*(X, S; Ty,

Proof. As with then previous two proofs, we are forming a sum along (53, S!) and
non-zero contributions arise from anti-self-dual bifold connections on (S*, T).
These in turn come from reducible anti-self-dual connections on the branched
double-cover, S? x S?, which are invariant under the involution which fixes the
torus S' xS!. Asin the previous lemma, the contributions come only from the flat
bifold bundle [E, A] on (S%, T) corresponding to the trivial bundle [E, A] on $?xS2,
because there are no non-zero harmonic 2-forms on the orbifold. The obstruction
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space for [E, A] is again two-dimensional, because it arises from H (S x S E_),
where E_ is the two-dimensional summand of the trivial bundle on which the
involution acts as —1. In the gluing, the obstruction bundle is again 7, and the
calculation is the same as the case S # R_ from Lemma 4.2. O

4.3 Double points and blowing up

Asin [10] and [12], we can extend the definition of the maps I ﬁ(X ,S;Ty),, induced
by cobordisms to include also the case that S is a normally immersed surface in
X. Our approach in the present paper is a slight variant of what was done in the
two previous cited papers: what we will do here is better-adapted to the case of
an unoriented surface S.

Solet f : S +» X be an “immersed cobordism” from (Y, Kp) to (Y7, K;). We
always assume, as in [10], that f has only transverse double-points, and that
these are in the interior of X. That is, the surface is normally immersed. We also
assume that the double points do not lie on the surface w which represents wy.
We do not want to orient S, and we therefore do not give a sign +1 to the double-
points of the immersion. At a double-point x € f(S), we may choose the metric
on X so that the two branches of the immersion have orthogonal tangent planes,
m and 7’ in T, X. There are then exactly two complex structures J and —J on T, X
such that:

(a) the complex structure is compatible with the metric and orientation of T, X;
(b) x and 7’ are J-invariant;

The blow-up of X at x with respect to the complex structures J and —J are canon-
ically identified: in both blow-ups, the exceptional set ¢ C X is the set of J-
invariant 2-planes in T, X. When identified with CP! however, the complex ori-
entation of the exceptional set is different in the two cases. The proper transform
f : § +> X has one fewer double-point than f.
In the above situation, we define I tt(X ,S;T), for the immersed cobordism by
requiring
(X, $:Tp)y = (X, 55 Tp) + IH(X, S Tt (34)

On the right, we see the proper transform, equipped with two different Stiefel-
Whitney classes, differing by the exceptional set € of the blow-up. By applying
the definition to each double point in turn, we arrive at a definition that reduces
to the standard case of embedded cobordisms.
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Before proceeding further, we make some remarks about this definition. The
proper transform is being used here to construct a functor from a category in
which the morphisms are immersed cobordisms to one in which the morphisms
are embedded cobordisms. In the previous papers [10, 12, 7], such a construction
was used with only the first of the two terms on the right. The reason for using
the two terms, involving both w and w +¢, is to provide a deformation invariance
that would otherwise be absent, in the case that v has boundary on S. To under-
stand this, consider a local model for a double point of S, consisting of a pair of
disks D1 U D, in the product D; X D,, and let coordinates be (x;, y;) be standard
coordinates on D;, so that the disks meet at the origin. Let @ be described in this
neighborhood by

w={y1=1/2, y=0, x, >0}

so that dw is the line y; = 1/2 on the disk D;. Let »" be obtained from w by
deforming w in the this neighborhood in such a way that, (i) d»’ is the line
y = —1/2 on Dy; and (ii) o’ intersects D, transversely at a point. Let (X, S be
obtained by blowing up the double-point D; N D5, and regard v, as lying in
X. In this situation (assuming that this local picture is just part of cobordism of
pairs), we have

(X, ST, # (X, ST,

in general, because w and «’ are representatives of Stiefel-Whitney classes of
different orbifold bundles. Instead, we have

Iﬁ(i(a S;FO-)(A) = Iﬁ()z, SQFJ)w’+e,

and similarly
Iﬁ(}za 52 ra)w+e = Iﬁ(X’ \§§ rcr)w’,

So if we wish to define I ﬁ(X ,S;T;), when S is normally immersed, and if we wish
the result to be independent of the choice of w, in this way, we should take the
two terms together, as we have done in (34).

With that said, if we impose the restriction that we consider only w without
boundary along S, then we are free to modify the definition of the functor: for
any fixed choice of £ € §, we can define a functor I? by leaving everything un-

changed except for the rule for dealing with double-points, where we substitute
the variant o o
B, STy = TK, S Ty + E K, ST )ee. (35)

For the rest of this paper, we shall remain with the more restricted case ¢ = 1,
with only occasional comments about the more general version.
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4.4 Twist moves and finger moves

We now follow the strategy from [10] to see how I*(X, S;T,;) changes when the
immersion is changed in three standard ways (introducing additional double-
points). These are the “twist move”, which comes in two oriented flavors, and
the “finger move”.

Proposition 4.4 (cf. [10, Proposition 5.2] and [12, Proposition 3.1]). Let S*
be obtained from S by either a positive twist move, or a finger move (introducing a
canceling pair of double-points). Then we have,

(X, % T,)y = o(L) IM(X, S; T,),

where
L=P+T;+T,>

For the negative twist move on the other hand, the map I* is unchanged:
(X, 8% T)0 = IM(X, $; Ty

Remark. If we put Ty = T, = T3 = 1, the formulae in the above proposition are
essentially the same as those in [10, Proposition 5.2], but with the “¢” from that
earlier paper now replaced by T?. The factor of 2 in the exponent again arises
because we have used the SO(3) connection rather than the SU(2) connection in
defining the local system. Formulae of this sort go back to [7]. The case of the
finger move is also formally similar to crossing-change results in Heegaard-Floer
homology [16, 2] and in Bar-Natan homology [1].

We prove the various parts of this proposition in the paragraphs. Our expo-
sition describes just the case of I', because the results are local, and the general
I, is obtained by base change.

Twist moves. We begin with the positive twist move. In this case, as explained
in [10] and [7], the result of the positive twist move followed by taking the proper
transform in the blow-up is to replace (X, S) with

(X',S) = (X, S) # (CP%,C)

where C is a conic curve. According to our definition (34), we must therefore
compute
F(X', 8" D) + (X', s D
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Once again, we compute by a connected sum argument. A dimension count
shows that the weak limit [E, A] on (C_[P’Z,C) lies in a moduli space of formal
dimension dy < —1, which means that its action x, satisfies the bound ky, < 1/4.
Since the formal dimension is negative, the connection must be reducible, either
to +1, to SO(2), or to O(2). The double cover is S? x S?, with the involution
7(x,y) = (—y,—x). The fixed-point set is the anti-diagonal A~. The pull-back
[E, A] on S? x S? must be reducible, either to SO(2) or the trivial group, so this
SO(3) bundle has the form
ReK

where e(K) can be taken to be 7-invariant in the case that [E, A] reduces to +1,
and r-anti-invariant in the case that [E, A] reduces to O(2). In the standard basis,
e(K) has the form (8, -9) or (8, 0) respectively. A class of the second sort is
not represented by an anti-self-dual form however. So e(K) = (§, —6) and [E, A]
reduces either to +1 or to SO(2). The bound on x, means that e(K)? > —2, so
52 < 1.

If § = 0, then wy(E) = 0, which means that w,(E) = € in the neighborhood of
the blow-up. If § = +1, then w,(E) is zero in the neighborhood. The dimension
count shows that the two cases § = +1 are unobstructed, and these contribute
the terms TO2 + Ty 2, (The calculation here is just as in [10].) So we have

(X', S'T), = (T2 + Ty HIF(X, S T),

The case § = 0 is the case of the flat bifold connection on (C_[P’z, C), and it con-
tributes to the term I t‘(X ’,S’;T')p+e. The obstruction space is again 2-dimensional,
and just as the case of a connected sum with either (S*, R_) or (S*, T?), we obtain

(X", ;D) pse = PIF(X, S;T),

This concludes the proof for the positive twist move.

The negative twist move is straightforward. In this case we must consider
(X’,S’) obtained from (X, S) by forming the connect sum with (C_IPZ, @). The term
with € does not contribute, and the term Iﬁ(X’, S";T), is equal to Iﬁ(X, S;T), as
in [10].

Finger moves. Let S* be obtained from S by a finger move, and let " be obtained
from S* by blowing up at the two double points and taking the proper transform.
Let ¢; and €, be the exceptional sets of the two blow-ups. From the definition in
(34), we see that what we must compute is a sum of four terms

P, S5 + X, s Dre, + (X, S i Dorey + (X, S Dirserne,s  (36)
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and the desired answer is U I*(X, S; T),,, where U is as in part ?? of the Proposi-
tion.
To focus on the region where the change occurs, let us write

(X,S) = (X1,51) U (X2, S,),

where (X3, S;) is a standard 4-ball containing a standard pair of disks, and (X, S;)
is the closure of the complement. The two pairs meet along a pair (S°, U,), where
U, C is a standard 2-component unlink. Let (X, S}) be obtained from (X3, S;) by
the finger move and proper transform. So we have

(X', 5) =(X1,5) U (X3,S)).

The manifold (X}, S;) has boundary (S°, U;), and we can form from it a closed
pair by attaching a 4-ball and a standard pair of disks. We write (Z, %) for the
resulting pair:

(Z,%) = (X,,8,) U (B*, D* 11 D?). (37)

The manifold Z is a connected sum of two copies of C_IPZ, and we write E;, E, for
the two exceptional curves. The surface X is a union of two spheres,

2221H22,

each of which has square —2. The two components X; and ¥, have the same mod
2 homology class, but over the integers we have (depending on choices made),

[Z1] = —[E1] - [E2]

The proof of the formula for the finger move depends on understanding the
moduli spaces on (Z, X), for small energy k, namely k = 0 and k = 1/4. As in
(36) above, we will need to understand these moduli spaces

M(Z,%),
for four different values of the Stiefel Whitney class v, namely
v=0, v=¢€, V=€, and Vv=¢ +e6y,
where ¢; is a representative in the class of E;. Let us write

M(Z,%).
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for the union of M(Z, X)), over these four values of v.

Because we are working with I*, our interpretation of M(Z, %), is that it
parametrizes SU(2) gauge equivalence classes of anti-self-dual SU(2) connec-
tions on the complement of the four spheres E;, E;, 3; and X,, such that the
limiting holonomy around the links of the spheres ¥; is order 4, and the holon-
omy around the links of the spheres E; are each 1 or —1, depending on the value
of v. The metric on Z is an orbifold metric as usual, with singular set .

Consider a flat line bundle & on

Z'=Z\ (21,%2,E1, Ep).

Write (o1, 02, 111, n2) for the holonomy of ¢ around the links of these four spheres,
and require that these are (+1, 1, +1, +£1). A push-off of E; meets X4, ¥, and E;
once each. Similarly with E,. So we have relations

N1 =12 =01+ 02.

So there are four possibilities for &, including the trivial bundle, and their possible

holonomies are:
(0-1,0-2, Ula ’72) = (1,1, la 1)a or

=(1,-1,-1,-1), or
=(-1,1,-1,-1), or
=(-1,-1,1,1).
They form the group isomorphic to Vj.
The flat line bundles act & act on M(Z, %), by tensor product. So we have an

action of V; on this moduli space. Tensoring by ¢ either leaves v unchanged (if
01 = 03), or adds €; + €;. So the subset

M(Z,2)o UM(Z, 2)e v, (38)
is closed under the Klein 4-group action, as is the complementary subset,
M(Z,%)e, UM(Z,%)e,. (39)

The quotient
M(Z,%)./Vy

parametrizes SO(3) anti-self-dual connections [B] on the complement of the four
spheres with the property that the holonomy around the links of the ¥; has order
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2 and the holonomy around the links of the E; is 1 in SO(3). This is the same as
the space of bifold SO(3) connections (without marking) on (Z, X):

M(Z,%)./Vs = Mso)(Z, 2).
The next lemma (and the notation “twisted reducibles”) is from [9].

Lemma 4.5. The action of the Klein 4-group is free except at “twisted reducibles”.
That is, the SU(2) connection A is gauge-equivalent to A ® & if and only if the
holonomy of [ad(A)] is contained in O(2) C SO(3) and the associated real line
bundle to the O(2) connection is isomorphic to £. O

The situation described in the lemma above can happen only if ¢ either trivial
or has

(01, 02, N1, 772) =(-1,-1,1,1).

We are now ready to describe the small-action moduli spaces, beginning with
a description of the quotients Mso(3)(Z, 2)..

Lemma 4.6. The space of bifold connections Mso(3)(Z,Z) with k = 0 consists of a
single point, with Z /2 monodromy and O(2) stabilizer.

For generic metrics, the space of bifold connections Mso(s)(Z, %) with k = 1/4
consists of a single arc and possibly some additional circles. Except for the endpoints
of the arc, these bifold connections with k = 1/4 are irreducible (i.e. have trivial
stabilizer in SO(3)). The endpoints of the arc have SO(2) holonomy, and therefore
SO(2) stabilizer.

Proof. For k = 0, we are looking at flat orbifold bundles, or SO(3) representa-
tions of the orbifold fundamental group. The fundamental group of Z'\ ¥ is Z/2,
because this space is (0, 1) x RP>. The two links of S are non-zero elements. So
there is a unique bifold connection.

For k = 1/4, consider the branched double cover of Z — Z along 3. Let 3 the
inverse image of X. This consists of two spheres 3, each of self-intersection —1.
The manifold Z itself is diffeomorphic to a connected sum of two copies of CP.
On Z we seek SO(3) connections with action ¥ = 1/2, which requires wg =2
mod 4. So w, = (1,1) in the standard basis. This is the sort of 1-dimensional
moduli space considered in [4], from which we learn that the moduli space on
Z with w, = (1,1) and k = 1/2 is 1-dimensional and compact. Its endpoints
correspond to pairs of integer classes +1 where A = =2 and A = w; mod 2. The
only possibilities are +(1, 1) and (1, —1). So the moduli space has two endpoints.
The endpoints correspond to reducible connections.
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Returning to Z, the covering transformation preserves the classes A = (1,1)
and (1, —1), so the corresponding SO(2) connections on Z descend to SO(2) con-
nections on Z. The moduli space on Z is 1-dimensional, so must include an arc
joining these two points. That is, the arc which is contained in the moduli space
of Z consists of invariant connections which descend to Z. O

Lemma 4.5, together with the description of the SO(3) moduli space in last
lemma above, gives us a description of the low-dimensional parts of M(Z, X),:

Proposition 4.7. The k = 0 part of M(Z, X)), consists of two points, each of which
has monodromy group the cyclic group (i) € SU(2) of order 4. Under the Klein
4-group action (tensoring by flat line bundles), these are each fixed up to gauge
equivalence by the action of tensoring by by the line bundle £[-1,-1,1, 1] (in the
obvious notation from above). The two connections are interchanged by tensoring
with £[1, -1, -1, —1]. These two points belong to the moduli spaces M(Z,%),, and
M(Z,%)e,.

The k = 1/4 part of M(Z, %), consists of four arcs, together perhaps with some
circles. The Klein 4-group acts transitively on the four arc-components of the moduli
space. Two of the arcs belong to M(Z, %), and two belong to M(Z,%)¢, +e,-

Proof. From the previous lemma, the x = 0 part of the moduli space M(Z, %).
consists of a single orbit of V. From Lemma 4.5 we also learn that the stabilizer
of the orbit is the two-element subgroup consisting of the trivial line bundle and
the line bundle ¢[—-1, -1, 1, 1]. Since the fundamental group of the complement
of ¥ is Z/2, there is no flat SU(2) bundle on Z \ ¥ whose holonomy on the links
of ¥ is conjugate to the element i of order 4. So the flat SU(2) connection exists
only on Z \ (£ U E; U E;) and must have holonomy —1 on the link of exactly one
E;. These flat connections therefore belong to M(Z, X)., and M(Z, ¥).,.

We now turn to the k = 1/4 part of the moduli space. The previous lemmas
again tell us that the Klein 4-group acts freely and the quotient is a 1-manifold
containing a single arc. Therefore M(Z, ¥).. contains 4 arcs. We are left to deter-
mine which of the four parts of M(Z,3), (v = x) these belong to. An instanton
[A] € M(Z,%). belonging to one of these arcs pulls back to an SU(2) instanton
[A] on

Z\(CUE UE,)
with limiting holonomy —1 on the links of 3. The limiting holonomy on the links
of the sphere E; will be (—1)%, where §; = 1 or 0 according to whether ¢; appears
in v. Because [E;] = [21] + [2,] in mod 2 homology, we then obtain

wy(ad(A)) = (1 + 8y + 8)([24] + [22])
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However, the previous lemma tells us that the Stiefel-Whitney class of [ad(A)] is
dual to [2;] + [2;]. Therefore the possibilities are only (8;,8;) = (0,0) or (1, 1).
The four arcs therefore belong to the components M(Z, X)y and M(Z, £)¢, +¢,- Two
lie in each, because of the symmetry that arises from the V; action. O

Corollary 4.8. If A and A’ are the two (abelian) connections which comprise the
zero-dimensional part of M(Z, 3)., and if m; and my are links of the two components
of X, oriented so that A has monodromy i around both links, then the monodromy
of A" around my and my are i and —i, up to overall conjugacy. m]

Let us return now to the pair (X3, ¥/), which we equip with a cylindrical end
R* x (83, U,). With notation adapted from the discussion of (Z, ), we examine
the moduli space
M(X;,S5)s

on the cylindrical end moduli spaces, with Stiefel-Whitney class v = * running
over the same four values. The SU(2) representation variety of (S, U;) is an
interval, which we denote by [—1, 1], so we have a map

r:M(X,,8;). — [-1,1]

From Proposition 4.7 and a stretching argument we learn that the ¥ = 0 part
M(X,S,)« consists of two points which are mapped by r to endpoints of the
interval [-1, 1]. From Corollary 4.8 we learn that the two points map to opposite
ends of the moduli space.

Similarly we learn that the x = 1/4 part of M(X7, S). contains four arcs, and
that these are each mapped to [—1, 1] in such a way that the two endpoints of
each arc map to opposite ends of [-1, 1].

Having described these moduli spaces on the cylindrical-end manifold, we
now describe how these give rise to the formula in Proposition 4.4 for the case
of the finger move. We can break the formula up into:

(a) terms coming from the classes v = 0 and v = (€; + €;) on the one hand; and
(b) terms coming from the classes v = ¢; and v = €,

(cf: equations (38) and (39) above). The first case is that of the four arcs that
comprise the k = 1/4 moduli space. Here the discussion closely mirrors the
argument for the finger move in [7] and [10]. Each of the four arcs will contribute
term to the formula having the shape

TXTI*(X, S;T),
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where x and y are curvature integrals for SO(2) connections on the components
¥}, X, of the singular set in the cylindrical-end bifold (X}, S). The action of the
group V; is by tensoring with real line bundles, the effect of which is to change
the signs of x and y. So the formula for the four arcs together has the form

(TETY + T°TY + TET, Y+ T,°T, ¥) IN(X, S5 T),.
By symmetry, we have x = y up to sign. So the formula simplifies to
(TZ + T;2) IH(X, 5;T),.

A special case of the finger move is a pair of twist moves, one positive and one
negative. So by comparing this formula to the case of the twist moves, we see
that x = +£1. So the contribution of the k = 1/4 moduli spaces to the formula for
I*(X, $*;T), is

(T2 + Ty (X, S; T),. (40)

Turning finally to the contributions from the classes v = ¢; and v = €;, we
have seen that the x = 0 moduli spaces

M(X3,55)e, and M(Xz,S))e,

each consist of a single point, and these map to the two endpoints of [-1,1].
We can compare this to the moduli space M(X5, S;) with k = 0 (where (X3, S,) is
now a ball with two disks, equipped with a cylindrical end). For the latter moduli
space, the map

r: M(Xa, So)x=0 — [—1,1]

is a homeomorphism. Let us pick points p and g on the two disks and orientation
0, and o, nearby. The flat connections on the orbifold (X3, S;) are determined
by the holonomies around oriented meridians at this point, as in section 3.2,
or equivalently by unit vectors i, and i; in the R® fibers E, and E,. Under the
homeomorphism r, the endpoints of the interval correspond to flat connections
with i, = igand i, = —i; (when we identify E, with E, via paths to the basepoint).
If we work with based the based moduli space of flat connections on (X3, S2), then
we instead obtain a map

r: M(Xz, So)e=o — [~1,1]

where the domain is now S?xS? and the preimage of the endpoints is the union of
the diagonal and anti-diagonal. This is precisely the intersection of M(X3, S2)x=0
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with the standard representatives of the 2-dimensional cohomology classes 4,4
and A, from (27). If we recall the relation 4,4 + A, = w2(E,) from Lemma 3.6,
then we learn that the preimage of the two endpoint comprise a standard repre-
sentative for the Poincaré dual of w,. From Lemma 3.1 and a stretching argument,
it then follows that for the original closed pair (X, S) and the pair (X, S*) obtained
by the finger move, the contribution to I r‘(X ,§%T'), coming from these moduli
spacesis P I f (X, S;T)y. This formula and the terms (40) together give the formula
in Proposition 4.4 for the finger move:

(X, S T), = (P + T2 + T3 IH(X, S; 1), (41)

or more succinctly
*(X,S*T), = LI*X, S;T),. (42)

Remark. As discussed in section 4.3 above, we can choose to change our def-
inition for the blow-ups and use the formula (35). A little extra book-keeping
is then required, but the final result needs only slight modification. For the re-

sulting functor Ig, the statement of Proposition 4.4 is unchanged except for the
formula for the factor L. We record this as a proposition.

Proposition 4.9. Asin Proposition 4.4, let S* be obtained from S by either a positive
twist move, or a finger move. Let the modified functor Ig be defined using the blow-
up rule (34). Then we have,

I?(X, §*Ty)w = (L) I?(X, S:T,).

where
Ly =EP+T5 + T2

For the negative twist move, the map I? is again unchanged:
F(X,§": o) = (X, S T

4.5 Regular homotopies

Recall that if f; and f; are two smooth embeddings of a closed surface S in a
4-manifold X, and if fy ~ f; as maps, then one can find a homotopy which is a
composite of steps, each of which is one of:

e the introduction of a transverse double-point by a twist move;
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o the introduction of two transverse double-points by a finger move;
e the inverse to one of the above;

 an ambient isotopy.

The same applies to surfaces S which arise as cobordisms between knots or links,
when the homotopy is relative to the boundary. Asin [7, 10, 12], this observation
can be combined with the formulae in Proposition 4.4, to obtain the following
result (among others).

Proposition 4.10. Let S C R* be a closed embedded surface, not necessarily con-
nected. Regard S as a cobordism from the empty link in R® to itself, optionally
equipped with dots q,..., qq. Then the resulting map

*(S;qus. .. qaiL): S > 8

depends only on the topology of the components of S, the number of dots on each,
and the local orientations. m]

5 The unknot and unlinks

The instanton homology I*(K;T,) is a free S-module of rank 2 when K is the
unknot, and it is a free module of rank 2" for the n-component unlink. Although
establishing these statements is not hard, we will need a little more for applica-
tion in our spectral sequence in the following section: we need to make these
isomorphisms canonical, to the extent that is possible. For this task, our exposi-
tion will follow [11] to begin with. However, there is a little more subtlety now,
even in the case of the unknot. This stems in part from the fact that I*(K;T)
is only Z/2 graded (there is no Z/4 grading as there was in [11]), and the two
generators for the unknot are in the same grading mod 2, so we cannot use the
grading decomposition to pick out canonical generators.

5.1 Spheres with dots

Let S ¢ R* be an embedded sphere. Choose one orientation, and let g4, ..., g4 be
dots on S whose orientation agrees with the chosen orientation of S. We wish to
evaluate the corresponding map on the homology of the empty link, which we
regard as defining an element

F(Siqu.....qq):Ts) €8
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where I, = I' ®, §. By Proposition 4.10, the evaluation is independent of the
embedding.

Lemma 5.1. The evaluation €; of the sphere with d dots is 0 ford = 0, and 1 for
d = 1. Ford > 2, it satisfies the recurrence relation

€q = 0(P)eg—1 + o(Q)eq—s.

Proof. The formal dimension of the relevant moduli space is positive when the
Yang-Mills action « is zero, so for d = 0 the evaluation is zero. For d = 1, we
use the fact that the k = 0 moduli space parametrizes flat connections and is a
2-sphere when S has the standard embedding. The cohomology class 4, is set
up so that it evaluates to 1 on this 2-sphere. For d > 2, the recurrence relation
follows from Lemma 3.9. m]

5.2 The empty knot and the unknot

As in [11], we write U, for a standard unlink in R3 with n components, so that
Uy is the empty link and U; is the unknot. We take U, to be the union of standard
circles in the (x, y) plane, each of diameter 1/2, and centered on the first n integer
lattice points along the x axis. We orient the circles of U, by a standard choice,
say anti-clockwise in the (x, y) plane.

For the empty link, I ﬁ(UO ;I;) is free of rank 1, and we can canonically choose
an identification with §, or equivalently a generator

w € (U, T,).

Lemma 5.2. For the unknot Uy, the instanton homology I*(Uy;T,,) is free of rank
2. As generators, we can take the image of uy under the two maps

Uy T,) — 14U T,)

given by (a) a standard disk D* with boundary Uy; or (b) the disk D* decorated with
a dot q whose local orientation arises from our choice of orientation for the knot.

Proof. The Chern-Simons functional has a perturbation with just two critical
points. So the rank is at most 2; and equality can hold only if it is a free module.
Let D™ be a disk providing a cobordism from U; to U, and let ¢’ be a dot on
D~. Using Lemma 5.1, we can compute the pairings between the cobordisms D™,
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(D", q) on the one side, and the cobordisms D™, (D™, ¢’) on the other. The result
is the matrix
0 1
[ o)
whose determinant is 1. It follows that the rank of the module is 2, the images of
D" and (D*; q) are generators. i

Definition 5.3. We write V for the rank-2 §-module I ti(Ul; I;). Define
x4, x_ € INU;T,)

to be the images of uy under the maps arising from the cobordisms D* and (D*; g).
They form a basis for this free module, by the lemma. In the dual module, we

define
Vi, y-: V> 8

using respectively the cobordisms D~ and (D7, q). m]

The proof of the previous lemma gives the pairings between x. and y., and
from the knowledge of those pairings we obtain:

Lemma 5.4. The dual basis to the basis (x4, X_) for the free module V = (U T,)
is the basis (y- + 0(P) y+,V+)- O
5.3 The homology of the unlink

Having identified I #(Uy;T,) as the free module V = (x,, x_), we can examine the
n-component unlink U, using the strategies from [11].

Lemma 5.5 (Corollary 8.5 of [11]). We have an isomorphism of S-modules,
@, : Ve — (U T,),

for all n, with the following properties. First, if D} denotes the cobordism from Uy
to U, obtained from standard disks as in the previous lemma, then

IM(D}:Tr)(w0) = Pu(xs ® -+ ® X4,

Second, the isomorphism is natural for split cobordisms, perhaps with dots, from
U, to itself. Here, a “split” cobordism means a cobordism from U, to U, in [0, 1] X
R3 which is the disjoint union of n cobordisms from U, to Ui, each contained in a
standard ball [0,1] x B.
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Proof. This is essentially the same as the version in [11]. Note that the trivial
cobordism from U; to Ui, equipped with a dot g and an appropriate local orien-
tation, gives the map Ay : V' — V which maps x; to x_. O

The next lemma and its corollary are also drawn directly from [11], and es-
tablish that the isomorphism of the previous lemma is canonical, once the unlink
has been oriented.

Lemma 5.6. Let S be an oriented concordance from the standard unlink U, to itself,
consisting of n oriented annuli in [0, 1] X R3. Let r be the permutation of {1, ..., n}
corresponding to the permutation of the components of U, arising from S. Then the
standard isomorphism &, of Lemma 5.5 intertwines the map

F(S:T,) : F(UnTy) — F(UnTy)
with the permutation map
:V® -V ->V®---®V.
In particular, if the permutation t is the identity, then I*(S;T,) is the identity.

Proof. The proof leverages Proposition 4.10, and is the same as the proofin [11],
with the dot operator A, replacing the operator o (equation (56) in [11]). O

Corollary 5.7. Let U, be any oriented link in the link-type of U,, and let its
components be enumerated. Then there is a canonical isomorphism

Y, Ve @V — IHULT,)

which can be described as Iﬁ(S; I;) o ®,, where &, is the standard isomorphism of
Lemma 5.5 and S is any cobordism from U, to U, arising from an isotopy from U,
to U,, respecting the orientations and the enumeration of the components.

If the enumeration of the components of U, is changed by a permutation t,
then the isomorphism ¥, is changed simply by composition with the corresponding
permutation of the factors in the tensor product. m]

The corollary tells us that the homology of the unlink is canonically isomor-
phic to the tensor product once an orientation of the components has been cho-
sen. The last thing we need to do here is determine the dependencs of the iso-
morphism on the choice of orientation.
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Proposition 5.8. Let S : Uy — U be a cobordism arising from an isotopy of the
standard unknot to itself which reverses the orientation. Then the resulting map
1= I%S;T,) : V — V is given by

L:Xy Xy
1:x_ > o(P)x; +x_.

Proof. Recall that x_ = Ayx,. The cobordism S intertwines the operator A, with
Aj. The formula for ¢ therefore follows from the relation Ag + A = o(P) in
Corollary 3.11. O

5.4 Pants and copants

Recall the standard cobordism called “pants”, from the two-component unlink to
the one-component unknot:
II: U2 — Ul-

Its mirror image is “copants”,
I : Ul — Uz.

If we identify I*(Uy; T,) and I#(Uy; T,) with V and V ® V by the canonical isomor-

phisms of Corollary 5.7, then pants and copants give rise to maps
FILL): VeV =V @)
FALT,): V> VeV.

Proposition 5.9. Under the above identification, the maps arising from the pants
cobordism 11 is given by:

X+®X+|—>X+

Xy ®X_ — X_

(44)
X_- @ X4 H— X_
X- ®@x_ — o(P)x_ + o(Q)x,.
The map arising from the copants cobordism 11 is:
Xy X, X +X_®x, +0(P)xy ® X4 (45)

X_ > X_®x_ +0(Q)xy ® xy4.

Proof. Using the standard basis elements x. and dual basis y., we can reduce
this to the evaluation of a 2-sphere with dots, for which we have the formulae in
Lemma 5.1. O
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5.5 The reduced homology of the unlink

Let 0 : R — S be a base change with o(Ty) = o(T}), so that the reduced
instanton homology I%(K;T,) is defined for a link K with base-point. As with
other “reduced” versions of knot homologies, from the definitions, I Iq(Ul; I, =
Uy T,) = 8, and

Ih(Una ra) = [h(Ul; FO') s Iﬂ(Un—H ra)

= [Y(U,_1; T,). (46)

In particular, I*(Uy; T,) is a free module of rank 2"~!. We would like to compute
the maps on I%(Uy;I;,) given by the pants and copants cobordisms, particularly
when one the incoming components of the cobordisms carries the base-point.

As a first step, we consider again the operator Ay, for ¢ € K, now as an
operator on | t‘(K ; Iy). We define this as before, as in Definition 3.10,

Aq = Aplq + Aqu + Ap3q

where the three p; are dots chosen near the vertex, so that p, and ps lie on the
two edges that form the bigon in K*.

If it happens that q lies on the component of K where the bigon is attached,
we can take ¢ = p;, in which case the first term A, is P. In this setting, to
compute the operator, it is sufficient to examine the case that K is the unknot,
by excision; so K# can be taken to be the theta graph. Each of the three terms is
then an operator § — 8, so altogether A is a multiplication operator,

Ag=A:8 > 8S.
To compute A, we seeking to compute

The operator A,,,, for the theta graph was computed in (31), up to a choice of two
possibilities, differing by P. The same ambiguity is present twice in (47), for A, ,,
and for A, ,,, and it is resolved the same way in both terms. So the ambiguity
cancels, and we are left with a unique formula,

Ag=P+T(MTL+T'T,") + L(T\T; + T 'T; 1)

which simplifies to
A=T(T,Ts + T, 'T; V).

(We have omitted the base change ¢ in our notation.) To summarize this calcu-
lation in the case of the unknot, we have the following.
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Proposition 5.10. For the unknot Uy, the reduced homology I(Uy;T,) is a free
S-module of rank 1, on which the operator Ay (q € Uy) acts as multiplication by A,
where A is the element above.

What lies behind the algebra here is the following observation. The operator
A on the un-reduced homology V = I*(Uy; T,;) has minimum polynomial

x* + o(P)x + o(Q).
When the base change has o(Ty) = o(T}), the minimum polynomial factorizes as
(x + A)(x + A)

where A is as above and A’ = A + P. This is the same observation as we made in
the introduction to this paper, at (11). Let us define V# c V as

Vi = ker(A + A)

im(A + A).

So V¥ is the rank-1 §-submodule generated by the element
m=x_+ A'x,.
Then we have:

Corollary 5.11. The reduced homology I*(Uy;T,) is isomorphic as a module for
S[A] to the submodule V* C V generated by m above.

We can consider next the pants and copants cobordisms in the reduced con-
text. Let U, be the standard 2-component unlink with a basepoint on the first
component. We have, by excision,

F(UxT,) = Vies V.
The pants and copants cobordisms provide maps
FILT,): ViQV — Vi
B(LT,): Vi VigV.

It is straightforward to verify that these coincide with the restriction of the un-
reduced versions (43) to the S-submodule V* generated by m. We can write these
maps out, in terms of the basis { x;, m } for the rank-2 S-module V:
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Proposition 5.12. When o(Ty) = o(T}) so that the reduced theory is defined, the
map V8 ® V — V9 arising from the pants cobordism

me®x, — m

(48)
mQ®m +— Pm.
The map Vi VieV arising from copants is
m— m® m. (49)

Returning again to V in the unreduced case, we have a description of it as an
algebra over &R with a single generator n = x_ in the form

V = R[n]/(n® + Pn + Q).

As in the introduction, after a base change to a ring § where Ty = Ty, the char-
acteristic polynomial (x? + Px + Q) factorizes as (x + A)(x + A’) and over S we
have a presentation

V = §[m]/(m(m + P)).

The full co-multiplication of the Frobenius algebra V, arising from the copants
cobordism, in this presentation is

A:1-—m®1+1m+P1®1

A:m—~ mQ@m.

This is the Frobenius algebgra that gives rise to the graded Bar-Natan variant of
Khovanov homology, tensored by S.

6 The spectral sequence

6.1 Families of metrics.

Relevant to the construction of our spectral sequence are also the maps that arise
from a cobordism equipped with a family of metrics. The material of [11, section
3.9] again adapts to local coeflicients without change. We equip (X, S) with cylin-
drical ends and a family of Riemannian metrics G which vary only in a compact
region. The parameter space G should be a compact manifold with boundary.
After choosing perturbations, the moduli spaces over G define homomorphisms
of S-modules,
mg : C(Yo, Ko: Ty) — CH(Y1, Kii ),
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where the complexes Cﬁ(Yi,K,- ;I;) are those that compute I # The map mg is a
chain map if G has no boundary. Otherwise, there is an extra term in the chain
formula,

m[)G+mGOa=aOmG.

(See [11, section 3.9] and [13].)

6.2 Skein exact triangle

Fix again a 3-manifold Y with basepoint y, and a theta graph 6 C B(y,). We again
write Y° C Y for the complement of the neighborhood of yy. Consider three webs
K>, K, Ko in Y° which are all identical outside a ball B ¢ Y° and which differ
inside B by the skein moves as shown in Figure 4. There are standard cobordisms
Sij from K to K, each of which is the addition of a standard 1-handle in [0, 1] X B.
Although the webs may have vertices, there are no vertices in the ball B, and the
picture coincides with that of [11, section 6]. As in [11, 13], the cobordisms Sy,
S10 and Sy, give rise to the maps in a 3-periodic long exact sequence of S-modules:

- = MKy T,) — IH(Ky;T,) — (Ko T,) — Ky T,) — - -

6.3 Cubes of resolutions.

The above skein sequence can be seen as a consequence of the fact that the chain
complex Cg that computes I*(K,; T,) is quasi-isomorphic to the mapping cone of
a chain map Cf — Cg. As in [11], the skein sequence generalizes as follows.
Suppose that Y° contains N disjoint balls By, ..., By. For each v € {0, 1, 21N, let
there be given a web K;, C Y°. Outside the balls, all the K,, are the same. Inside
the ball B;, the web K, coincides with on of the models in Figure 4, according to

the value of the coordinate v;. We write (Cg, d,) for the standard chain complex
that computes I*(K,; I;). (A choice of metric and perturbation is involved.)
Among the K,,, we pick out as distinguished the web K3, where

2=(2,2...,2).

We also introduce the “cube”

ct= P ct.

ve{0,1}N

For each v > u in {0,1}", there is a standard cobordism S, from K, to K,
obtained by adding 1-handles in each of the balls B; where the coordinates of v
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and u differ. If there are n such coordinates, then S,,, carries a standard family G,
of metrics, of dimension n — 1, as described in [11], which give rise to S-module
homomorphisms

fou: Ch— CE

As a special case, we also define f,, = d,. We then define
F:Cf - Cf

as

F= @fw.

v>u

Theorem 6.1 (Theorem 6.8 of [11]). The square of F is zero, so (C*,F) is a com-
plex of S-modules. Furthermore, there is a chain map

(*. dy) — (CHF)

inducing an isomorphism in homology. In particular, the homology of the “cube”
complex (CH,F) is isomorphic to I*(Ky; T,).

As is standard in Khovanov homology, the cube C% has a filtration (increasing,

with our conventions),
F.Ct= (P b

ve{0,1}N
lo|<n

There is a corresponding spectral sequence, just as in [11, Corollary 8.1].

Corollary 6.2. For webs K,, as above, there is a spectral sequence of S-modules
whose E; term is
P rFEsn)
ve{0,1}N

and which abuts to the instanton Floer homology Iﬁ(Kv; I;), forv = (2,...,2). The
differential d; is the sum of the maps induced by the cobordisms S,,, withv > u and
lv—u| =1. O
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6.4 Pants and the E, page

The spectral sequence in Corollary 6.2 is set up quite generally for webs in a fixed
3-manifold, differing by skein moves inside fixed balls. The standard application
for this setup is to consider a plane projection and have the fixed balls correspond
to the crossings in the projection.

So let K be a link in R* c $* with a planar projection giving a diagram D in
R?. Let N be the number of crossings in the diagram. As in [5], we can consider
the 2N possible smoothings of D, indexed by the points v of the cube {0, 1}".
The conventions we use for the labels {0, 1} is the same as the convention in
[5, 17], and is also consistent with the convention illustrated in Figure 4. The
smoothings give 2V different unlinks K, in the plane of the projection. For each
v > uin {0,1}N, we have our standard cobordism S, from K, to K,, with its
tamily of metrics.

We apply Corollary 6.2 to this situation. We learn that there is a spectral
sequence abutting to I 4(K;T,) whose E; term is

E, = EB Iﬁ(Kmra)'

ve{0,1}N

and whose differential d; is

dy = Z Iﬁ(svu;ra)- (50)

lv—ul=1

In this situation, unlike the general case considered previously, each cobor-
dism S, with |[v — u| = 1 is a cobordism between planar unlinks, obtained from
a “pair of pants” that either joins two components into one, or splits one com-
ponent into two. We have already computed I*(Uy;T,,) for a planar unlink U,
(Corollary 5.7) as well as the maps that the pants and copants cobordisms (sec-
tion 5.4). So we completely understand the E; page and its differential d;. We

have
El — @ V®n(v)

ve{0,1}N
where V is a free S-module of rank 2, admitting a standard basis x,, x_, and n(v)
indexes the components of the unlink K,,. Whenever v > u and |v — u| = 1, the
corresponding summand of d; in (50) involves only the factors V of the tensor
product that are adjacent to the vertex at which v and u differ, where it is given
by
FALL): VeV 5V (51)
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or
FALTL,): Vo> VeV (52)

depending on whether two components of K;, merge in K,, or one component
splits.

In the language of [6], the S-module V equipped with the multiplication
I“(H;I}) and comultiplication Iﬂ(H;FG) is a self-dual, rank-2 Frobenius system
Fs. As an algebra, its unit element is x4, and its co-unit is y; (Definition 5.3).
The multiplication is described completely by giving the square of the element
x = x_, the formula for which is in (44). So we can write it as

‘S[x]/(x2 +o(P)x + 0(Q)).

Our description of (E;,d;) above coincides with Khovanov’s definition of the
complex that computes the knot homology group corresponding to this Frobe-
nius system. There is only the slight change of conventions, because of the his-
torically reversed roles of the two smoothings { 0, 1 }. With that understood, we
can identify the E; page of the spectral sequence:

Proposition 6.3. In the special case that the cube of resolutions is the one obtained
from a planar diagram of a knot or link K, the E, page of the spectral sequence in
Corolllary 6.2 is isomorphic to the knot homology H(K; %) in the notation of [6],
where F, is the rank-2 Frobenius system over § given by the multiplication (51)
and comultiplication (52). Here K denotes the mirror image of K. O

Corollary 6.4. For a knot or link K in R, there is a spectral sequence whose E,
page is Khovanov’s homology H(K; %) corresponding to the Frobenius system F,
and which abuts to the instanton homology with local coefficients, I*(K; T,). ]

Theorem 1.1 in the introduction, along with its two corollaries, are obtained
directly from Corollary 6.4 by identifying the Frobenius system %, in each case,
to compare it with those described in the notation of [6]. We begin with the case
that § = R and 0 = 1 (i.e. the case of the local system I'). Here the resulting
Frobenius system & corresponds to

gi[x]/(x2 +Px + Q).

As explained in the introduction, the universal example from [6], when reduced
mod 2, is a Frobenius system F5 over

Rs = Fy[h, t].
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Its multiplication is given by
R5[x]/(x2 + hx + t).

Since the comultiplications can be compared similarly, we see that the Frobenius
F arising from I* with coefficient system I' is Fs ®, R, where r maps h to P and
t to Q. Theorem 1.1 is therefore a consequence of Corollary 6.4.

Corollaries 1.2 and 1.3 follow from this universal version by base change, as
explained in the introduction.

6.5 The spectral sequence for reduced homologies

There is also a version of Corollaries 1.2 and 1.3 for the reduced homology the-
ories. Given a link with a base-point, and given a diagram for the link such that
the base-point does not lie at a crossing, we may form again the cube of resolu-
tions, and for each vertex of the cube we now have a planar unlink with a single
marked point. Let 0 : R — § be a base change with o(Ty) = o(T7), so that the re-
duced theory I” is defined. The basic spectral sequence described in Corollary 6.2
has a reduced counterpart, whose statement and proof are essentially the same:

Proposition 6.5. There is a spectral sequence of S-modules whose E; term is

P rEsL)

ve{0,1}N

and which abuts to the instanton Floer homology (K, T,), forv=1(2,...,2). The
differential d; is the sum of the maps induced by the cobordisms S,,, withv > u and
o —u| =1. O

The condition that o(Ty) = o(T7) implies that the Frobenius system %, has a
description in which the algebra is

S[M]/(M?* + o(P)M)
and the comultiplication is given by

1 1M+M®1+0(P)(1®1)
M- M®M.
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In such a situation, there is a reduced link homology H (K; %) obtained from
the cube of resolutions. It is defined from a complex C for which the contribution
C, from a vertex of the cube is

Sﬁ@g&ﬂ@g---@g&q

where df is the Frobenius algebra of %, and i is the S-submodule generated by

m. The tensor product is over all components of the unlink K, and the factor s

corresponds to the component with the basepoint. The edge maps as usual come

from the multiplication and comultiplication, restricted to s C of if necessary.
Using Proposition 5.10 and Corollary 5.11 for the edges involving the compo-

nent with the base point, we can match up the differential d; in Proposition 6.5

with the multiplication and comultiplication maps of @9l — sf and s — A®d.
We obtain in this way a reduced counterpart to Corollary 1.2.

Corollary 6.6. There is spectral sequence of modules over the Laurent series ring
SgN in three variables, from the reduced version of graded Bar-Natan homology in
characteristic 2, L

BN(K) ®,, Sgn = I%(K;Tsn),

to the reduced instanton homology group with coefficients in the local system IgN =

I' ®,, SN, Where the base change oy, is given by (10). ]

The reduced version of Corollary 1.3, for filtered Bar-Natan homology, can
be formulated in the same way:

Corollary 6.7. For a knot or link K, let fFBKI(K) denote the reduced version of
filtered Bar-Natan homology over ;. Then there is a spectral sequence of vector
spaces over [y,

BNEK) @ F, = F(K:Tren).

where Iign is the local system of F4 vector obtained from T' by the base change
(12). O
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