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Abstract. A spectral sequence is established, whose E2 page is Bar-Natan’s variant of
Khovanov homology and which abuts to a deformation of instanton homology for knots
and links. �is spectral sequence arises as a specialization of a spectral sequence whose
E2 page is a characteristic-2 version of F5 homology, in Khovanov’s classi�cation.
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1 Introduction

1.1 Local coe�cients

In previous work, the authors introduced an instanton homology, I ](K), for knots
and links K ⊂ S3. It was constructed as the Morse homology of a Chern-Simons
functional whose critical points correspond to certain SU (2) representations of
the fundamental group of the link complement. A variant J ](K) was introduced
in [8], and was de�ned similarly, but with SO(3) in place of SU (2). �e coe�cient
ring in the present paper will have characteristic 2, and when this is the case, both
I ](K) and J ](K) can be de�ned for webs (embedded trivalent graphs) rather than
only for links. One of the main results [11] concerning I ](K) is the existence of a
spectral sequence, abu�ing to I ](K) and having E2 page isomorphic to Khovanov
homology:

Kh(K̄) =⇒ I ](K) (1)

(�e notation K̄ denotes the mirror image of K , and it appears here only because
some of the traditional orientation conventions di�er.)
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In this paper K will nearly always be a knot or link: trivalent spatial graphs
appear only in an auxiliary role. We focus on a variant of I ](K) obtained by
introducing a system of local coe�cients on the relevant con�guration space of
connections, B](K). In doing so, we build on two earlier papers. First, in [12],
the authors introduced a local coe�cient system, denoted here by Γo . It is de�ned
as the pull-back of a local system on S1 via a map

ho : B](K) → S1

which in turn is de�ned using the holonomy of the connection along K . In char-
acteristic 0, a spectral sequence similar to (1) was established abu�ing to I ](K ; Γo),
where the role of Kh(K̄) is taken by Lee homology, a certain deformation of Kho-
vanov homology introduced in [14, 15]. �e local system Γo is a system of free
modules of rank 1 over the ring Q[Z] = Q[u,u−1], though we will see later how
it may be de�ned also in characteristic 2.

Second, in [13], a local system Γθ was introduced. Its construction is similar to
Γo , but makes use of the holonomy along the three edges of an auxiliary θ -graph
to de�ne a map

hθ : B](K) → S1 × S1 × S1.

�e result is a system of free rank-1 modules over the ring

F2[Z3] = F2[T ±1
1 ,T

±1
2 ,T

±1
3 ], (2)

where F2 is the �eld of 2 elements.
In this paper, we introduce a local system Γ that generalizes both Γo (in its

characteristic 2 version) and Γθ . It is a local system of rank-1 modules over a ring
of Laurent series in 4 variables:

R = F2[T ±1
0 ,T

±1
1 ,T

±1
2 ,T

±1
3 ]. (3)

�e local system Γo can be recovered as a specialization of Γ by se�ingTi = 1 for
i = 1, 2, 3, while the local system Γθ is obtained by se�ing T0 = 1.

1.2 A spectral sequence from F5 homology

Lee homology, mentioned above, is a member of a larger family of a deformations
of Khovanov homology which are classi�ed in [3] and [6]. In the language and
notation of [6], these are link homologies H(K ; F ) arising from rank-2 Frobenius
systems F . Among these, one that is shown to be universal in a particular sense
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arises from a Frobenius system over the ring Z[h, t]. We will work exclusively
in characteristic 2 and in place of Khovanov’s Z[h, t] we introduce the ring

R5 = F2[h, t]

and a corresponding Frobenius system F5 whose underlying ring is R5/(X 2+hX+
t) and whose comultiplication is given by

∆ : 1 7→ 1 ⊗ X + X ⊗ 1 + h(1 ⊗ 1)
∆ : X 7→ X ⊗ X + t(1 ⊗ 1).

(�e subscript 5 in R5 and F5 follows the naming convention in [6].) �e cor-
responding link homology is denoted here by H(K ; F5). It is a module over R5
and is equal to F5 when K is the unknot. �e �rst topic of this paper is the con-
struction of an instanton homology I ](K ; Γ) corresponding to the local system
of R-modules Γ described above, and the construction of the following spectral
sequence.

�eorem 1.1. For a knot or link in R3, there is a spectral sequence of R-modules,
from the F5 homology (in characteristic 2) to the instanton homology with local
coe�cients:

H(K̄ ; F5 ⊗r R) =⇒ I ](K ; Γ). (4)

Here the base-change homomorphism r : R5 → R is given by

r (h) = P

r (t) = Q

where
P = T1T2T3 +T1T

−1
2 T −1

3 +T2T
−1
3 T −1

1 +T3T
−1
1 T −1

2 (5)

and

Q =
3∑
j=0
(T 2

j +T
−2
j ).

Remark. Because R is a free module over R5, one can take the tensor product
outside and rewrite the spectral sequence as

H(K̄ ; F5) ⊗r R =⇒ I ](K ; Γ).
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1.3 Bar-Natan homology

By base-change of the coe�cient ring via a further ring homomorphismσ : R→
S, one obtains specializations of the spectral sequence (4):

H(K̄ ; F5 ⊗σ◦r S) =⇒ I ](K ; Γ ⊗σ S). (6)

As a particular case of this construction, we can obtain a spectral sequence from
the graded Bar-Natan link homology BN(K) introduced in [3]. �ere is in fact
some freedom in the construction of such a spectral sequence. To explain this,
recall that in the context of [6] and [3], the homology BN(K) arises from the
Frobenius system F5 by a base-change

τbn : R5 → Sbn

where Sbn = F2[h] and τbn is the homomorphism sending t to 0. We write Fbn =
F5 ⊗τbn Sbn for the corresponding Frobenius system, so that BN(K) is short-hand
for H(K ; Fbn). Speci�cally, the underlying algebra of the Frobenius system Fbn is

Sbn[X ]/(X 2 + hX )

and the comultiplication is

∆ : 1 7→ 1 ⊗ X + X ⊗ 1 + h(1 ⊗ 1)
∆ : X 7→ X ⊗ X .

At the expense of working over a larger ring than Sbn, we can equivalently
consider any ring homomorphism

τ : R5 → S

with the following two properties:

(a) the polynomial x2 + τ (h)x + τ (t) factorizes:

x2 + τ (h)x + τ (t) = (x + a)(x + a′), (a,a′ ∈ S); (7)

(b) the ring S is a free module over Sbn = F2[h] via the homomorphism τ1 :
h 7→ τ (h).
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When factorization occurs, the Frobenius system F5 ⊗τ S can be described in
terms of a new generator M = X + a′, and the algebra becomes

S[M]/(M2 + τ (h)M).

�us the “t” term disappears from the characteristic polynomial of M . �e co-
multiplication is

∆ : 1 7→ 1 ⊗ M +M ⊗ 1 + τ (h)(1 ⊗ 1)
∆ : M 7→ M ⊗ M .

When condition (b) holds, an application of the universal coe�cient theorem
shows that

H(K ; F5 ⊗τ S) � BN(K) ⊗τ1 S

�at is, the link homology arising from the Frobenius system F5⊗τS is isomorphic
to the graded Bar-Natan homology with the coe�cients extended trivially from
Sbn = F2[h] to S .

With this in mind, we return to the instanton homology I ](K ; Γ) as a module
over R. Suppose we �nd a ring S, and a base change

σ : R→ S,

such that the counterparts of the two conditions above hold:

(a) the polynomial x2 + σ (P)x + σ (Q) factorizes in S[x]:

x2 + σ (P)x + σ (Q) = (x +A)(x +A′), (A,A′ ∈ S); (8)

(b) the ring S is a free module over Sbn = F2[h] via the homomorphism r1 :
h 7→ σ (P).

If we examine the spectral sequence (6) under these conditions, we see from the
observations above that the link homology that appears on the le� (the E2 page
of the spectral sequence) is isomorphic to graded Bar-Natan homology with a
trivial extension of coe�cients:

H(K̄ ; F5 ⊗σ◦r S) � BN(K̄) ⊗r1 S.

In this way we obtain a spectral sequence from BN(K̄) ⊗r1 S to I ](K ; Γ ⊗σ S).
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To be speci�c about a base change that realizes the requirements (a) and (b),
we can consider

σbn : R→ SBN (9)

where SBN = F2[T ±1
1 ,T

±1
2 ,T

±1
3 ] is a ring of Laurent series in three variables, and

σbn(T0) = T1

σbn(Ti) = Ti , i = 1, 2, 3.
(10)

We can write
σbn(P) = A +A′

σbn(Q) = AA′,

where
A = T1(T2T3 +T

−1
2 T −1

3 )
A′ = T −1

1 (T −1
2 T3 +T2T

−1
3 )

(11)

so that the factorization (a) indeed occurs. Pu�ing this together, we have the
following statement.

Corollary 1.2. �ere is spectral sequence of modules over the Laurent series ring
SBN in three variables, from the graded Bar-Natan homology in characteristic 2,

BN(K̄) ⊗r1 SBN =⇒ I ](K ; ΓBN),

to the instanton homology group with coe�cients in the local system ΓBN = Γ ⊗σbn
SBN, where the base change σbn is given by (10).

We shall also introduce a reduced companion of the instanton homology
group I ](K ; ΓBN), which we shall denote by I \(K ; ΓBN). �e spectral sequence
of Corollary 1.2 has a reduced companion, whose E2 page is the reduced Bar-
Natan homology. Such a reduced instanton homology group can be de�ned us-
ing any local system of the form Γ ⊗σ Sprovided that the base change σ satis�es
σ (T0) = σ (T1). In particular, there is no reduced version of I ](K ; Γ) itself. Corre-
spondingly, there is no reduced version of the link homology H(K ; F5) without
�rst making a base change so that the polynomial x2 + hx + t factorizes.

�ere are smaller rings S that can be used in place of our SBN in formulating
this corollary. Notice that a su�cient condition for the factorization (a) to occur
is that that σ (Q) = 0. So as another particular example we can take

S= F2[T ,T −1]
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and

σ (Ti) =
{

1, i = 0, 1
T , i = 2, 3.

�en σ (P) = T 2 + T −2 and σ (Q) = 0. �e homomorphism r1 : Sbn → S in this
case is therefore given by

r1(h) = T 2 +T −2.

�ere is also a �ltered (as opposed to graded) version of Bar-Natan homology
which we denote by fBN(K). It is obtained via further specialization from (R5, F5)
by se�ing t = 0 and h = 1. �e result is a �nite-dimensional F2 vector space.
For an instanton companion, we may pass to F4, the �eld of 4 elements or any
extension of F2 in which there is a solution ζ for the equation T 2 +T −2 = 1. We
de�ne

σfbn : R→ F4

Ti 7→
{

1, i = 0, 1
ζ , i = 2, 3,

(12)

so thatQ 7→ 0 and P 7→ 1. �ere is a corresponding local system of 1-dimensional
F4-vector spaces,

ΓfBN = Γ ⊗σfbn F4.

We then have

Corollary 1.3. For a knot or link K , let fBN(K) denote the �ltered Bar-Natan ho-
mology over F2. �en there is a spectral sequence of vector spaces over F4,

fBN(K̄) ⊗ F4 =⇒ I ](K ; ΓfBN),

where ΓfBN is the local system of F4 vector spaces described above.

Since I ](K ; Γ) can be de�ned for trivalent spatial graphs as well as knots and
links, it would be interesting to know whether there exist corresponding gener-
alizations of the spectral sequence (4) or any of its specializations, where the link
homologies H(K ; F5), BN(K) or fBN(K) are replaced by combinatorial invariants
of spatial graphs. Note however that I ](K ; Γ) is a torsion R-module when K has
vertices (it is annihilated by P ), and I ](K ; ΓfBN) is zero.
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2 �e construction of I ](K ; Γ)

In this section we describe the construction of the local system Γ and the in-
stanton homology I ](K ; Γ). We will lean heavily on the expositions in the earlier
papers [13] and [8], which were concerned with two di�erent specializations for
Γ.

2.1 Instanton homology with constant coe�cients

A trivalent graph, or web, K in a closed oriented 3-manifold Y gives rise to an
orbifold which we will simply denote by (Y ,K). �e isotropy groups are taken
to be Z/2 along edges of K and Z/2 × Z/2 at the vertices. We refer to such
a special orbifold as a bifold and we consider orbifold SO(3) bundles (or bifold
bundles) E over (Y ,K) requiring that the local isotropy groups of the orbifold
act e�ectively on the SO(3) �bers. Marking data on (Y ,K) consists of an open
set Uµ and a bifold bundle Eµ → Uµ \ K , and a bifold connection is marked by
µ if an isomorphism σ : Eµ → E |Uµ is given. An isomorphism τ between µ-
marked bundles with connection, (E,A,σ ), (E′,A′,σ ′) is an isomorphism of bifold
bundles-with-connection such that the automorphism σ−1τσ ′ : Eµ → Eµ li�s to
the determinant-1 gauge group. We write

B(Y ,K ; µ)

for the space of isomorphism classes of µ-marked bifold bundles with connection.
�e marking data µ is strong if the automorphism group of every �at µ-

marked bifold connection is trivial. A su�cient condition is that Uµ contains
a vertex of K , and in this case there are indeed no connections with non-trivial
stabilizer even in B(Y ,K ; µ). With coe�cients in the �eld F2 of two elements,
one can construct an SO(3) instanton homology group

J ((Y ,K); µ)

for any bifold with strong marking data. �e generators of the complex from
which this instanton homology is computed correspond to critical points of a
perturbed Chern-Simons functional on B(Y ,K ; µ). We may omit Y from our
notation for both J and Bwhen Y is understood (which is o�en the case when
Y is S3).

Consider next a framed base-point y0 ∈ Y with standard neighborhood
B(y0) � B3. We write Yo for the complement of this standard neighborhood:

Yo = Y \ B(y0).
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Given a web
K ⊂ Yo,

we may form a new web as a split union

K ] = K ∪ θ (13)

where θ ⊂ B(y0) is a standard theta-graph (three edges and two vertices) con-
tained in the ball. We may then de�ne

J ](K) = J ((Y ,K ]); µθ ) (14)

where the marking data µθ consists of the ball Uθ = B(y0) containing θ , with
Eθ the unique trivial bundle on B3 \ θ . �e group J ](K) was de�ned �rst in
[8], though the description in that paper was a slight variant of this one. �e
description we have just given is from [13], where the equivalence of the two
descriptions is also proved.

In this paper, we will be almost exclusively concerned with the case that the
marking region Uµ is not just the ball B(y0) but is instead the whole of Y . �e
distinguished SO(3) bundle Eµ on Y \ K ] may in general have non-zero Stiefel-
Whitney class

w2(Eµ) ∈ H 2(Y \ K ];Z/2).

We take this class to be represented by ω ⊂ Y , which is a codimension-2 sub-
manifold with boundary. We make the following assumptions on ω:

• ω is (the interior of) a union of circles and arcs with end-points on K ;

• ω is disjoint from the ball B(y0) which contains θ .

We require that ω represent w2(Eµ), in the sense that

w2(Eµ) = PD[ω ∩ (Y \ K ])].

Having chosen ω, we shall trivialize Eµ on the complement of ω, so that the
obstruction to extending the trivialization across each component of ω is non-
zero. We use this trivialization to give a li� of Eµ to an SU (2) bundle on the
complement of ω.

Let us write µω for the marking data obtained in this way from a 1-manifold
ω ⊂ Y \ K ].
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De�nition 2.1. Using the marking data Eµ as above, whose Stiefel-Whitney class
is dual to ω ⊂ Y \ K , we write

I ](K)ω = J ((Y ,K ]); µω) (15)

for the corresponding instanton homology of the web K ⊂ Yo . We also write

B](K)ω = B((Y ,K ]); µω) (16)

for the corresponding con�guration space of connections. When ω is empty, we
simply omit it from our notation, and write I ](K).

When K is a knot or link, this variant coincides with I ](K)ω as introduced in
[11] (though in that paper the coe�cient ring was Z). As with J ], the de�nition
we have presented here is slightly di�erent from the earlier one: the di�erence
is the use of the graph θ in place of the Hopf link that was used in [11]. But the
two de�nitions give isomorphic homology groups, by the arguments from [13].

Because the marking data is all of Y , the gauge theory which underlies this
instanton homology is essentially an SU (2) gauge theory. In particular, we have
the following identi�cation:

Lemma 2.2. �e space B](K)ω parametrizes equivalence classes of data of the
following sort:

• an SU (2) bundle Ê over Y \ (K ] ∪ ω);

• an SU (2) connection Â in Ê; subject to the restrictions,

• the associated SO(3) connection A in the adjoint bundle of Ê is the restriction
to Y \ (K ] ∪ ω) of a bifold bundle on the bifold (Y ,K ]);

• the limiting holonomy of Â on small circles linking ω is −1.

2.2 �e local system

We begin with some motivation of our construction. If π denotes the fundamen-
tal group of the con�guration space B](K)ω , then there is a tautological local
system over B](K)ω whose �ber at each point is a free rank-1 module for the
group ring F2[π ]. It can be realized by de�ning its �ber at [A] ∈ B](K)ω to be
the vector space of F2-valued functions with �nite support on the �ber of the
universal cover B̃](K)ω → B](K)ω . Given any choice of homomorphism

ϵ : π → G



12

there is a corresponding local system Γϵ of F2[G]modules. Our instanton homol-
ogy is Z/2 graded, not Z graded, because of non-trivial spectral �ow, and there
is an in�nite cyclic cover of B](K) on which the spectral �ow is trivial. Let

π ′ ⊂ π

be the fundamental group of this in�nite cyclic cover. �e instanton homology
groups are essentially unchanged in passing to the cover (the homology becomes
Z graded and 2-periodic, rather than Z/2 graded). Up to isomorphism, the in-
stanton homology groups with coe�cients in the local system Γϵ will therefore
depend on the homomorphism ϵ only through the restriction of ϵ to π ′.

Although we shall not need a proof, the fundamental group π is a free abelian
group of rank 5 when K is a knot and ω is empty. It follows in this case that π ′
has rank 4, and we will therefore capture the most general local system if we
construct a homomorphism

π → Z4

which is injective on the subgroup π ′ ⊂ π .
�e construction described in [13] arises from a map

π → Z3

presented in terms of an explicit map

(h1,h2,h3) : B](K)ω → S1 × S1 × S1,

and this leads to the local system Γθ of free rank-1 modules over F2[Z3] as de-
scribed at (2) in the introduction. To recall this brie�y from [13], the marking
data µω means that our gauge theory has structure group SU (2), and at the two
vertices of θ , the structure group of the two �bers E+ and E− is reduced to the
center {±1}. Along each edge of θ , the structure group is reduced to S1. �e
holonomy along each edge therefore gives a well de�ned element of

S1/{±1} � R/Z. (17)

Applied to three edges of θ in turn, one obtains the three components h1, h2, h3.
(�e notation for Γθ was simply Γ in [13]).

Whenω has no end-points (so is disjoint from K ), a very similar construction
from [12], can be adapted to de�ne a map

h0 : B](K)ω → S1. (18)
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To describe this, consider �rst the case thatK is a knot. Choose a framing τ forK
so as to have well-de�ned push-o�. As explained in [10], the framing allows us to
interpret the orbifold connection [A] as giving rise to a well-de�ned connection
over the knot K itself, carried by a bundle with an involution д coming from the
orbifold structure. Because of the action of д, the adjoint bundle decomposes as
a sum

ξ ⊕ η

where ξ is a real line bundle on K , and η is a 2-plane bundle. �e marking data
allows us to identify the orientation bundle of the knot K with the orientation
bundles of both ξ and η, so the connection in the 2-plane bundle η has a well-
de�ned circle-valued holonomy alongK . �e holonomy of η aroundK is the def-
inition of h0 above. If K is a link rather than a knot, we multiply the holonomies
along all the components.

Combining the two previous constructions, we now have a map

(h0,h1,h2,h3) : B](K)ω → R4/Z4 (19)

whenever ω has no boundary points. In the case that ω has boundary on K , the
component h0 must be omi�ed. As in [10], we use an explicit description of the
corresponding local system that depends on the maps hi but does not depend on
a choice of base-point in B](K)ω . We write

R = F2[Z4]

and regard this as a subring of F2[R4]. For each µ ∈ R4, we have the rank-1
R-module

Γ |µ = T µ0
0 T

µ1
1 T

µ2
2 T

µ3
3 R

⊂ F[R4]

and these form a local system over the torus R4/Z4. Pulling this back by the map
(19), we obtain our local system Γ over B](K)ω .

We summarize these constructions as follows:

Notation 2.3. Let K ⊂ Yo be a link, let K ] = K ∪ θ , let ω ⊂ Y be a 1-manifold
without boundary, disjoint from the ball containing θ . Let B](K)ω be the associ-
ated space of connections. On B](K)ω , we have a local system Γ of (free, rank-1)
modules over

R = F2[Z4].
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For any base-change σ : R→ S, there is a corresponding system of S-modules,

Γσ = Γ ⊗σ S.

Ifσ (T0) = 1, then the maph0 : B](K)ω → S1 is not required in the construction of
the local system, and in this case we can form the local system Γσ more generally,
when ω is allowed to be a manifold with boundary with end-points on K .

Remarks. (i) In the case that ω has boundary and σ (T0) = 1, our notation for
the local system Γσ involves a slight abuse of notation, since we can no longer
write it as Γ ⊗σ S. (�e local system Γ is not de�ned in this case.) It should more
properly be de�ned as Γθ ⊗σ̄ S, where σ̄ : F2[Z3] → S is the map through which
σ factors.

(ii) �e de�nition of h0 above makes use of a framing τ for the knot (or for
each component of the link). If the framing τ is changed by 1, then h0 changes
to h0 + 1/2. (See [10].) �erefore, framings whose di�erence is even give rise to
the same map h0 and identical local systems Γ.

(iii) �e four maps hi in (19) give a map

ϕ : π = π1(B](K)ω) → Z4

whenever ω has no boundary points. We can say a li�le more about the kernel
and image of ϕ. �e space B](K)ω is connected and can be identi�ed as usual
with a quotient A/G, of an a�ne space of connections by the action of the gauge
group. We can therefore identify π as π0(G). When K is a knot, the kernel of the
map ϕ is Z and consists of the components of Grepresented by gauge transfor-
mations that are supported in the neighborhood of a point in S3 \ K . �e image
of ϕ is a subla�ice Λ ⊂ Z4 of index 8. In terms of the standard basisvi , this la�ice
is generated by the elements

2vi , (i = 0, 1, 2, 3), and v1 +v2 +v3.

For example, the fact that the v0 coe�cient is even is a re�ection of the fact that
the map h0 li�s to the double cover of S1. In turn this li� exists because we can
use the holonomy of the SU (2) connection around the loop K to de�ne a map h̃0,
rather than use the holonomy of the SO(3) connection which de�nes h0. In the
same way, the fact that the coe�cients ofv1 andv2 have the same parity similarly
means that h1 + h2 li�s to a double cover, essentially because the corresponding
pair of edges of θ form a closed loop. Instead of the ring F2[Z4], we could instead
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work with the subring F2[Λ], which we can identify as the subring generated by
the monomials T ±2

i and T1T2T3.
(iv) �e previous remark explains that the circle-valued map h0 has a li� h̃0,

through the double-cover of S1, and this accounts for a di�erence in conventions
between the present paper and (for example) the notation in [12]. In [12], the
local system is de�ned using the map h̃0, and is described as a module for the
ring of �nite Laurent series in a formal variable u. Because of the double cover,
the variable u in that paper corresponds to T 2

0 in the present paper, rather than
T0. Our present choice of conventions is for consistency with [13].

(v) In the case that K is an n-component link and ω has no boundary points,
the fundamental group π is free of rank 4+n and π ′ is free of rank 3+n. If ω has
boundary, and if k is the number of components of K on which ∂ω has an odd
number of points, then the rank of π ′ is 3+n − k and the torsion subgroup of π ′
is (Z/2)k−1. �e proof of these assertions are essentially the same as the results
of section 3.2 of [11].

2.3 �e chain complex

Following Notation 2.3 henceforth, we �x a base-change homomorphism σ :
R→ S, possibly the identity. We �x a 3-manifold Y , a base-point yo ∈ Y , a link
K ⊂ Y disjoint from a �xed ball around the base-point, and a representative ω
for the Stiefel-Whitney class. If σ (T0) = 1, then we allow ω to have boundary on
K .

We can now construct the chain complex and boundary map which will de-
�ne a Floer homology group I ](K ; Γσ )ω in the usual way for an instanton Floer ho-
mology. While the construction is a straightforward generalization of the treat-
ment in [13] and its predecessors, it is worthwhile to recall a particular point
from [13], namely the proof that ∂2 = 0 given in [13, Lemma 3.1]. From there we
see that, a priori, there is a relation of the form

∂ ◦ ∂ =W 1

for some W ∈ S. �at is, we may have a “matrix factorization” rather than a
complex. �e proof thatW = 0 carries over from [13] without change: it vanishes
because it is a sum of contributions from the vertices of θ , and is independent
of K . Although we will not pursue this further in the present paper, it is worth
observing what happens in a more general situation. Suppose we consider the
case that K is a web rather than a link, and suppose we use each edge e of K to
de�ne a map he : B](K) → S1, so as to obtain a local system of modules over a
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ring of Laurent series in variablesTe indexed by the edges. �e termW will have
contributions from possible bubbling at the vertices v of K , so

W =
∑
v

Wv .

With a li�le more care, one may explicitly computeWv , and it has the form

Wv = p(Te(v,1),Te(v,2),Te(v,3))

where e(v, i) are the three edges incident at v and

p(T1,T2,T3) = T1T2T3 +T1T
−1
2 T −1

3 +T2T
−1
3 T −1

1 +T3T
−1
1 T −1

2

is the same polynomial that de�nes P . (Our notation here as elsewhere will some-
times not distinguish a generator Ti ∈ R from its image under the base-change,
σ (Ti) ∈ S.) In this generality, the potential W is non-zero. It becomes zero if
we impose relations on the variables Te so as to ensure (for example) that the
product

Te(v,1)Te(v,2)Te(v,3)

is independent of the vertex v .

2.4 Functoriality

Let X be an oriented 4-dimensional cobordism from Y0 to Y1 and let S ⊂ X be
a surface (not necessarily orientable) which provides a cobordism between links
K0 ⊂ Y0 and K1 ⊂ Y1. Because of the need for a basepoint, we suppose that X
contains an embedded cylinder [0, 1] × B3 whose boundary at the two ends are
the balls B(y0) and B(y1) around the chosen basepoints. We suppose that S is
disjoint from this cylinder, so we may form the larger foam

S] = S ∪
(
[0, 1] × θ

)
⊂ X .

�e foam S] ⊂ X provides an orbifold structure on X , which we write as (X , S]).
�e oriented orbifold (X , S]) is a cobordism between the orbifolds (Yi ,K ]i ). As

a special case of the general machinery of [8] and [11], it de�nes homomorphisms
on the constant-coe�cient instanton homology groups

I ](X , S) : I ](Y0,K0) → I ](Y1,K1).
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More generally, we can again allow bundles with non-zerow2 represented as
the dual of a submanifold ω. As in [11], we take ω to be a surface with corners.
�us, the boundary of ω consists of:

• a 1-manifold ω0 ⊂ Y0, possibly with boundary on K0;

• a 1-manifold ω1 ⊂ Y1 similarly; and

• a union of arcs and circles in the surface S ⊂ Y .

As well as meeting S along its boundary, we allow ω to meet S also in its inte-
rior, in transverse points of intersection [11]. We then have the more general
functoriality, with maps

I ](X , S)ω : I ](Y0,K0)ω0 → I ](Y1,K1)ω1 .

We can now introduce the local system Γσ = Γ ⊗σ S. If ∂ω meets S , then we
require that σ (T0) = 1, as in Notation 2.3. When the local system is introduced
and σ (T0) , 1 we must also take additional care, because of the role of the fram-
ings. Recall that the map h0 : B](K) → S1 depends on a choice of framing of K ,
and otherwise has an ambiguity of a half-period. Framings which have di�erent
parities give rise to groups I ](K ; Γσ )ω that are isomorphic, but not canonically so
without further choices. �is issue is dealt with carefully in [10] (and with some
inessential inaccuracies in [12]). We recall the procedure.

Let us recall �rst that the construction of I ](K ; Γσ )ω depends on framing of
K , and that the map that we are seeking to de�ne should therefore be wri�en

I ](X , S ; Γσ )ω : I ](Y0,K0; Γσ )τ0
ω0 → I ](Y1,K1; Γσ )τ1

ω1 (20)

where we have now included the framings ofK0 andK1 explicitly in the notation.
At the chain level, the map will be given by a chain map

C](S ; Γσ )ω : C](Y0,K0; Γσ )τ0
ω0 → C](Y1,K1; Γσ )τ1

ω1

whose matrix entry from α0 to α1 is given by “counting instantons” as usual, and
a�aching a “weight” ϵ([A]) ∈ R to each instanton [A] from α0 to α1.

To de�ne ϵ([A]), following [10], we note that the framings ofK0 andK1 allow
one to de�ne a self-intersection number S ·S for the surface S . Given the instanton
[A] on the cylindrical-end orbifold obtained from (X , S), one may de�ne locally
an SO(3) bundle on S with a reducible connection, so that the associated R3
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bundle has locally the form ξ ⊕ η (a line bundle and a 2-plane bundle). Although
the construction is local, the curvature 2-form of the 2-plane bundle η exists
globally on S as a 2-form Ω with values in the orientation bundle of S . So we
may consider the integral

ν0(A) = c
∫
S
Ω,

with the normalizing constant c chosen so that ν0 coincides with the Euler class
of η in the closed orientable case. (So c = i/2π if we identify the Lie algebra of
the circle with iR in the usual way.) An application of Stokes theorem gives

ν0(A) + (1/2)(S · S) = h0(α1) − h0(α0) (mod Z). (21)

We may de�ne similar quantities νi(A), (i = 1, 2, 3), as the integrals of the curva-
ture on the three edges of θ . �e weight ϵ([A]) is now de�ned by

ϵ([A]) = T ν0(A)+(1/2)(S ·S)
0 T ν1(A)

1 T ν2(A)
2 T ν3(A)

3 (22)

�ese relation (21), and the simpler formulae for the other νi , mean that multi-
plication by (22) is a map from the �ber Γs,α0 to Γs,α1 as required. �e formula for
the exponent of T0 is the same as in [10], except for a factor of 2 which stems
from the di�erence between SU (2) and SO(3), as explained in Remark (ii) at the
end of section 2.2 above.

�e result of this construction is a well-de�ned map (20) between instanton
homology groups. As a special case, we may take K0 = K1 = K and use the
cylindrical cobordism to obtain canonical isomorphisms

I ](Y ,K ; Γσ )τ0
ω → I ](Y ,K ; Γσ )τ1

ω

where only the framing has changed. We use these canonical isomorphisms to
treat I ](Y ,K ; Γσ )τω as being independent of the choice of framing τ . Note however,
that if τ0 and τ1 are framings which are equal mod 2, then the corresponding local
systems are identical, but our chosen canonical isomorphism is not the identity
map: it is multiplication by Tn

0 , where n is half the di�erence between the fram-
ings.

Henceforth we will continue to omit τ from our notation. When the ambient
cobordism X is a cylinder, or is otherwise understood, we will simply write

I ](S ; Γσ )ω : I ](K0; Γσ )ω0 → I ](K1; Γσ )ω (23)

for the map (20).
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Figure 1: A knot K with base-point p, and the resulting web K \ obtained by adding a
bigon.

2.5 A reduced variant

�e instanton homology I ](K)with constant coe�cients has a “reduced” version
I \(K), which is described, for example, in [11]. It depends on a choice of base-
point on the link K , and the relationship of I \ to I ] is similar to the relationship
between the reduced and unreduced versions of Khovanov homology [5]. Given
a base change σ : R → S satisfying the extra condition σ (T0) = σ (T1), we
can construct a reduced version I \(Y ,K ; Γσ )ω of I ](Y ,K ; Γσ )ω , for knots and links
K ⊂ Y . We describe the construction here.

LetK ⊂ Y be a link. Letp be the base-point onK , and (ϵ1, ϵ2, ϵ3) be an oriented
basis of tangent vectors, with ϵ1 pointing along K . Making the modi�cation in a
standard ball around p, create a spatial graph with two vertices by replacing an
arc of K adjacent to p with a bigon, as shown in Figure 1. Let K \ ⊂ Y denote the
resulting web. Let B\(Y ,K), or just B\(K), denote the space of marked bifold
connections on the corresponding bifold.

We de�ne three circle-valued functions,

(h1,h2,h3) : B\(K) → R3/Z3,

as follows. First, in the case that K is knot, the web K \ is the union of three
oriented arcs e1, e2, e3, where e2 and e3 comprise the added bigon. All three are
oriented by ϵ1. As before structure group of a connection [A] ∈ B\(K) reduces to
S1 along the arcs, and the holonomy of [A] along the three arcs de�nes the maps
hi , just as in the case of B](K). If K is a link, let

h0 : B\(K) → R/Z

be obtained from the holonomy along the remaining components of K (those
that do not contain p). In the case of a knot, just take h0 to be constant. In either
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case, we now have a map

(h0,h1,h2,h3) → R4/Z4,

from which we can construct a local system of R-modules Γ over B\(K) as be-
fore. In the case that the base-change σ : R → S has σ (T0) = σ (T1), the local
system is pulled back from R3/Z3 via the map

R4/Z4 → R3/Z3

which adds the �rst two components. We shall consider only cases such as this
when discussing reduced instanton homology in this paper, in order to have the
components of K on an equal footing. We then de�ne I \(K ; Γσ ) using the Morse
homology of the peturbed Chern-Simons functional on B\(K), with coe�cients
in Γσ .

�is reduced instanton homology is functorial for “based” cobordisms of
links. Given links (Y0,K0) and (Y1,K1), with framed base-points p0 and p1 on
the links, the appropriate morphism is given by a cobordism of pairs, (X , S) to-
gether with an arc γ ⊂ S joining the base-points and a framing (ϵ1, ϵ2, ϵ3) of the
normal to γ in X such that ϵ1 is tangent to S . Equivalently, we can think of an
embedding of [0, 1] × B3 in X which intersects S in the image of the standard
[0, 1] × B1. Given such data, we can perform the bigon addition (Figure 1) in a
one-parameter family along the image of [0, 1]×B3, to obtain an embedded foam
S \ with boundary K

\
0 ∪ K

\
1 . �e foam gives rise to homomorphisms

I \(X , S ; Γσ ) : I \(Y0,K0; Γσ ) → I \(Y1,K1; Γσ )

where the matrix entries at the chain level are given by the same formulae (22) as
in the non-reduced case, with the νi being the curvature integrals over the facets
of S \.

2.6 �e Künneth theorem for reduced homology

Given links K1 and K2, each with a framed basepoint, there is a natural construc-
tion of the connected sum K1 # K2, also as a link with framed base-point. To
spell this out, let (ϵ1, ϵ2, ϵ3) be the framing at the base-point of K1, with ϵ1 point-
ing along the knot. Using the framing, parameterize a standard ball B3,1 around
the base-point. Construct B3,2 similarly. Remove the interiors and form the con-
nected sum by identifying the 2-sphere ∂B3,1 with ∂B3,2 using the orientation-
reversing di�eomorphism given by re�ection in the ϵ1 direction. Take the base-
point on the new link to be the image of the point ϵ1 on ∂B3,1.
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�e construction of K1 # K2 from the two framed knots is functorial. �at is,
given cobordisms Si from K′i to Ki for i = 1, 2, and given framed arcs γ = (γ1,γ2)
joining the framed basepoints, we can form a cobordism

S1 #γ S2

from K′1 # K′2 to K1 # K2 by performing the connected-sum construction in an
interval family. �e reduced instanton homology for a connected sum of framed
knots is described as a tensor product by a Künneth theorem:

Proposition 2.4. Let (C1, ∂) and (C2, ∂) be the di�erentialS-modules arising from
the Floer complexes for the homology groups I \(K1; Γσ ) and I \(K2; Γσ ). �en the Floer
complex for K1 # K2 is chain-homotopy equivalent to the tensor product C1 ⊗SC2.
In particular, if S is a principal ideal domain, then there is a split exact sequence
of S-modules,

0 −→ I \(K1; Γσ ) ⊗S I \(K2; Γσ ) −→ I \(K1 # K2; Γσ )
−→ TorS1

(
I \(K1; Γσ ), I \(K2; Γσ )

)
−→ 0.

(24)

�e exact sequence, but not the spli�ing, is natural with respect to the maps induced
by cobordisms S1, S2 and S1 #γ S2 as constructed above.

Proof. �is a standard application of excision, as we now describe. �e symme-
tries in the argument are more apparent in a more general version, so we consider
four pairs (Yi ,Ki), k = 1, . . . , 4, where eachKi is a based link. For each i , j, there
is a connect-sum of pairs,

(Yij ,Kij) = (Yi ,Ki) # (Yj ,Kj),

where the 3-manifolds and the links are both summed at the base-points. LetC \ij
denote the chain group of free S-modules arising as the instanton Floer complex
for this connected sum of based pairs, with coe�cients in the local system Γσ .
�e more general statement is then that there is a chain-homotopy equivalence,

C
\
12 ⊗SC

\
34 ' C

\
13 ⊗SC

\
24, (25)

and that the resulting maps on homology are natural for cobordisms. �e state-
ment of the original proposition arises as a special case, when each Yi is S3, and



22

Figure 2: �e cobordism U from two copies of an interval I to another two.

K3 and K4 are both the unknot, so that (Y13,K13) = (Y1,K1), (Y24,K24) = (Y2,K2),
and C

\
34 = S.

We now recall Floer’s excision argument, particularly in the versions de-
scribed in [8, Proposition 4.2] and [13, Proposition 3.3]. LetU be as in Figure 2, a
2-dimensional cobordism from the 1-dimensional manifold-with-boundary I ∪ I
to I ∪ I . Take the product with S2 to obtain a cobordism from I × S2 ∪ I × S2 to
I × S2 ∪ I × S2. �en a�ach four copies of [0, 1] × B3 to obtain a cobordism W
from S3 ∪ S3 to S3 ∪ S3. Inside W there is an embedded foam, Φ, formed from
three copies of U . �e pair (W ,Φ) is a cobordism

(S3,θ ) ∪ (S3,θ ) to (S3,θ ) ∪ (S3,θ ).

On one facet of the three facets of Φ, let γi , i = 1, . . . , 4, be four arcs as shown in
Figure 3. A regular neighborhood of γi in (W ,Φ) is a standard pair [0, 1]×(B3,B1)
along which we form a sum with [0, 1]×(Yi ,Ki). �e result is a cobordism of pairs,
(X ,Ψ) from

(Y12,K
\
12) ∪ (Y34,K

\
34) to (Y13,K

\
13) ∪ (Y24,K

\
24).

As in the proof of [13, Proposition 3.3], this cobordism of pairs gives rise to a map
on the instanton chain complexes with local coe�cients, in this case a chain map

C
\
12 ⊗SC

\
34 → C

\
13 ⊗SC

\
24.
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Figure 3: �e foam Φ ⊂ W and the four arcs along which the pairs [0, 1] × (Yi ,Ki ) are
summed.

By the same construction, a map in the other direction is constructed. �e fact
that the composite of the two, in either order, is chain-homotopic to the identity
is proved by the usual argument, as in [13] for example. �

3 Operators on I ](K ; Γ)

We continue with the notation of the previous sections. We write Yo ⊂ Y for
the complement of a ball around a basepoint in Y , and we consider a link K ⊂
Yo , along with the union K ] = K ∪ θ in Y . �e space of connections B](K)ω
carries a system of local coe�cients Γσ , as in Notation 2.3), and I ](K ; Γσ )ω is the
instanton homology for the perturbed Chern-Simons functional on B](K)ω , with
coe�cients in the local system.

3.1 Operators from characteristic classes of the basepoint bundle.

Given an point y in the smooth part of the orbifold (Y ,K), there is a basepoint
SO(3)-bundle Ey on the con�guration space, with Stiefel Whitney classes

w1,w2,w3 ∈ H ∗(B](K)ω ;Z/2).
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Figure 4: Links or webs K2, K1 and K0 di�ering by the unoriented skein moves, in two
di�erent views.

(See [13, section 4].) For the instanton homology I ](K ; Γσ ), these characteristic
classes give rise to linear operators,

wi : I ](K ; Γσ )ω → I ](K ; Γσ )ω .

�e de�nition of these for the similar case of J ](K ; Γθ ) is presented in [13] and
needs essentially no change. As in [13], we have:

Lemma 3.1. On I ](K ; Γσ )ω the operators w1 and w3 are zero, while w2 is multi-
plication by σ (P) ∈ S, where P ∈ R is the element given by the expression in
(5). �

3.2 A two-dimensional cohomology class

Let a be an arc in Y with endpoints {p,q} on K ∪ θ . �e interesting case will be
when p and q lie on di�erent components, for example on K and θ respectively.
We require that p and q lie on the interior of edges, not at the vertices of the
graph. We also require that p and q do not lie at endpoints of ω (if any). �ere is
a universal R3 bundle

E→ a ×B](K)ω .
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�e restriction, Ep , of E to the endpoint {p}×B](K)ω carries an involution on the
R3 �bers, because of the Z/2 stabilizer at this singular point of the orbifold, so Ep

contains a distinguished real line subbundle, the +1 eigenspace of the involution:

Lp ⊂ Ep → B](K)ω .

�is line bundle is trivial. Indeed, we have:

Lemma 3.2. Given the condition that p is not a boundary point of ω, a choice of
orientation op for Lp is determined by an orientation of K at p. If p1 and p2 lie
either side of a single endpoint of ω on K , and if K is given the same orientation at
p1 and p2, then the corresponding orientations op1 , op2 of Lp1 � Lp2 are opposite.

Proof. We use the characterization of B](K)ω in Lemma 2.2. �e connection
[A] ∈ B](K)ω has a preferred li� to an SU (2) connection Â in Up \ K for some
neighborhood Up of p in Y . A�er orienting (the normal bundle to) K , we can
consider the limiting holonomy of Â around small circles linking p ∈ K , which
is an element of order 4 in SU (2). �e 2-sphere which parametrizes elements
of order 4 is identi�ed with the unit sphere in the R3 bundle, and under this
identi�cation the limiting holonomy is an element of Lp �

With the lemma in mind, we introduce the following notation.

De�nition 3.3. A dot on K is a chosen point p on K , not a boundary point of
ω, together with a choice of orientation op for the line bundle Lp → B](K)ω .
We may omit explicit mention of op , and simply refer to p as a dot. If p is a dot,
we write p̄ for dot with the same underlying point and the opposite orientation
for the line bundle. We note that a choice of orientation of Lp is equivalent to a
choice of orientation of K near p.

Suppose now that p and q are dots, and let us return to the arc a joining
them as introduced above. �e dot p determines a distinguished section of Lp
and hence a distinguished section ip of the R3 bundle Ep . Similarly, using the dot
q, we obtain a distinguished section iq . Changing the sign of the second one, we
obtain a distinguished section

I = (ip,−iq)

of the restriction of E to ∂a ×B](K).
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�e distinguished section on the boundary allows us to de�ne a relative Euler
class; or a top Stiefel-Whitney class

w3 = w3(E, I )

∈ H 3
(
(a, ∂a) ×B](K); F2

)
.

We now take the slant product with the relative fundamental class of the arc to
obtain a class on B](K)ω :

De�nition 3.4. For an arc a as above whose endpoints p and q are dots, we
de�ne a 2-dimensional cohomology class with F2 coe�cients on B](K)ω as

λ = w3/[a, ∂a]

∈ H 2
(
B](K); F2

)
.

(26)

�e next lemma shows that the arc a itself plays only an auxiliary role in this
construction.

Lemma 3.5. In the above construction, the class λ depends only on the dots p, q. It
does not otherwise depend on the arc a.

Proof. Consider the universal R3 bundle

E→ (Y \ K) ×B](K)ω .

�e assertion to be proved is equivalent to the statement that

w3(E)/[b] = 0

∈ H 2
(
B](K)ω ; F2

)
.

for any 1-cycle b in Y \K . �e bundle has trivialw2 on Y \K , so each irreducible
connection li�s to an SU (2) connection with stabilizer ±1. �is means thatw2(E)
can be represented by a 2-cocycle which is pulled back from B](K)ω . �e class
w3 is obtained by applying a Bockstein homomorphism tow2. So the classw3(E)
is also pulled back from B](K)ω . It follows thatw3(E)/[b] is zero, for all 1-cycles
b in Y \ K (and incidentally all 2-cycles also). �

�e lemma allows us to write the class as a function of the two dots,

λpq ∈ H 2
(
B](K); F2

)
, (27)
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�e next lemma asks how λpq changes if we change the orientation oq at one
endpoint: that is we replace q by q̄. We introduce the following notation: we
write

λ′pq = λpq̄ .

Lemma 3.6. Let p and q be dots, and let λpq and λ′pq be the resulting classes, as
above. �en these classes satisfy the relations:

λpq + λ
′
pq = w2(Eq)

λpqλ
′
pq = 0

(28)

Proof. Because of the independence of the choice of arc, and the way the signs
are used in the de�nition of I above, the �rst relation is equivalent to saying

λqq = w2(Eq),

where the le�-hand side can be computed using the constant arc from q to q.
�e general statement at the level of characteristic classes is the following.

Suppose we have an R3 bundle E → T with a section i0. Consider the pull-back
π ∗(E) to [0, 1] × T with a section I which is equal to i0 on {0} × T and −i0 on
{1} × T . �en the result of slanting w3(π ∗(E), I ) with the fundamental class of
[0, 1] is w2(E):

w3(π ∗(E), I )/[0, 1] = w2(E).
�is can be veri�ed by pulling back E to S1 × T and tensoring by the Möbius
bundle µ on S1, in which case the assertion is:

w3(π ∗(E) ⊗ µ)/[S1] = w2(E).

In this form, the veri�cation is straightforward, using the spli�ing principle. �is
completes the proof of the �rst relation.

To set the second relation in a more general context, consider again an R3

bundle E → T with two non-vanishing sections i0 and i1. Let I be a path of
sections, from i0 to −i1, through sections which may vanish: we take explicitly

I (t) = (1 − t)i0 − ti1.

Similarly, let I ′(s) be the path from i0 to i1 given by

I ′(s) = (1 − s)i0 + si1.
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We have cohomology classes by

λ = w3(E, I )/[0, 1]
∈ H 2(T ; F2)

λ′ = w3(E, I ′)/[0, 1]
∈ H 2(T ; F2),

where we now interpret I and I ′ as sections on [0, 1] ×T that are non-zero at the
boundaries. To show that λλ′ = 0, it is su�cient to show that there is no (t , s) in
the interior of [0, 1] × [0, 1] for which the sections I (t) and I ′(s) have a common
zero in T . A necessary condition for a common zero is that the determinant of
the matrix (

(1 − t) −t
(1 − s) s

)
is zero. But the determinant is s + t − 2st which is strictly positive on the interior
of [0, 1] × [0, 1]. �e result follows. �

Corollary 3.7. �e class λpq satis�es the relation

λ2
pq +w2(Eq)λpq = 0.

Proof. �is is an immediate corollary of the two relations in the lemma. �

3.3 Operators from the two-dimensional classes

In the usual way, and following the exposition in [13], the cohomology class λpq
gives rise to an operator

Λpq : I ](Y ,K ; Γσ )ω → I ](Y ,K ; Γσ )ω . (29)

In a li�le more detail, let a be the chosen arc joining the two dots, regarded
as subset of the cylinder X̌ = R × Y̌ , in the slice where the R coordinate is
zero. Following [13, section 4.3], let Z ⊂ X̌ be a subset of X̌ which includes a
neighborhood of a and such that the restriction map

H 1(Y \ K ; F2) → H 1(Z \ K ; F2)

is injective. �e la�er condition means there is a well-de�ned restriction map
for marked connections,

M(α , β) → B∗(Z ; µZ )



29

where µZ is the intersection with Z of the marking data R × µω . Because Z
contains a neighborhood of a, the class λpq can be de�ned on B∗(Z ; µZ ), where
it is dual to a strati�ed codimension-2 subvarietyV . �e matrix entries of Λpq at
the chain level are de�ned by counting points of the intersections

M(α , β) ∩V

and weighting them using the local system. As in [13], the necessary compact-
ness results hold because the cohomology class has dimension 2 and Z can be
chosen so that it meets the foam only in the faces (at neighborhoods of p and q).

Using notation that is parallel to the notation for λpq and λ′pq , we write Λ′pq
for the operator of the same form as (29), but using q̄ in place of q. �e rela-
tions in Lemma 3.6, satis�ed by λpq and λ′pq , give rise to relations satis�ed by the
corresponding operators on Floer homology.

Lemma 3.8. Let Λpq and Λ′pq be the operators on I
](K ; Γσ )ω arising from a pair of

dots {p,q} as above. �en these operators satisfy the relations:

Λpq + Λ
′
pq = σ (P)

ΛpqΛ
′
pq = σ (Qpq),

(30)

where P is the element of R given by (5), and

Qpq = (T 2
mp
+T −2

mp
) + (T 2

mq
+T −2

mq
).

In the above formula, Tmp and Tmq are the variables from {T0,T1,T2,T3} associated
to the edges of K ∪ θ on which p and q lie. �us,mp = 1, 2 or 3 if p lies on the edge
e1, e2 or e3 of θ , andmp = 0 if p lies on K .

Proof. By an excision argument [11], it is su�cient to prove this in the case that
ω is empty. It is then su�cient to consider the case that the base-change σ is the
identity.

�e �rst of the two relations follows from the corresponding formula for
λpq + λ

′
pq in Lemma 3.6, together with the formula w2 = P from Lemma 3.1.

�e second relation, for the product, is more subtle, because it involves a 4-
dimensional moduli space, and there is a contribution from codimension-4 bub-
bling which may occur at the endpoints p and q of the arc a ⊂ Z .

As in [18] and [13], the contribution from the bubbles at p and q are universal
quantities, so that the relation for the product has the general shape

ΛpqΛ
′
pq = F (Tmp ) + F (Tmq )
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where F is universal and is a �nite Laurent series in one variable. To compute
F , we take as a special case that situation that K is empty and p and q lie on
the edges e2 and e1 of θ , respectively. In the ring F2[T ±1

1 ,T
±1
2 ,T

±1
3 ] then, we have

elements Λ and Λ′ with relations

Λ + Λ′ = P

= T1T2T3 +T1T
−1
2 T −1

3 +T2T
−1
3 T −1

1 +T3T
−1
1 T −1

2

and
ΛΛ′ = F (T2) + F (T1).

�e only way to solve the constraint that ΛΛ′ is function of T1 and T2 only is to
have the general shape

Λ = T a
3G(T1,T2)

Λ′ = T −a3 H (T1,T2),
for some Laurent polynomials G and H in two variables. �e shape of the for-
mula for Λ + Λ′ tells us that a must be ±1 and that Λ and Λ′ must consist of the
corresponding monomials from the formula for P . �us

Λ = T3(T1T2 +T
−1
1 T −1

2 )
Λ′ = T −1

3 (T −1
1 T2 +T1T

−1
2 )

(31)

or vice versa. Either way, we have F (T ) = T 2 +T −2. �

As with the cohomology classes themselves, we have an immediate corollary
of the lemma, for the operator Λpq :

Corollary 3.9. �e operator Λpq satis�es the relation

Λ2
pq + σ (P)Λpq + σ (Qpq) = 0.

To create an operator that treats the three edges of θ symmetrically, we make
the following de�nition.

De�nition 3.10. Fix once and for all a dot pm on each edge of em of the θ , for
m = 1, 2, 3. �en, given a dot q on the link K , we de�ne

Λq = Λp1q + Λp2q + Λp3q,

with Λ′q de�ned similarly.
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Corollary 3.11. �e operator Λq above satis�es the relation

Λ2
q + σ (P)Λq + σ (Q) = 0,

where P and Q are given by the formulae in (5). Furthermore Λq + Λ
′
q = σ (P).

Proof. We are in characteristic 2, where squaring is linear. �e Q that appears in
the quadratic relations is now the sum of the terms Qpmq form = 1, 2, 3. �

3.4 Surfaces with dots

�e operators Λq on I ](K ; Γσ )ω that we have de�ned can be combined – in the
usual way – with the functorial maps obtained from cobordisms S between knots
and links. �us, suppose we are given a cobordism (X , S) from (Y0,K0) to (Y1,K1)
as in (23), and let q be a dot on S . As before, this means a point with a choice of
orientation oq of the line bundle Lq . We then obtain a map

I ]((S ;q); Γσ )ω : I ](K0; Γσ )ω0 → I ](K1; Γσ )ω1 . (32)

If q can be joined by a path on S to a point q0 ∈ K0 (respectively, a point q1 ∈ K1),
then this map is equal to the composite,

I ](S ; Γσ )ω ◦ Λq0,

respectively
Λq1 ◦ I ](S ; Γσ )ω .

�e functorial properties of I ] extend to this larger category in which the mor-
phisms are “cobordisms with dots”. We note that, as with the case of dots on a
link K , an orientation of the line bundle Lq is equivalent to a choice of orienta-
tion for a neighborhood of q in S . So a dot can be regarded as point in S together
with an orientation of TqS .

4 Double points and handles

As in section 2.4, let Y0 and Y1 be 3-manifolds with basepoints, containing links
K0, K1, and let ω0, ω1 be representatives for the Stiefel-Whitney class. We con-
tinue to use Γσ to denote Γ ⊗σ S, and we consider again a map

I ](X , S ; Γσ )ω : I ](K0; Γσ )ω0 → I ](K1; Γσ )ω1 (33)
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arising from a bifold cobordism (X , S) and a choice of Stiefel-Whitney class rep-
resented by a surfaceω with boundary. We continue to assume that S is a surface
rather than a more general foam, and we recall that ω is allowed to have part of
its boundary on S if σ (T0) = 1 . Implicit in our notation is an embedding of
[0, 1] × B3 in X , containing the cylindrical foam [0, 1] × θ , disjoint from S and ω.

As in [11, 8, 13], we can consider how the map I ](X , S ; Γσ )ω changes when we
modify the topology of S in standard ways.

4.1 Connect sum with RP2

In S4, there are two standard copies of RP2 (see [11] for example), which we call
R+ and R−. �ese have self-intersection numbers

R+ · R+ = +2
R− · R− = −2.

From (X , S) we can form a new cobordism as a connected sum,

(X , S̃) = (X , S) # (S4,R±).

Lemma 4.1. In the case S̃ = S # R+, or S̃ = S # R−, we have

I ](X , S̃ ; Γσ )ω = 0.

We postpone the proof until a�er the statement of the next lemma.
If σ (T0) = 1, then we can use more general representatives for classes w2.

In particular, a circle representing the generator of H1(R±) bounds a disk in the
complement ofR± in S4. Let us write π for this disk. It represents a non-zero mod-
2 class in the homology of the complement. In the complement of S̃ = S #R±, we
can then use the Stiefel-Whitney class represented by ω + π .

Lemma 4.2. Suppose that σ (T0) = 1 in the ringS. �en in the case that S̃ = S #R+,
we have

I ](X , S̃ ; Γσ )ω+π = I ](X , S ; Γσ )ω .

In the case that S̃ = S # R−, we have

I ](X , S̃ ; Γσ )ω+π = σ (P) I ](X , S ; Γσ )ω ,

where P ∈ R is the element given by the formula (5).
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Proof of the two lemmas. �ere are four assertions altogether: two surfaces R±,
and two choices of Stiefel-Whitney class. In each case, we have a connected sum
with (S4,R±) along (S3, S1). We apply the usual stretching argument, and we con-
sider the possible weak limit on (S4,R±). �e gluing parameter in the connected
sum is S1, so we will have non-zero contributions only when the weak limit on
(S4,R±) is an anti-self-dual connection with S1 stabilizer. However, there are no
non-zero harmonic 2-forms on these orbifolds, so the only possibility is a �at con-
nection. �ere is a unique �at SO(3) bifold connection [A±] on (S4,R±) because
the fundamental group of the complement is cyclic of order 2. Its Stiefel-Whitney
class is represented by π . �is proves the �rst lemma: there is no contribution
for the Stiefel-Whitney class ω.

�e anti-self-dual connection [A±] is unobtructed in the case of R+ and has
a 2-dimensional obstruction space in the case of R−, as explained in [11, section
2.7]. So for R+ we have

I ](X , S # R+; Γσ )ω+π = I ](X , S ; Γσ )ω .

In the case of R−, we can identify the 2-dimensional gluing obstruction with the
2-plane bundle η, and the e�ect of gluing is the same as cu�ing down by w2(η).
Lemma 3.1 tells us this is multiplication by σ (P). �

4.2 Connect sum withT 2

Let T be a standard unkno�ed torus in R3, and regard T by inclusion as a sub-
manifold of S4. We may form a connected sum

(X , S̃) = (X , S) # (S4,T ).

Lemma 4.3. When (X , S̃) is formed from (X , S) by a connected sum with the stan-
dard torus T as above, we have

I ](X , S̃ ; Γσ )ω = σ (P) I ](X , S ; Γσ )ω .

Proof. As with then previous two proofs, we are forming a sum along (S3, S1) and
non-zero contributions arise from anti-self-dual bifold connections on (S4,T ).
�ese in turn come from reducible anti-self-dual connections on the branched
double-cover, S2 × S2, which are invariant under the involution which �xes the
torus S1×S1. As in the previous lemma, the contributions come only from the �at
bifold bundle [E,A] on (S4,T ) corresponding to the trivial bundle [Ẽ, Ã] on S2×S2,
because there are no non-zero harmonic 2-forms on the orbifold. �e obstruction
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space for [E,A] is again two-dimensional, because it arises from H+(S2 ×S2; Ẽ−),
where Ẽ− is the two-dimensional summand of the trivial bundle on which the
involution acts as −1. In the gluing, the obstruction bundle is again η, and the
calculation is the same as the case S # R− from Lemma 4.2. �

4.3 Double points and blowing up

As in [10] and [12], we can extend the de�nition of the maps I ](X , S ; Γσ )ω induced
by cobordisms to include also the case that S is a normally immersed surface in
X . Our approach in the present paper is a slight variant of what was done in the
two previous cited papers: what we will do here is be�er-adapted to the case of
an unoriented surface S .

So let f : S # X be an “immersed cobordism” from (Y0,K0) to (Y1,K1). We
always assume, as in [10], that f has only transverse double-points, and that
these are in the interior of X . �at is, the surface is normally immersed. We also
assume that the double points do not lie on the surface ω which represents w2.
We do not want to orient S , and we therefore do not give a sign ±1 to the double-
points of the immersion. At a double-point x ∈ f (S), we may choose the metric
onX so that the two branches of the immersion have orthogonal tangent planes,
π and π ′ inTxX . �ere are then exactly two complex structures J and −J onTxX
such that:

(a) the complex structure is compatible with the metric and orientation ofTxX ;

(b) π and π ′ are J -invariant;

�e blow-up ofX at x with respect to the complex structures J and −J are canon-
ically identi�ed: in both blow-ups, the exceptional set ϵ ⊂ X̃ is the set of J -
invariant 2-planes in TxX . When identi�ed with CP1 however, the complex ori-
entation of the exceptional set is di�erent in the two cases. �e proper transform
f̃ : S̃ # X̃ has one fewer double-point than f .

In the above situation, we de�ne I ](X , S ; Γ)ω for the immersed cobordism by
requiring

I ](X , S ; Γσ )ω = I ](X̃ , S̃ ; Γσ )ω + I ](X̃ , S̃ ; Γσ )ω+ϵ . (34)

On the right, we see the proper transform, equipped with two di�erent Stiefel-
Whitney classes, di�ering by the exceptional set ϵ of the blow-up. By applying
the de�nition to each double point in turn, we arrive at a de�nition that reduces
to the standard case of embedded cobordisms.



35

Before proceeding further, we make some remarks about this de�nition. �e
proper transform is being used here to construct a functor from a category in
which the morphisms are immersed cobordisms to one in which the morphisms
are embedded cobordisms. In the previous papers [10, 12, 7], such a construction
was used with only the �rst of the two terms on the right. �e reason for using
the two terms, involving bothω andω+ϵ , is to provide a deformation invariance
that would otherwise be absent, in the case that ω has boundary on S . To under-
stand this, consider a local model for a double point of S , consisting of a pair of
disks D1 ∪ D2 in the product D1 × D2, and let coordinates be (xi ,yi) be standard
coordinates on Di , so that the disks meet at the origin. Let ω be described in this
neighborhood by

ω = {y1 = 1/2, y2 = 0, x2 ≥ 0 }
so that ∂ω is the line y1 = 1/2 on the disk D1. Let ω′ be obtained from ω by
deforming ω in the this neighborhood in such a way that, (i) ∂ω′ is the line
y = −1/2 on D1; and (ii) ω′ intersects D2 transversely at a point. Let (X̃ , S̃ be
obtained by blowing up the double-point D1 ∩ D2, and regard ω,ω′ as lying in
X̃ . In this situation (assuming that this local picture is just part of cobordism of
pairs), we have

I ](X̃ , S̃ ; Γσ )ω , I ](X̃ , S̃ ; Γσ )ω ′
in general, because ω and ω′ are representatives of Stiefel-Whitney classes of
di�erent orbifold bundles. Instead, we have

I ](X̃ , S̃ ; Γσ )ω = I ](X̃ , S̃ ; Γσ )ω ′+ϵ ,

and similarly
I ](X̃ , S̃ ; Γσ )ω+ϵ = I ](X̃ , S̃ ; Γσ )ω ′,

So if we wish to de�ne I ](X , S ; Γσ )ω when S is normally immersed, and if we wish
the result to be independent of the choice of ω, in this way, we should take the
two terms together, as we have done in (34).

With that said, if we impose the restriction that we consider only ω without
boundary along S , then we are free to modify the de�nition of the functor: for
any �xed choice of ξ ∈ S, we can de�ne a functor I ]

ξ
by leaving everything un-

changed except for the rule for dealing with double-points, where we substitute
the variant

I ]
ξ
(X , S ; Γσ )ω = I ]

ξ
(X̃ , S̃ ; Γσ )ω + ξ I ]ξ (X̃ , S̃ ; Γσ )ω+ϵ . (35)

For the rest of this paper, we shall remain with the more restricted case ξ = 1,
with only occasional comments about the more general version.
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4.4 Twist moves and �nger moves

We now follow the strategy from [10] to see how I ](X , S ; Γσ ) changes when the
immersion is changed in three standard ways (introducing additional double-
points). �ese are the “twist move”, which comes in two oriented �avors, and
the “�nger move”.

Proposition 4.4 (cf. [10, Proposition 5.2] and [12, Proposition 3.1]). Let S∗
be obtained from S by either a positive twist move, or a �nger move (introducing a
canceling pair of double-points). �en we have,

I ](X , S∗; Γσ )ω = σ (L) I ](X , S ; Γσ )ω

where
L = P +T 2

0 +T
−2
0 .

For the negative twist move on the other hand, the map I ] is unchanged:

I ](X , S∗; Γσ )ω = I ](X , S ; Γσ )ω .

Remark. If we put T1 = T2 = T3 = 1, the formulae in the above proposition are
essentially the same as those in [10, Proposition 5.2], but with the “t” from that
earlier paper now replaced by T 2

0 . �e factor of 2 in the exponent again arises
because we have used the SO(3) connection rather than the SU (2) connection in
de�ning the local system. Formulae of this sort go back to [7]. �e case of the
�nger move is also formally similar to crossing-change results in Heegaard-Floer
homology [16, 2] and in Bar-Natan homology [1].

We prove the various parts of this proposition in the paragraphs. Our expo-
sition describes just the case of Γ, because the results are local, and the general
Γσ is obtained by base change.

Twist moves. We begin with the positive twist move. In this case, as explained
in [10] and [7], the result of the positive twist move followed by taking the proper
transform in the blow-up is to replace (X , S) with

(X ′, S′) = (X , S) # (C̄P2
,C)

where C is a conic curve. According to our de�nition (34), we must therefore
compute

I ](X ′, S′; Γ)ω + I ](X ′, S′; Γ)ω+ϵ .
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Once again, we compute by a connected sum argument. A dimension count
shows that the weak limit [E,A] on (C̄P2

,C) lies in a moduli space of formal
dimension d0 ≤ −1, which means that its action κ0 satis�es the bound κ0 ≤ 1/4.
Since the formal dimension is negative, the connection must be reducible, either
to ±1, to SO(2), or to O(2). �e double cover is S2 × S2, with the involution
τ (x ,y) = (−y,−x). �e �xed-point set is the anti-diagonal ∆−. �e pull-back
[Ẽ, Ã] on S2 × S2 must be reducible, either to SO(2) or the trivial group, so this
SO(3) bundle has the form

R ⊕ K
where e(K) can be taken to be τ -invariant in the case that [E,A] reduces to ±1,
and τ -anti-invariant in the case that [E,A] reduces toO(2). In the standard basis,
e(K) has the form (δ ,−δ ) or (δ ,δ ) respectively. A class of the second sort is
not represented by an anti-self-dual form however. So e(K) = (δ ,−δ ) and [E,A]
reduces either to ±1 or to SO(2). �e bound on κ0 means that e(K)2 ≥ −2, so
δ 2 ≤ 1.

If δ = 0, thenw2(Ẽ) = 0, which means thatw2(E) = ϵ in the neighborhood of
the blow-up. If δ = ±1, then w2(E) is zero in the neighborhood. �e dimension
count shows that the two cases δ = ±1 are unobstructed, and these contribute
the terms T 2

0 +T
−2
0 . (�e calculation here is just as in [10].) So we have

I ](X ′, S′; Γ)ω = (T 2
0 +T

−2
0 )I ](X , S ; Γ)ω

�e case δ = 0 is the case of the �at bifold connection on (C̄P2
,C), and it con-

tributes to the term I ](X ′, S′; Γ)ω+ϵ . �e obstruction space is again 2-dimensional,
and just as the case of a connected sum with either (S4,R−) or (S4,T 2), we obtain

I ](X ′, S′; Γ)ω+ϵ = PI ](X , S ; Γ)ω
�is concludes the proof for the positive twist move.

�e negative twist move is straightforward. In this case we must consider
(X ′, S′) obtained from (X , S) by forming the connect sum with (C̄P2

,�). �e term
with ϵ does not contribute, and the term I ](X ′, S′; Γ)ω is equal to I ](X , S ; Γ)ω as
in [10].

Fingermoves. Let S∗ be obtained from S by a �nger move, and let S′ be obtained
from S∗ by blowing up at the two double points and taking the proper transform.
Let ϵ1 and ϵ2 be the exceptional sets of the two blow-ups. From the de�nition in
(34), we see that what we must compute is a sum of four terms

I ](X ′, S′; Γ)ω + I ](X ′, S′; Γ)ω+ϵ1 + I
](X ′, S′; Γ)ω+ϵ2 + I

](X ′, S′; Γ)ω+ϵ1+ϵ2, (36)
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and the desired answer is U I ](X , S ; Γ)ω , where U is as in part � of the Proposi-
tion.

To focus on the region where the change occurs, let us write

(X , S) = (X1, S1) ∪ (X2, S2),

where (X2, S2) is a standard 4-ball containing a standard pair of disks, and (X1, S1)
is the closure of the complement. �e two pairs meet along a pair (S3,U2), where
U2 ⊂ is a standard 2-component unlink. Let (X ′2, S′2) be obtained from (X2, S2) by
the �nger move and proper transform. So we have

(X ′, S′) = (X1, S1) ∪ (X ′2, S′2).

�e manifold (X ′2, S′2) has boundary (S3,U2), and we can form from it a closed
pair by a�aching a 4-ball and a standard pair of disks. We write (Z , Σ) for the
resulting pair:

(Z , Σ) = (X ′2, S′2) ∪ (B4,D2 q D2). (37)

�e manifold Z is a connected sum of two copies of C̄P2, and we write E1, E2 for
the two exceptional curves. �e surface Σ is a union of two spheres,

Σ = Σ1 q Σ2,

each of which has square −2. �e two components Σ1 and Σ2 have the same mod
2 homology class, but over the integers we have (depending on choices made),

[Σ1] = −[E1] − [E2]
[Σ2] = −[E1] + [E2].

�e proof of the formula for the �nger move depends on understanding the
moduli spaces on (Z , Σ), for small energy κ, namely κ = 0 and κ = 1/4. As in
(36) above, we will need to understand these moduli spaces

M(Z , Σ)ν

for four di�erent values of the Stiefel Whitney class ν , namely

ν = 0, ν = ϵ1, ν = ϵ2, and ν = ϵ1 + ϵ2,

where ϵi is a representative in the class of Ei . Let us write

M(Z , Σ)∗
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for the union of M(Z , Σ)ν over these four values of ν .
Because we are working with I ], our interpretation of M(Z , Σ)∗ is that it

parametrizes SU (2) gauge equivalence classes of anti-self-dual SU (2) connec-
tions on the complement of the four spheres E1, E2, Σ1 and Σ2, such that the
limiting holonomy around the links of the spheres Σi is order 4, and the holon-
omy around the links of the spheres Ei are each 1 or −1, depending on the value
of ν . �e metric on Z is an orbifold metric as usual, with singular set Σ.

Consider a �at line bundle ξ on

Z ′ = Z \ (Σ1, Σ2,E1,E2).

Write (σ1,σ2,η1,η2) for the holonomy of ξ around the links of these four spheres,
and require that these are (±1,±1,±1,±1). A push-o� of E1 meets Σ1, Σ2 and E1
once each. Similarly with E2. So we have relations

η1 = η2 = σ1 + σ2.

So there are four possibilities for ξ , including the trivial bundle, and their possible
holonomies are:

(σ1,σ2,η1,η2) = (1, 1, 1, 1), or
= (1,−1,−1,−1), or
= (−1, 1,−1,−1), or
= (−1,−1, 1, 1).

�ey form the group isomorphic to V4.
�e �at line bundles act ξ act on M(Z , Σ)∗ by tensor product. So we have an

action of V4 on this moduli space. Tensoring by ξ either leaves ν unchanged (if
σ1 = σ2), or adds ϵ1 + ϵ2. So the subset

M(Z , Σ)0 ∪M(Z , Σ)ϵ1+ϵ2 (38)

is closed under the Klein 4-group action, as is the complementary subset,

M(Z , Σ)ϵ1 ∪M(Z , Σ)ϵ2 . (39)

�e quotient
M(Z , Σ)∗/V4

parametrizes SO(3) anti-self-dual connections [B] on the complement of the four
spheres with the property that the holonomy around the links of the Σi has order
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2 and the holonomy around the links of the Ei is 1 in SO(3). �is is the same as
the space of bifold SO(3) connections (without marking) on (Z , Σ):

M(Z , Σ)∗/V4 = MSO(3)(Z , Σ).

�e next lemma (and the notation “twisted reducibles”) is from [9].

Lemma 4.5. �e action of the Klein 4-group is free except at “twisted reducibles”.
�at is, the SU (2) connection A is gauge-equivalent to A ⊗ ξ if and only if the
holonomy of [ad(A)] is contained in O(2) ⊂ SO(3) and the associated real line
bundle to the O(2) connection is isomorphic to ξ . �

�e situation described in the lemma above can happen only if ξ either trivial
or has

(σ1,σ2,η1,η2) = (−1,−1, 1, 1).
We are now ready to describe the small-action moduli spaces, beginning with

a description of the quotients MSO(3)(Z , Σ)∗.

Lemma 4.6. �e space of bifold connections MSO(3)(Z , Σ) with κ = 0 consists of a
single point, with Z/2 monodromy and O(2) stabilizer.

For generic metrics, the space of bifold connections MSO(3)(Z , Σ) with κ = 1/4
consists of a single arc and possibly some additional circles. Except for the endpoints
of the arc, these bifold connections with κ = 1/4 are irreducible (i.e. have trivial
stabilizer in SO(3)). �e endpoints of the arc have SO(2) holonomy, and therefore
SO(2) stabilizer.

Proof. For κ = 0, we are looking at �at orbifold bundles, or SO(3) representa-
tions of the orbifold fundamental group. �e fundamental group of Z \ Σ is Z/2,
because this space is (0, 1) × RP3. �e two links of S are non-zero elements. So
there is a unique bifold connection.

For κ = 1/4, consider the branched double cover of Z̃ → Z along Σ. Let Σ̃ the
inverse image of Σ. �is consists of two spheres Σ̃i , each of self-intersection −1.
�e manifold Z̃ itself is di�eomorphic to a connected sum of two copies of C̄P2.
On Z̃ we seek SO(3) connections with action κ̃ = 1/2, which requires w2

2 = 2
mod 4. So w2 = (1, 1) in the standard basis. �is is the sort of 1-dimensional
moduli space considered in [4], from which we learn that the moduli space on
Z̃ with w2 = (1, 1) and κ = 1/2 is 1-dimensional and compact. Its endpoints
correspond to pairs of integer classes ±λ where λ2 = −2 and λ = w2 mod 2. �e
only possibilities are±(1, 1) and±(1,−1). So the moduli space has two endpoints.
�e endpoints correspond to reducible connections.
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Returning to Z , the covering transformation preserves the classes λ = (1, 1)
and (1,−1), so the corresponding SO(2) connections on Z̃ descend to SO(2) con-
nections on Z . �e moduli space on Z is 1-dimensional, so must include an arc
joining these two points. �at is, the arc which is contained in the moduli space
of Z̃ consists of invariant connections which descend to Z . �

Lemma 4.5, together with the description of the SO(3) moduli space in last
lemma above, gives us a description of the low-dimensional parts of M(Z , Σ)∗:
Proposition 4.7. �e κ = 0 part ofM(Z , Σ)∗ consists of two points, each of which
has monodromy group the cyclic group 〈i〉 ⊂ SU (2) of order 4. Under the Klein
4-group action (tensoring by �at line bundles), these are each �xed up to gauge
equivalence by the action of tensoring by by the line bundle ξ [−1,−1, 1, 1] (in the
obvious notation from above). �e two connections are interchanged by tensoring
with ξ [1,−1,−1,−1]. �ese two points belong to the moduli spaces M(Z , Σ)ϵ1 and
M(Z , Σ)ϵ2 .

�e κ = 1/4 part of M(Z , Σ)∗ consists of four arcs, together perhaps with some
circles. �e Klein 4-group acts transitively on the four arc-components of the moduli
space. Two of the arcs belong toM(Z , Σ)0 and two belong toM(Z , Σ)ϵ1+ϵ2 .

Proof. From the previous lemma, the κ = 0 part of the moduli space M(Z , Σ)∗
consists of a single orbit of V4. From Lemma 4.5 we also learn that the stabilizer
of the orbit is the two-element subgroup consisting of the trivial line bundle and
the line bundle ξ [−1,−1, 1, 1]. Since the fundamental group of the complement
of Σ is Z/2, there is no �at SU (2) bundle on Z \ Σ whose holonomy on the links
of Σ is conjugate to the element i of order 4. So the �at SU (2) connection exists
only on Z \ (Σ∪ E1 ∪ E2) and must have holonomy −1 on the link of exactly one
Ei . �ese �at connections therefore belong to M(Z , Σ)ϵ1 and M(Z , Σ)ϵ2 .

We now turn to the κ = 1/4 part of the moduli space. �e previous lemmas
again tell us that the Klein 4-group acts freely and the quotient is a 1-manifold
containing a single arc. �erefore M(Z , Σ)∗ contains 4 arcs. We are le� to deter-
mine which of the four parts of M(Z , Σ)ν (ν = ∗) these belong to. An instanton
[A] ∈ M(Z , Σ)∗ belonging to one of these arcs pulls back to an SU (2) instanton
[Ã] on

Z̃ \ (Σ̃ ∪ Ẽ1 ∪ Ẽ2)
with limiting holonomy −1 on the links of Σ̃. �e limiting holonomy on the links
of the sphere Ẽi will be (−1)δi , where δi = 1 or 0 according to whether ϵi appears
in ν . Because [Ẽi] = [Σ̃1] + [Σ̃2] in mod 2 homology, we then obtain

w2(ad(Ã)) = (1 + δ1 + δ2)([Σ̃1] + [Σ̃2])
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However, the previous lemma tells us that the Stiefel-Whitney class of [ad(Ã)] is
dual to [Σ̃1] + [Σ̃2]. �erefore the possibilities are only (δ1,δ2) = (0, 0) or (1, 1).
�e four arcs therefore belong to the componentsM(Z , Σ)0 andM(Z , Σ)ϵ1+ϵ2 . Two
lie in each, because of the symmetry that arises from the V4 action. �

Corollary 4.8. If A and A′ are the two (abelian) connections which comprise the
zero-dimensional part ofM(Z , Σ)∗, and ifm1 andm2 are links of the two components
of Σ, oriented so that A has monodromy i around both links, then the monodromy
of A′ aroundm1 andm2 are i and −i, up to overall conjugacy. �

Let us return now to the pair (X ′2, Σ′2), which we equip with a cylindrical end
R+ × (S3,U2). With notation adapted from the discussion of (Z , Σ), we examine
the moduli space

M(X ′2, S′2)∗
on the cylindrical end moduli spaces, with Stiefel-Whitney class ν = ∗ running
over the same four values. �e SU (2) representation variety of (S3,U2) is an
interval, which we denote by [−1, 1], so we have a map

r : M(X ′2, S′2)∗ → [−1, 1]

From Proposition 4.7 and a stretching argument we learn that the κ = 0 part
M(X ′2, S′2)∗ consists of two points which are mapped by r to endpoints of the
interval [−1, 1]. From Corollary 4.8 we learn that the two points map to opposite
ends of the moduli space.

Similarly we learn that the κ = 1/4 part of M(X ′2, S′2)∗ contains four arcs, and
that these are each mapped to [−1, 1] in such a way that the two endpoints of
each arc map to opposite ends of [−1, 1].

Having described these moduli spaces on the cylindrical-end manifold, we
now describe how these give rise to the formula in Proposition 4.4 for the case
of the �nger move. We can break the formula up into:

(a) terms coming from the classes ν = 0 and ν = (ϵ1+ϵ2) on the one hand; and

(b) terms coming from the classes ν = ϵ1 and ν = ϵ2,

(cf. equations (38) and (39) above). �e �rst case is that of the four arcs that
comprise the κ = 1/4 moduli space. Here the discussion closely mirrors the
argument for the �nger move in [7] and [10]. Each of the four arcs will contribute
term to the formula having the shape

T x
0T

y
0 I
](X , S ; Γ)ω
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where x and y are curvature integrals for SO(2) connections on the components
Σ′1, Σ′2 of the singular set in the cylindrical-end bifold (X ′2, S′2). �e action of the
group V4 is by tensoring with real line bundles, the e�ect of which is to change
the signs of x and y. So the formula for the four arcs together has the form

(T x
0T

y
0 +T

−x
0 T

y
0 +T

x
0T
−y
0 +T

−x
0 T

−y
0 ) I

](X , S ; Γ)ω .

By symmetry, we have x = y up to sign. So the formula simpli�es to

(T 2x
0 +T

−2x
0 ) I ](X , S ; Γ)ω .

A special case of the �nger move is a pair of twist moves, one positive and one
negative. So by comparing this formula to the case of the twist moves, we see
that x = ±1. So the contribution of the κ = 1/4 moduli spaces to the formula for
I ](X , S∗; Γ)ω is

(T 2
0 +T

−2
0 ) I ](X , S ; Γ)ω . (40)

Turning �nally to the contributions from the classes ν = ϵ1 and ν = ϵ2, we
have seen that the κ = 0 moduli spaces

M(X2, S
′
2)ϵ1 and M(X2, S

′
2)ϵ2

each consist of a single point, and these map to the two endpoints of [−1, 1].
We can compare this to the moduli space M(X2, S2) with κ = 0 (where (X2, S2) is
now a ball with two disks, equipped with a cylindrical end). For the la�er moduli
space, the map

r : M(X2, S2)κ=0 → [−1, 1]
is a homeomorphism. Let us pick points p and q on the two disks and orientation
op and oq nearby. �e �at connections on the orbifold (X2, S2) are determined
by the holonomies around oriented meridians at this point, as in section 3.2,
or equivalently by unit vectors ip and iq in the R3 �bers Ep and Eq . Under the
homeomorphism r , the endpoints of the interval correspond to �at connections
with ip = iq and ip = −iq (when we identifyEp withEq via paths to the basepoint).
If we work with based the based moduli space of �at connections on (X2, S2), then
we instead obtain a map

r : M̃(X2, S2)κ=0 → [−1, 1]

where the domain is now S2×S2 and the preimage of the endpoints is the union of
the diagonal and anti-diagonal. �is is precisely the intersection of M̃(X2, S2)κ=0
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with the standard representatives of the 2-dimensional cohomology classes λpq
and λ′pq from (27). If we recall the relation λpq + λ

′
pq = w2(Ep) from Lemma 3.6,

then we learn that the preimage of the two endpoint comprise a standard repre-
sentative for the Poincaré dual ofw2. From Lemma 3.1 and a stretching argument,
it then follows that for the original closed pair (X , S) and the pair (X , S∗) obtained
by the �nger move, the contribution to I ](X , S∗; Γ)ω coming from these moduli
spaces is P I ](X , S ; Γ)ω . �is formula and the terms (40) together give the formula
in Proposition 4.4 for the �nger move:

I ](X , S∗; Γ)ω = (P +T 2
0 +T

−2
0 ) I ](X , S ; Γ)ω , (41)

or more succinctly
I ](X , S∗; Γ)ω = L I ](X , S ; Γ)ω . (42)

Remark. As discussed in section 4.3 above, we can choose to change our def-
inition for the blow-ups and use the formula (35). A li�le extra book-keeping
is then required, but the �nal result needs only slight modi�cation. For the re-
sulting functor I ]

ξ
, the statement of Proposition 4.4 is unchanged except for the

formula for the factor L. We record this as a proposition.

Proposition 4.9. As in Proposition 4.4, let S∗ be obtained from S by either a positive
twist move, or a �nger move. Let the modi�ed functor I ]

ξ
be de�ned using the blow-

up rule (34). �en we have,

I ]
ξ
(X , S∗; Γσ )ω = σ (Lξ ) I ]ξ (X , S ; Γσ )ω

where
Lξ = ξP +T

2
0 +T

−2
0 .

For the negative twist move, the map I ]
ξ
is again unchanged:

I ](X , S∗; Γσ )ω = I ](X , S ; Γσ )ω .

4.5 Regular homotopies

Recall that if f0 and f1 are two smooth embeddings of a closed surface S in a
4-manifold X , and if f0 ' f1 as maps, then one can �nd a homotopy which is a
composite of steps, each of which is one of:

• the introduction of a transverse double-point by a twist move;
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• the introduction of two transverse double-points by a �nger move;

• the inverse to one of the above;

• an ambient isotopy.

�e same applies to surfaces S which arise as cobordisms between knots or links,
when the homotopy is relative to the boundary. As in [7, 10, 12], this observation
can be combined with the formulae in Proposition 4.4, to obtain the following
result (among others).

Proposition 4.10. Let S ⊂ R4 be a closed embedded surface, not necessarily con-
nected. Regard S as a cobordism from the empty link in R3 to itself, optionally
equipped with dots q1,. . . , qd . �en the resulting map

I ]((S ;q1, . . . ,qd); Γσ ) : S→ S

depends only on the topology of the components of S , the number of dots on each,
and the local orientations. �

5 �e unknot and unlinks

�e instanton homology I ](K ; Γσ ) is a free S-module of rank 2 when K is the
unknot, and it is a free module of rank 2n for the n-component unlink. Although
establishing these statements is not hard, we will need a li�le more for applica-
tion in our spectral sequence in the following section: we need to make these
isomorphisms canonical, to the extent that is possible. For this task, our exposi-
tion will follow [11] to begin with. However, there is a li�le more subtlety now,
even in the case of the unknot. �is stems in part from the fact that I ](K ; Γ)
is only Z/2 graded (there is no Z/4 grading as there was in [11]), and the two
generators for the unknot are in the same grading mod 2, so we cannot use the
grading decomposition to pick out canonical generators.

5.1 Spheres with dots

Let S ⊂ R4 be an embedded sphere. Choose one orientation, and let q1, . . . , qd be
dots on S whose orientation agrees with the chosen orientation of S . We wish to
evaluate the corresponding map on the homology of the empty link, which we
regard as de�ning an element

I ]((S ;q1, . . . ,qd); Γσ ) ∈ S
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where Γσ = Γ ⊗σ S. By Proposition 4.10, the evaluation is independent of the
embedding.

Lemma 5.1. �e evaluation ϵd of the sphere with d dots is 0 for d = 0, and 1 for
d = 1. For d ≥ 2, it satis�es the recurrence relation

ϵd = σ (P)ϵd−1 + σ (Q)ϵd−2.

Proof. �e formal dimension of the relevant moduli space is positive when the
Yang-Mills action κ is zero, so for d = 0 the evaluation is zero. For d = 1, we
use the fact that the κ = 0 moduli space parametrizes �at connections and is a
2-sphere when S has the standard embedding. �e cohomology class λq is set
up so that it evaluates to 1 on this 2-sphere. For d ≥ 2, the recurrence relation
follows from Lemma 3.9. �

5.2 �e empty knot and the unknot

As in [11], we write Un for a standard unlink in R3 with n components, so that
U0 is the empty link andU1 is the unknot. We takeUn to be the union of standard
circles in the (x ,y) plane, each of diameter 1/2, and centered on the �rstn integer
la�ice points along the x axis. We orient the circles of Un by a standard choice,
say anti-clockwise in the (x ,y) plane.

For the empty link, I ](U0; Γσ ) is free of rank 1, and we can canonically choose
an identi�cation with S, or equivalently a generator

u0 ∈ I ](U0; Γσ ).

Lemma 5.2. For the unknot U1, the instanton homology I ](U1; Γσ ) is free of rank
2. As generators, we can take the image of u0 under the two maps

I ](U0; Γσ ) → I ](U1; Γσ )

given by (a) a standard diskD+ with boundaryU1; or (b) the diskD+ decorated with
a dot q whose local orientation arises from our choice of orientation for the knot.

Proof. �e Chern-Simons functional has a perturbation with just two critical
points. So the rank is at most 2; and equality can hold only if it is a free module.
Let D− be a disk providing a cobordism from U1 to U0, and let q′ be a dot on
D−. Using Lemma 5.1, we can compute the pairings between the cobordisms D+,
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(D+,q) on the one side, and the cobordisms D−, (D−,q′) on the other. �e result
is the matrix (

0 1
1 P

)
,

whose determinant is 1. It follows that the rank of the module is 2, the images of
D+ and (D+;q) are generators. �

De�nition 5.3. We write V for the rank-2 S-module I ](U1; Γσ ). De�ne

x+, x− ∈ I ](U1; Γσ )

to be the images of u0 under the maps arising from the cobordismsD+ and (D+;q).
�ey form a basis for this free module, by the lemma. In the dual module, we
de�ne

y+, y− : V → S

using respectively the cobordisms D− and (D−,q). �

�e proof of the previous lemma gives the pairings between x± and y±, and
from the knowledge of those pairings we obtain:

Lemma 5.4. �e dual basis to the basis (x+, x−) for the free moduleV = I ](U1; Γσ )
is the basis (y− + σ (P) y+, y+). �

5.3 �e homology of the unlink

Having identi�ed I ](U1; Γσ ) as the free moduleV = 〈x+, x−〉, we can examine the
n-component unlink Un using the strategies from [11].

Lemma 5.5 (Corollary 8.5 of [11]). We have an isomorphism of S-modules,

Φn : V ⊗n → I ](Un; Γσ ),

for all n, with the following properties. First, if D+n denotes the cobordism from U0
toUn obtained from standard disks as in the previous lemma, then

I ](D+n ; Γσ )(u0) = Φn(x+ ⊗ · · · ⊗ x+).

Second, the isomorphism is natural for split cobordisms, perhaps with dots, from
Un to itself. Here, a “split” cobordism means a cobordism from Un to Un in [0, 1] ×
R3 which is the disjoint union of n cobordisms from U1 to U1, each contained in a
standard ball [0, 1] × B3.



48

Proof. �is is essentially the same as the version in [11]. Note that the trivial
cobordism from U1 to U1, equipped with a dot q and an appropriate local orien-
tation, gives the map Λq : V → V which maps x+ to x−. �

�e next lemma and its corollary are also drawn directly from [11], and es-
tablish that the isomorphism of the previous lemma is canonical, once the unlink
has been oriented.

Lemma 5.6. Let S be an oriented concordance from the standard unlinkUn to itself,
consisting of n oriented annuli in [0, 1]×R3. Let τ be the permutation of {1, . . . ,n}
corresponding to the permutation of the components ofUn arising from S . �en the
standard isomorphism Φn of Lemma 5.5 intertwines the map

I ](S ; Γσ ) : I ](Un; Γσ ) → I ](Un; Γσ )

with the permutation map

τ∗ : V ⊗ · · · ⊗ V → V ⊗ · · · ⊗ V .

In particular, if the permutation τ is the identity, then I ](S ; Γσ ) is the identity.

Proof. �e proof leverages Proposition 4.10, and is the same as the proof in [11],
with the dot operator Λq replacing the operator σ (equation (56) in [11]). �

Corollary 5.7. Let Un be any oriented link in the link-type of Un, and let its
components be enumerated. �en there is a canonical isomorphism

Ψn : V ⊗ · · · ⊗ V → I ](Un; Γσ )

which can be described as I ](S ; Γσ ) ◦ Φn, where Φn is the standard isomorphism of
Lemma 5.5 and S is any cobordism from Un to Un arising from an isotopy from Un

to Un, respecting the orientations and the enumeration of the components.
If the enumeration of the components of Un is changed by a permutation τ ,

then the isomorphism Ψn is changed simply by composition with the corresponding
permutation of the factors in the tensor product. �

�e corollary tells us that the homology of the unlink is canonically isomor-
phic to the tensor product once an orientation of the components has been cho-
sen. �e last thing we need to do here is determine the dependencs of the iso-
morphism on the choice of orientation.
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Proposition 5.8. Let S : U1 → U1 be a cobordism arising from an isotopy of the
standard unknot to itself which reverses the orientation. �en the resulting map
ι = I ](S ; Γσ ) : V → V is given by

ι : x+ 7→ x+
ι : x− 7→ σ (P) x+ + x−.

Proof. Recall that x− = Λqx+. �e cobordism S intertwines the operator Λq with
Λ′q . �e formula for ι therefore follows from the relation Λq + Λ′q = σ (P) in
Corollary 3.11. �

5.4 Pants and copants

Recall the standard cobordism called “pants”, from the two-component unlink to
the one-component unknot:

Π : U2 → U1.

Its mirror image is “copants”,

q : U1 → U2.

If we identify I ](U1; Γσ ) and I ](U2; Γσ )withV andV ⊗V by the canonical isomor-
phisms of Corollary 5.7, then pants and copants give rise to maps

I ](Π; Γσ ) : V ⊗ V → V

I ](q; Γσ ) : V → V ⊗ V .
(43)

Proposition 5.9. Under the above identi�cation, the maps arising from the pants
cobordism Π is given by:

x+ ⊗ x+ 7→ x+
x+ ⊗ x− 7→ x−
x− ⊗ x+ 7→ x−
x− ⊗ x− 7→ σ (P)x− + σ (Q)x+.

(44)

�e map arising from the copants cobordism q is:

x+ 7→ x+ ⊗ x− + x− ⊗ x+ + σ (P)x+ ⊗ x+
x− 7→ x− ⊗ x− + σ (Q)x+ ⊗ x+.

(45)

Proof. Using the standard basis elements x± and dual basis y±, we can reduce
this to the evaluation of a 2-sphere with dots, for which we have the formulae in
Lemma 5.1. �
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5.5 �e reduced homology of the unlink

Let σ : R → S be a base change with σ (T0) = σ (T1), so that the reduced
instanton homology I \(K ; Γσ ) is de�ned for a link K with base-point. As with
other “reduced” versions of knot homologies, from the de�nitions, I \(U1; Γσ ) �
I ](U0; Γσ ) � S, and

I \(Un; Γσ ) � I \(U1; Γσ ) ⊗S I ](Un−1; Γσ )
� I ](Un−1; Γσ ).

(46)

In particular, I \(Un; Γσ ) is a free module of rank 2n−1. We would like to compute
the maps on I \(Un; Γσ ) given by the pants and copants cobordisms, particularly
when one the incoming components of the cobordisms carries the base-point.

As a �rst step, we consider again the operator Λq , for q ∈ K , now as an
operator on I \(K ; Γσ ). We de�ne this as before, as in De�nition 3.10,

Λq = Λp1q + Λp2q + Λp3q

where the three pi are dots chosen near the vertex, so that p2 and p3 lie on the
two edges that form the bigon in K \.

If it happens that q lies on the component of K where the bigon is a�ached,
we can take q = p1, in which case the �rst term Λp1p1 is P . In this se�ing, to
compute the operator, it is su�cient to examine the case that K is the unknot,
by excision; so K \ can be taken to be the theta graph. Each of the three terms is
then an operator S→ S, so altogether Λq is a multiplication operator,

Λq = A : S→ S.

To compute A, we seeking to compute

Λq = P + Λp2p1 + Λp3p1 . (47)

�e operator Λp2p1 for the theta graph was computed in (31), up to a choice of two
possibilities, di�ering by P . �e same ambiguity is present twice in (47), for Λp2p1

and for Λp3p1 , and it is resolved the same way in both terms. So the ambiguity
cancels, and we are le� with a unique formula,

Λq = P +T3(T1T2 +T
−1
1 T −1

2 ) +T2(T1T3 +T
−1
1 T −1

3 )
which simpli�es to

A = T1(T2T3 +T
−1
2 T −1

3 ).
(We have omi�ed the base change σ in our notation.) To summarize this calcu-
lation in the case of the unknot, we have the following.
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Proposition 5.10. For the unknot U1, the reduced homology I \(U1; Γσ ) is a free
S-module of rank 1, on which the operator Λq (q ∈ U1) acts as multiplication by A,
where A is the element above.

What lies behind the algebra here is the following observation. �e operator
Λ on the un-reduced homology V = I ](U1; Γσ ) has minimum polynomial

x2 + σ (P)x + σ (Q).

When the base change has σ (T0) = σ (T1), the minimum polynomial factorizes as

(x +A)(x +A′)

where A is as above and A′ = A + P . �is is the same observation as we made in
the introduction to this paper, at (11). Let us de�ne V \ ⊂ V as

V \ = ker(Λ +A)
= im(Λ +A′).

So V \ is the rank-1 S-submodule generated by the element

m = x− +A′x+.

�en we have:

Corollary 5.11. �e reduced homology I \(U1; Γσ ) is isomorphic as a module for
S[Λ] to the submodule V \ ⊂ V generated by m above.

We can consider next the pants and copants cobordisms in the reduced con-
text. Let U2 be the standard 2-component unlink with a basepoint on the �rst
component. We have, by excision,

I \(U2; Γσ ) = V \ ⊗SV .

�e pants and copants cobordisms provide maps

I \(Π; Γσ ) : V \ ⊗ V → V \

I \(q; Γσ ) : V \ → V \ ⊗ V .

It is straightforward to verify that these coincide with the restriction of the un-
reduced versions (43) to the S-submoduleV \ generated by m. We can write these
maps out, in terms of the basis { x+,m } for the rank-2 S-module V :



52

Proposition 5.12. When σ (T0) = σ (T1) so that the reduced theory is de�ned, the
map V \ ⊗ V → V \ arising from the pants cobordism

m ⊗ x+ 7→ m
m ⊗ m 7→ P m.

(48)

�e map V \ → V \ ⊗ V arising from copants is

m 7→ m ⊗ m. (49)

Returning again toV in the unreduced case, we have a description of it as an
algebra over R with a single generator n = x− in the form

V = R[n]/(n2 + Pn +Q).

As in the introduction, a�er a base change to a ring Swhere T0 = T1, the char-
acteristic polynomial (x2 + Px + Q) factorizes as (x + A)(x + A′) and over Swe
have a presentation

V = S[m]/(m(m + P)).
�e full co-multiplication of the Frobenius algebra V , arising from the copants
cobordism, in this presentation is

∆ : 1 7→ m ⊗ 1 + 1 ⊗ m + P1 ⊗ 1
∆ : m 7→ m ⊗ m.

�is is the Frobenius algebgra that gives rise to the graded Bar-Natan variant of
Khovanov homology, tensored by S.

6 �e spectral sequence

6.1 Families of metrics.

Relevant to the construction of our spectral sequence are also the maps that arise
from a cobordism equipped with a family of metrics. �e material of [11, section
3.9] again adapts to local coe�cients without change. We equip (X , S)with cylin-
drical ends and a family of Riemannian metrics G which vary only in a compact
region. �e parameter space G should be a compact manifold with boundary.
A�er choosing perturbations, the moduli spaces over G de�ne homomorphisms
of S-modules,

mG : C](Y0,K0; Γσ ) → C](Y1,K1; Γσ ),
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where the complexes C](Yi ,Ki ; Γσ ) are those that compute I ]. �e map mG is a
chain map if G has no boundary. Otherwise, there is an extra term in the chain
formula,

m∂G +mG ◦ ∂ = ∂ ◦mG .

(See [11, section 3.9] and [13].)

6.2 Skein exact triangle

Fix again a 3-manifoldY with basepointy0 and a theta graph θ ⊂ B(y0). We again
writeYo ⊂ Y for the complement of the neighborhood ofy0. Consider three webs
K2, K1, K0 in Yo which are all identical outside a ball B ⊂ Yo and which di�er
inside B by the skein moves as shown in Figure 4. �ere are standard cobordisms
Sij fromKi toKj , each of which is the addition of a standard 1-handle in [0, 1]×B.
Although the webs may have vertices, there are no vertices in the ball B, and the
picture coincides with that of [11, section 6]. As in [11, 13], the cobordisms S21,
S10 and S02 give rise to the maps in a 3-periodic long exact sequence ofS-modules:

· · · → I ](K2; Γσ ) → I ](K1; Γσ ) → I ](K0; Γσ ) → I ](K2; Γσ ) → · · · .

6.3 Cubes of resolutions.

�e above skein sequence can be seen as a consequence of the fact that the chain
complexC]2 that computes I ](K2; Γσ ) is quasi-isomorphic to the mapping cone of
a chain map C]1 → C]0. As in [11], the skein sequence generalizes as follows.
Suppose that Yo contains N disjoint balls B1, . . . , BN . For each v ∈ {0, 1, 2}N , let
there be given a web Kv ⊂ Yo . Outside the balls, all the Kv are the same. Inside
the ball Bi , the web Kv coincides with on of the models in Figure 4, according to
the value of the coordinate vi . We write (C]v ,dv) for the standard chain complex
that computes I ](Kv ; Γσ ). (A choice of metric and perturbation is involved.)

Among the Kv , we pick out as distinguished the web K2, where

2 = (2, 2, . . . , 2).

We also introduce the “cube”

C] =
⊕

v∈{0,1}N
C]v .

For each v > u in {0, 1}N , there is a standard cobordism Svu from Kv to Ku ,
obtained by adding 1-handles in each of the balls Bi where the coordinates of v
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andu di�er. If there aren such coordinates, then Svu carries a standard familyGvu

of metrics, of dimension n − 1, as described in [11], which give rise to S-module
homomorphisms

fvu : C]v → C]u .

As a special case, we also de�ne fvv = dv . We then de�ne

F : C] → C]

as
F =

⊕
v≥u

fvu .

�eorem 6.1 (�eorem 6.8 of [11]). �e square of F is zero, so (C], F) is a com-
plex of S-modules. Furthermore, there is a chain map

(C]2,d2) → (C
], F)

inducing an isomorphism in homology. In particular, the homology of the “cube”
complex (C], F) is isomorphic to I ](K2; Γσ ).

As is standard in Khovanov homology, the cubeC] has a �ltration (increasing,
with our conventions),

FnC] =
⊕

v∈{0,1}N
|v |≤n

C]v .

�ere is a corresponding spectral sequence, just as in [11, Corollary 8.1].

Corollary 6.2. For webs Kv as above, there is a spectral sequence of S-modules
whose E1 term is ⊕

v∈{0,1}N
I ](Kv ; Γσ )

and which abuts to the instanton Floer homology I ](Kv ; Γσ ), for v = (2, . . . , 2). �e
di�erential d1 is the sum of the maps induced by the cobordisms Svu withv > u and
|v − u | = 1. �
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6.4 Pants and the E2 page

�e spectral sequence in Corollary 6.2 is set up quite generally for webs in a �xed
3-manifold, di�ering by skein moves inside �xed balls. �e standard application
for this setup is to consider a plane projection and have the �xed balls correspond
to the crossings in the projection.

So let K be a link in R3 ⊂ S3 with a planar projection giving a diagram D in
R2. Let N be the number of crossings in the diagram. As in [5], we can consider
the 2N possible smoothings of D, indexed by the points v of the cube {0, 1}N .
�e conventions we use for the labels {0, 1} is the same as the convention in
[5, 17], and is also consistent with the convention illustrated in Figure 4. �e
smoothings give 2N di�erent unlinks Kv in the plane of the projection. For each
v ≥ u in {0, 1}N , we have our standard cobordism Svu from Kv to Ku , with its
family of metrics.

We apply Corollary 6.2 to this situation. We learn that there is a spectral
sequence abu�ing to I ](K ; Γσ ) whose E1 term is

E1 =
⊕

v∈{0,1}N
I ](Kv ; Γσ ).

and whose di�erential d1 is

d1 =
∑
|v−u |=1

I ](Svu ; Γσ ). (50)

In this situation, unlike the general case considered previously, each cobor-
dism Svu with |v − u | = 1 is a cobordism between planar unlinks, obtained from
a “pair of pants” that either joins two components into one, or splits one com-
ponent into two. We have already computed I ](Un; Γσ ) for a planar unlink Un

(Corollary 5.7) as well as the maps that the pants and copants cobordisms (sec-
tion 5.4). So we completely understand the E1 page and its di�erential d1. We
have

E1 =
⊕

v∈{0,1}N
V ⊗n(v)

whereV is a free S-module of rank 2, admi�ing a standard basis x+, x−, and n(v)
indexes the components of the unlink Kv . Whenever v > u and |v − u | = 1, the
corresponding summand of d1 in (50) involves only the factors V of the tensor
product that are adjacent to the vertex at which v and u di�er, where it is given
by

I ](Π; Γσ ) : V ⊗ V → V (51)
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or
I ](q; Γσ ) : V → V ⊗ V (52)

depending on whether two components of Kv merge in Ku , or one component
splits.

In the language of [6], the S-module V equipped with the multiplication
I ](Π; Γσ ) and comultiplication I ](q; Γσ ) is a self-dual, rank-2 Frobenius system
Fσ . As an algebra, its unit element is x+, and its co-unit is y+ (De�nition 5.3).
�e multiplication is described completely by giving the square of the element
x = x−, the formula for which is in (44). So we can write it as

S[x]
/ (
x2 + σ (P)x + σ (Q)

)
.

Our description of (E1,d1) above coincides with Khovanov’s de�nition of the
complex that computes the knot homology group corresponding to this Frobe-
nius system. �ere is only the slight change of conventions, because of the his-
torically reversed roles of the two smoothings { 0, 1 }. With that understood, we
can identify the E2 page of the spectral sequence:

Proposition 6.3. In the special case that the cube of resolutions is the one obtained
from a planar diagram of a knot or link K , the E2 page of the spectral sequence in
Corolllary 6.2 is isomorphic to the knot homology H (K̄ ; Fσ ) in the notation of [6],
where Fσ is the rank-2 Frobenius system over S given by the multiplication (51)
and comultiplication (52). Here K̄ denotes the mirror image of K . �

Corollary 6.4. For a knot or link K in R3, there is a spectral sequence whose E2
page is Khovanov’s homology H (K̄ ; Fσ ) corresponding to the Frobenius system Fσ
and which abuts to the instanton homology with local coe�cients, I ](K ; Γσ ). �

�eorem 1.1 in the introduction, along with its two corollaries, are obtained
directly from Corollary 6.4 by identifying the Frobenius system Fσ in each case,
to compare it with those described in the notation of [6]. We begin with the case
that S = R and σ = 1 (i.e. the case of the local system Γ). Here the resulting
Frobenius system Fcorresponds to

R[x]
/ (
x2 + Px +Q

)
.

As explained in the introduction, the universal example from [6], when reduced
mod 2, is a Frobenius system F5 over

R5 = F2[h, t].
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Its multiplication is given by

R5[x]
/ (
x2 + hx + t

)
.

Since the comultiplications can be compared similarly, we see that the Frobenius
Farising from I ] with coe�cient system Γ is F5 ⊗r R, where r maps h to P and
t to Q . �eorem 1.1 is therefore a consequence of Corollary 6.4.

Corollaries 1.2 and 1.3 follow from this universal version by base change, as
explained in the introduction.

6.5 �e spectral sequence for reduced homologies

�ere is also a version of Corollaries 1.2 and 1.3 for the reduced homology the-
ories. Given a link with a base-point, and given a diagram for the link such that
the base-point does not lie at a crossing, we may form again the cube of resolu-
tions, and for each vertex of the cube we now have a planar unlink with a single
marked point. Let σ : R→ Sbe a base change with σ (T0) = σ (T1), so that the re-
duced theory I \ is de�ned. �e basic spectral sequence described in Corollary 6.2
has a reduced counterpart, whose statement and proof are essentially the same:

Proposition 6.5. �ere is a spectral sequence of S-modules whose E1 term is⊕
v∈{0,1}N

I \(Kv ; Γσ )

and which abuts to the instanton Floer homology I ](Kv ; Γσ ), for v = (2, . . . , 2). �e
di�erential d1 is the sum of the maps induced by the cobordisms Svu withv > u and
|v − u | = 1. �

�e condition that σ (T0) = σ (T1) implies that the Frobenius system Fσ has a
description in which the algebra is

S[M]/(M2 + σ (P)M)

and the comultiplication is given by

1 7→ 1 ⊗ M +M ⊗ 1 + σ (P)(1 ⊗ 1)
M 7→ M ⊗ M .
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In such a situation, there is a reduced link homology H̃ (K̄ ; Fs) obtained from
the cube of resolutions. It is de�ned from a complex C̃ for which the contribution
C̃v from a vertex of the cube is

Ã⊗SA⊗S · · · ⊗SA

where A is the Frobenius algebra of Fσ and Ã is the S-submodule generated by
m. �e tensor product is over all components of the unlink Kv and the factor Ã
corresponds to the component with the basepoint. �e edge maps as usual come
from the multiplication and comultiplication, restricted to Ã⊂ A if necessary.

Using Proposition 5.10 and Corollary 5.11 for the edges involving the compo-
nent with the base point, we can match up the di�erential d1 in Proposition 6.5
with the multiplication and comultiplication maps of Ã⊗A→ Ãand Ã→ Ã⊗A.

We obtain in this way a reduced counterpart to Corollary 1.2.

Corollary 6.6. �ere is spectral sequence of modules over the Laurent series ring
SBN in three variables, from the reduced version of graded Bar-Natan homology in
characteristic 2,

B̃N(K̄) ⊗r1 SBN =⇒ I \(K ; ΓBN),
to the reduced instanton homology group with coe�cients in the local system ΓBN =
Γ ⊗σbn SBN, where the base change σbn is given by (10). �

�e reduced version of Corollary 1.3, for �ltered Bar-Natan homology, can
be formulated in the same way:

Corollary 6.7. For a knot or link K , let f̃BN(K) denote the reduced version of
�ltered Bar-Natan homology over F2. �en there is a spectral sequence of vector
spaces over F4,

f̃BN(K̄) ⊗ F4 =⇒ I \(K ; ΓfBN),
where ΓfBN is the local system of F4 vector obtained from Γ by the base change
(12). �
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