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ABSTRACT1 

 

In the present work, we analyze the applicability of two-step homogenization 
applied to 3D woven composites with high crimp reinforcement. The available 
micromechanical homogenization approaches (Hashin, Chamis, Hashin-Shtrikman 
bounds etc.) were developed and validated for unidirectional composites. These 
formulas have also been used by the community to homogenize tows in 2D and 3D 
woven composites including reinforcement architectures with high crimp ratios. 
However, a rigorous study of their applicability to high-crimp geometries is yet to be 
performed. 

We utilize Finite Element Analysis (FEA) to calculate the overall engineering 
constants (Young’s moduli and shear moduli) of tows having various crimp (𝐶𝑅) and 
wavelength-to-fiber diameter (𝜆/𝑑) ratios. For this analysis, periodic sinusoidal unit 
cells following shapes of individual fibers are used. Fiber volume fraction is set to 
70% and is the same in all cases. Transversely isotropic carbon fiber and isotropic 
epoxy matrix are used. The results are compared with overall responses of tows 
modeled using homogenized tow properties obtained from micromechanics and FEA 
as well as explicitly modeled tows containing multiple parallel fibers.  

The results of our analysis show dependence of the overall elastic properties on 
both crimp ratio and the normalized wavelength. Separation of fiber/tow scales is 
achieved at 𝜆/𝑑 = 50.   
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INTRODUCTION 

 

Manufacturers of composites materials have been using finite element analysis to 
study the materials’ responses under various loading and environmental conditions 
with the purpose of getting the best performance out of the products when they leave 
the production line. However, 3D woven composites in particular are difficult to 
model and analyze due to the complicated shape of the reinforcement fiber tows 
(bundles of fibers). Moreover, each tow contains thousands of fibers, which makes it 
almost impossible to represent the tows explicitly in numerical modeling. The 
standard way of dealing with this difficulty is to apply homogenization theories, e.g. 
Hashin, Chamis, Hashin-Shtrikman bounds, etc., in order to obtain effective 
mechanical properties of tows and model them as solid homogeneous objects [1]–
[5]. As a result, the material is represented by two solid phases – matrix and 
homogenized tows – and the entire composite can then be analyzed to determine the 
overall properties. Such a two-step approach has been demonstrated to work for 
laminates with unidirectional layers [6], [7] and two-dimensional (2D) woven 
composites [8], [9] , however, a detailed study focusing on the applicability of the 
approach to highly crimped three-dimensional (3D) woven composites has not been 
performed to the best of the authors’ knowledge. 

Figure 1 presents X-ray computed microtomography images obtained from a unit 
cell of a 3D woven composite with the “1x1 orthogonal” reinforcement architecture, 
as well as tows and matrix modeled as solid phases based on the imaging. We 
processed the microtomography data to determine crimp ratio of three types of tows 
– warp, weft and binder as follows. From the tomography images, we measured 
amplitude 𝑎 and wavelength 𝜆 of each the tow and calculated the crimp ratio values 
as 𝐶𝑅 ൌ 𝑎/𝜆. 
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Figure 1. (a) Microtomography of unit cell; (b) 3D modeled tows; (c) 3D modeled matrix. 

 

 

Based on our observations, warp tows had negligible waviness and can be safely 
considered straight (see Figure 2a). On the other hand, weft and binder tows exhibit 
considerable waviness. For example, crimp ratios of the weft tow shown in Figure 2b 
and the binder tow shown in Figure 2c were calculated to be 0.12 and 0.39, 



correspondingly. The crimp ratios for this 3D woven architecture fall in the range of 
0.05 െ 0.15 for the weft and 0.37 െ 0.39 for the binder tows. In addition, based on 
the fiber diameter (5.2 microns) we estimated the normalized wavelength (𝜆/𝑑ሻ  to 
be approximately 385 for the highlighted weft tow in the microtomography image 
shown in Figure 2b. 

 

(a) (b) 
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Figure 2. Highlighted tow paths in a microtomography scan:                                                                              
(a) warp tow; (b) weft tow; (c) binder tow. 

 

In this paper, we compare Finite Element Analysis (FEA) predictions for 
effective elastic responses of the explicitly modeled curvilinear tows (curvilinear 
fibers arranged in a hexagonal pattern and embedded in the matrix material, see 
Figure 3a) with responses obtained from the homogenized tows (Figure 3b). Three 
homogenization approaches are considered: micromechanical homogenization based 
on [10], [11] and FEA homogenization of unidirectional fiber reinforced composites 
with square and hexagonal fiber arrangements. In our analyses we model the smallest 
repeating unit of the composite tow called a “unit cell” with the so-called periodic 
boundary conditions. This allows predicting the overall behavior of the entire tow 
using a microscale unit containing only one fiber (square arrangement) or five fibers 
(hexagonal arrangement) instead of all fibers present in the actual tows.  

 

 

(a) 
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Figure 3. (a) Amplitude 𝑎 and wavelength 𝜆 shown on an explicit model; (b) homogenized model. 

 

 



The unit cells used in this paper follow individual fiber paths assumed to have 
sinusoidal shapes (Figure 3a). Two geometric parameters of the unit cells are 
considered: crimp ratio (𝐶𝑅) and normalized wavelength (𝜆/𝑑). The former has been 
described earlier, the latter is the wavelength 𝜆 divided by the fiber`s diameter 𝑑. In 
all of the models discussed, the fiber volume fraction is set to 70%.  

 

FEA MODEL PREPARATION 

 

Geometry and mesh generation 

The cross-sections of the FEA models were generated for a given crimp ratio 𝐶𝑅 
and fiber area fraction (𝐴𝐹) specified at the maximum of the tow path, see cross-
section I in Figure 4. The considered 𝐶𝑅 values (0.05, 0.10 and 0.15) represent good 
estimates for the real values of the tows in 3D woven composites, see Introduction. 
Note that binder tows are not considered in this analysis due to their non-sinusoidal 
shape. Since a model’s final volume depends on the 𝐶𝑅, it is necessary to determine 
the corresponding 𝐴𝐹 for each 𝐶𝑅 value so that the final volume fraction is 𝑉𝐹 ൌ
70%. In addition to 𝐶𝑅, we also varied the normalized wavelength parameter 𝜆/𝑑 of 
the unit cells. The final values of all considered geometric parameters are summarized 
in Table 1. 

 

 

Table 1. Geometric parameters of FEA models. 

𝑪𝑹 𝝀/𝒅  𝒅  𝑨𝑭  𝑽𝑭 

0.05 5, 10, 20, 50, 100, 150 0.8690 68.49% 70% 

0.10 5, 10, 20, 50, 100, 150 0.8416 64.24% 70% 

0.15 5, 10, 20, 50, 100, 150 0.8054 58.83% 70% 

 

 

The geometry and mesh generation procedure that follows is based on [12]–[14]. 
Using a custom MATLAB script, the cross sections generated in MSC Marc Mentat 
with Quad4 elements are duplicated along a sinusoidal curve of a given 𝐶𝑅. Fiber 
cross-sections at minima and maxima of the centerline path have circular shapes, 
while all others are represented by ellipses, see Figure 4. To achieve this, fiber cross-
sections at these locations must be deformed during geometry generation, which 
distorts the surrounding matrix mesh (see II in Figure 4). To eliminate mesh 
overlapping, Taubin’s relaxation [15] is applied to the matrix elements. The final 
mesh is free of geometric incompatibilities (e.g. element overlap) and structural 
imperfections (e.g. voids, cracks, etc). 



 

 
Figure 4. Cross sections of the 3D model with CR=0.15. 

 

 

The ratio of dimensions of the cross-sections used to generate the models with 
𝐶𝑅 ൌ 0.05 and 𝐶𝑅 ൌ 0.10 is equal to the standard value for hexagonal arrangement 
– √3 (Figure 5a, b). Using these cross-sections we were able to achieve 70% final 
fiber volume fraction without fiber/matrix overlapping. However, it was impossible 
to generate unit cells with 𝐶𝑅 ൌ 0.15 using the same dimension ratios without 
overlapping. Therefore we modified the cross-section for 𝐶𝑅 ൌ 0.15 models to the 
ratio 2.19 (Figure 5c). 

 

 

 
Figure 5. Cross sections used to generate 3D models: (a) 𝐶𝑅 ൌ 0.05; (b) 𝐶𝑅 ൌ 0.10;(c) 𝐶𝑅 ൌ 0.15. 

 



Material properties 

Transversely isotropic properties of carbon fibers follow the longitudinal 
directions. Therefore, to properly apply material properties to a curvilinear fiber, 
local material orientations must be aligned with the fiber path. In our procedure, 
orientations are generated in the same MATLAB script mentioned above. Figure 6 
illustrates the local material direction 1 (longitudinal fiber direction) in a sinusoidal 
unit cell meshed with coarse elements; transverse directions 2 and 3 are in the normal 
plane to longitudinal direction. 

 

 

  

Figure 6. Local material orientations in a 3D unit cell (coarse mesh). 

 
     

The explicit models (Figure 3a) combine isotropic matrix made of RTM6 resin 
and transversely isotropic IM7 carbon fibers. Meanwhile, the homogenized models 
(Figure 3b) are made of the same material whose properties are obtained from 
formulas presented in [10], [11] or FEA of two unidirectional unit cells – square and 
hexagonal, see Figure 7. Table 2 presents the elastic properties of the constituents as 
well as the homogenized properties obtained from all three approaches.  

 

 

 

Figure 7. Square unidirectional unit cell (left) and hexagonal unidirectional unit cell (right). 

 

 

 



Table 2. Elastic properties of the constituents and homogenized properties of unidirectional tows. 

 Constituents Homogenized 

Material Carbon IM7 Epoxy 
RTM6 

Hashin 
(1979) 

Square Hexagonal 

𝑬𝟏 (GPa) 276 2.890 194.067 194.043 194.003 

𝑬𝟐(GPa) 23.1 - 10.7087 11.8766 10.2266 

𝑬𝟑 (GPa) 23.1 - 10.7087 11.8767 10.2261 

𝝂𝟏𝟐 0.35 0.3500 0.3500 0.3501 0.3501 

𝝂𝟐𝟑 0.30 - 0.3638 0.3218 0.3942 

𝝂𝟑𝟏 0.0293 - 0.0193 0.0214 0.0184 

𝑮𝟏𝟐 (GPa) 27.60 1.070 5.0070 5.9762 5.0953 

𝑮𝟐𝟑 (GPa) 8.885 - 3.9260 3.1649 3.6705 

𝑮𝟑𝟏 (GPa) 27.60 - 5.0070 5.9761 5.0948 

 

 

Boundary conditions 

To preserve periodicity of the analyzed unit cells during deformation, periodic 
boundary conditions (PBCs) are applied to all surfaces of the explicit and 
homogenized models. The PBCs relate displacements of two nodes on opposite faces 
of a unit cell as follows: 

 𝐮௫೔ା െ 𝐮௫೔ି ൌ 𝛅௫೔
      ሺ𝑖 ൌ 1, 2, 3ሻ (1) 

where  𝐮௫೔
శ and 𝐮௫೔

ష are displacement vectors of two nodes on the positive and 

negative 𝑥௜ faces of a unit cell, respectively, and 𝛅௫೔
 is the average displacement 

applied between the faces. Use of periodicity enables modeling the behavior of a 
large-scale tow using a single unit cell [12]–[14], see Figure 8. Periodic boundary 
conditions are implement in MSC Marc & Mentat using “servo-links”. 

 



 
Figure 8. Unit cell compared to a large piece of material. 

 

 

To obtain the effective elastic properties of the tows, six load cases are applied: 
three tensile and three shear cases. Figure 9 shows the distribution of the stress 
component 𝜎ଵଵ (MPa) in a unit cell with 𝐶𝑅 ൌ 0.10, 𝜆/𝑑 ൌ 20 and material 
properties given in Table 2 for the applied strain 𝜀ଵଵ ൌ 0.001. 

 

Figure 9. Distribution of the stress component 𝜎ଵଵ in an explicit model                                                           
with 𝐶𝑅 ൌ 0.10 and 𝜆/𝑑 ൌ 20. 

 

Processing of the results 

The result files from each load case are used to calculate the effective elastic 
properties via a custom Python script, which considers the components of the stress 
tensor of each element and its volume to obtain the volume-averaged stress: 

 〈𝜎௜௝〉௞ ൌ ଵ

௏
∑ ቀ𝜎௜௝

ሺ௭ሻቁ
௞

𝜈ሺ௭ሻ
௭ ,           ሺ𝑖, 𝑗 ൌ 1,2,3; 𝑘 ൌ 1, … ,6ሻ (2) 



where 〈𝜎௜௝〉௞ is the volume average of the stress component 𝑖𝑗 calculated from the 

𝑘th load case, 𝑉 is the total volume of the model, ቀ𝜎௜௝
ሺ௭ሻቁ

௞
 is the stress component 𝑖𝑗 

of the element 𝑧 calculated from the 𝑘th load case, and 𝜈ሺ௭ሻ is the volume of the finite 
element number 𝑧 [16], [17]. 

 

RESULTS AND DISCUSSION 

 

The effective Young’s modulus 𝐸ଵ, 𝐸ଶ, and shear modulus 𝐺ଵଶ are presented in 
this section for the set of explicit and homogenized models with geometric 
parameters presented in Table 1.  

Figure 10 presents a comparison of the effective Young’s modulus 𝐸ଵ obtained 
from FEA simulations of explicit models with the results of the homogenized models 
for 𝐶𝑅 ൌ 0.05, 0.10 and 0.15. From the figures we conclude that the overall 𝐸ଵ 
decreases to an asymptotic value with increase in the normalized wavelength 𝜆/𝑑. It 
is also clear that 𝐸ଵ decreases with increase in 𝐶𝑅. For all three considered 𝐶𝑅 values, 
the results from the homogenized models based on the analytical formulas [10], [11]  
and FEA homogenization with hexagonal fiber arrangement are virtually the same – 
0.9%, 0.8% and 0.3% relative difference for 𝐶𝑅 values of 0.05, 0.10 and 0.15, 
respectively. The results obtained from the homogenized model based on the square 
arrangement, when compared to the hexagonal models, are consistently higher with 
the difference of 10.5%, 14.2% and 15.1% for 𝐶𝑅 values of 0.05, 0.10 and 0.15, 
respectively. 

It can be seen that the explicit model predictions converge to the homogenized 
analytical (hexagonal) values at 𝐶𝑅 ൌ 0.05. Meanwhile, at 𝐶𝑅 ൌ 0.10 and 𝐶𝑅 ൌ
0.15 the explicit model predictions converge to the homogenized square model 
values. At 𝐶𝑅 ൌ 0.05, the difference between the explicit values and homogenized 
square values at 𝜆/𝑑 ൌ  150 is -6.7%, and the difference between the explicit model 
values and the hexagonal model’s values is 3.4%. For the crimp ratio of 0.10, the 
difference between explicit and square, and the difference between explicit and 
hexagonal are 0.5% and 12.9%, respectively. At crimp ratio of 0.15, the difference 
between explicit and square, and the difference between explicit and hexagonal are 
െ2.6% and 10.9%, respectively. 

Another behavior that can be seen in Figure 10 is that the explicit model 
predictions converge to the asymptotic value at 𝜆/𝑑 ൌ 50. The difference between 
the values at 𝜆/𝑑 ൌ 50 and 𝜆/𝑑 ൌ 150 is 1.1%, 1.5%, and 2.6% for crimp ratios 
0.05, 0.10, and 0.15, respectively. Therefore, it can be said that the “infinitely” long 
fiber predictions are attained at 𝜆/𝑑 ൌ 50 for the crimp ratios discussed. The two-
step homogenization method requires separation of fiber and tow length scales. In 
this case, the tow’s length scale is several orders of magnitude greater than fiber’s 
length scale. 



 

(a) 

 

(b) 

 

(c) 

Figure 10. Young's modulus 𝐸ଵ: (a) 𝐶𝑅 = 0.05; (b) 𝐶𝑅 = 0.10; (c) 𝐶𝑅 = 0.15. 

 

 

Similarly to the Young’s modulus 𝐸ଵ, the transverse Young’s modulus 𝐸ଶ also 
decreases to an asymptotic value as 𝜆/𝑑 increases, however, in contrast to 𝐸ଵ, 𝐸ଶ 
increases as crimp ratio 𝐶𝑅 increases, see Figure 11. The sensitivity of 𝐸ଶ to 𝜆/𝑑 
appears to increase with 𝐶𝑅. The explicit model predictions converge to the 
homogenized hexagonal, analytical and square predictions at crimp ratios 0.05, 0.10 
and 0.15 with relative errors of 0.7%, 2.3% and -4.5%, correspondingly.  

Homogenized analytical, square and hexagonal models result in three different 
predictions for 𝐸ଶ. However, it is clear that as crimp ratio 𝐶𝑅 increases, the difference 
between the homogenized hexagonal and homogenized analytical decreases, the 
differences are 4.1%, 3.0%, and 1.9% for crimp ratios 0.05, 0.10, and 0.15, 
respectively. Similar to 𝐸ଵ, homogenized square model resulted in the highest 
predictions among the homogenized models.  
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(b) 

 

(c) 

Figure 11. Young's modulus 𝐸ଶ: (a) 𝐶𝑅 = 0.05; (b) 𝐶𝑅 = 0.10; (c) 𝐶𝑅 = 0.15. 

 

 

As with the Young’s modulus 𝐸ଶ, the shear modulus 𝐺ଵଶ increases as 𝐶𝑅 
increases, see Figure 12. At the lowest considered crimp ratio 0.05, 𝐺ଵଶ does not 
appear to exhibit any sensitivity to the 𝜆/𝑑 ratio (Figure 12a). However, the 
sensitivity increases considerably at 𝐶𝑅 ൌ 0.10 and 0.15 (Figure 12b, c). Similarly 
to the results for 𝐸ଵ, homogenized analytical and homogenized hexagonal models’ 
predictions are indistinguishable (maximum relative difference is 1.4%). Again, the 
homogenized square model’s predictions are considerably higher than the other two 
homogenized predictions.  

The explicit model’s predictions converge to the homogenized analytical 
(hexagonal) model at 𝐶𝑅 ൌ 0.05 and 0.10. However, at 𝐶𝑅 = 0.15 the explicit model 
results in predictions significantly lower than any considered homogenized models’ 
predictions. 
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(a) 

 

(b) 

 

(c) 

Figure 12. Shear modulus 𝐺ଵଶ: (a) 𝐶𝑅 = 0.05; (b) 𝐶𝑅 = 0.10; (c) 𝐶𝑅 = 0.15. 

 

 

The remaining elastic properties including the transverse Young’s modulus 𝐸ଷ, 
shear modulus 𝐺ଶଷ, and shear modulus 𝐺ଷଵ did not exhibit dependence on the 
normalized wavelength 𝜆/𝑑 and very little dependence on the crimp ratio (see Table 
3), therefore plots of these engineering constants are not presented here. According 
to Table 3, the homogenized hexagonal model gives the best estimate for 𝐸ଷ 
predictions compared with the explicit model – the maximum relative error is 6.4%. 
On the other hand, homogenized analytical predictions are closest to the explicit 
model results for 𝐺ଶଷ and 𝐺ଷଵ – the maximum relative errors are 5.0% and 7.1% for 
𝐺ଶଷ and 𝐺ଷଵ, correspondingly.  
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Table 3. Effective elastic properties (GPa). 

 Crimp Ratio Explicit 
Homogenized 

Analytical 
Homogenized 

Hexagonal 
Homogenized 

Square 

𝑬𝟑 

0.05 10.10 10.71 10.23 11.88 

0.1 9.83 10.72 10.24 11.89 

0.15 10.97 10.75 10.27 11.91 

𝑮𝟐𝟑 

0.05 3.78 3.97 3.72 3.24 

0.1 4.05 4.06 3.84 3.42 

0.15 4.15 4.18 3.98 3.66 

𝑮𝟑𝟏 

0.05 4.97 4.96 5.03 5.85 

0.1 4.81 4.84 4.87 5.53 

0.15 5.07 4.71 4.70 5.17 

 

CONCLUSIONS 

 

In this paper, we examined the applicability of the two-step elastic 
homogenization approach to 3D woven composite materials with high crimp ratios. 
We utilized finite element analysis to compare the effective elastic response of tows 
having homogenized properties (obtained from analytical and numerical 
homogenization via FEA) with the response of explicitly modeled tows. To reduce 
the complexity of the problem we assumed tows to be comprised of repeating unit 
cells which enabled us to use periodic boundary conditions and represent large tows 
having thousands of fibers with a single unit cell having only five fibers arranged in 
a hexagonal pattern.  

Our results are presented as plots of effective engineering moduli vs the 
normalized wavelength parameter 𝜆/𝑑 which describes the relative dimension of a 
single fiber with respect to the tow. The properties were calculated for three values 
of crimp ratios 𝐶𝑅 – 0.05, 0.10 and 0.15 (values are based on microtomography 
analysis of 3D woven carbon/epoxy composite, see Introduction) – and six values of 
𝜆/𝑑 – 5, 10, 20, 50, 100 and 150.  

The asymptotic values of the effective moduli considered in this paper exhibit 
different characteristics of dependence on crimp ratio. As the crimp ratio increases, 
𝐸ଵ decreases; 𝐸ଶ, 𝐺ଵଶ and 𝐺ଶଷ increase; 𝐸ଷ and 𝐺ଷଵ do not exhibit significant changes. 
These trends are in agreement with previously published results [17]–[19]. 

It was observed that constants 𝐸ଵ, 𝐸ଶ and 𝐺ଵଶ decrease with increasing 𝜆/𝑑, while 
𝐸ଷ, 𝐺ଶଷ and 𝐺ଷଵ do not exhibit any significant dependence on 𝜆/𝑑. At the same time, 
analysis showed that the constants that do depend on the normalized wavelength 
reach their asymptotic values in the vicinity of 𝜆/𝑑 ൌ 50 which is well below the 
normalized wavelengths of carbon/epoxy 3D woven composites as is shown in the 



Introduction. This means that the separation of scales required for two-step 
homogenization can be safely assumed for these composites.  

However, it is not immediately clear which homogenization scheme should be 
used, because there is no one model that predicts the explicit model’s behavior for all 
six elastic moduli. While the homogenized hexagonal and homogenized analytical 
models are close to each other in all predictions of the considered Young’s and shear 
moduli, they appear to work for predicting explicit model’s response (asymptotic 
value) for 𝐸ଵ (𝐶𝑅 ൌ 0.05), 𝐸ଶ (𝐶𝑅 ൌ 0.05, 0.10), 𝐺ଵଶ (𝐶𝑅 ൌ 0.05, 0.10), 𝐸ଷ (all 
crimp ratios), 𝐺ଶଷ (all crimp ratios) and 𝐺ଷଵ (𝐶𝑅 ൌ 0.05, 0.10). For all other 
combinations (except 𝐺ଵଶ at 𝐶𝑅 ൌ 0.15) the homogenized square model works best. 

Finally, the two-step homogenization appears to be applicable to high crimp 3D 
woven composites with crimp ratios in the range 0 െ 0.15, however, for the best 
results we recommend obtaining effective elastic moduli as functions of 𝐶𝑅 via 
explicit model analysis for 𝜆/𝑑 ൌ 50. The next best alternative is to use analytical 
homogenization formulas [10], which appear to work well for most elastic 
moduli/crimp ratio combinations and do not require additional finite element 
calculations. 
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