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A B S T R A C T

This paper examines applicability of a two-step homogenization approach to carbon/epoxy 3D woven compo-
sites. The first step of this approach involves microscale homogenization of the reinforcement consisting of wavy
bundles of fibers. Finite Element Analysis (FEA) is used to obtain homogenized properties of explicitly modeled
and homogenized wavy tows with fiber volume fraction of 70%. Two geometric parameters are investigated:
crimp ratio and wavelength normalized by fiber diameter. Effective elastic properties are shown to be sensitive
to the normalized wavelength parameter up to the value 50 at which point they reach asymptotic values and the
separation of scales can be claimed.
The resulting homogenized properties of the wavy tows are used to calculate the effective elastic properties of

one high-crimp and two low-crimp 3D woven composites using FEA. The results of the numerical two-step
homogenization are compared with experimental data and a simple Voigt model. Good correlation is observed
between experimental results and the homogenization based on direct FEA. The considered Voigt approximation
may be used as a reasonable first order estimate for Young’s moduli in low-crimp woven composites.

1. Introduction

The ever-increasing demand for lighter and stronger materials has
pushed the development of woven composites that are now used ex-
tensively in aerospace industry. Manufacturers of such composite ma-
terials have been using finite element analysis (FEA) to study the ma-
terials’ responses under various loading and environmental conditions
with the purpose of getting the best performance out of the products.
However, 3D woven composites, in particular, are difficult to model
and analyze due to the complicated shape of the reinforcement fiber
tows (bundles of fibers). Moreover, each tow contains thousands of
transversely isotropic fibers, which makes it almost impossible to re-
present the tows explicitly in numerical modeling. The standard way of
dealing with this complication is to apply homogenization theories, e.g.
Hashin, Chamis, Hashin-Shtrikman bounds, etc., in order to obtain ef-
fective mechanical properties of tows and model them as solid homo-
geneous objects [1–5]. As a result, the composite material is often re-
presented by two solid phases – matrix and homogenized tows – and a
unit of the entire composite (unit cell) can then be analyzed to de-
termine the overall properties. Such a two-step approach has been de-
monstrated to work for laminates with unidirectional layers [6,7], two-
dimensional (2D) woven composites [8], and three-dimensional (3D)

woven composites with limited through-thickness reinforcement
[9,10]. However, a study focusing on the applicability of the approach
to highly crimped 3D woven composites has not been performed to the
best of the authors’ knowledge.

The authors in [11–13] study the elastic response of periodic wavy
tow unit cells having sinusoidal shapes with explicitly modeled trans-
versely isotropic fibers under small strain using FEA. In [11] they focus
on the effective elastic properties of wavy tows with different crimp
ratios (0–0.10) and different fiber volume fraction values (0.40–0.70).
They conclude that increasing the tow waviness drastically reduces the
Young’s modulus in the longitudinal direction – average reduction of
70% at crimp value of 0.10 compared to straight fibers. In addition,
they show that at different fiber volume fractions the reduction of the
effective Young’s moduli follows the same pattern. In [13], the effect of
waviness on the effective coefficients of thermal expansion (CTE) of
tows is investigated. The authors observe an increase in the longitudinal
CTE and little to no decrease in the transverse CTE. Furthermore, in
[14] the effects of crimp ratio, fiber arrangement and fiber wavelength
normalized by the fiber diameter are discussed in the context of large
deformation of composites with wavy fiber. However, none of these
studies address effect of the normalized wavelength on elastic proper-
ties.
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Other groups have focused on estimating effective properties of
woven composites based on tow geometry and the homogenized
properties of tows found using common homogenization techniques
[15–18]. However, such homogenization techniques do not account for
the effect of the fiber diameter-to-length ratio on the homogenized
properties: the tows are assumed to be infinitely long, i.e. fiber length is
much greater than diameter. The authors in [19] approximate a plain
weave architecture as an assemblage of tows modeled as homogenized
solid objects with paths having zig-zag, trapezoidal, and helical shapes.
The trapezoidal model is the one that provides good estimation of
Young’s Moduli (E) compared to experimental data – 7.1% maximum
error in the through-thickness direction. Authors in [20] propose an
analytical model for the plain weave architecture and model the tows as
homogenized solids with elliptical cross-section shape and tow paths
represented either by a series of circular arcs or sinusoids. An analytical
approximation method is proposed by [21] to describe the elastic
properties of an orthogonal woven composite. In this method the
composite unit cell is subdivided into layers and for each layer the
elastic properties are estimated based on a weighted average of the
stiffness components of each tow (warp, weft, and binder) and matrix.
The approximation results in overestimated predictions for all values of
the Young’s moduli – 12.87% in the warp direction, 4.91% in the
transverse in-plane direction, and 36.82% in the through-thickness di-
rection.

Several groups have performed elastic homogenization of 2D and
3D woven composites using FEA. It has been shown by [22–25] that
homogenization of woven composites improves with more accurate tow
geometry characterization. The authors in [22] estimate the long-
itudinal Young’s moduli of a 3D woven textile composite with 11–13%
accuracy compared to the experimental data. Using similar geometries,
[23] refine the mesh and locally correct homogenized material prop-
erties of the tows. As a result, the authors obtain even closer values for
longitudinal Young’s moduli: 0.1% best case and 13% worst case when
compared with the experimental data. Another realistic modeling done
by [25] shows better correspondence between the microtomography-
informed model and experimental data (relative error =E 11%1 , and

=E 0.2%2 ) than the idealized geometry which produced overestimated
predictions (relative error =E 14%1 , and =E 17%2 ). FEA homo-
genization of a 2D woven composite in [9] yields good approximation
of the effective in-plane moduli compared to the averaged experimental
results (relative error of 3.1% in both warp and weft directions). A ply-
to-ply architecture is modeled in [26] and the FEA results are within
12% of the averaged experimental results in the weft direction. In [10]
the authors investigate homogenized mechanical properties of an or-
thogonal architecture based on two FEA methods: conventional (no
mesh overlapping), and mesh superposition method. Both FEA methods
result in close approximation of the experimental results: conventional
– in-plane moduli are within 6.2–8.0% relative error range; mesh su-
perposition – in-plane moduli are within 3.3–7.5% relative error range.

In this paper, we investigate the applicability of two-step homo-
genization to the high-crimp woven composites. The paper is divided
into two parts. In the first part, FEA is used to compare the effective
elastic properties of an explicitly modeled sinusoidal-shape tow (fibers
arranged in a hexagonal pattern embedded in isotropic matrix, see
Fig. 1a) with the response obtained from homogenized wavy tows
(Fig. 1b). Three sets of properties are considered in the latter case:
micromechanical homogenization ([14,27]), and FEA homogenization
of unidirectional composites with fibers embedded in isotropic matrix
in square and hexagonal arrangements. The concept of a microscale
periodic unit cell is utilized and periodic boundary conditions (PBC) are
employed. In the second part of this paper, we present results of elastic
homogenization for three configurations of 3D woven composites –
1× 1 orthogonal, ply-to-ply and plain weave. The results are compared
with experimental measurements and with a simple stiffness approx-
imation approach (Voigt model) based on the effective stiffness ma-
trices of wavy tows described in the first part of the paper.

2. Geometry of tow paths in 3D woven composites

We analyzed tows of three woven architectures – 1× 1 orthogonal,
ply-to-ply and plain weave to determine the degree of waviness – crimp
ratio defined as the ratio of amplitude to wavelength =CR a/ , see
Fig. 1a. Weave patterns and volume representations of all three archi-
tectures are shown in Fig. 2; tow and matrix volume fractions of each
architecture are given in Table 1. The dimensions in the warp, weft, and
thickness directions of the unit cells are: orthogonal –
5.08×5.08×4.00mm3, plain weave – 5.08×5.08×3.90mm3, and
ply-to-ply – 8.47×8.47×3.95mm3. In the orthogonal architecture,
warp and weft tows do not interlace, however tows of the third type –
binder – go all the way through-thickness of the composite between
weft tows. In the ply-to-ply architecture, tows from several layers in-
terlace. On the other hand, in the plain weave architecture tows in-
terlace within the same layer only. Geometry of the first architecture
(Fig. 2a) was obtained from segmentation of X-ray computed micro-
tomography data; geometries of the latter two were obtained from
fabric mechanics simulations. Fully periodic final geometries of all
three architectures were converted to finite element models, see Section
4.1 and [2] for details.

Crimp ratios of all tows in the architectures were calculated from
tow centerlines. In [28], it is shown that wavy fiber tows can take
different shapes, which affects how crimp is characterized. In the case
of the three woven composite architectures discussed here, the tows fit
two types shown in Fig. 3a and b. The orthogonal model is represented
by the type shown in Fig. 3a, while the ply-to-ply and plain weave
models are represented by the type shown in Fig. 3b.

In our analysis, crimp ratio of a tow is obtained by placing three
target points on the tow’s centerline. Based on the three points’ “x” and
“y” coordinates, the amplitude a and the wavelength of the quasi-
sinusoidal shape are found and the crimp ratio is calculated. In Fig. 3,
the three points are identified as “P1”, “P2”, and “P3”. For the ortho-
gonal model (type shown in Fig. 3a), the amplitudes are calculated from
the differences between the “y” coordinates of points P1 and P2. The
amplitudes of the plain weave and ply-to-ply models (type shown in
Fig. 3b) are also found from the differences between the “y” coordinates
of P1 and P2, but in this case, the difference is divided by two. Tow
wavelengths are found from the differences between the “x” co-
ordinates of points P1 and P3.

In the orthogonal configuration, the centerlines of the warp tows
appear to be straight, however, local fiber waviness may be present,
which can be seen indirectly in the varying thickness of the tows, see
Fig. 4a. As will be shown in Section 5, even a small amount of waviness
results in significant changes in the overall unit cell elastic properties.
On the contrary, weft and binder tows present considerable waviness –
crimp ratios of the weft tows fall in the range between 0.05 and 0.15
while the binder tows’ crimp ratios (CR) are around 0.4. From the
microtomography images, we estimated the normalized wavelength
with respect to fiber diameter d ( d/ ) in the orthogonal configuration to
be approximately 400 based on the highlighted weft tow shown in
Fig. 4a (green). Fig. 4a (green) shows a weft tow with CR=0.12, while
Fig. 4a (blue) shows a binder tow with CR=0.4. In the plain weave

(a) (b)

Fig. 1. (a) Amplitude a and wavelength shown on an explicit model; (b)
homogenized model.
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architecture, the average crimp ratio value of 0.024 was found for weft
and warp tows. Finally, in the ply-to-ply architecture, the average crimp
ratio values of 0.026 and 0.025 were calculated for the weft and warp
tows, correspondingly.

The method to estimate the crimp ratios of the warp and weft tows
and the results are in agreement with work done by [29], where no
large variation of crimp ratio was found among either warp or weft
tows, meaning that a narrow range of CR can describe the in-plane tows
of the composites discussed. Note that in this study we are not focusing
on the variation of tow cross-sections throughout the unit cell. A de-
tailed analysis of such variations in an orthogonal 3D woven composite
can be found in [30].

3. Analysis of a wavy tow unit cell

Tow unit cells analyzed in this section are modeled to follow fiber
paths which are assumed to have sinusoidal shapes (Fig. 1). In addition
to crimp ratio (CR), wavelength normalized by fiber diameter ( d/ ) is
used as a parameter. In all of the models discussed, the fiber volume
fraction is set to 70%.

Table 1
Tow and matrix volume fractions (%) of the considered woven architectures.

Architecture Warp Weft Binder Matrix

1× 1 Orthogonal 31.6 29.0 6.8 32.6
Ply-to-Ply 34.7 39.4 – 25.9
Plain Weave 39.7 36.2 – 24.1 (a)

(b)

Fig. 3. Tow centerlines: (a) 1× 1 orthogonal architecture; (b) ply-to-ply ar-
chitecture.

(a)

(b)

(c)

Fig. 2. Tow paths and final geometries of three architectures: (a) 1× 1 orthogonal (b) ply-to-ply, (c) plain weave.
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3.1. Geometry and mesh generation

The final volume fraction is a function of the crimp ratio and initial
fiber area fraction AF because area fraction of fibers changes
throughout the tow path (see Fig. 5). For the final volume fraction

=VF 70% and different crimp ratios, the choice of the initial AF is
given in Table 2. As was discussed in Section 2, the majority of the tows
within the analyzed woven composite architectures have crimp ratios
within the range 0–0.15. In addition to crimp ratio, the normalized
wavelength ( d/ ) in this study is varied from 5 to 150. All values of the
geometric parameters used are presented in Table 2. Note that binder
tows are not considered due to their non-sinusoidal shape – in order to
use the appropriate PBCs, the geometry of the tow unit cell has to be
periodic in all three directions, which is not observed in the through-
thickness direction of the binder tow, see Fig. 4a.

The geometry and mesh generation procedure that follows is based
on [31–33]. Using a custom MATLAB script, the “first” cross section
(see “1” in Fig. 5) is generated and meshed MSC Marc Mentat with four-
node quadrilateral elements. It is then duplicated along a sinusoidal
curve of a given CR to generate 3D FEA mesh. Fiber cross-sections at
minima and maxima of the centerline path have circular shapes, while
all others are represented by ellipses, see Fig. 5. To achieve this, fiber
cross-sections at these locations must be deformed during geometry
generation, which distorts the surrounding matrix mesh (see 2 in

Fig. 5). To eliminate mesh overlapping, Taubin’s relaxation [34] is
applied to the matrix elements. The final mesh is free of geometric
incompatibilities; perfect bonding between the matrix and the fibers is
assumed.

The standard value for the height to width ratio of a unit cell with
hexagonal packing ( 3 ) is used to create the cross sections for the
models with CR=0.05 and 0.10 (Fig. 6a and b). At this ratio, the final
VF=70% is achieved without mesh overlapping. On the other hand,
for the highly crimped tow (CR=0.15) the overlapping could not be
avoided with the same ratio. Therefore, a modified cross section ratio of
2.19 is used for the model with CR=0.15 to avoid mesh overlapping
(Fig. 6c). This modification gives rise to an orthotropic rather than a
transversely isotropic behavior obtained from the other cross sections
(Fig. 6a and b), which may affect the predictions of the macroscopic
effective properties at CR=0.15.

3.2. Material properties

In the explicit tow unit cell (Fig. 1a) and unidirectional models
(Fig. 7), transversely isotropic properties of IM7 carbon fiber and iso-
tropic properties of RTM6 resin are used. For the homogenized model
(Fig. 1b) the effective material properties obtained from tow homo-
genization via micromechanical formulas presented in [35], and FEA of

(a)

(b)

(c)
Fig. 4. Highlighted tows: (a) 1×1 orthogonal architecture data obtained from
microtomography: weft (green), warp (yellow) and binder (blue): (b) ply-to-ply
architecture obtained from digital fabric mechanics simulations: weft (green)
and warp (blue); (c) plain weave obtained from digital fabric mechanics si-
mulations: weft (green) and warp (blue).

(1) & (3) (2)

Fig. 5. Cross sections of the 3D model with CR=0.15.

Table 2
Geometric parameters of the considered wavy tow unit cell models.

CR d/ d AF VF

0.05 5, 10, 20, 50, 100, 150 0.8690 68.5% 70.0%
0.10 5, 10, 20, 50, 100, 150 0.8416 64.2% 70.0%
0.15 5, 10, 20, 50, 100, 150 0.8054 58.8% 70.0%

(a) (b) (c)

Fig. 6. Cross sections used to generate 3D models: (a) CR=0.05; (b)
CR=0.10; (c) CR=0.15.

Fig. 7. Square unidirectional unit cell (left) and hexagonal unidirectional unit
cell (right).
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square and hexagonal fiber arrangements (Fig. 7) are used. Note that
the square fiber arrangement does not exhibit the transverse isotropy
observed for hexagonal arrangements.

All material properties used are summarized in Table 3. Transver-
sely isotropic properties denoted by ‘L’ and ‘T’ correspond to the
longitudinal and transverse fiber directions, correspondingly. Local
material orientations in the FEA models are assigned to each element
via the previously described geometry generation MATLAB script (see
Section 3.1). Fig. 8 illustrates local material orientations in the homo-
genized model. For both square and hexagonal packing geometries,
direction ‘T’ is parallel to the y-axis.

3.3. Boundary conditions

Periodic boundary conditions (PBCs) can be used to represent a tow
containing thousands of fibers using a single unit cell, see [31–33], and
[11] for other applications of PBCs. Use of PBCs helps reduce the re-
quired computational resources and enables quick parametric studies.
In our models, PBCs are implemented using the “servo-link” feature of
MSC Marc Mentat. The periodicity conditions for two nodes on opposite
faces of a unit cell are

= =+ iu u ( 1, 2, 3)x x xi i i (1)

where +uxi and uxi are displacement vectors of two nodes on the po-
sitive and negative xi faces of a unit cell, respectively, and xi is the
average displacement applied between the faces. Fig. 9a shows PBCs for
the corner nodes of the considered tow unit cell model – other links are
hidden.

In order to obtain the stress components needed for calculating ef-
fective properties of a tow unit cell, six load cases are analyzed: (1)
tension in “x”, (2) tension in “y”, (3) tension in “z”, (4) shear in “x-y”
plane, (5) shear in “y-z” plane, and (6) shear in “x-z” plane. Fig. 9 shows
distribution of the stress component xx (MPa) in the unit cell with
CR=0.10 and =d/ 20 with material properties given in Table 3,
under load case (1) for the applied strain = 0.001xx .

3.4. Processing of the results

Processing of the FEA simulation results follows the procedure
previously described in [36,37]. Volume averaging of stress and strain
components is carried out to estimate the effective elastic properties of
each unit cell in this work. The same procedure is used to process data
from tow and woven unit cells. Unit cell volume averages of stress
components are found as:

= =
V

i j1 ( ) , ( , 1, 2, 3)ij k
l

ij
l

k
l( ) ( )

(2)

where the load case number k ranges from 1 to 6, corresponding to the
three tensile (1,2,3) and three shear (4,5,6) load cases, ij k is the vo-
lume average of the stress component ij calculated from the k-th load
case, ( )ij

l
k

( ) is the stress component ij at the centroid of the element l
calculated from the k-th load case, V is the total volume of the unit cell,
and l( ) is the volume of the finite element number l. Given all volume-
averaged stress components and applied strains, the effective stiffness
matrix C is calculated [32]. The compliance matrix S is found as the
inverse of C, and the engineering elastic constants are computed as

=E 1/Sk kk where k=1, 2, and 3, = S E·12 21 1, = ES ·23 32 2,
= S E·13 31 1, =G S1/212 66, =G S1/223 44, =G S1/231 55.

3.5. Validation of the FEA approach

We validated our FEA approach for a tow unit cell by comparing
with the results published in [11]. In that work, the authors applied the
same six load cases as described in Section 3.3 to sinusoidal tows with
VF of 70% and normalized wavelength of 20. The fiber is considered to
be transversely isotropic with material properties of =E GPa207.5L ,

=E GPa25T , = 0.24L , = 0.359T , =G GPa95L and =G GPa9.2T .
The matrix is isotropic with =E GPa4.5 and = 0.34. We investigate
three values of the crimp ratio: =CR 0, 0.05, and 0.10.

We consider two models: in the first, “scaled” model, cross-sections
are locally scaled to preserve circularity of the fibers, see Fig. 5; in the
second, “adapted” model, cross-sections are duplicated along the entire
tow path without local scaling, see cross-section 1 in Fig. 5. Note that
the “adapted” model is assumed to follow the geometry generation

Table 3
Elastic properties of the constituents and homogenized properties of unidirectional tows.

Constituents Homogenized

Carbon IM7 Epoxy RTM6 Analytical [35] FEA Square FEA Hexagonal

EL (GPa) 276.0 2.890 194.1 194.0 194.0
ET (GPa) 23.10 – 10.71 11.88 10.23

LT 0.3500 0.3500 0.3500 0.3501 0.3501
TT 0.3000 – 0.3638 0.3218 0.3942

GLT (GPa) 27.60 1.070 5.007 5.976 5.095
GTT (GPa) 8.885 – 3.926 3.165 3.671

Fig. 8. Local material orientations in a 3D unit cell (coarse mesh).

(a) (b)
Fig. 9. Wavy unit cells: (a) periodic boundary conditions; (b) distribution of the
stress component xx in the explicit model with CR=0.10 and =d/ 20.
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procedure presented in [11] and is introduced only for comparison with
the previously published result. The resulting fiber volume fraction in
both models was set to 70%. As a result, the area fraction AF at maxima
is 64.24% for “scaled” model and 70% for “adapted”.

The effective Young’s moduli, shear moduli and Poisson’s ratios of
the “scaled” model are compared with results from [11] for different
crimp ratios in Table 4; the comparison of the “adapted” model results
with [11] is given in Table 5. For CR=0 (straight fiber) the results
from both models and [11] are all in good agreement – the minor error
is assumed to be numerical. As the crimp ratio is increased to 0.05 and
further to 0.10, “scaled” and “adapted” models give different predic-
tions. The relative error in the longitudinal Young’s moduli between the
“scaled” model and [11] is 22%, while between the “adapted” model
and [11] the error is only 3.3%. Relative errors between the remaining
Young’s and shear moduli are not as pronounced – the average errors
are 4.4% and 1.7% in the cases of the “scaled” and the “adapted”
models, correspondingly.

Few details on geometry and mesh generation are provided in [11],
but from the comparison it appears that the authors did not apply local
fiber scaling, which means the circularity of the fiber is not preserved. It
also appears that even in the case of moderate waviness, i.e. CR=0.10,
local fiber scaling has a significant effect on the longitudinal Young’s
modulus and thus cannot be neglected. We also conclude that given the
same geometry our FEA procedure yields similar results compared with
the procedure previously published in [11].

3.6. Results

The effective Young’s moduli Ex , Ey and Ez, shear moduli Gxy, Gyz
and Gxz, and Poisson’s ratios xy, yz, and xz are presented in this sec-
tion for the set of explicit and homogenized models with geometric
parameters given in Table 2.

Note that the “Analytical”, “Hexagonal”, and “Square” models dis-
cussed in this section are based on the homogenized tow properties
obtained from analytical formulas [35] and FEA homogenization of
hexagonal and square unidirectional unit cells. Table 3 presents

properties of the composite constituents and homogenized properties of
the tows, and Fig. 7 illustrates the unidirectional tow unit cells.

3.6.1. Young’s moduli
A comparison of the Young’s modulus Ex predicted by each of the

three homogenized FEA models and the explicit FEA model is shown in
Fig. 10 for CR=0.05, 0.10, and 0.15. As can be seen from the results of
the explicit model, Ex decreases to an asymptotic value as the nor-
malized wavelength d/ increases – the transition occurs around

=d/ 50. It appears that the explicit model’s values at =d/ 50 and
=d/ 150 can be considered the same. The differences between these

values are 1.1%, 1.5%, and 2.6% for crimp ratios 0.05, 0.10, and 0.15,
respectively. Therefore, it can be said that “infinitely” long fiber pre-
dictions are obtained at =d/ 50. Note that the presented three
homogenized models’ results do not depend on d/ because fiber dia-
meter does not affect the homogenization results in the case of a uni-
directional composite, which is how the properties were calculated for
the homogenized analytical, square and hexagonal models shown.

As the CR increases Ex value decreases as predicted by all models.
The homogenized analytical and hexagonal models are virtually the
same (relative differences are equal to 0.9% at CR=0.05, 0.8% at
CR=0.10, and 0.3% at CR=0.15). The homogenized square model,
when compared to the hexagonal model, shows consistently higher
predictions with the difference of 10.5%, 14.2%, and 15.1% for
CR=0.05, 0.10, and 0.15, respectively. This may be attributed to the
non-isotropic transverse response of the square arrangement.

Explicit model predictions converge to different homogenized
models at different crimp ratios. At CR=0.05, the explicit model ap-
proaches the homogenized hexagonal (analytical) model (4.5% higher
than the hexagonal, =d/ 50). On the other hand, at CR=0.10 and
0.15, the explicit model approaches the square model predictions –
2.07% higher than the square (CR=0.10 and =d/ 50), and 0.14%
higher than square (CR=0.15 and =d/ 50). Note that in the pre-
viously discussed study [11], the dependence of the overall tow prop-
erties on the normalized wavelength d/ is not investigated.

Similarly to Ex , Young’s modulus Ey decreases to an asymptotic

Table 4
Comparison of effective elastic properties of explicitly modeled wavy tow unit cells: “scaled” model vs results from [11].

CR Ex Ey Ez Gxy Gxz Gyz xy xz yz

“Scaled” 0 146.6 13.39 13.39 8.863 8.862 4.760 0.266 0.266 0.408
[11] 145.7 13.35 13.34 8.649 8.715 4.712 0.266 0.266 0.405
Difference, % 0.6 0.3 0.4 2.5 1.7 1.0 0 0 0.6

“Scaled” 0.05 95.07 13.87 13.28 9.647 8.551 4.924 0.244 0.294 0.407
[11] 91.24 13.71 13.35 9.160 8.602 4.829 0.260 0.283 0.399
Difference, % 4.2 1.2 −0.5 5.3 −0.6 2.0 −6.1 3.8 2.0

“Scaled” 0.10 59.00 15.81 13.05 11.36 8.120 5.363 0.138 0.367 0.419
[11] 48.38 14.94 13.40 10.41 8.252 5.203 0.239 0.304 0.384
Difference, % 22 5.8 −2.6 9.1 −1.6 3.1 −42 21 9.2

Table 5
Comparison of effective elastic properties of explicitly modeled wavy tow unit cells: “adapted” model vs results from [11].

CR Ex Ey Ez Gxy Gxz Gyz xy xz yz

“Adapted” 0 146.6 13.39 13.39 8.863 8.862 4.760 0.266 0.266 0.408
[11] 145.7 13.35 13.34 8.649 8.715 4.712 0.266 0.266 0.405
Difference, % 0.6 0.3 0.4 2.5 1.7 1.0 0 0 0.6

“Adapted” 0.05 92.42 13.74 13.40 9.382 8.750 4.875 0.261 0.284 0.401
[11] 91.24 13.71 13.35 9.160 8.602 4.829 0.260 0.283 0.399
Difference, % 1.3 0.2 0.3 2.4 1.7 1.0 0.5 0.3 0.4

“Adapted” 0.10 49.99 14.73 13.44 10.76 8.496 5.188 0.256 0.299 0.385
[11] 48.38 14.94 13.40 10.41 8.252 5.203 0.239 0.304 0.384
Difference, % 3.3 −1.4 0.3 3.3 3.0 −0.3 7.0 −1.7 0.1
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value as the normalized wavelength increases, with separation of scales
attained again at =d/ 50, see Fig. 11. The predicted values of all
models increase as CR increases, which is opposite to Ex behavior.
Another contrast is the sensitivity to the normalized wavelength d/ ,
while the sensitivity of Ex appears to decrease, the sensitivity to d/ of
Ey increases as CR increases. The explicit FEA model converges to the
hexagonal model’s prediction at CR=0.05 (difference of 0.7%), at
CR=0.10 it converges to the analytical model’s prediction (difference
of 2.3%), and at CR=0.15 the explicit model converges to the square
model’s value (difference of −4.5%). It also appears that the difference
between homogenized analytical and hexagonal models decreases as
the crimp ratio increases – the analytical is higher than the hexagonal
by 4.1% at =CR 0.05, 3.0% at =CR 0.10, and 1.9% at =CR 0.15. Again,
homogenized square model presents the highest predictions among all
crimp ratios.

Young’s modulus in the third direction (Ez) does not appear to be
significantly affected by either CR or d/ (see Fig. 12). The homo-
genized hexagonal model gives the best estimate for Ez predictions
compared with the explicit model at crimp ratios CR=0.05 and
CR=0.10 (the maximum relative error is 4.19% at =d/ 50). For the
crimp ratio 0.15, the analytical model is the closest to the explicit
model (relative error of −2.07% at =d/ 50). In agreement with Ex
and Ey results, the homogenized square model’s predictions for Ez are
higher than any other homogenized model predictions discussed here.

3.6.2. Shear moduli
Fig. 13 presents the results for the effective shear modulus Gxy ob-

tained from the explicit and homogenized models. At the lowest crimp
ratio (CR=0.05), sensitivity to d/ is not observed. For higher values
of crimp ratio, the increases with the crimp ratio (see Fig. 13b and c). As

(a) (b) (c)
Fig. 10. Young's modulus Ex : (a) CR=0.05; (b) CR=0.10; (c) CR=0.15.

(a) (b) (c)
Fig. 11. Young's modulus Ey: (a) CR=0.05; (b) CR=0.10; (c) CR=0.15.

(a) (b) (c)
Fig. 12. Young's modulus Ez : (a) CR=0.05; (b) CR=0.10; (c) CR=0.15.
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was previously seen in the results for Ex , homogenized analytical and
homogenized hexagonal predictions are almost the same (maximum
relative error is 1.4% at CR=0.05 and =d/ 50). At crimp ratios 0.05
and 0.10, the explicit model converges to the hexagonal/analytical
predictions, while at CR=0.15 there is no convergence between the
explicit model and any homogenized model, and the explicit model’s
asymptotic value is considerably lower than the lowest homogenized
model’s predictions. Homogenized square model’s predictions present
the highest values at all studied crimp ratios. In the cases CR=0.10
and CR=0.15, separation of scales happens at =d/ 50.

Similarly to the Young’s modulus Ex and shear modulus Gxy, the
homogenized hexagonal predictions and the homogenized analytical
predictions for Gyz are similar (maximum relative error of 6.23%, see
Fig. 14a with =d/ 50). With respect to the explicit model results, there
is no considerable sensitivity to the normalized wavelength for any of
the three crimp ratios discussed, and the values predicted by this model
are between the values from homogenized analytical (upper bound)
and homogenized hexagonal (lower bound). In addition, the asymptotic
value of Gyz (explicit model) increases with crimp ratio. In contrast to
the previous results in this section, the homogenized square results are
the lowest among all predictions.

Fig. 15 shows the predictions forGxz. The dependence of the explicit
model’s predictions on the normalized wavelength d/ appears to in-
crease with crimp ratio, however, it remains virtually negligible in the
considered range of CR. As the crimp ratio increases, all homogenized
predictions decrease slightly. At lower crimp ratio values, 0.05 and
0.10, the explicit model’s predictions converge to the homogenized
analytical/hexagonal values (see Fig. 15a and b), presenting the same
trend observed in Fig. 13a and b, for Gxy. At CR=0.15 the explicit
model converges to the homogenized square FEA, and, in comparison to
other previously discussed results, this behavior is also seen for

=E CR( 0.10x and 0.15), and Ey (CR=0.15). Similarly to the

previously discussed Ex , Ey, Ez and Gxy, homogenized analytical and
homogenized hexagonal predictions are the same and the homogenized
square predictions have the highest values among all homogenized
models.

3.6.3. Poisson’s ratios
The explicit model’s predictions of Poisson’s ratio in the long-

itudinal direction, xy, increase with d/ and decrease with CR, see
Fig. 16. As can be seen in Fig. 16, the asymptotic values are reached at
normalized wavelength =d/ 50. There is almost no agreement be-
tween the explicit model and the homogenized models because the only
convergence is seen at =CR 0.05 between the homogenized square and
explicit model (see Fig. 16a).

All predictions for yz decrease as crimp ratio increases, see Fig. 17.
Furthermore, the explicit model’s predictions do not exhibit as high
dependence on the normalized wavelength as in the case of xy, and
again the asymptotic values are reached around =d/ 50. Homo-
genized hexagonal model is the only one that appears to predict the
explicit model’s results well, and only at CR=0.05 and 0.15.

Results for Poisson’s ratio xz are presented in Fig. 18. The explicit
model’s results exhibit higher sensitivity to the normalized wavelength
than yz, but lower than xy. The asymptotic values are reached at the
same normalized wavelength =d/ 50. As it was determined for yz,
results of the explicit FEA are close to the homogenized hexagonal
predictions at crimp ratios CR=0.05 and 0.15 while being very dif-
ferent from all homogenized models at CR=0.10. Overall, the explicit
model’s asymptotic values exhibit minor dependence on CR.

4. Analysis of woven composite unit cells

The results of Section 3 indicate that the two-step homogenization
approach in which tows are modeled as solid objects with homogenized

(a) (b) (c)
Fig. 13. Shear modulus Gxy: (a) CR=0.05; (b) CR=0.10; (c) CR=0.15.

(a) (b) (c)
Fig. 14. Shear modulus Gyz : (a) CR=0.05; (b) CR=0.10 (c) CR=0.15.
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properties may be applicable to high-crimp woven composites if the
ratio of fiber wavelength to its diameter ( d/ ) is high. In the case of the
explicit model asymptotic values are reached around =d/ 50 and the
actual ratio calculated from microscopy is around 400 (see Section 2).
For most of the engineering constants, the model based on analytical
homogenization appears to correlate well with the explicit model’s re-
sults.

In this section, the second step of the two-step homogenization
procedure is performed – overall elastic properties of meso-scale 3D
woven composite unit cells are found. Two approaches are utilized:
direct FEA analysis and and Voigt approximation.

4.1. Direct FEA

Two methods were used to create three-dimensional meshes of the
considered 3D woven composites: fabric mechanics simulations and
microtomography data processing. Fabric mechanics simulations were
performed in DFMA (Digital Fabric Mechanics Analyzer, see [38–40]).
The second method consisted of processing microtomography images of
a sample with orthogonal woven architecture in ImageJ [41]. The
images were segmented into individual tows which were then exported
in STL format. The tows were meshed in MSC Patran and assigned
material orientations following tow centerlines.

The first method (DFMA) was used to obtain the ply-to-ply and the
plain weave models, and the second method (µCT) was used to obtain
the 1×1 orthogonal model. Detailed description of the architectures’
tow geometries is given in Section 2, and the final reinforcement geo-
metries are shown in Fig. 2. Tows in all three models were assigned the
homogenized “analytical” material properties given in Table 3. Fiber
volume fraction of 70% was used. Periodic boundary conditions were
used, and each model was subjected to six load cases: three uniaxial
tension and three shear cases. All boundary conditions and load cases

are the same as discussed in Section 3.3 with applied strain of 0.001.
Detailed description of the geometry processing, meshing and FEA

model preparation of these and similar models can be found in
[2,35,42].

4.2. Stiffness approximation

The homogenization applied to the wavy unit cells in Section 3
results in a set of nine independent stiffness components (Cij where

= …i j, 1 6). We used theseCij values to estimate the overall properties of
3D woven composite unit cells with wavy tows. We selected the data at
normalized wavelength =d/ 50 for the models with crimp ratio
CR=0.05, 0.10 and 0.15. (see Appendix A). For any value between
these crimp ratios a linear interpolation was used to estimate the
stiffness matrix components.

After determining the overall stiffness values of individual wavy
tows, the effective stiffness matrix Cij of the 3D woven composite unit
cell was estimated from the Voigt model based on the stiffness matrices
Cij

k( ) of the contributing wavy tows and the matrix:

= = …
=

C
V

C v i j1 ( , 1, 6)ij
k

n

ij
k k

0

( ) ( )

(3)

where n is the total number of tows in the architecture, V is the total
volume of the unit cell, and v k( ) is the volume of the k-th tow ( >k 0) or
the matrix ( =k 0). The effective engineering constants are then found
from the stiffness matrix components, see Section 3.4.

In this work, the stiffness values used for binder tows were the same
as for sinusoidal tows with CR=0.15 because periodic wavy tow unit
cells cannot be generated for the actual binder tow crimp ratios
(CR=0.4) with the current procedure.

(a) (b) (c)
Fig. 15. Shear modulus Gxz : (a) CR=0.05; (b) CR=0.10; (c) CR=0.15.

(a) (b) (c)
Fig. 16. Poisson’s ratio xy: (a) CR=0.05; (b) CR=0.10; (c) CR=0.15.
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4.3. Results

The effective engineering constants of the considered 3D woven
composite unit cells calculated using the direct FEA and the stiffness
approximation procedures are presented in Table 6. The results indicate
that the approximation approach may be used as the first-order ap-
proximation of Young’s moduli of low-crimp architectures such as plain
weave or ply-to-ply. The calculated errors are in the range of 6–17%
with the through-thickness modulus being overestimated by the ap-
proximation, and the in-plane moduli – underestimated. Young’s
moduli of the considered high-crimp architecture (orthogonal) are
greatly underestimated – the calculated errors are in the range of
16–31%. As expected, the approximation does not work for Poisson’s
ratios or shear moduli.

The approximation does not account for the shapes of tow cross
sections and interaction between tows. In addition, it depends on the
accurate estimation of crimp ratios of tows – as it is shown, for example,
in Fig. 10, the stiffness values are highly sensitive to CR values; hence,
underestimation of CR leads to overestimation of stiffness and vice-
versa. It appears that the values of CR might be overestimated in all
three models since the Young’s moduli E1 are underestimated (see
Fig. 10). The overprediction of G12 by the approximation method is
another indicator that theCR was overestimated in all three models (see
Fig. 13).

Experimental measurements for the in-plane Young’s moduli of the
orthogonal architecture were performed by [43]. The average values
are: =E GPa77.271 and =E GPa65.762 . It is clear that the two-step
homogenization based on segmentation of the microtomography data
provides good correlation with averaged experimental results having
less than 10% of relative difference ( =E 6.3%1 , and =E 7.1%2 ).
Considering the full range of the measured moduli (see [43]), the FEA
results are within the in-plane results ( = …E 72.3 84.121 GPa, and

= …E 60.8 70.782 GPa).

5. Conclusions

In this paper, we examined applicability of the two-step elastic
homogenization approach to 3D woven composite materials with high
crimp ratios and presented the results of the numerical homogenization
for three architectures: orthogonal, ply-to-ply and plain weave.

In the first part of the paper (Section 3), we focus on the elastic
responses of individual fiber-reinforced tows having sinusoidal paths as
functions of “waviness” (crimp ratio CR) and wavelength normalized
with respect to the fiber diameter ( d/ ). The range of CR values was
determined from geometry analysis of the three available architectures.
Each tow in our analysis was represented by a curvilinear unit cell
subjected to periodic boundary conditions. The tows were modeled as
homogeneous and explicit. In the homogeneous case, the overall

(a) (b) (c)
Fig. 17. Poisson’s ratio yz: (a) CR=0.05; (b) CR=0.10; (c) CR=0.15.

(a) (b) (c)
Fig. 18. Poisson’s ratio xz : (a) CR=0.05; (b) CR=0.10; (c) CR=0.15.

Table 6
Estimated effective elastic properties based on the direct finite element analysis
and the stiffness approximation.

Orthogonal Plain weave Ply-to-ply

FEA Appr. % FEA Appr. % FEA Appr. %

E1 (GPa) 73.44 61.86 −16 60.86 57.06 −6.2 59.77 53.03 −11
E2 (GPa) 62.99 43.30 −31 62.65 57.76 −7.8 69.55 57.75 −17
E3 (GPa) 11.97 9.138 −24 8.833 9.733 10 9.028 9.592 6.2

12 0.055 0.070 29 0.101 0.057 −43 0.079 0.057 −28
23 0.333 0.423 27 0.494 0.423 −14 0.490 0.423 −14
13 0.397 0.427 7.4 0.462 0.423 −8.4 0.450 0.423 −6.1

G12 (GPa) 4.412 5.246 19 3.749 5.208 39 3.836 5.203 36
G23 (GPa) 2.952 4.415 50 2.937 4.446 51 3.031 4.475 48
G31 (GPa) 2.986 4.547 52 2.943 4.437 51 2.991 4.416 48
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properties calculated from analytical homogenization and FEA of uni-
directional unit cells (square and hexagonal) were applied to the entire
unit cell. In the explicit case, fibers were modeled explicitly with five
fibers per unit cell in hexagonal arrangement.

Tow unit cell results are presented as plots of each of the nine or-
thotropic engineering constants versus normalized wavelength for
several values of crimp ratio. From the results of the “explicit” models,
it was observed that moduli Ex , Ey andGxy decrease with increasing d/
while Ez, Gyz and Gzx do not exhibit significant dependence on d/ . All
moduli predictions reach their asymptotic values around =d/ 50, at
which point we assume separation of scales – unit cell length is much
larger than the fiber diameter therefore the fiber can be approximated
as infinitely long. In this case, the elastic response depends on crimp
ratio alone. From the optical microscopy analysis, it was determined
that in the considered 3D carbon fiber/epoxy matrix composites, the
actual normalized wavelength values are significantly greater than the
threshold value of 50 (see Section 2). This means that the separation of
scales required for two-step homogenization can be safely assumed for
these composites.

Predictions from the homogenized unit cells do not depend on the
d/ parameter because fiber diameter does not affect the overall

properties of unidirectional tows which are used as input for these unit
cells. Even though the separation of scales is observed at =d/ 50, it is
not clear which homogenization method (i.e. analytical, FEA hexagonal
or FEA square) works best for approximation of the explicit models’
responses. While the homogenized hexagonal and homogenized ana-
lytical model predictions are close to each other in all E andG plots, the
results obtained for show these results diverging. These homogenized
methods work best for predicting the explicit model behavior in some
cases: for Ex ( =CR 0.05), Ey ( =CR 0.05, 0.10), Gxy ( =CR 0.05, 0.10),
Ez (all crimp ratios),Gyz (all crimp ratios) andGxz ( =CR 0.05, 0.10). On
the other hand, the homogenized square model works best for all other
elastic constants (except for Gxy at =CR 0.15). We recommend per-
forming tow homogenization using the explicit models if possible, or
the homogenized analytical model.

Analysis of the effect of crimp ratio on the overall elastic moduli of
tows showed that with the increase of crimp ratio, Ex decreases while
Ey, Gxy, and Gyz increase. There are no significant changes in the pre-
dictions of Ez or Gzx . These results are in agreement with previous
publications [11,37,44,45]. Predictions of Poisson’s ratios presented no

consistent trends.
In the second part of the paper, we focus on the effective elastic

properties of unit cells of woven composites of three architectures: or-
thogonal, ply-to-ply and plain weave. Two methods are compared:
stiffness approximation (Voigt model) and direct FEA. In the former
method, the composite unit cell is represented as a collection of sinu-
soidal tows “connected in parallel”. The response of each tow is taken
from the first part of the paper based on that tow’s crimp ratio (ap-
proximated from the geometry analysis). Note that due to the curvi-
linear shape of the tows their interaction is not taken into account. In
the latter method, the composite unit cells are modeled using FEA with
homogenized tows. In addition, predictions are compared with ex-
perimental measurements of the in-plane Young’s moduli in the case of
the orthogonal architecture.

The results indicate that the stiffness approximation which does not
require expensive FEA simulations of woven unit cells may work as a
reasonable first-order approximation for Young’s moduli of low-crimp
composites (ply-to-ply and plain weave) – the relative error is below
17% when compared with the direct FEA results. However, the pre-
dictions produced by this method are not acceptable for high-crimp
composites such as the orthogonal configuration – the relative error
exceeds 30%. In all cases, the stiffness approximation procedure un-
derestimated the in-plane Young’s moduli and overestimated all shear
moduli. On the other hand, direct FEA simulation results for the in-
plane Young’s moduli appear to be in good correspondence with the
experimental results – both moduli predictions fall within the range of
experimental values.

Even though two-step homogenization of 3D woven composites
based on FEA of unit cells relies on accurate reproduction of the re-
inforcement geometry, which is still a labor-intensive process, the
method appears to produce the best predictions when compared with
experimental results as is shown in this paper.

Acknowledgements

This material is based upon work supported by the National Science
Foundation under Grant No. CMMI-1662098. We are grateful to Adam
Ewert for his help with geometric modeling and FEA model preparation
for the orthogonal architecture.

Appendix A

Overall stiffness matrix components (GPa) of the wavy tow unit cells (explicit models, normalized wavelength =d/ 50):

CR C11 C12 C13 C21 C22 C23 C31 C32 C33 C44/2 C55/2 C66/2

0.00 198.2 6.037 6.037 6.041 12.29 4.957 6.041 4.957 12.29 3.671 5.095 5.095
0.05 83.89 6.639 5.427 6.638 12.64 5.000 5.427 5.001 12.16 3.782 4.968 5.691
0.10 43.90 6.651 5.451 6.645 13.88 5.163 5.447 5.162 11.97 4.055 4.813 6.953
0.15 29.90 6.844 5.258 6.840 15.59 4.953 5.252 4.951 12.90 4.155 5.077 7.414
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