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A B S T R A C T

The atmospheric water supply and demand dynamics determine a region’s potential water resources. The hy-
drologic ratios, such as, aridity index, evaporation ratio and runoff coefficients are useful indicators to quantify
the atmospheric water dynamics at watershed to regional scales. In this study, we developed a modeling fra-
mework using a machine learning approach to predict hydrologic ratios for watersheds located in contiguous
United States (CONUS) by utilizing a set of climate, soil, vegetation, and topographic variables. Overall, the
proposed modeling framework is able to simulate the hydrologic ratios at watershed scale with a considerable
accuracy. The concept of non-parametric elasticity was applied to study the potential influence of the estimated
hydrologic ratios on various drought characteristics (resilience, vulnerability, and exposure) for river basins
located in CONUS. Spatial sensitivity of drought indicators to hydrologic ratios suggests that an increase in
hydrologic ratios may result in augmentation of magnitude of drought indicators in majority of the river basins.
Aridity index seems to have higher influence on drought characteristics in comparison to other hydrologic ratios.
It was observed that the machine learning approach based on random forests algorithm can efficiently estimate
the spatial distribution of hydrologic ratios provided sufficient data is available. In addition to that, the non-
parametric based elasticity approach can identify the potential influence of hydrologic ratios on spatial drought
characteristics.

1. Introduction

Determining the long term natural water availability is extremely
important for domestic, agricultural and industrial sectors to develop
policy and decision makings at local to regional scale (Vorosmarty
et al., 2000; Gleick, 2003; Biswas, 2004; Veettil and Mishra, 2016). This
long term natural availability of water resources is mostly dependent on
the regional atmospheric dynamics controlled by precipitation,
streamflow and evapotranspiration (Oki and Kanae, 2006; Arnell, 1999;
Huntington, 2006). Therefore, spatial variability in these hydro-climate
variables might lead to regional alterations in the supply and demand of
water resources availability. These changes may influence the resi-
lience, vulnerability and exposure of hydrologic extreme events in any
given river basin (Cook et al., 2004). In addition, the degree of influ-
ence with which these variables might affect the drought indicators can
vary spatially within a river basin (Van loon et al., 2014; Mishra and
Singh, 2011). Therefore, quantifying the potential influence of hydro-
climatic variables on extreme events are crucial to improve water re-
sources management in a river basin.

The atmospheric water balance can be quantified using several
metrics. Among them, the aridity index, evaporation ratio, and runoff
coefficient received a lot of interest due to their ability to capture the
dynamics of the hydrologic cycle (Schaake et al., 2006). Aridity index
(AI) defined as the ratio of precipitation to potential evaporation, which
represents the atmospheric potential water availability over atmo-
spheric water demand. This definition of AI is widely accepted for
characterizing climate boundaries (Maestre et al., 2012) in addition to
investigating the degree of aridity across the world (Nastos et al.,
2013). Also, the aridity index was used to assess the effects of climate
change on runoff, vegetation and desertification (Sawicz et al., 2011).
Therefore, AI serves to identify and locate regions that suffer from
available water deficit.

The runoff coefficient (RC) is defined based on the ratio between the
annual runoff and the annual rainfall, and it can be a very good in-
dicator to study the degree of moisture recycling as well as water
holding capacity in a given area (Savenije, 1996; Sriwongsitanon and
Taesombat, 2011). By using RC, it is possible to investigate the role of
canopy architecture, leaf characteristics and biomass in controlling the
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runoff within the catchment (Muzylo et al., 2009; Rao et al., 2011;
Ferreira et al., 2016). Similar to R-index (Yao, 1974), we calculated the
relative evaporation ratio (ER) that is defined as the ratio between
actual evapotranspiration (AET) to potential evapotranspiration (PET).
In addition, these three indices can formulate useful metrics for hy-
drologic ratios (Schaake et al., 2006) and it forms the basis for budyko
hypothesis, which is a widely used framework to examine energy and
water fluxes at watersheds (Budyko, 1974).

In regions where high-quality long-term observations are scarce,
these hydrologic ratios can be quantified using land surface models.
However, these models, are subject to uncertainties from inputs, sim-
plification, and parameterization (EK et al., 2003; Li et al., 2011).
Further, these models can be computationally expensive, often re-
quiring high-performance computing when running models over larger
areas, and may limit a comprehensive assessment of uncertainty in
forcing data or climate change scenarios (Bosshard et al., 2013; Elsner
et al., 2014). In order to overcome such limitations, statistical models
which require a limited number of input variables can be used as an
alternative tool to investigate spatial characteristics of surface hydro-
climate processes (Schneider, 1996; McCabe and Wolock, 2011;
Abatzoglou and Ficklin, 2017). Previous studies have established that
statistical models have potential to predict spatio-temporal hydrologic
processes based on a set of controlling factors (Abatzoglou and Ficklin,
2017; Deshmukh and Singh, 2016; Van Loon and Laaha, 2015). Among
them, Random Forest (RF) approach is one of the most popular and
powerful machine learning algorithms that are built based on the
principle of various combinations of classification and regressions trees
(Breiman, 2001). The RF algorithm is a natural and non-linear model-
ling tool that provides estimates regarding the hierarchy of variables in
the classification, and thus it can estimate individual variable’s con-
tribution to the spatial distribution of hydrologic ratios. In hydrology,
the RF algorithm has been applied to eco-hydrological distribution
modeling (Peters et al., 2007), prediction of natural flow regimes
(Carlisle et al., 2010), and groundwater mapping (Naghibi et al., 2016).
A great deal of theoretical and empirical studies have detailed the ad-
vantages of RF, which includes, high forecast accuracy, acceptable
tolerance to outliers and noise, and easy avoidance of over-fitting
problems. Therefore, RF model can be applied to spatial prediction and
for rectifying multi-variable and non-linear issues.

Among the hydrologic extreme events, droughts are known to have
impacts on multiple sectors, such as, domestic, agriculture, energy
production and fishery (Mishra and Singh, 2010). Droughts usually
span over large geographical areas and often last for months to years
representing a dominant three-dimensional (latitude, longitude and
time) space-time structure unlike other hydrologic extreme events
(Lloyd-Hughes, 2012; Konapala and Mishra, 2017). In addition, climate
models have projected an increase in future drought severity and
duration over continental USA (Wehner et al., 2011; Konapala and
Mishra, 2017). Therefore, investigating the potential influence of hy-
drologic ratios on drought characteristics can further improve our un-
derstanding on identifying critical (sensitive) areas leading to superior
drought management strategies. As a result, we determine the various
characteristics of droughts using the concepts of Resilience, Exposure,
Vulnerability and duration. Estimation of these values at a catchment
scale can help water resources managers to develop tools for studying
catchment’s vulnerability to droughts, ability to recover (resilience),
frequency and its exposure to drought conditions.

The overall goal of this study is to: (i) develop a random forest
model that can spatially predict the hydrologic ratios based on a set of
geospatial climate, vegetation, and topographic variables, and (ii) to
evaluate the potential influence of estimated hydrological ratios on
spatial drought characteristics for river basins located in CONUS.
Through this work, we also investigated the dominant factors re-
sponsible for the spatial distributions of hydrologic ratios. To achieve
the objectives, the data sources and the adopted statistical methodology
are explained in Section 2. In Section 3, the various features of the

calibrated random forest model and sensitivity of drought character-
istics are discussed. Finally, the conclusions are summarized in Section
4.

2. Study area, data and methodology

2.1. Data description

To address our objectives, the datasets are collected from multiple
sources. We first describe the data that used for building RF model.
Majority of the data for building RF model was obtained from Model
Parameter Estimation Experiment (MOPEX) basin. The watersheds
considered in MOPEX are considered to have minimum human inter-
ference (Schaake et al., 2006). The dataset covers a wide range of cli-
mate, soil, and vegetation characteristics for CONUS. The watershed
characteristics (Table 1) of 438 MOPEX basins distributed over the
CONUS are acquired from the following sources. The mean annual
precipitation and temperature data is processed from the National
Weather Service River Forecast System (NWSRFS). The NWSRFS uses
interpolation method based on inverse distance algorithm of PRISM
(Schaake et al., 2006; Daly et al., 1994) data set using the climatology
of 1961–1990. Within the MOPEX basins, watershed’s physical char-
acteristics is derived using the Digital Elevation Model (DEM) obtained
from the National Operational Hydrologic Remote Sensing Center
(NOHRSC); vegetation type was obtained from the University of
Maryland Land cover database; porosity is derived from STATGO soils
information database, and NDVI is derived from MODIS dataset
(https://lpdaac.usgs.gov/). The spatial distribution of mean annual
precipitation, the hydrological ratios, NDVI, and mean annual potential
evapotranspiration across the MOPEX basins are illustrated in Fig. 1.
More information about the data sources can be found in Schaake et al.
(2006). The watershed slope and available water content (AWC) are
derived from National Gap Analysis Program and STATGO database,
respectively.

The selected variables (Table 1) for the watersheds across CONUS
are collected and aggregated from various sources. The Pearson’s Cor-
relation Coefficients between geospatial variables (watershed char-
acteristics) and hydrologic ratios (Table 1) for the 438 MOPEX basins
distributed over the CONUS suggests possible relationship (positive/
negative) between them. The USGS defined watersheds [Hydrologic
Unit Code (HUC) 8] and major river basins (HUC 2) are obtained from
USGS watershed boundary dataset (https://nhd.usgs.gov/wbd.html).
The spatial distribution of major river basins is illustrated in Fig. 2. The
mean annual precipitation and potential evapotranspiration are ob-
tained and aggregated from PRISM dataset (http://www.prism.
oregonstate.edu/). The NDVI over all the watersheds of CONUS are

Table 1
Pearson’s Correlation Coefficients calculated between geospatial variables
(watershed characteristics) and hydrologic ratios for the 438 MOPEX basins
distributed over the CONUS.

Variable Description AI RI RC

Area Watershed area −0.26 −0.30 −0.30
Forest Percentage of forest land 0.31 0.41 0.43
Shrub Percentage of shrub land 0.28 0.29 0.33
Porosity Soil porosity −0.02 0.05 0.03
NDVI Annual mean normalized difference

vegetation index
0.44 0.60 0.55

A.PCP Annual mean precipitation 0.80 0.77 0.81
A.PET Annual mean potential

evapotranspiration
−0.63 −0.73 −0.72

STD.DEV.PET standard deviation of potential
evapotranspiration

−0.54 −0.65 −0.66

STD.DEV.PCP Standard deviation of precipitation 0.14 −0.06 −0.03
Slope Watershed slope mean 0.41 0.26 0.34
AWC Available water content −0.30 −0.21 −0.27
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obtained from MODIS NDVI dataset. The spatial distribution of the
mean annual precipitation (potential evapotranspiration), and NDVI
over the selected watersheds of CONUS are shown in Fig. 3.

For estimating drought characteristics, we used Standardized
Precipitation Evapotranspiration Index (SPEI) dataset developed by
Vicente-Serrano et al. (2010) and available at SPEIbase v.2.5 (http://
spei.csic.es/database.html). SPEI is an extension to the widely used
Standardized Precipitation Index (SPI). However, unlike, SPI, the SPEI
takes into account both precipitation and potential evapotranspiration
(PET) and thus captures the impact of increased temperature on water

demand (Vicente-Serrano et al., 2010). In addition to that, SPEI can also
be computed at different time scales facilitating its usage for drought
impacts on various water resources needs (Mishra and Singh, 2010,
2011). Therefore, in this study we utilize the 3-month SPEI for seasonal
scale drought characteristics.

2.2. Random forest (RF) model

The RF modeling approach uses classification and regression trees
as building blocks to derive effective prediction models (James et al.,

Fig. 1. The spatial distribution of (a) mean of annual precipitation, (b) aridity index, (c) evaporation ratio, and (d) runoff coefficient (e) NDVI, and (f) annual mean
PET across the MOPEX basins.
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2013). Unlike the other tree-based methods, RF increases diversity
among the classification trees by resampling data and randomly chan-
ging the predictive variable sets for different tree induction processes.
Therefore, the key parameters for RF models are the number of trees
and predictors used to determine the split at each node (Vorpahl et al.,

2012). Here the Random Forest (RF) (Breiman, 2001) model was first
developed based on the MOPEX watersheds, then the model was ap-
plied to predict the hydrological ratios of HUC8 watersheds.

Fig. 4 illustrates the steps used to develop RF prediction model for
hydrologic ratios for watersheds in CONUS. As shown in the flowchart
both response and predictor variables of MOPEX dataset divided into 2
separate groups i.e., training and testing. The splitting of data set into
training and testing data set is based on two conditions (a) does the
dataset (training and testing) large enough to yield statistically mean-
ingful results? And (b) does the dataset is a representative of whole?
Therefore, split between training and testing may vary in each study.
For example, Bachmair et al. (2016) applied RF modeling approach for
predicting the drought impacts of each drought indicator by splitting
the train and test data to 90:10. Whereas, Rahmati et al. (2016) split the
train and test data to 70:30 for mapping the groundwater potential over
the Mehran Region located in the northern part of Iran. Similarly, our
study also showed an acceptable result for splitting the MPEX datasets
to 70% testing data and 30% testing data in terms of correlation coef-
ficient (r) and MSE. Here, the response variables are hydrologic ratios
and the predictor variables are geospatial variables that are listed in
Table 1. During the training phase, we utilized 500 trees derived from
500 bootstrapped data sets to build random forest model. Then, based
on each bootstrapped sample, 500 regression trees are constructed.
Split points of these regression trees were chosen from a random subset
of all available predictor variables. Then, we averaged the resulting 500
predictions generated from individual regression tree. The individual
tree may have higher variance, therefore by averaging these 500 trees
likely to reduce the overall variance. Thus, RF modeling approach has
potential to improve prediction (simulation) accuracy by combining
hundreds of trees into a single procedure (James et al., 2013). Finally,
we predicted the hydrologic ratios by applying the RF algorithm and

1. Pacific North West region 7. Arkansas White Red region 13. Ohio region 
2. California region 8. Rio-Grande region 14. Upper Mississippi region 
3. Great Basin region 9. Texas Gulf region 15. Mid-Atlantic region 
4. Lower Colorado region 10. Lower Mississippi region 16. New England region 
5. Upper Colorado region 11. South Atlantic region 17. Great Lakes region 
6. Missouri region 12. Tennessee region 18. Souris Red Rainy region 

Fig. 2. The location of major river basins in the CONUS. The table provides the
name of each major river basins corresponding to the number.

Fig. 3. The spatial distribution of (a) mean annual precipitation, (b) mean annual PET, and (c) NDVI across the HUC-8 watersheds of USA.
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validated with 30% data, which was not included in the model devel-
opment. The random forest model used in this study was built using the
“randomForest” package (Liaw and Wiener, 2002) in the R software
project (R Core Team, 2014). Subsequently, the model prediction ac-
curacy was evaluated based on mean square error (MSE) (James et al.,
2013) and strength of correlation (r) between the predicted and ob-
served hydrological ratios. In the second phase of the analysis, we ap-
plied the calibrated RF model to predict hydrological ratios over the

CONUS by using the predictors aggregated at HUC-8 level watershed
scale.

2.3. Drought resilience, vulnerability, exposure and frequency

We evaluated the watershed’s drought conditions based on the
concepts of resilience, vulnerability, exposure and frequency. These
concepts (Hashimoto et al., 1982; Loucks and Van Beek, 2017) are
widely used in the water resources systems (Loucks and Van Beek,
2017; Asefa et al., 2014; Brown and Williams, 2015; Ayyub, 2014). In
this study, we applied these concepts to characterize droughts in any
given watershed. For illustration purpose, we develop a hypothetical
example based on SPEI 03 as drought indicator for a period of
24months (shown in Fig. 6). In this study, we consider that the drought
condition likely to be prevalent in a watershed if the SPEI 03 value is
below -1 for a period more than 2months. However, selection of these
thresholds can vary depending on the research interest and stake-
holders need. Therefore, the hypothetical scenario exhibits two in-
stances of the water shortage ranging for a period of 3 and 5months. In
the following text, we illustrate these drought indicators based on the
example provided in Fig. 5.

2.3.1. Drought resilience
Drought Resilience (Re) can be defined as the ability of a watershed

to recover from water shortage to water availability state (Hoque et al.,
2016; Loucks and Van Beek, 2017, Sadeghi and Hazbavi, 2017). In our
case, we defined Re based on a temporal scale as adopted previously by
Maity et al. (2012) and Sadeghi and Hazbavi, (2017). As a result, we
express drought resilience (Re) as the inverse of average drought
duration given by Eq. (1)

=
∑
=

M

DD
Re

i

M

i
1 (1)

where M is the number of events and DD is the drought duration. In our
hypothetical scenario (Fig. 5), we can observe that M=2 and

∑
=
DD

i

M

i
1

=3+5, indicating that Re is 0.4/months. As evident from the

formulation, it can be seen that higher is the average drought duration,
lesser will be resilient of a watershed to droughts. Therefore, high va-
lues of Re indicates that the watersheds are more resilient to drought.

2.3.2. Vulnerability
Drought vulnerability (Vu) can be defined as the average depletion

of available water due to drought. In our case, the drought vulnerability
is measured based on the magnitude of SPEI during the drought event

MOPEX Dataset 

Train Data: 70% 

Response: Hydrologic ratios Predictors: Geospatial 
variables 

500 Bootstrap samples 

Sample 1 Sample 2 Sample 500 

Prediction 1 Prediction 2 Prediction 500 

Average of tree’s prediction 

Test Data: 30% of MOPEX Dataset 

Random Forest model 

Predicted Response 

Fig. 4. The exploratory random forest modeling framework used to predict the
hydrologic ratios of MOPEX River basin. [Note: 70% of the data is used for
training the random forest model and 30% of data used for testing].

Fig. 5. Hypothetical schematic of SPEI time series used for drought analysis. The drought threshold is shown as dotted lines. Here the drought events are selected
using SPEI value≤−1, and for a duration≥ 3months.

A.V. Veettil et al. Journal of Hydrology 564 (2018) 294–306

298



(Sadeghi and Hazbavi, 2017). Therefore, in the present study we esti-
mated the drought vulnerability of each watershed as (Sadeghi and
Hazbavi, 2017):

=
∑ < −Vu

SPEI
M

SPEI 1
(2)

In the context of our hypothetical example (Fig. 5), drought vul-
nerability is given by [(−2.2)+ (−2.6)+ (−1.9)+ (−2.1)+
(−2.9)+ (−2.5)+ (−2)+ (−1.2)]/2. Higher value of Vu indicates
that the watershed exhibits higher degree of vulnerability to droughts.

2.3.3. Exposure
Drought exposure (Ex) can be defined as the relative amount of time

the watershed is exposed to drought conditions (Liu et al., 2013). In this
case we define this phenomenon based on temporal scale, and as a
result, Ex is calculated as the ratio between total time periods (Liu et al.,
2013) a watershed is undergoing drought to the total duration of the
study period. It can be estimated as,

=
∑
=Ex
DD

TD
i

M

i
1

(3)

where, TD represents the total number of months in the study period.
Therefore, in context of Fig. 5, drought exposure can be estimated as
(3+ 5)/24. As evident from the formulation, higher values of Ex re-
present high degree of drought exposure in the watersheds.

2.3.4. Drought frequency
The drought frequency (Fr) can be defined as the number of oc-

currences of drought event exceeding a certain threshold per unit time
(Blenkinsop and Fowler, 2007; Spinoni et al., 2014). In our case, we
expressed drought frequency on a yearly scale given by the total
number of qualifying drought events (SPEI < −1 and DD >

2months) divided by the total number years as

=Fr M
n (4)

Where n is the number of years considered in this study and M is the
number of drought events with SPEI03 value below -1 simultaneously
for a period more than 2months. Therefore, for the case of Fig. 5,
drought frequency is estimated as 2/2 indicating the frequency as a
single drought event per year.

In this study, SPEI 03 was used as drought index to calculate
drought resilience, vulnerability, exposure and frequency for CONUS at
a spatial resolution of 0.50× 0.50 for the period of 1961–1990. We
aggregated these gridded values to generate information for individual
watersheds. The spatial distribution of Re, Vu, Ex, and Fr for the major
river basins are shown in Fig. 6.

2.4. Sensitivity analysis between drought characteristics and hydrologic
ratios

To quantify the spatial response of the estimated drought indicators
to hydrologic ratios we utilized the concept of non-parametric sensi-
tivity introduced by Sankarasubramanian et al. (2001). This approach is
useful to quantify the relative change in one variable may affect the
other variable. This sensitivity (Konapala and Mishra, 2016; Ahiablame
et al., 2017) can be expressed as

= ⎛

⎝
⎜

−
−

× ⎞

⎠
⎟φ median

y y
x x

x
y

¯
¯

¯
¯

i
f f

i
f f

f

f
(5)

where ∈x AI ER RC{ , , } and ∈y Ex Vu Fr{Re, , , }; f can be any one of the
selected major river basins and i is the i th watershed belonging to the
river basin f. Whereas, ȳ and x̄ represents the spatial mean of x and y
variables within the watersheds in a given river basin f. The value φ
represents the spatial variation in drought characteristics with respect

Fig. 6. Spatial distribution of average (a) drought resilience, (b) drought vulnerability, (c) drought frequency and (d) drought exposure across the major river basins
of USA.
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to the change in hydrologic ratio of watersheds within a river basin. In
addition, the φ value also indicates the degree of spatial influence of the
hydrologic ratios on drought characteristics within a river basin. The
higher value of φ for a river basin indicates that the drought char-
acteristics of watersheds in the river basin are highly sensitive to the
hydrologic ratios. Another advantage of this approach is that it distin-
guishes between positive and negative sensitivities. For instance, a
positive φ value in case of aridity index and resilience, indicate that an
increase in aridity index may result in increase in resilience over the
river basin. Whereas, a negative φ value indicates that an increase in
aridity index might result in decrease in drought resilience. Therefore,
this approach is found to be suitable for assessing the spatial influence
of hydrologic ratios on drought properties within a river basin. Then,
the statistical significance of φ was evaluated with a bootstrap approach
as mentioned in Konapala and Mishra (2016) by considering 999
samples. Only the φ values with p values less than 0.05 are considered in
this analysis.

3. Results

3.1. Evaluation of random forest model

As a first step, we evaluated the performance of random forest (RF)
model to predict hydrologic ratios (AI, ER, and RC) over the MOPEX
basins. The scatter plot between observed and predicted hydrologic
ratios are provided in Fig. 7. The random forest model for predicting AI
(RF-AI) have a Pearson correlation value of 0.81 and an MSE of 0.07.
Whereas, the RF model for ER (RF-ER) shows a Pearson correlation
value of 0.9 and MSE of 0.002; and the RF model for RC (RF-RC) shows
a Pearson correlation of 0.91 and MSE of 0.007. Even though all these
models were able to replicate the index values with a considerable
accuracy, the RF-RC model performs the best among the three models.
In case of RF-AI and RF-ER models the annual mean precipitation,
annual mean potential evapotranspiration, NDVI, and percentage of
forest cover were the most important variables in predicting the AI and
ER across the watersheds of USA. Whereas, in case of RF-RC model
standard deviation of potential evapotranspiration also played an im-
portant role in predicting the RC. In RF-AI model, the AI values greater
than 2 are less accurately predicted. Whereas, the AI values from 0.5 to
2 are more accurately predicted. As a result, the model might not ac-
curately represent the humid conditions. In case of RF-ER model, the
values which are at the lower end (i.e. 0.3 to 0.6) are less accurately
predicted compared to the values in the range of 0.6 to 0.9. Finally, in
case of RF-RC model, the predicted values greater than 0.5 witness
higher uncertainty.

3.2. Spatial pattern of modeled aridity index across the major river basins

The calibrated RF models are applied to predict the hydrologic

ratios at HUC 8 level watersheds. In general HUC 8 maps the sub-basin
level, similar to medium-sized river basins (about 2200 nationwide).
Fig. 8(a) illustrates the spatial distribution of aridity index for the
CONUS. The UNEP (1992) classified the aridity index climatic zone to
hyper arid (< 0.05), arid (0.05–0.20), semi-arid (0.20–0.50), sub-
humid (0.50–0.65), and humid (> 0.65) zones (Nastos et al., 2013).
Based on our analysis, it was observed that most of the watershed were
located in semi-arid, sub-humid or humid, and none of these water-
sheds depicted either hyper arid or arid climatic zone as classified by
the UNEP (1992). The AI values for the eastern river basins were re-
latively higher and homogeneous in nature. For example, in South-
Atlantic River basin the AI values range from 0.9 to 1.5 with a coeffi-
cient of variation (CV) of 11%. Where, the mean annual precipitation
was also homogeneous throughout the watersheds. The Lower Mis-
sissippi River basin located in southeastern CONUS showed minimum
CV (5%) in terms of predicted AI values with the values range from 1.05
to 1.6. Whereas, for the Great-Lake River basin located in the northeast
of the CONUS exhibited maximum CV (14%). However, unlike the
eastern river basins, the central river basins showed more diverse dis-
tribution of the AI values. For instance the Missouri River basin, Ar-
kansas White Red region, and Texas-Gulf region showed an AI value
range of 0.39–0.91, 0.43–1.29, and 0.53–1.32 respectively.

However, as we go from east to west the indices value further re-
duced and the spatial pattern of AI becomes more heterogeneous in
nature (Sankarasubramanian and Vogel, 2003). Majority of the water-
sheds in the southwestern United States are classified as ‘dry’, hence
their AI is less than 0.65, except few watersheds located in the Cali-
fornia River Basin. Unlike the watersheds in the southwestern USA, the
Pacific Northwest River basin showed high values of AI possibly due to
the frontal weather systems arising from the Pacific Ocean and the
Cascade Mountains (Schillinger et al., 2010). It was observed that,
within the Pacific Northwest River basin the AI values range from 0.38
to 2.9, with a CV of 72%. This observed variability in AI may be as-
sociated with spatial variability in precipitation in the Pacific North-
west River basin (Bracken et al., 2015), where the annual precipitation
ranges from 87mm to 3300mm.

The increase in temperature leads to increased evapotranspiration
and lower AI values (Proedrou et al., 1997; Feidas et al., 2004;
Philandras et al., 2008) in many watersheds. The maximum PET was
observed in the watersheds located in the southwestern river basins. For
instance, California and Lower Colorado River basins have number of
watersheds with a higher PET, which may lead the watersheds of these
river basins to lower aridity values. However, the spatial distribution of
PET was more heterogeneous compared to the precipitation pattern.
The mean annual normalized vegetation index (NDVI) is one of the
important variables influencing the AI over the major river basins. Si-
milar to the mean annual precipitation, the spatial distribution of NDVI
was homogenous across the river basins of eastern USA. We also noticed
that, the correlation between NDVI and AI was comparatively less in the

(a)      (b)                                                                (c) 

r = 0.81 
MSE = 0.07 

r = 0.90 
MSE = 0.002

r = 0.91 
MSE = 0.003 

Fig. 7. Scatter plot between observed versus predicted (a) aridity index (AI), (b) evaporation ratio (ER), and (c) runoff coefficient (RC) of the MOPEX river basin.
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eastern United States, where the majority of the land cover is domi-
nated by forest cover (NLCD, 2011). Whereas, the NDVI for the western
river basins showed high correlation with the aridity values (e.g. Pacific
Northwest River basin, California region, Great-Basin region), which
suggests that NDVI has major role in controlling the AI in most of the
watersheds located in western USA. However, the result from the RF
model suggests that the relationship between watershed slope and AWC
are weak with AI, indicating that topography and soil characteristics
have relatively less role in governing the AI across the watersheds.

3.3. Spatial pattern of modeled evaporation ratio across the major river
basins

A higher value of relative evaporation ratio (ER) indicates that the
region has optimum water that is necessary for the vegetation. The
Fig. 8(b) illustrates the modeled ER based on RF modeling for the
CONUS. The ER values vary from 0.33 to 0.86, with a CV of 28% over
the watersheds located in CONUS. Similar to the AI, the ER values for
the eastern river basins were relatively higher and homogeneous in
nature. For example, the ER values of the New-England River basin,
Mid and South-Atlantic River basins range from 0.63 to 0.77,
0.56–0.76, and 0.63–0.82 respectively. In addition to that, the ER va-
lues typically follows the spatial pattern of mean annual precipitation.
Whereas, the river basins located in the central United States exhibits
relatively high variability of ER. For instance, the Missouri River Basin,
Arkansas white-red region, and Texas-Gulf region showed a CV of 24%,
27%, and 23% respectively. In contrast to AI, the spatial distribution of
ER values were more homogenous throughout the southwestern river
basins (e.g. Lower Colorado and Rio-Grande region). The southwestern
river basins exhibited lower range of ER values. However, unlike the

Lower Colorado and Rio-Grande region, the ER value for California
River basin range from 0.3 to 0.75. Similar to the AI, the Pacific
Northwest River basin depicted high variation of ER values, with a CV
of 33%.

The major contributing variables for estimating ER in the RF model
were mean annual precipitation, PET, and vegetation cover. The per-
centage of forest cover also showed a better relationship with the ER in
the random forest modeling. Overall, the combination of minimum
precipitation, higher PET, and less vegetation growth may attribute to
the lower ER in the southwestern parts of the CONUS. The land cover
has a strong influence on ER (Liu et al., 2017), therefore the role of land
use pattern in defining ER of a river basin is analyzed. For instance,
Tennessee River basin and Ohio River basins located in the eastern USA
has forest land cover of 58% and 48% showed relatively less variation
of ER throughout the basins. Whereas, for the western USA, where the
forest cover is comparatively less, exhibited higher variation in ER.
Although, the ER of a region also depends upon crop type, stage of
growth, soil moisture, health of plants and cultivation practices (Ayars
and Hanson, 2014), we did not include all these variables in RF model
due to limitation in available data. Overall, it was observed that RF
modeling framework is appropriate for predicting the ER at a regional
(or watershed) scale.

3.4. Spatial pattern of modeled runoff coefficient across the major river
basins

The spatial distribution of runoff coefficient (RC) across the con-
tinental USA is illustrated in Fig. 8(c). Similar to AI and ER, the river
basins located in eastern CONUS witnessed a homogenous distribution
of RC (Sankarasubramanian and Vogel, 2003), comparatively with a

Fig. 8. Spatial pattern of simulated (a) aridity index, (b) evaporation ratio, and (c) runoff coefficient for the CONUS watersheds. Black lines show the boundaries of
18 major river basins.
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higher magnitude (Chang et al., 2014) varies from 0.1 to 0.54. How-
ever, unlike the other eastern river basins, the Great Lake River basin of
northeastern USA exhibited high variation of RC. River basins located
in central USA, i.e. Missouri River basin, Arkansas River basin, and
Texas- Gulf region showed more diverse pattern of RC across the wa-
tersheds. In contrast to the AI values, the spatial pattern of RC was more
homogeneous across the southwestern (e.g. Lower Colorado River
basin) and Midwestern (e.g. Great-Basin region) river basins. For ex-
ample, Lower Colorado River basin showed a CV of 8% and Great –
Basin region showed a CV of 16%. Whereas, in California River basin
the RC varies from 0.07 to 0.52, with a CV of 66%. Similar to the result
presented by Chang et al. (2014), we also observed that Pacific
Northwest River basin watersheds exhibited the high values of RC
among the CONUS watersheds, where the RC was ranging from 0.04 to
0.54 possibly due to the spatial variability in precipitation.

Mean annual precipitation, mean annual PET, and NDVI were the
important variables, which control the spatial pattern of runoff coeffi-
cient across the CONUS watersheds. As we mentioned, the range of
NDVI was comparatively lesser in western United States, but it showed
higher correlation with RC. For instance, the correlation between NDVI
and runoff coefficient in Pacific Northwest basin was 0.81, which is
comparatively higher than the river basins of eastern USA. Therefore, in
the random forest modeling the NDVI may have a significant role in
predicting the RC over western river basins. Overall, the spatial analysis
of AI, ER, and RC showed distinct spatial pattern across the watersheds
of CONUS (Chang et al., 2014; Sawicz et al., 2011; Sankarasubramanian
and Vogel, 2003). We also noticed that, basins with low hydrologic
ratios typically have higher CV (e.g. Pacific Northwest and California
region). On the other hand, basins with higher hydrologic ratios de-
picted low CV (e.g. South-Atlantic Gulf region and Lower Mississippi
region).

3.5. Sensitivity of drought indicators to hydrologic ratios

Fig. 9 illustrates the spatial pattern of sensitivity of various drought
characteristics to AI in the major river basins of CONUS. The basins in
grey color are not statistically significant in nature. Fig. 9(a) indicates
sensitivity of drought resilience to AI value. The sensitivity of northeast
(Great Lakes region) and north central (Souris Red Rainy region) re-
gions showed a positive sensitivity with Great Lakes region and Souris
Red Rainy region exhibiting around 111% and 16% of increase in
drought resilience. It indicates that, within the river basin, an increase
in AI of watersheds would result in increase of drought resilience of
these watersheds. We also noticed that the Great Lakes region has the
high positive sensitivity value to the aridity index. Whereas, the Ten-
nessee, Lower and Upper Mississippi River basins showed a decrease in
drought resilience with respect to aridity index. The Tennessee River
basin showed a decrease of 53% and Lower Mississippi River basin
showed a decrease of 34%. In the western part of USA, the only region
that is significantly sensitive to AI is Upper Colorado River basin, where
it showed a negative sensitivity value of 19%. This indicates that in
those river basins, an increase in AI values in watersheds are accom-
panied by an increase of drought resilience. Also, it is interesting to note
that the observed magnitude of positive sensitivity is more than the
observed magnitude of negative sensitivity. Therefore, it may indicate
that in the basins where humidity increases due to precipitation,
drought resilience also increases (Sherwood and Fu, 2014). In case of
sensitivity of drought vulnerability to AI (Fig. 9(b)), we can see that all
the north eastern river basins exhibit a positive sensitivity except the
new England region. Among them, the Great Lakes region has a high
sensitivity of around 50% and the Mid-Atlantic region has a low sen-
sitivity of around 11%. California region seems to be more sensitive
than all the river basins in the CONUS region. Whereas, the Rio Grande
and Souris Red Rainy region exhibit negative sensitivity values of 28%

Fig. 9. Spatial distribution of sensitivity of (a) drought resilience, (b) drought vulnerability, (c) drought frequency, and (d) drought exposure to aridity index across
the major river basins. The basins in grey are not statistically significant in nature.
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and 16% respectively. In case of drought vulnerability too, the observed
magnitude of positive sensitivity is more than the observed magnitude
of negative sensitivity. Therefore, the similar conclusion of basins
where AI value increases prone to increased drought vulnerability may
be implied.

In case of sensitivity of drought frequency to AI (Fig. 9(c)), the
northeastern river basins are considerably more sensitive than the other
regions. The Great Lakes river basin and New-England river basin ex-
hibits the high positive sensitivity, whereas the river basins in southeast
showed comparatively low but negative and significant sensitivities.
The California River basin (western USA) and Arkansas River basin of
central USA also showed a negative sensitivity of almost 10%. The
spatial sensitivity of drought frequency also showed that, more number
of river basins (13 in total) are sensitive to aridity index. In this case
also, we can see that the river basins exhibiting positive sensitivity
values are more in number than the negative sensitivity values. Also, as
in the case of other drought indicators, in the northeastern region the
number of drought events is positively sensitive to aridity index. Among
them, the Great Lakes river basin has the highest positive sensitivity of
more than 100%. Whereas, the Pacific Northwest region has the least
positive sensitivity of 12%. In addition, it is interesting to see that the
drought frequency in the Rio Grande and Lower Colorado River basins
were moderately sensitive (38% and 22% respectively) to AI. Overall,
we can see that the drought indicators are more positively sensitive to
AI value than negatively. Finally, in case of sensitivity of drought ex-
posure to AI (Fig. 9(d)), all the eastern river basins except New England
are sensitive. Among them, the South-Atlantic and Tennessee River
basin exhibits the high negative sensitivity, whereas the river basins in
western USA showed comparatively low but positive and significant
sensitivities (e.g. Pacific North west, Upper and Lower Colorado River
basins). As in the case of Re, Vu, and Fr; Drought Exposure (Ex) also
showed more number of positively sensitive river basins across the
CONUS.

Fig. 10 illustrates the spatial pattern of sensitivity of various
drought indicators to ER of watersheds in major river basins of CONUS
region. Compared to AI, we can see that in general drought char-
acteristics in more number of river basins are sensitive to ER. Among
the observed positive sensitivities, Great Basin region showed the
highest sensitivity followed by Great lakes region. Whereas, in case of
negative sensitivities, lower Mississippi and Ohio River region has high
negative sensitivities and upper and lower Colorado exhibits moderate
sensitivities. Overall, it can be observed that in these river basins, an
increase in ER would lead to increase in drought resilience. In case of
drought vulnerability (Fig. 10(b)), we can see that the Ohio and Lower
Mississippi river basins has the higher positive sensitivity followed by
Tennessee and Great basin region. Whereas, in case of negative sensi-
tivities, Pacific Northwest river basin has the higher negative magni-
tude followed by north Atlantic river basin. In addition to that, the Rio
Grande and Texas Gulf region has negative sensitivity values. Whereas,
in case of frequency, 13 river basins found to be significantly sensitive
to ER. However, in the case of sensitivity of drought frequency to ER
(Fig. 10(c)), eastern river basins have shown statistically significant
sensitivity values. Among them, great lakes river basin has the highest
sensitivity value. Whereas, the least sensitivity is observed in pacific
northwestern river basin. Finally, the sensitivity of ER (Fig. 10(d)) to
drought exposure (Ex) has relatively higher number of river basins (16
out of 18 river basins). Among them, the north eastern river basins
witness higher magnitudes of sensitivities (both positive and negative)
in comparison to the western river basins. Among them, the Ohio River
basin and upper Mississippi river basin exhibit higher positive sensi-
tivity values followed by the lower Mississippi region. Whereas the
lower Atlantic and Tennessee River basin exhibit higher negative sen-
sitivity values.

Fig. 11 illustrates the spatial pattern of sensitivity of various
drought indicators to RC of watersheds in major river basins of CONUS.
In case of drought resilience (Fig. 11(a)), Great Lakes river basin is the

Fig. 10. Spatial distribution of sensitivity of (a) drought resilience, (b) drought vulnerability, (c) drought frequency, and (d) drought exposure to evaporation ratio
across the major river basins. The basins in grey are not statistically significant in nature.
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only basin exhibiting positive sensitivity to RC. Whereas, the lower
Mississippi and Tennessee River basins are negatively sensitive. In the
western CONUS region, the upper and lower Colorado region along
with the great river basin also exhibit negative sensitivity. In case of
vulnerability (Fig. 11(b)), the Arkansas River basin shows a negative
sensitivity to RC. Whereas, the lower Mississippi, Ohio and Tennessee
River basins exhibit positive sensitivity followed by upper Colorado and
great basins. But, the great lakes region is shown to have less magnitude
positive sensitivity. In case of frequency (Fig. 11(c)), overall 11 river
basins have shown sensitivity to RC including Arkansas and Great lakes
river basins exhibiting negative sensitive values. Whereas, the north
eastern river basins along with lower Mississippi river basin have high
positive sensitivity values. In case of drought exposure (Fig. 11(d)), the
northeastern river basins witness positive sensitivity with New England
River basin showing the higher sensitivity. Whereas, in southern
Atlantic and Tennessee River basin have positive sensitivities. As a re-
sult, in general we can say that an increase in hydrologic ratios would
cause an increase in the magnitude of drought indicators; however, the
spatial sensitivities are not as prominent as in the case of temporal
sensitivities.

In general aridity Index is calculated as a ratio of the long-term
average annual precipitation to the long-term average annual evapo-
transpiration. Whereas, drought event is characterized by abnormally
dry weather conditions, sufficiently long enough to cause a serious
hydrological imbalance for a specific geographic location. A drought
event may extend for a season, a year or several years (Mishra and
Singh, 2010; Schneider, 1996). This indicates that, aridity is permanent,
while drought is temporary. In other words, while the increase in ar-
idity (less humid) may refer to the background climatology of the
geographic location, however it may not necessarily signify drought
(Sherwood and Fu, 2014; Li et al., 2017; Mukherjee et al., 2018). In
addition, the less humid area may have less influence of aridity on
water availability (Gudmundsson et al., 2016). Therefore, a change in

the aridity index may cause either positive or negative sensitivity over
the river basins considered in this study. Also, Zarch et al. (2015)
suggested that, for a long term record of datasets an increasing trend of
precipitation and potential evapotranspiration may lead to a decrease
in aridity index. In the present study we quantify drought across the
continental USA by using SPEI 3 (accumulation period of 3months).
The temporal scale of aridity index is considered as the long term an-
nual average, and temporal scale of drought is considered as the long
term average of SPEI 3. This may lead the correlation between the SPEI
drought and hydrologic ratios over the river basin to lesser values in our
analysis. In addition, the snow cover of the watersheds are not con-
sidered in this study. The snow cover can form potential long-term
moisture storage in a watershed in the form of snow/ice (Arora, 2002).
This may influence the assumption that the hydrologic ratios (AI, ER,
and RC) are prominently controlled by the evapotranspiration, pre-
cipitation, and surface runoff especially in the western and northern
watersheds.

This analysis is based on the natural environment, therefore any
discrepancy can be attributed to the neglecting human factors in the
analysis. It was observed that the increase in hydrologic ratios may
cause an increase in the severity of drought indicators in majority of the
river basins. Among the considered hydrologic ratios, Relative eva-
poration ratio was found out to be more sensitive in influencing the
drought indicators of most of the basin. Drought indicators of northeast
river basins especially the Great-Lake region is more prone to sensitivity
due to the spatial change in hydrologic ratios. Whereas, the Missouri
River basin seems to be least sensitive drought region to all the hy-
drologic ratios. The magnitude of drought vulnerability, frequency, and
exposure showed a positive relation with the runoff coefficient across
the majority of the river basins, indicating that drought severity in
watersheds of these river basins are increasing with runoff coefficient.
Similarly, in case of aridity index, majority of the river basins showed
positive relation with the drought indicators representing that

Fig. 11. Spatial distribution of sensitivity of (a) drought resilience, (b) drought vulnerability, (c) drought frequency, and (d) drought exposure to runoff coefficient
across the major river basins. The basins in grey are not statistically significant in nature.
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precipitation may have more control over drought indicators than po-
tential evapotranspiration.

4. Conclusion

In this study, we utilize Random forest model to predict the spatial
pattern of hydrologic ratios, which includes, Aridity Index (AI),
Relative Evaporation Ratio (ER), and Runoff Coefficient (RC) for the
watersheds located in Continental United States. The developed statis-
tical modeling framework incorporates a set of geospatial climate, soil,
vegetation, and topographic variables for predicting these hydrologic
ratios. Conceptually, our results agree with the previous research that
investigated the spatial distribution of long term natural water avail-
ability over the CONUS (Chang et al., 2014). Moreover, the variables
used for modeling the hydrologic ratios are widely available, therefore
the proposed statistical model can be expanded to any part of the world
to investigate and improve the quantification of water availability and
related water scarcity. However, there is room for further enhancement,
for instance, (i) anthropogenic interventions (e.g. reservoir operation,
irrigation water use) are excluded for explaining the hydrologic ratios.
The addition of such anthropogenic variables can significantly improve
prediction of runoff coefficient; (ii) quantification of groundwater
contribution to the hydrologic ratio might improve the model predic-
tion; and (iii) the proposed model may have limited potential to capture
hydrologic ratios in regions with higher landscape disturbance such as
agricultural land as well as a result of increase in urban sprawl
(Abatzoglou and Ficklin, 2017; Hamel and Guswa, 2015). Overall, the
proposed random forest prediction framework can be used for ana-
lyzing the distribution and variation of hydrologic ratios within the
major river basins of CONUS. The following conclusions can be drawn
from this study:

(a) The watersheds located in the Pacific Northwest River basin showed
maximum value of aridity index. However, within the Pacific
Northwest River Basin the aridity index values can vary from 0.38
to 2.9, with a coefficient of variation of 72%.

(b) Important variables used in RF model for quantifying the relative
evaporation ratio includes, mean annual precipitation, mean annual
PET, and vegetation cover. Additionally, the combination of
minimum precipitation, higher PET, and less vegetation cover may
attribute to low relative evaporation ratio. The spatial distribution
of evaporation ratio was more homogenous throughout the south-
western river basins (e.g. Lower Colorado and Rio-Grande region).

(c) The spatial pattern of runoff coefficient was homogeneous across
the eastern (e.g. Mid Atlantic, Tennessee River basins), south-
western (e.g. Lower Colorado River basin), and mid-western (e.g.
Great Basin region) river basins. Moreover, the influence of vege-
tation (NDVI) on runoff coefficient was clearly visible in the wes-
tern river basins of CONUS (e.g. Pacific Northwest River basin,
California River basin).

(d) Overall, the spatial analysis of hydrologic ratios showed distinct
spatial pattern across the watersheds of the CONUS. Additionally,
basins with low hydrologic ratios typically have high CV (e.g.
Pacific Northwest and California region) and on the other hand,
basins with high hydrologic ratios depicted low CV (e.g. South-
Atlantic Gulf region and Lower Mississippi region).

(e) The sensitivity of drought indicators to the hydrologic ratios for the
18 major river basins was also investigated. The sensitivity analysis
can inform the change in drought indicators such as resilience,
vulnerability, frequency, and exposure, with respect to the spatial
change in hydrologic ratios. It was observed that the hydrologic
ratios are considerably sensitive to drought characteristics in ma-
jority of the river basins. Among the considered hydrologic ratios,
Relative evaporation ratio seems to be more sensitive to influence
the drought indicators of most of the basin. Drought indicators of
northeast river basins especially the Great-Lake region is more

sensitive to the spatial change in hydrologic ratios. Whereas, the
Missouri River basin seems to be least sensitive to all the hydrologic
ratios. The addition of anthropogenic factors (Wan et al., 2017,
2018) such as, land use change, water demand, and reservoir op-
eration may improve the analysis, specifically for evaluating the
response of drought to hydrologic ratios. For instance, changes in
land use and land cover affect local and regional climate process
and related hydrologic ratios. It may lead to variation of sensitivity
of drought to hydrologic ratios with in a river basin. Future in-
vestigation is necessary for the better understanding of the effect of
climate change projection on hydrologic ratios and related sensi-
tivity on drought indicators, and consideration of groundwater and
snow related variables may improve the quantification of hydro-
logic ratios across the watersheds of continental USA.
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