Persistence Atlas for Critical Point Variability in Ensembles
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Fig. 1. Persistence atlas for an ensemble of 45 von Karman vortex streets (scalar data: orthogonal component of the curl). (a) Critical
points (minima and maxima, scaled by persistence) of a few representative ensemble members (one color per member) exhibit clearly
distinct layout patterns in terms of position and number of vortices, revealing high spatial and trend variabilities within the ensemble. (b)
Mandatory critical points (minimal regions where at least one critical point is guaranteed to occur for every member of the ensemble)
are thus particularly conservative given these variabilities and identify only one region per side of the vortex street (blue: minimum,
green: maximum). (c) The persistence atlas addresses this issue by analyzing the structure of the ensemble in terms of critical point
layouts and provides low dimensional embeddings of the members where statistical tasks, such as clustering, can be easily carried
out. In particular, our approach automatically identified five clusters, (d) to (h), corresponding to five distinct trends in critical point
layouts (five viscosity regimes). Per cluster mandatory critical points provide more accurate and useful critical point predictions (colored
regions, (d) to (h)), revealing an increasing number of vortices and a decreasing spatial variability for increasing Reynolds numbers (left
to right). The background color map shows the mean scalar field for the entire ensemble, (a) and (b), and individual clusters, (d) to (h).

Abstract— This paper presents a new approach for the visualization and analysis of the spatial variability of features of interest
represented by critical points in ensemble data. Our framework, called Persistence Atlas, enables the visualization of the dominant
spatial patterns of critical points, along with statistics regarding their occurrence in the ensemble. The persistence atlas represents in
the geometrical domain each dominant pattern in the form of a confidence map for the appearance of critical points. As a by-product,
our method also provides 2-dimensional layouts of the entire ensemble, highlighting the main trends at a global level. Our approach is
based on the new notion of Persistence Map, a measure of the geometrical density in critical points which leverages the robustness
to noise of topological persistence to better emphasize salient features. We show how to leverage spectral embedding to represent
the ensemble members as points in a low-dimensional Euclidean space, where distances between points measure the dissimilarities
between critical point layouts and where statistical tasks, such as clustering, can be easily carried out. Further, we show how the
notion of mandatory critical point can be leveraged to evaluate for each cluster confidence regions for the appearance of critical
points. Most of the steps of this framework can be trivially parallelized and we show how to efficiently implement them. Extensive
experiments demonstrate the relevance of our approach. The accuracy of the confidence regions provided by the persistence atlas is
quantitatively evaluated and compared to a baseline strategy using an off-the-shelf clustering approach. We illustrate the importance of
the persistence atlas in a variety of real-life datasets, where clear trends in feature layouts are identified and analyzed. We provide a
lightweight VTK-based C++ implementation of our approach that can be used for reproduction purposes.

Index Terms— Topological data analysis, scalar data, ensemble data
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1 INTRODUCTION

In engineering and science, measurements and simulations are nec-
essary to understand complex physical systems (in chemistry, astro-
physics, climate modeling, weather forecasts, etc.) and, more impor-
tantly, to try to predict their behavior. Modern simulations are subject
to a variety of input parameters, related to the initial conditions of the
system or to the configuration of its environment. Given the increase
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in computational power typically observed with current supercomput-
ers and high-end workstations, it is now possible for engineers and
scientists to densely sample the space of input parameters to compute
ensembles formed from many numerical simulations, in order to better
understand the variability of the system with regard to its input parame-
ters. In the case of scalar variables, this means that the data which is
considered for visualization and analysis is no longer a single field, but
an ensemble of scalar fields, for which global trends or outliers need
to be identified, visualized and analyzed. For measured data, the in-
herent uncertainty of the acquisition process can also be represented in
terms of ensembles, by considering realizations of the random variable
characterizing the acquisition noise for each point of the domain.

Ensemble datasets are however notoriously difficult to analyze, visu-
alize and interpret. First, features of interest in ensemble data exhibit
(i) trend variability: distinct trends often emerge among groups of
ensemble members which share a similar configuration in terms of
the number and location of features of interest. Second, even when



ensemble members share common trends, features are affected by (ii)
spatial variability: their exact location may vary among the ensemble
members. Both types of variabilities must be analyzed, quantified, and
visualized to aid users’ understanding of the structure of their ensem-
ble data and better predict the behavior of the system in terms of the
possible configurations of features of interest. Taken individually, the
ensemble members may not be representative of the major trends in
the whole ensemble. Hence, their direct visualization does not account
for trend variability. Moreover, they are often too numerous to allow
interactive inspection. In contrast, naive aggregation measures, such
as point-wise means, drastically smooth details out, preventing the
identification of features of interest which only occur in subsets of the
ensemble members or with high spatial variability.

Thus, it is necessary to introduce advanced techniques for the analy-
sis of the features of interest in ensemble data, to (i) identify the trends
in feature configurations, (ii) estimate their respective appearance statis-
tics, and to (iii) characterize their respective spatial variability. While
this overall strategy has been successfully instantiated for simple ob-
jects, such as level sets [27,86] or streamlines [26], it is necessary to
extend it to more advanced constructions, such as topological features.
Topological data analysis (TDA) [22,35] has demonstrated its ability
over the last two decades to capture in a generic, robust and efficient
manner the features of interest in scalar data in a variety of applications:
turbulent combustion [15,31,41], material sciences [25,33,34], compu-
tational fluid dynamics [39], chemistry [10, 28] or astrophysics [78,79]
to name a few. In these applications, domain-specific features of interest
are easily expressed in terms of the critical points [6] of the data (points
where the gradient vanishes), which are robustly extracted by topolog-
ical methods. For instance, critical points capture atomic structures
in molecular chemistry [10, 28], flame centers in combustion [15,31],
vortices in fluid dynamics [39], etc. However, despite their importance
in applications, the trend variability of critical points in ensemble data
has not been investigated so far.

This paper fills this gap with the concept of Persistence Atlas, a
global approach for critical point variability analysis in ensembles of
scalar fields. This approach is based on the new notion of Persistence
Map, which characterizes for each member of the ensemble the spatial
distribution of its critical points. To be robust to the presence of noise
in the data, this representation takes into account for each critical point
its topological persistence [23], an established measure of importance
in topological data analysis. Based on this persistence map representa-
tion, our approach embeds each member of the ensemble as a point in
a low-dimensional Euclidean space, where the distance between two
members measures the similarity between their critical point distribu-
tions. This embedding is exploited to derive a global representation
of the distributions of critical points within the ensemble, allowing for
the automatic identification of clusters, revealing the major trends in
critical point layouts in the ensemble. Additionally, for each cluster,
we show how the notion of mandatory critical point [29] can be used to
derive relevant confidence regions for the appearance of critical points
in the spatial domain. The persistence atlas is then a composition of a
series of confidence maps for the appearance of salient critical points,
each map revealing a specific trend of the ensemble.

Extensive experiments on synthetic and real-life data demonstrate
the relevance of our persistence map representation for the comparison
of critical point distributions among ensemble members. The clustering
performance of our framework and the accuracy of its confidence
regions are quantitatively evaluated and compared to a baseline strategy
using an off-the-shelf clustering approach. We illustrate the importance
of the persistence atlas for a number of real-life datasets, where clear
trends in feature layouts are identified and analyzed.

1.1 Related work

The literature related to our approach can be classified into two cate-
gories: (i) uncertainty visualization and (ii) ensemble visualization. In
the first case, the data variability is explicitly encoded by an estimator
of the probability density function (PDF) of a point-wise random vari-
able (usually with strong assumptions on its structure). In the second,
the variability arises from a series of global empirical observations.

(i) Uncertainty visualization: The analysis and visualization of un-
certainty in data [1] is commonly recognized as an important yet long
standing challenge in the visualization community [38,44,53], as docu-
mented in several surveys [12,67]. Given an estimator of the PDF of
a random variable modeling the point-wise variability in data values
(for instance, a Gaussian distribution), several techniques have been
proposed to represent the distribution of the uncertainty in the data, by
either considering the entropy of the random variables [66], correla-
tion in uncertainties [59] or variability in the data gradient [57]. To
understand the positional uncertainty related to geometric constructions
generated out of the raw uncertain data, specialized methods have been
designed. For example, approaches have estimated the positional un-
certainty of level sets under various interpolation schemes and PDF
models [4, 5,58, 62-65,75]. More related to our work, several ap-
proaches have been investigated to estimate the positional variability of
critical points under a Gaussian PDF model [42,51,52,56] or interval-
based pointwise representations of the uncertainty [11,29, 80]. How-
ever, a common aspect of the above techniques is that they explicitly
rely on strong assumptions regarding the probability density function
(PDF) modeling the random variables, which are often assumed to be
Gaussian or uniform (which is implicitly the case for interval-based
representations). Such strong assumptions are limiting in practice when
considering ensemble data, where PDF reconstructed from the empiri-
cal observations can follow an arbitrary, unknown model. Moreover,
most of the parametric PDF models studied in these techniques do not
consider multi-modal distributions, which is a necessity when several
trends clearly occur in the ensemble.
(ii) Ensemble visualization: A different category of techniques has
been specifically investigated to visualize variability in ensemble data.
In this setting, a series of global empirical observations (i.e. the mem-
bers of the ensemble) are taken as an input for the actual computation
of geometric constructions, such as level sets or streamlines. The
variability of the constructions is then analyzed. For instance, spaghetti
plots [21] have been used intensively to visualize level set variability in
weather ensemble data [68,73]. More advanced representations [60]
have also been proposed, for instance with the notion of contour box-
plot [86], their generalization to arbitrary curves [47], and also their
application to weather forecast data [69]. Additionally, Hummel et al.
derive a complete framework for the visualization of the variability in
particle advection in ensemble data [37]. More related to our work,
particularly in their ambition to analyze trend variability, specialized
clustering techniques have been investigated to cluster isocontours [27]
and streamlines [26, 50]. However, this overall strategy has never been
studied for topological features such as critical points. Our approach
aims at identifying trends in critical point layouts within the ensemble.
Thus, a necessary building block of our framework is a method to eval-
uate the similarity between critical point distributions. More generally,
the similarity estimation between topological data representations is a
long-studied problem. Several heuristics have been proposed to quickly
assess structural similarity [36,72,82]. At the theoretical level, several
metrics have been carefully studied to evaluate the similarity between
persistence diagrams [18,20], merge trees [8] or Reeb graphs [7]. The
computation of barycenters of such constructions (which is relevant
to clustering) has also been studied [84]. However, while extensively
studied from a theoretical perspective, the evaluation of these metrics
involves computationally expensive combinatorial optimization meth-
ods [48]. This makes them challenging to compute, and potentially
impracticable for real-life cases [14]. Alternatively, kernel based meth-
ods [17,70] have been specifically developed for measuring distances
between persistence diagrams in machine learning tasks. However,
these approaches (metric or kernel based) focus on the intrinsic struc-
tural similarity between topological constructions without considering
the spatial realization of these structures in the original domain.

In contrast, our approach based on persistence maps leverages the
soundness of topological persistence [23] while specifically focusing
on the spatial layout of the critical points.

1.2 Contributions

This paper makes the following new contributions:



1. An informative representation of critical point layouts (Sect. 3): In-
spired by distance field transforms, we introduce the Persistence Map,
a measure of the spatial density of critical points which leverages the
robustness to noise of topological persistence to better emphasize
salient features. In addition, computations to construct this map are
shown to be trivially parallelizable. Experiments demonstrating the
relevance of this representation for comparing critical point distribu-
tions with standard density distance measures are provided.

2. A statistical space for critical point layouts (Sect. 4): We present a
framework which leverages spectral embedding to represent persis-
tence maps as points in a low-dimensional Euclidean space, where
distances between points represent dissimilarities in critical point
layout and where statistical analysis can be easily carried out. The
first two dimensions of this space can be used to generate planar
views of the ensemble to visualize the distribution of critical point
layouts at a global level. We additionally show how persistence maps
can be clustered in this space to reveal the major trends in critical
point layouts and how relevant automatic suggestions for the number
of clusters can be estimated.

3. Confidence regions for clusters of critical point layouts (Sect. 5):
Based on the clustering of persistence maps, we show how the notion
of mandatory critical point [29] can be leveraged to visualize in
the spatial domain the possible outcomes in terms of critical point
layouts, in particular with the visualization of confidence regions
along with their respective probability of appearance. The prediction
accuracy of these regions is quantitatively evaluated and compared
to a baseline strategy using an off-the-shelf clustering approach.

4. Implementation: We provide a lightweight C++ implementation of
our approach that can be used for reproduction purposes.

2 PRELIMINARIES

This section presents theoretical background on topological data analy-
sis (TDA). It contains definitions adapted from Tierny et al. [83]. Ref-
erence introduction books to Morse theory and computational topology
have been published by Milnor [46] and Edelsbrunner and Harer [22].

2.1

The input data is given as an ensemble of n piecewise (PL) linear scalar
fields on a PL d-manifold .# (with d =2 or 3) f' @) . # — R, with
x € [0, n—1]. Each individual scalar field f ) is an ensemble member.

For brevity, we will only use the (%) notation in cases where several
members are considered and thus need disambiguation. Each member
f is valued at the vertices .#° of ./ and is linearly interpolated with
barycentric coordinates on the remaining simplices of .# . In practice,
f is enforced to be injective on .#° with simulation of simplicity [24].
The set of simplices having a given simplex ¢ as a face form the star
of o, St(o). The set of faces of the simplices of S¢(o) that do not
intersect ¢ form the link of o, Lk(0).

For a vertex v, let us define Lk~ (v) to be the lower link of v
Lk~ (v) ={o € Lk(v) |[VYu € o : f(u) < f(v)}) and Lk (v) as the
upper link of v (LkT (v) = {0 € Lk(v) | Vu € 6 : f(u) > f(v)}). When
both Lk~ (v) and Lk™ (v) are simply connected, v is called a regular
vertex. If not, v is a critical point of f [6]. Such points correspond
to configurations where the sub-level sets f~1 (i) of f (subset of .#
valued below the isovalue i) change their topology when continuously
varying the isovalue i. Critical points often correspond to features of
interest in applications. They are usually classified with the notion of
index .#, which is equal to 0, 1, (d — 1) and d respectively for: minima
(empty lower link), 1-saddles (2 connected components of lower link),
(d — 1)-saddles (2 connected components of upper link), and maxima
(empty upper link) respectively.

The population of critical points of f can be visually encoded
with the notion of persistence diagram [23] (Fig. 2). This diagram
encodes critical points as pairs (c,c’) such that f(c) < f(c') and
F(c) = #(c) — 1. These pairs follow the Elder rule [22], which
intuitively implies that if two topological features of =1 (i) meet at
a critical point ¢’ of f, the youngest feature (created at the highest

Background

Fig. 2. Critical points (spheres, dark blue: minima, dark green: maxima,
other: saddles) and persistence diagrams of a clean (a) and noisy (b) 2D
scalar field. From left to right: original 2D data, 3D terrain representation,
persistence diagram. The diagrams clearly exhibit in both cases two
large pairs, corresponding to the main hills. In the noisy diagram (b),
small bars near the diagonal correspond to noisy features in the data.

function value) dies, favoring the oldest (created at the lowest function
value). In a persistence diagram 2 (f), each pair (c,c’) is represented as
a point in 2D at coordinates (f(c), f(c’)), which are the birth and death
of the pair respectively. The persistence of the pair is given by its height
in the diagram, P(c,c’) = |f(c") — f(c)|. Tt describes the lifespan in the
range of the corresponding topological feature. In the following, only
the critical point pairs involving local extrema, (0,1) and ((d —1),d),
will be considered. The consequence of this simplifying assumption are
described in Sect. 6. Moreover, for genericity purposes, all persistence
evaluations will be normalized with regard to the largest persistence
found in the data (P(c,c’) € [0, 1]). In practice, the pairs of the diagram
located in the vicinity of the diagonal denote low-amplitude noise while
prominent features will be associated with persistent pairs, located far
away from the diagonal (Fig. 2). The persistence diagram has been
extensively studied from a theoretical perspective and its stability to per-
turbations in the input data has been demonstrated [20]. This stability
result greatly motivated the use of persistence in applications, ranging
from machine learning [19] to visualization, where it has been shown
to significantly help users distinguish salient features from noise.

2.2 Overview

Our approach is composed of three main steps (Fig. 3). It takes as input
n PL scalar fields defined on the same PL manifold .Z .

First (Sect. 3), the persistence map of each ensemble member is
computed. The purpose of this representation is to evaluate the spatial
distribution of the critical points in each member, while at the same
time balancing the contribution of each critical point by its persistence
to emphasize salient features and reduce the contribution of noise.

Second (Sect. 4), we leverage spectral embedding to represent each
member as a point in a low-dimensional Euclidean space. Distances in
this feature space denote dissimilarities between persistence maps. This
space is conducive to further statistical analysis of the members which
are clustered based on their persistence maps. The first two dimensions
of this space are used to generate planar views which enable the direct
visualization of the main trends in the ensemble in terms of critical
point layouts.

Third (Sect. 5), confidence regions in the geometrical domain are
computed for each cluster by leveraging the notion of mandatory critical
points [29]. Finally, the confidence regions of all clusters are composed
together into the final persistence atlas. This enables the visualization
of the regions of occurrence of the most prominent critical points along
with estimations of their probability of appearance.

3 PERSISTENCE MAPS

In this section, we introduce the notion of persistence map, a represen-
tation of the critical point distribution in each member.

3.1

The main target of persistence maps is to facilitate the comparison
of two members f' *) and f 0) in terms of the layout of their critical
points. As discussed in Sect. 1.1, existing topological metrics (e.g.
the Bottleneck distance [20]) do not take into account the spatial em-
bedding of the critical points in .# and are therefore not suited for
our purpose. Let C®) and CU) be the set of critical points of ) and
F0) respectively, which can be interpreted as point clouds in .#. The

Motivation
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Fig. 3. Pipeline overview. (a) Given an ensemble of scalar fields, our approach computes the persistence diagram of each member (critical points are
scaled by persistence). (b) To ease the comparison of critical point layouts, each member is transformed into an alternative representation, the
persistence map, which denotes the local density in salient features. (c) The distance matrix between the persistence maps is constructed and used
to embed each member in a low dimensional feature space, whose first two components can be used to generate planar overviews of the distinct
critical point patterns found in the ensemble (d). In this feature space, clusters of members are automatically estimated. (e) The persistence atlas is
finally composed by considering the mandatory critical points of each cluster independently (one color per cluster), revealing the main configurations
of critical point layouts in the ensemble in terms of numbers and positions. The positional variability of critical points within each mandatory critical
point is indicated with a color map. The bar plot (right side) shows the statistics of appearance of each cluster in the ensemble.

Low

Fig. 4. Persistence maps (bottom, maxima only) for four 2D scalar fields
(top, inset: terrain view with critical points): f© (a), f (b), f@ (c),
£@) (d). When using constant values for a(c) and o(c), ¢ estimates the
local density in critical points (b, right inset with maxima in red). In this
example, the L, distance separating () from f(1), ) and f® is 200.79,
41.03 and 14.18 respectively. In contrast, the same distance from ¢
to ¢, 9 and ¢ is 11.09, 2.84 and 49.01 respectively. This different
ordering indicates that the L, distance between persistence maps is less
sensitive to noise and global shifts in data values and better discriminates
changes in salient features.

problem of comparing the layouts of critical points of f ) and f ) then
reduces to that of comparing two point clouds, a problem for which no
universal solution exists. For instance, the Haussdorff distance, can be
seen as a worst-case metric that only measures the distance between
the two most distant points of the two sets. This is too limiting for our
setting since the similarity of the rest of the point cloud is not assessed.
Moreover, due to the presence of noise in the data, it is highly likely
in practice that a significant number of the critical points of f @) and
f () are noise artifacts. Such artifacts must be taken into account in the
similarity estimation in order to reduce their importance and highlight
salient features. This last observation is the main motivation behind
persistence maps.

A reason for the difficulty in estimating the similarity between the
point clouds C® and CV) is that there exists no canonical parameter-
ization of these sets allowing for a straightforward comparison with
established distance measures, as can be done for streamlines for in-
stance [26]. C ) and CcO) may not even be of the same size. This
observation motivates the transformation of C®) and C) into an alter-
nate representation that would yield a natural parameterization directly
usable with standard distance measures.

3.2 Formulation

Breckner and Moller [16] faced a similar problem in the context of
isosurface comparison and introduced a signed distance field transform,
measuring the distance between each vertex of .# and the consid-

ered isosurface. Then, the similarity between two isosurfaces can be
evaluated based on the standard L, distance between their distance
transforms. The same idea has been later used by Ferstl et al. [27] in a
context that resembles our setting (isocontour clustering for level set
variability analysis and visualization). We build upon this strategy to
construct persistence maps. In particular, one could derive a distance
transform for a critical point set C, by considering for each vertex
v € M , the distance to the closest critical point of C. However, such a
distance transform would be highly sensitive to the presence of noise
in the data since all the critical points of f would be considered for its
computation. Therefore, it is necessary to develop a transformation
where the contribution of each critical point could be weighted by an
importance measure, such as topological persistence [23]. While such
a weighting strategy is difficult to elaborate for distance fields, it is
much easier to derive for sums of gaussian radial basis functions. In
particular, let ¢ : .# — RT be the following scalar function, where
a(c) and o (c) are scalars controlling the amplitude and spatial spread
of the contribution of the critical point c:

=3

o(v)=Y a(c)e (1

ceC

If constant values are considered for both a.(c) and 6(c), ¢ is a measure
of the local critical point density (Fig. 4, inset). To limit the impor-
tance of noisy critical points in this density estimation and to highlight
salient features, we use persistence as an importance measure in the
expressions of a(c) and o(c) as follows, where P(c) stands for the
persistence of the critical point pair containing ¢ in Z(f):

o(c) =7P(c) (@)

¥ controls the focus that is given to salient features in terms of their
spread in the spatial domain. Distances are normalized with regard to
the bounding box diagonal. We have found that y = 0.1 is a good value
in practice. This representation resembles the notion of persistence
images [3], which focuses on range rather than domain density.

a(c) = Plc),

3.3 Distances

Since they are both defined on the same spatial domain .#, the persis-
tence maps q)(x) and ¢(y> of two critical points sets €™ and C) benefit
from a common parameterization and their distance can be estimated
with standard distance measures, such as the L norm:

Y (0W(m) - o0 (v))? 3)

vel

19%) — 90|, =

By design, this metric is robust to noise, since the contribution of
critical points to the persistence maps is weighted by their persistence



(Eq. 2). Hence, small persistence pairs (typically corresponding to
low amplitude noise, Fig. 2(b)) will have a negligible contribution
in practice to the persistence maps (Fig. 4(b), further discussion in
Sect. 6.4). This is important since small scale additive noise often
occur in practice even for assumed smooth simulation data. This metric
is also robust by design to global variations in data values which do not
change the critical point spatial layout, since the actual data values are
not taken into account in the persistence map. In contrast, the standard
L, distance || ) — £)||, would tend to miss the possible preservation
of salient features in the presence of global shifts in data values, as can
be the case with seasonal effects in climate data. Finally, the distance
|0 — )|, is specifically designed to penalize changes in the layout
of salient critical points. The above properties are illustrated in Fig. 4,
which shows persistence maps on a toy example, f ), along with three
variants: f(l) with additive noise, f (2) which contains a global shift
in data values (slope), and f (3) which contains an additional salient
feature. For this data, we have: |[f(©) — fO)||, < ||f©) — f@||, <
|1/ — #D||,. In other words, with the L, distance between the actual
data values, the noise affected dataset (f <1)) is the most distant to
the original (f (0>), while the dataset with a drastic change in critical
point layout (f (3)) is the closest. In contrast, the L, distance between
the corresponding persistence maps results in a different ordering:
19 — 9@l < [19© — ]| < |0V — 9||5. In other words,
with the persistence map metric, the closest data set from the original

(f <0)) is the one which better preserves the critical point layout (f <2)),
while the most distant is the one which changes it the most (f° (3)). This
indicates that the metric ||¢(") — ¢<y) ||2 is indeed more robust to noise
and global shift in data values than ||f) — f0)||, and that it better
describes variations in the layout of salient critical points. Our distance
(Eq. 3) resembles the kernel distance defined for generic point cloud
data [61]. In contrast, persistence maps focus on the critical points of a
scalar field (instead of generic point clouds). This allows to additionally
consider in the density estimation the persistence of each critical point
as an importance measure (Eq. 2), to highlight salient features and
reduce the effect of noise.

4 SPACE OF PERSISTENCE MAPS

As described above, the L, distance between persistence maps is a good
candidate to compare the spatial layout of critical points between two
members. Based on this metric, a distance matrix & is computed for
the entire ensemble, with @y, = [|¢() — ¢()||,, and then normalized.
In this section, we exploit this distance matrix to visualize and identify
the main trends in critical point layouts within the ensemble.

4.1 Low dimensional embedding

To directly visualize the global trends in critical point layouts, we first
consider a low dimensional embedding of the ensemble into a space
of persistence maps, noted &, where each map ¢ is represented by a
point and where distances between points denote distances between
persistence maps. For this, we employ established methods for non-
linear dimensionality reduction [13,87]. In particular, we focus on the
spectral approach by Belkin et al. [9] based on Laplacian eigenmaps,
which has been shown to better preserve locality than standard methods
such as principal component analysis [2] or Isomap [81]. This property
is particularly beneficial if clustering is subsequently considered, which
is the case in our framework (Sect. 4.2). For completeness, we briefly
sketch the main steps of the Laplacian eigenmap approach and we refer
the reader to [9] for further details.

First, an adjacency graph is constructed, where the ¥’ node repre-
sents the x'" ensemble member and where arcs are introduced between
the node x and its n, nearest neighbors (according to the distance ma-
trix ®). In practice, we set n, to a default recommended value (5).
Next, a weight matrix W is constructed such that Wy, = 1 if x and y are
connected in the adjacency graph and O otherwise. A diagonal matrix
D is also established such that Dy, = ):y Wyy. Then, the Laplacian, L, of
the adjacency graph is considered as L = D — W, which is a symmetric,

6 1 2z 3 4 5 & 7 8 R
Eigenvalue

Fig. 5. Eigengaps computed for the example shown in Fig. 3. Our
approach uses the position of the first local maximum of eigengap as an
initial value for the number of clusters k. Our framework also offers the
possibility to explore the other maxima, as well as arbitrary k values.

positive semidefinite n X n matrix [9]. Finally, the low-dimensonal
space & is constructed by projecting each ensemble member along the
ng first eigenvectors y € R” x R” of L, which are solutions of the gener-
alized eigenvector problem: Ly = ADy (where A € R” stands for the
n eigenvalues of L). In practice, the first eigenvector Y is discarded, as
suggested by Belkin et al. [9]. Thus, the x'* ensemble member is then
embedded at position y*) = (yq(x),..., Y, (x)). Since the first eigen-
vectors of L are usually considered to be the most informative [85], for
visualization purpose, we typically represent planar layouts of the space
of persistence maps & by only considering the first two components
of this vector (Y (x), y»(x)).

4.2 Persistence map clusters

Fig. 3(d) shows a typical 2D layout of the first two dimensions of the
space of persistence maps, &, for a toy ensemble dataset. As shown in
this example, clear patterns that correspond to distinct trends in critical
point layout emerge from this visualization. To quantitatively analyze
these patterns, we next employ clustering algorithms. In particular, we
employ the popular k-means algorithm [45], which has been shown to
be well suited for a combined usage with spectral emdedding (Sect. 4.1),
yiedling the notion of spectral clustering [77]. This algorithm is based
on the classical Lloyd relaxation scheme [43] which, given an initial
assignment of k cluster centroids chosen among the data points, assigns
each data point to the cluster of its closest centroid. Next, for each
cluster, a new centroid is selected as the point being the closest to the
new cluster barycenter and the procedure is iterated until convergence.
Note that for the above clustering procedure, the spectral clustering
literature recommends to only use the k first components of l[/(x) [85],
although we found in practice that with our implementation, the most
stable results were obtained for ny; = k— 1.

The number k of clusters to be considered is particularly impor-
tant as it directly corresponds to the number of trends which can be
visualized in the ensemble. While we offer users the possibility to
explicitly specify pre-defined values of k, we also provide an automatic
estimation procedure. Several statistical measures have been studied
for the automatic estimation of k, such as the Bayesian Information
Criterion [55]. In the specific case of spectral clustering however, it
has been shown that the eigenvalues of the Laplacian matrix (Sect. 4.1)
already exhibit important hints regarding cluster numbers and that they
are particularly useful to identify proper values for k. In particular, the
first eigenvalue Ay resulting in a significant eigengap & = |Ax — Agv1]
is usually considered as a good value for k (see von Luxburg [85] for
formal arguments based on perturbation theory). Thus, in practice, we
provide as an initial guess for &, the position of the first local maximum
of eigengap . Fig. 5 plots the evolution of the eigengaps for the
example of Fig. 3. As shown in this figure, the appropriate number of
clusters for this specific dataset indeed corresponds to the first local
maximum of eigengap (k = 3). Note that several other local maxima
of eigengaps occur for higher eigenvalues. We also offer users the
possibility to interactively explore them individually.

5 CONFIDENCE REGIONS FOR PERSISTENCE MAP CLUSTERS

The major trends in critical point layout in the ensemble can be iden-
tified by clustering the persistence maps (Sect. 4). In this section, we
describe how to visualize the spatial variability of critical points within
each of the identified clusters.
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Fig. 6. Sub-level sets of f~ (blue) and f* (green) at three different
isovalues i < f*(m;) < f*(my) with m; and m, being minima of f*. The
sub-level set components %) and C) of two ensemble members )
(left) and 70 (right) are shown in gray.

5.1 Per cluster variability analysis

The clustering procedure described in the previous section identifies
disjoints subsets of ensemble members which share a common pattern
in critical point layout. Let fX) = { ) ¢(1) ()} pe such a
subset (m < n). To understand the variability of critical points within
this subset, one needs first (i) to identify a common topological structure
among all of the members of f (%) and second (ii) to analyze its spatial
variability. As discussed in Sect. 1.1, several approaches have been
proposed to study the positional uncertainty of critical points. Among
those, we focus on the approach based on mandatory critical points [29]
since it is based on point-wise intervals and is, therefore, well suited
for the analysis of ensemble data, where no specific assumption can
be made about the structure of the point-wise random variables locally
modeling the data variability. For completeness, we briefly sketch the
main steps of this method and refer the reader to [29] for further details.

First, pointwise scalar value bounds are extracted as two scalar fields
f~:# —Rand fT: .4 — R, such that f~(v) = min £ ¢ x) f<x)(v)
and fT(v) = max ¢ ¢ (x) F9(v). Given an isovalue i, let C~ (i) be a
connected component of sub-level set of f~ (blue region in Fig. 6).
By construction, for each vertex v in C~ (i), there exists at least one
member f’ @) e f X) for which f ) (v) <i. Then, there exists a member
f @) for which a connected component of sub-level set cW passes
through v at isovalue i (gray regions in Fig. 6). Then, C™ (i) is called a
candidate region for the appearance of a local minimum (responsible
for the creation of the component C*¥) in (%)),

Let m; be a minimum of 7. Since f~ and fT are nested, m; must
be located inside a connected component of sub-level set of f~ at iso-
value f*(my). Let C~ (f* (my)) be that region and let us first consider
that mm is the only minimum of f7 in it. Atisovalue f* (m), by con-
struction, all the members f) € £X) are such that £ (m;) < £ (my).
This means, that for all the members f @) of the subset f (%), there exists
a connected component of sub-level set cW passing through m (gray
components containing m; in Fig. 6(c) and Fig. 6(d)). In particular, this
connected component was created at an earlier isovalue, at one of the
vertices of the corresponding candidate region, C~ ( FHim )) Over-
all, this means that C~ ( frim )) must contain at least one minimum
(responsible for the initial creation of the component CW) for all the
members of f’ (X)_ Thus, the region C~ ( fT(my )) is called a mandatory
minimum: a minimal connected component C~ of .#, associated with
a minimal interval I~ = [min,cc- f~ (v),min,cc- £ (v)], such that any
% contains at least one minimum m; in C~ with £ (m;) € I~

Fig. 6 illustrates this process where candidate regions (blue) may
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Fig. 7. Five representative members of the ensemble of Fig. 1. Critical
points (minima and maxima) are shown with spheres scaled by their
persistence (left). Persistence maps are shown on the right.

contain several connected components cWw (gray) of sub-level set of
ensemble members (m is shown in green). Note that if the candidate
region contains a second minimum m; such that f*(my) < f+(my),
this implies that the sub-level set of all members pass through m, as
well. However, they may do so with the component C™ which already
contains m; (Fig. 6(e)). Thus, the existence of such a second minimum
my does not necessarily imply the existence of an additional minimum
in f(x>, as it is the case in Fig. 6(e) (as opposed to Fig. 6(f)). As
discussed in Sect. 6, this observation may have important practical
implications, as it may prevent the detection of a mandatory critical
point in case of high pointwise value variability |+ (v) — £~ (v)].
Other types of mandatory critical points are extracted similarly, as
described in [29]. Eventually, each cluster f %) is associated with a
collection of mandatory critical points, which describe the spatial vari-
ability of the common topological structure found among its members.

5.2 Gilobal visualization

The mandatory critical points can be visualized for each cluster inde-
pendently, by displaying each critical component with a colored region.
Additionally, the positional variability of critical points within each
region can be estimated and visualized as follows. Given a histogram
representation of the data values taken by a vertex v in f %), we es-
timate this variability as the probability of v to admit a scalar value
within the critical interval of each mandatory critical point. Finally, we
estimate the overall probability of appearance of a mandatory critical
point as the proportion between the size of f %) and the total number, n,
of members in the ensemble. As shown in Fig. 3 (right), this probability
can be visualized in the form of a barplot. The Persistence Atlas is then
created from a collection of confidence maps (composed together) that
provide for each major trend found in the ensemble, confidence regions
for the appearance of critical points along with their probability of
appearance, as well as, their individual critical point spatial variability
given by the above estimation (Fig. 3).

6 RESULTS

This section presents experimental results obtained on a desktop com-
puter with a Xeon CPU (2.6 GHz, 2x6 cores), with 64 GB of RAM.
For the computation of the persistence diagrams, we used the Topology
ToolKit (TTK) [83]. For the spectral embedding and clustering, we
adapted classes from the scikit-learn package [54]. The other compo-
nents of our approach have been implemented as TTK modules.

6.1 Experiments

Figures 1 and 7 to 12 report various experiments on simulated and
acquired 2D and 3D ensemble datasets. Fig. 1 presents our entire ap-
proach on an ensemble of 45 von Karman vortex streets, where the
considered scalar data is the orthogonal component of the curl taken at
a fixed time-step, for five different fluids of distinct viscosity (9 runs
per fluid, each run with varying Reynolds numbers). For such scalar
fields, local extrema are typically considered as reliable estimations of
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Fig. 8. Three representative members for the /sabel volumetric ensemble
(left). Local maxima (scaled by persistence) of velocity magnitude capture
the eyewall of the hurricane, high wind speed peripheral regions as well
as the hurricane’s tail (second and third row). The persistence maps
(local maxima only, right) capture these subtle features by construction,
while taking less into account noisy critical points (smallest spheres).
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Fig. 9. Two representative members of the Starting vortex ensemble ((a)
and (b)) along with their critical points scaled by persistence. Given the
small spatial extent of these features, the L, norm between the actual
data values fails at capturing similarities between members belonging to
the bottom configuration (b), as denoted by the corresponding distance
matrix (c), where distances are important (green) in the upper-right
corner. In contrast, the distance matrix (d) computed from persistence
maps ((e) and (f)) exhibits much smaller distances (blue) between these
members, facilitating their gathering in the low dimensional space .

Low

Table 1. Running time (in seconds, with 12 cores) for the different steps
of our approach: persistence maps (P.M., Sect. 3.2), distance matrix
(D.M., Sect. 3.3), low-dimensional embedding (E., Sect. 4.1), clustering
(C., Sect. 4.2) and mandatory critical points (M.C.P., Sect. 5).

Dataset (I [#°| | PM.|DM. E.C. MCP | Total
Gaussians (Fig. 3) 100 262,144 | 57.28 | 1.03 0.67 008 253 | 6159
Vortex street (Fig. 1) 45 30000 | 228 | 002 067 009 022 328
Starting vortex (Fig. 10) 12 1,500,000 | 6144 | 0.09 065 007  9.08 | 7133
Isabel (Fig. 11) 12 3125000 | 168.70 | 0.18 0.63 007  41.84 | 211.68
Sea Surface Height (Fig. 12) | 48 1,036,800 | 290.25 | 099 0.65 008  8.38 | 300.35

the center of the vortices. Extrema of a few representative members
(Fig. 1(a)) exhibit clearly distinct layout patterns, in terms of both
the position and number of vortices, revealing high spatial and trend
variabilities within the ensemble. The mandatory critical points esti-
mated for the entire ensemble are particularly conservative given these
variabilities: only one region is extracted for each side of the street
(one for minima, one for maxima). The persistence atlas manages to
automatically identify five clusters in the ensemble, corresponding to
distinct critical point layouts (one per viscosity regime). The mandatory
critical points extracted from these clusters provide more accurate and
useful predictions for the appearance of vortices (colored regions in
(d) to (h), one color per cluster). In particular, the persistence atlas
reveals that the number of vortices increases with the Reynolds num-
bers (from left to right: 6, 10, 12, 14 and 15 vortices) while the spatial
variability of each vortex tends to decrease for increasing Reynolds
numbers (smaller mandatory critical points). Fig. 7 illustrates persis-
tence maps for five representative members of the ensemble and shows
how salient features are captured by this representation. Fig. 8 shows
persistence maps on a volumetric ensemble composed of groups of
key timesteps (formation, drift and landfall) in the simulation of the
Isabel hurricane [76]. For such datasets, the eyewall of the hurricane is
typically characterized by high wind velocities (green regions, Fig. 8,
left) and contains salient maxima. In particular, this figure shows that
subtle features of the hurricane (eyewall, high wind speed peripheral
regions and hurricane’s tail) are well captured by local maxima of the
wind velocity magnitude and by the corresponding persistence maps.
As discussed in Sect. 3.3, the L, norm between persistence maps is
more suited to our purpose than the L, norm between the actual data
values, since it is more robust to noise and global shifts in data values,
while better discriminating changes in salient features (Fig. 4). Fig. 9
further exemplifies this observation on the Starting vortex ensemble,
which includes 12 runs of a 2D simulation of the formation of a vortex
behind a wing, for two distinct wing configurations. The considered
scalar field is the curl orthogonal component and salient extrema are
expected at the center of vortices. Given the small spatial extent of the
features behind the wing, the L, norm between the actual data values
fails at capturing similarities between members belonging to the second
configuration, as denoted by the corresponding distance matrix, where
distances are important in the upper-right corner. In particular, two
members belonging to the same wing configuration are reported by this
distance as the two furthest members (darkest green entry). In contrast,
the distance matrix computed from persistence maps exhibits much
smaller (resp. higher) distances between the members belonging to a
common (resp. distinct) wing configuration.

Fig. 10 shows the persistence atlas for the Starting vortex ensem-
ble. Given the trend variability of this dataset, the mandatory critical
points computed from the entire ensemble exhibit only one, very large,
mandatory maximum (colored region) describing the appareance of
vortices for both wing configurations, although these two vortices never
occur simultaneously in the data. The persistence atlas automatically
identifies the two trends present in the data, as shown in the planar
view (center), resulting in much more accurate predictions for the ap-
pearance of the distinctly identified vortices (green and blue region,
right). Fig. 11 shows the persistence atlas for the Isabel ensemble.
Similarly to the previous example, mandatory critical points computed
from the entire ensemble identify only one, very large, mandatory
maximum, which merges the three distinct states of the hurricane. In
contrast, the persistence atlas manages to isolate these three states and
provides much more accurate confidence regions for the position of
the hurricane eyewall. Note that this example is the only dataset for
which the initial automatic suggestion for the number of clusters &
provided by the eigengap heuristic needed adjustment. All the other
results have been generated with the automatic suggestion. Fig. 12
shows the persistence atlas for the Sea surface height ensemble, which
is composed of 48 observations taken in January, April, July and Oc-
tober 2012 (https://ecco.jpl.nasa.gov/products/all/). For such datasets,
salient extrema in the height are expected at the center of eddies. The
mandatory critical points globally extracted on the entire ensemble
identify only few features (Fig. 12(a)), due to the high pointwise data
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Fig. 10. Mandatory critical point for the entire Starting vortex ensemble (left) and the corresponding critical point positional variability estimation
(color map, left). Given the trend variability of this ensemble, this global extraction identifies only one, very large, mandatory maximum (colored
region) describing both regimes, although these two vortices never occur simultaneously in the data. The persistence atlas automatically identifies
the two trends present in the data, as shown in the planar view (center), resulting in much more accurate predictions for the appearance of the

distinctly identified vortices (green and blue regions, right).
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Fig. 11. Mandatory critical point for the Isabel ensemble, viewed from above and below (a). Given the trend variability of this ensemble, this
extraction identifies only one, very large, mandatory maximum (region colored by critical point positional variability) merging the three distinct states
of the hurricane (formation, drift and landfall). In contrast, the persistence atlas manages to isolate these three states and provides more accurate
confidence regions for the position of the hurricane eyewall (colored regions).

variability (Sect. 5.1). The clustering automatically performed by our
approach based on the persistence maps correctly identifies four clus-
ters, corresponding to the four seasons: winter (c), spring (d), summer
(e) and fall (f). This seasonal decomposition drastically reduces point-
wise data variability and enables mandatory critical points to identify
many more structures, corresponding to clockwise and counterwise
vortices (minima and maxima) and revealing complex structures in the
Gulf stream area (insets). Note that, for this example, due to the high
number of critical points and their respective proximity, the parameter
7. controlling the spread of salient features in the persistence map, has
been set to 0.01 instead of the default value (0.1).

6.2 Time performance

Table 1 presents the running times we obtained for the datasets pre-
sented in this paper. The most time consuming portion of our approach
is the computation of the persistence maps, which typically needs to be
run for each ensemble member as a pre-process. Since the number of
pairs in the diagram is typically proportional to the number |.#' O\ of
vertices in the domain, this part requires O(n x |.#°|?) steps overall.
In practice, to accelerate this computation, we ignore all pairs with
a persistence less than 1% of the total function range. The distance
matrix computation takes O(n? x |.#°|) steps, but since n is typically
much smaller than |.#°|, the computation time for this step is small
in practice. Both the spectral embedding (Sect. 4.1) and clustering
(Sect. 4.2) employ iterative solvers but these computations are typically
the fastest steps of the pipeline. The computation of the mandatory
critical points for each cluster admits quadratic complexity O(|.#°?).

Most of these steps can be trivially parallelized. The persistence
diagram is computed in parallel [30] and the persistence map can be
evaluated independently for each vertex. Each entry of the distance ma-
trix & (Sect. 3.3) can be computed independently. Finally, mandatory
critical points are computed in parallel for each cluster. As reported in
Table 1, once the persistence maps have been computed in a pre-process,
the rest of the framework is sufficiently fast to allow interactivity.

6.3 Comparison

In this section, we compare our approach to alternative critical point
clustering strategies. First, we consider a baseline approach, which con-
sists in simply clustering persistent critical points in the spatial domain,

by using a vanilla implementation of spectral clustering, combined
with our eigengap heuristic for the automatic suggestion of the number
of clusters (Sect. 4.2). Once such clusters have been computed, this
baseline strategy evaluates confidence regions for the appearance of
critical points by considering the convex hull of each cluster in the
spatial domain. As shown in Fig. 13(a), this simple strategy provides
unsatisfactory results for the von Kdrman vortex street ensemble (Fig. 1)
since features which never occur simultaneously in the ensemble are
clustered based on their proximity. In particular, the extracted clusters
mix the two types of vortices (right and left) and group them based on
their distance from the obstacle (bottom).

To further evaluate our approach, we consider the ensemble from
Fig. 3, which we split in half into a training and test ensemble. The train-
ing ensemble is analyzed with (i) the baseline approach (Fig. 13(b)),
(ii) a strategy based on the kernel method by Reininghaus et al. [70]
(Fig. 13(c), where the distance matrix considered for clustering has been
generated with the authors’ implementation of the kernel method [40]
run with default parameters) and (iii) the persistence atlas (Fig. 13(e)).
To quantitatively evaluate the prediction performance of these ap-
proaches, we consider the persistent critical points of the test ensemble
having a persistence higher than 20% of the function range. Next, the
test critical points are assigned to the confidence region in which they
land in the domain (spheres of matching colors in Fig. 13). As shown
in Fig. 13(b), the baseline approach overestimates the number of clus-
ters. In particular, it fails at clustering together features which always
occur simultaneously (dark green and light blue clusters in Fig. 13(b)).
Kernel based methods for persistence diagrams [40, 70] do not take
the spatial embedding of critical points into account (Fig. 13(c)) and
cluster members with the same persistence profile, irrespective of the
features’ location. This leads to an underestimated number of clusters:
the blue and white clusters of Fig. 3, which both include a single very
persistent maximum, are erroneously merged although the correspond-
ing features never occur simultaneously in the ensemble. Moreover,
convex hulls obtained from this clustering overestimate the size of the
confidence regions in the presence of multiple salient features per clus-
ter. Even when the correct clustering is explicitly provided (Fig. 13(d)),
confidence regions based on convex hulls miss 21% of the persistent
critical points of the test ensemble. In contrast, the persistence atlas
(Fig. 13(e)) provides a correct prediction for 100% of the critical points
of the test ensemble, which illustrates the quantitative performance of
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Fig. 12. Persistence atlas for the Sea surface height ensemble. (a)
Mandatory critical points for the entire ensemble miss many features and
over-estimate the spatial variability of the extracted structures. (b) The
planar layout of the space of persistence maps shows the automatically
evaluated clustering of the ensemble (one color per cluster), which cor-
respond to the four seasons. (c), (d), (e) and (f) The mandatory critical
points for each of the identified clusters (respectively: winter, spring, sum-
mer and fall) provide a more precise critical point variability estimation,
revealing hundreds of vortices (blue: minima, green: maxima).

the persistence atlas regarding critical point prediction.

6.4 Limitations

Our entire pipeline assumes that the input data is given as a collection of
piecewise linear scalar fields (Sect. 2.1). In many applications [74], this
may be too restrictive (motivating taylored interpolants for uncertainty
modeling [75]). However, generalizing the TDA arsenal to a larger set
of interpolants is a vast research topic (see [49] for an example) which
goes beyond the scope of this paper. Our approach focuses on (0,1)
and ((d —1),d)) persistence pairs, which correspond to pairs only
involving minima and maxima. Persistence maps (Eq. 1) are therefore
only computed based on the location of either the minima or maxima
(Figs. 3, 10 and 8), or both (Figs. 7 and 12). Hence, saddle points are
not taken into account by our framework in its current form. However,
we have found that in practice the correspondence between saddle
points and features of interest was less clear in our applications. Also,
when the data exhibits salient large flat plateaus, persistent critical
points can appear in arbitrary locations inside these plateaus. This
can potentially impair the stability of the persistence map. However,
we did not observe this behavior in practice on our datasets as large
plateaus, when they occurred, were not collocated with salient features.
We found in practice that using constant weights (Wy, = 1) for the
evaluation of the Laplacian of the adjacency graph of the persistence
maps (Sect. 4) resulted in more stable and accurate clusterings than
the second weighting strategy (based on heat kernels) described by
Belkin et al. [9]. However, constant weights result in the limitation
that several members can be projected to the exact same point in the
low dimensional space when they exhibit a very similar neighborhood
pattern in the adjacency graph. In this case, the number of visible
points in our planar layouts may be smaller than the actual number of
members. However, this non-uniqueness in the embedding only occurs
for persistence maps which are very close to each other, hence it does
not impact negatively the clustering or analysis. Although the automatic
suggestion for the number of clusters k provided satisfactory results for
all but one example (where it needed to be changed from 2 to 3, Fig. 11),
an exhaustive interactive exploration may be needed when there is no
clear trend in the ensemble. Finally, the persistence atlas currently
displays simultaneously mandatory critical points for all clusters. This
may result in cluttered visualizations due to overlapping. Although
we provide users with the possibility of refining this visualization
to a selected subset of clusters, improved strategies for the overall

Fig. 13. Comparison to alternative critical point clustering strategies. (a)
Clustering the critical points directly in the spatial domain can cluster
erroneously features which never occur simultaneously in the ensemble
but which are close from each other in the spatial domain (dataset from
Fig. 1). (b) On the contrary, features which always occur simultaneously
(Fig. 3) may not be clustered together if they are too distant from each
other, leading to an overestimated number of clusters (black spheres).
(c) Kernel based methods for persistence diagrams [40, 70] do not take
spatial embedding into account and cluster together members with the
same persistence profile irrespective of the features’ location, leading to
an underestimated number of clusters. (d) Even when the clustering is
explicitly given, confidence regions based on convex hulls miss 21% of
the critical points of the test ensemble (red spheres). (e) The persistence
atlas estimated from the training ensemble provides a correct prediction
for 100% of the critical points of the test ensemble (colored spheres).

visualization of the atlas could be researched in the future.

7 CONCLUSION

In this paper, we presented the Persistence Atlas, an approach for the
visual analysis of the spatial variability of features of interest repre-
sented by critical points in ensemble data. By analyzing the structure of
the ensemble in terms of patterns of critical point layouts, our method
addresses trend variability, by identifying clusters of ensemble mem-
bers which share a common geometrical configuration of critical points.
By computing mandatory critical points for each cluster, our approach
addresses spatial variability, by showing minimal regions where at
least one critical point is guaranteed to occur for each member of the
cluster, hence conveying the possible extent of features for each trend.
Our approach is based on the new notion of Persistence Map, which
describes the local density in critical points and leverages topological
persistence to emphasize salient features, and which has been shown to
be well suited for the purpose of comparing geometrical layouts of crit-
ical points. We showed how to leverage spectral embedding methods to
provide low-dimensional views representing the main trends found in
the ensemble. We also showed how to leverage spectral clustering to au-
tomatically identify revelant clusters of ensemble members and how to
provide relevant automatic guesses based on eigengaps for the number
of clusters. In practice, our approach has been shown to provide more
accurate descriptions of the variability of critical points than global
methods, such as the original mandatory critical points [29], which
either miss features or considerably over-estimate spatial variability in
the presence of trend variability. We quantitatively evaluated the pre-
diction accuracy of our method and showed that it compared favorably
to a baseline strategy based on an off-the-shelf clustering approach.

Our work extends recent advances in the visual analysis of spatial
variability in ensembles of geometrical objects, such as level sets [27]
or streamlines [26], to topological structures. In particular, we fo-
cused in this paper on features of interest represented by critical points.
However, many more topological constructions could benefit from a
similar variability analysis based on such tailored clustering strategies.
For instance, the separatrices of the Morse-Smale complex [32,71]
have been shown to excel at representing filament structures in various
applications, such as chemistry [10, 28] or astrophysics [78,79], and
studying their trend and spatial variabilities would be of tremedous
help for the understanding of non-deterministic models in these appli-
cations. By first focusing on critical points, we believe we made a first
step in this direction, which will be helpful and inspirational for future
generalizations to other topological constructions.
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