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ABSTRACT
Interstellar dust is an important component of the galactic ecosystem, playing a key role
in multiple galaxy formation processes. We present a novel numerical framework for the
dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics
code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based
method for dust subject to dynamical forces including drag and gravity. The drag force is
implemented using a second-order semi-implicit integrator and validated using several dust-
hydrodynamical test problems. Each dust particle has a grain-size distribution, describing
the local abundance of grains of different sizes. The grain-size distribution is discretized
with a second-order piecewise linear method and evolves in time according to various dust
physical processes, including accretion, sputtering, shattering, and coagulation. We present
a novel scheme for stochastically forming dust during stellar evolution and new methods
for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc
galaxy to study the impact of dust physical processes that shape the interstellar grain-size
distribution. We demonstrate, for example, how dust shattering shifts the grain-size distribution
to smaller sizes, resulting in a significant rise of radiation extinction from optical to near-
ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily
be extended to account for other dynamical processes relevant in galaxy formation, like
magnetohydrodynamics, radiation pressure, and thermochemical processes.
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1 I N T RO D U C T I O N

Interstellar dust is a crucial ingredient for the formation and evolu-
tion of galaxies, which is produced through condensation of metals
expelled into the interstellar medium (ISM) by supernovae (SNe)
and stellar winds. About 30−50 per cent of the metals condense
into the dust component (Draine et al. 2007). Within the ISM dust
plays an important role for multiple physical processes. For ex-
ample, dust grains provide a source of opacity to radiation from
sources like active galactic nuclei (AGNs) and massive stars. Ra-
diation pressure acting on dust grains can inject momentum in the
ISM and help drive galactic winds (Murray, Quataert & Thompson
2005; Novak, Ostriker & Ciotti 2012; Zahid et al. 2013; Ishibashi
& Fabian 2015; Thompson et al. 2015). Dust grain surfaces also aid
the formation of molecular hydrogen (Hollenbach & Salpeter 1971;
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Cazaux & Tielens 2004) and contribute to photoelectric heating of
gas (Bakes & Tielens 1994; Weingartner & Draine 2001b), which
both affect star formation in galaxies. Dust grains can also develop
electric charge (Feuerbacher, Willis & Fitton 1973; Burke & Silk
1974; Draine & Sutin 1987; Weingartner & Draine 2001b) and are
therefore affected by magnetic fields, which alters the dynamics of
dust in a turbulent ISM (Lazarian & Yan 2002; Yan, Lazarian &
Draine 2004).

Besides influencing interstellar chemistry and galaxy physics, im-
portantly dust also affects the detectability and observed properties
of galaxies. Dust grains absorb ultraviolet (UV) light and re-emit the
radiation at infrared (IR) wavelengths (Draine & Lee 1984; Mathis
1990; Tielens 2005). Especially at high redshifts, where many sur-
veys are executed in the UV rest frame, the measured properties of
galaxies critically depend on dust extinction. Dust has such a strong
effect on galaxy properties despite the dust-to-gas ratio in galax-
ies being a few per cent at most (Draine et al. 2007; Rémy-Ruyer
et al. 2014). Emission from dust is an important foreground not
only for observation of galaxies but also for the cosmic microwave
background (Planck Collaboration XI 2014).
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Over the last decade, observations from Herschel (Pilbratt et al.
2010) have yielded several dust scaling relations tying dust to fun-
damental ISM properties. For example, there are observed relations
between dust mass and gas mass (Corbelli et al. 2012), dust-to-
stellar mass ratio and gas fraction (Cortese et al. 2012), and dust-to-
stellar flux and mass ratios (Skibba et al. 2011). Data at high redshift
is less abundant, but dust has recently been detected in reionization-
era galaxies using the Very Large Telescope and the Atacama Large
Millimetre Array (Watson et al. 2015; Laporte et al. 2017), chal-
lenging models to explain the production of dust at such early times.
The importance of addressing high-redshift dust is likely to increase,
given the upcoming James Webb Space Telescope mission and its
capability to witness the formation of galaxies.

Studying the abundance, distribution, and impact of dust in galax-
ies requires detailed models that are capable of evolving the dust
population of a galaxy along with a plethora of other galaxy forma-
tion processes. The specific impact of dust can only be quantified by
understanding its spatial and grain-size distribution. This grain-size
distribution evolves over time within a galaxy. Dust is produced
as stars return metals to the ISM (Todini & Ferrara 2001; Nozawa
et al. 2003; Ferrarotti & Gail 2006; Bianchi & Schneider 2007;
Zhukovska, Gail & Trieloff 2008; Schneider et al. 2014), setting the
initial size distribution for a population of dust grains. The grain-
size distribution is then subject to processes that conserve grain
number but grow or destroy dust mass. For example, grain sizes
grow through accretion of gas-phase metals (Liffman & Clayton
1989; Draine 1990; Dwek 1998; Michałowski et al. 2010; Asano
et al. 2013a) but shrink through sputtering (Ostriker & Silk 1973;
Burke & Silk 1974; Barlow 1978; Draine & Salpeter 1979; Dwek &
Arendt 1992; Tielens et al. 1994) and SN shocks (Nozawa, Kozasa
& Habe 2006; Bianchi & Schneider 2007; Nozawa et al. 2007).
Other physical processes conserve total dust mass but shape the
interstellar size distribution by increasing or decreasing the number
of grains: these include dust–dust collisional processes like shat-
tering (O’Donnell & Mathis 1997; Hirashita & Yan 2009; Asano
et al. 2013b; Mattsson 2016) and coagulation (Chokshi, Tielens &
Hollenbach 1993; Jones, Tielens & Hollenbach 1996; Dominik &
Tielens 1997; Hirashita & Yan 2009; Mattsson 2016).

Without a detailed knowledge of the grain-size distribution and
the overall arrangement of dust in galaxies, the modelling of dust
physical processes remains uncertain. Studying, for example, the
interplay of radiation and dust as a feedback mechanism within
galaxies requires very detailed knowledge about both the radiation
fields and dust content. Simplified feedback prescriptions motivated
by radiation pressure coupling to dust grains have been included in
some cosmological simulations (e.g. Hopkins et al. 2014; Roškar
et al. 2014; Agertz & Kravtsov 2015). However, none of these
studies self-consistently model either the radiation field or the dust
content. Other studies based on radiation-hydrodynamic simula-
tions improve on those by coupling self-consistent radiation fields
to dust but without evolving the dust component self-consistently
(e.g. Rosdahl et al. 2015; Costa et al. 2018). Overall, most mod-
ern cosmological simulations of large-scale structure (Vogelsberger
et al. 2014a,b; Schaye et al. 2015; Khandai et al. 2015) do not
directly treat dust within galaxies, despite analysing statistics like
the mass–metallicity relation (Torrey et al. 2017, 2018; De Rossi
et al. 2017) and cluster metal distribution (Vogelsberger et al. 2018)
that could be affected by depletion of metals onto dust. It is there-
fore highly desirable to have a self-consistent dust model coupled
to a comprehensive galaxy formation model in combination with
radiation-hydrodynamics to capture the impact of dust on galaxy
formation more reliably.

Various numerical models have been developed to evolve the
grain-size distribution of galaxies in time (e.g. Liffman & Clayton
1989; O’Donnell & Mathis 1997; Asano et al. 2013b; Hirashita
et al. 2015). These models suggest, for example, that changes in the
grain-size distribution can strongly affect the overall dust mass. For
instance, the process of shattering may temporarily conserve dust
mass but, by shifting grains to smaller sizes and increasing the total
grain surface area, subsequently leads to rapid increases in dust mass
through accretion (Asano et al. 2013b). However, these models are
often ‘one zone’ in nature and focus only on the total size distri-
bution, ignoring dust and gas dynamics because they lack spatial
resolution within a galaxy. While many of these previous models
are idealized in nature, recent galaxy formation simulations are be-
ginning to evolve dust physics in more detail. These simulations
attempt to predict the distribution of dust mass within and around
galaxies, include the dynamical forces that impact dust motion, and
model the processes that shape the grain-size distribution. Initial at-
tempts have been made to track dust in non-cosmological smoothed
particle hydrodynamic (SPH) simulations using ‘live’ dust particles
that are subject to different dynamics (e.g. drag and radiation pres-
sure) than gas particles (Bekki 2015). However, these simulations
assume grains to be of fixed size and thus do not make predictions
about the interstellar grain-size distribution. Recent simulations us-
ing the moving-mesh code AREPO (Springel 2010) have modelled the
formation of dust in a fully cosmological context (McKinnon, Tor-
rey & Vogelsberger 2016; McKinnon et al. 2017), albeit assuming
perfect coupling between dust and gas and not tracking the grain-
size distribution either. Cosmological simulations by Aoyama et al.
(2018) model a simplified grain-size distribution, dividing grains
into ‘small’ and ‘large’ sizes, but do not account for dynamical
forces like drag or radiation pressure. Such cosmological results
make predictions for the dust content of a diverse sample of galax-
ies and the distribution of dust on large scales. So far, no simulation
has been able to perform cosmological galaxy formation simula-
tions with a state-of-the-art galaxy formation model combined with
a dust model that traces both the spatial distribution and full range
of sizes of dust grains.

This paper aims to close this gap by presenting a novel dust
framework, modelling aspects of grain dynamics and size evolu-
tion and implemented alongside the galaxy formation physics in
the moving-mesh hydrodynamics code AREPO. Section 2 describes
our implementation of the drag force that couples dust grains to
hydrodynamical motion and a series of test problems. In Section 3,
we discuss the modelling of the size distribution and evolution of
dust grains. Section 4 details our implementation for stochastically
producing dust during stellar evolution. Using the dust model, in
Section 5 we perform simulations of isolated disc galaxies. Our
conclusions are presented in Section 6.

2 D U S T DY NA M I C S A N D D R AG

In this section, we first discuss the dynamics of dust particles as they
interact with surrounding gas. Solid dust grains travelling through
a gaseous medium experience a drag force that alters their dynam-
ical behaviour (e.g. Baines, Williams & Asebiomo 1965; Draine
& Salpeter 1979), and which effectively couples dust dynamics to
gas dynamics. The strength of this drag force depends on both gas
and grain properties and affects the distribution of dust within the
ISM. For example, a grain-size dependent drag force impacts the
grain-size distribution that results from SN shocks (e.g. Nozawa
et al. 2006).
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Various numerical works have studied two-fluid dust and gas
mixtures using a particle-based SPH framework (Monaghan &
Kocharyan 1995; Monaghan 1997; Laibe & Price 2011, 2012a,b;
Bekki 2015; Booth, Sijacki & Clarke 2015; Booth & Clarke 2016;
Price et al. 2017). In the limit of a strong drag force, it can be advan-
tageous to adopt a one-fluid approach and solve for the mixture’s
barycentric motion and dust-to-gas ratio (Barranco 2009; Laibe &
Price 2014b, 2014c, 2014a; Price & Laibe 2015; Tricco, Price &
Laibe 2017). Drag dynamics have also been studied using grid-
based methods (Cuzzi, Dobrovolskis & Champney 1993; Balsara
et al. 2009) and hybrid methods that combine grid techniques and
particle approaches (Johansen, Klahr & Henning 2006; Balsara et al.
2009; Miniati 2010; Hopkins & Lee 2016). Also, the influence of
grain size on drag forces has been explored in many ways. For
example, Goodson et al. (2016) evolve dust particles of different
grain sizes in an expanding Sedov–Taylor blast wave using a drag
force and study the loss of grain mass due to sputtering. Other
simulations treating drag adopt one fixed grain size (Saito 2002;
Saito, Marumoto & Takayama 2003; Miniati 2010; Laibe & Price
2012a; Hopkins & Lee 2016). Newer work accounts for drag acting
on multiple dust phases simultaneously when following barycentric
motion in the one-fluid approach (Hutchison, Price & Laibe 2018).
Other models couple drag force strength to an evolving grain-size
distribution in idealized SN studies (Bocchio et al. 2016).

In our work, we model dust with a particle-based framework
that exists alongside moving-mesh hydrodynamical calculations.
In AREPO (Springel 2010), a finite-volume scheme is used to solve
hydrodynamics on a mesh generated by a Voronoi tessellation of
space and allowed to move with the local fluid velocity. The mesh
can consist of irregularly shaped gas cells and is (de-)refined so that
gas cells have roughly equal mass (Vogelsberger et al. 2012).

We could treat dust as a property of each gas cell and model
dust dynamics by transferring dust across cell interfaces. However,
while gas exists throughout the computational domain, dust might
only exist in more localized regions. Thus, it is advantageous to
model dust using particles representing ensembles of individual dust
grains, with particle motion unconstrained by mesh geometry. This
parallels the treatment of collisionless star or black hole particles
in AREPO (e.g. Vogelsberger et al. 2013). The formulation for drag
below assumes dust is treated in this particle-based manner.

2.1 Drag force calculation

Our drag implementation follows the standard approach taken by
Booth et al. (2015) and Hopkins & Lee (2016). The acceleration of
a dust particle of mass md is given by

dvd

dt
= −Ks(vd − vg)

md
+ ad,ext, (1)

where Ks is a drag coefficient determined below, vd and vg are
the dust and gas velocity, respectively, and ad,ext denotes external
sources of acceleration (e.g. gravity, radiation pressure, or magnetic
fields), while the backreaction on the gas is given by

dvg

dt
= −∇P

ρg
+ ρdKs(vd − vg)

ρgmd
+ ag,ext, (2)

for gas pressure P, dust and gas densities ρd and ρg, respectively, and
external gas acceleration ag,ext. We assume the dust is pressureless.

The drag force can be written in terms of relative velocity as

d(vd − vg)

dt
= −vd − vg

ts
, (3)

using the stopping time-scale

ts = mdρg

Ks(ρg + ρd)
. (4)

Shorter stopping time-scales correspond to the high-drag regime
in which relative velocities quickly decay. In this work, we focus
on collisional drag and neglect Coulomb drag resulting from grain
charge.

To lowest order, the aerodynamic drag force has magnitude

FD = 1

2
CDπa2ρg|vd − vg|2, (5)

the product of a drag parameter CD, grain cross-section, and ram
pressure. A typical interstellar grain of radius a satisfies a < 9λ/4,
where λ is the gas mean free path. This corresponds to the Ep-
stein drag regime (Epstein 1924; Weidenschilling 1977; Stepinski
& Valageas 1996), in which drag effects build up through collisions
with individual gas atoms. This is in contrast to the Stokes limit,
a > 9λ/4, in which the gas behaves as a fluid and the drag force
depends on the Reynolds number of the flow. In the Epstein limit,
the drag parameter is given by

CD = 16
√

2cs

3
√
πγ |vd − vg| , (6)

where cs is the local sound speed and γ is the adiabatic index. In
this regime, the drag force is therefore linear in the relative velocity.
The drag coefficient entering into the acceleration equations is

Ks = 1

2
CDπa2ρg|vd − vg| = 8

√
2πcsa

2ρg

3
√

γ
. (7)

Furthermore, for ISM studies with ρd/ρg � 1, we can ignore the
drag force in the gas equation of motion; i.e. we solve equation (1)
for dust motion including the drag force but solve gas motion using
equation (2) neglecting the backreaction of dust dynamics on the
gas. Inclusion of the backreaction of drag on gas will be necessary
in future studies of radiation-driven outflows.

Assuming spherical grains with mass md= 4πa3ρgr/3, this implies
a stopping time-scale of

ts = md

Ks
=

√
πγ aρgr

2
√

2ρgcs

, (8)

where ρgr is the internal density of a dust grain. The derivation
of equation (8) implicitly assumed subsonic relative dust-gas ve-
locities. Supersonic relative motion requires a further correction
factor for the stopping time-scale (Kwok 1975; Draine & Salpeter
1979; Paardekooper & Mellema 2006; Price et al. 2017), which is
approximated by the following fit

ts =
√
πγ aρgr

2
√

2ρgcs

(
1 + 9π

128

∣∣∣∣vd − vg

cs

∣∣∣∣
2
)−1/2

. (9)

To remain consistent with previous works, we calculate all stopping
time-scales using equation (9) and take the internal density to be ρgr

≈ 2.4 g cm−3 (Draine 2003). A stopping time-scale of this form is
valid for supersonic dust-gas relative velocity and has been used in
turbulent giant molecular cloud simulations reaching Mach numbers
M > 10 (Hopkins & Lee 2016; Lee, Hopkins & Squire 2017). We
note that in the subsonic limit, this reduces to the form of stopping
time-scale from equation (8) above, similar to that used in Booth
et al. (2015).

Since we apply drag acceleration only to dust in the ρd/ρg � 1
limit, we only need to interpolate ρg, vg, and cs to the position of
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a dust particle in order to calculate its stopping time-scale. To this
end, we perform a kernel-smoothing around a given dust particle
at position rd. We first iteratively solve for its smoothing length hd

using

Nngb = 4πh3
d

3

gas∑
i

W(|r i − rd|, hd), (10)

where Nngb is the desired number of gas neighbours and the cubic
spline kernel is given by

W(r, h) = 8

πh3

⎧⎪⎨
⎪⎩

1 − 6
(

r
h

)2 + 6
(

r
h

)3
, 0 ≤ r

h
≤ 1

2 ,

2
(
1 − r

h

)3
, 1

2 < r
h

≤ 1,

0, r
h

> 1.

(11)

Then we can estimate

ρg(rd) =
Nngb∑
i=1

mi W(|r i − rd|, hd), (12)

and

vg(rd) =
∑Nngb

i=1 mivi W(|r i − rd|, hd)∑Nngb
i=1 mi W(|r i − rd|, hd)

, (13)

which amounts to a mass-weighted gas velocity calculation.
Throughout our work, we perform all kernel smoothings in a simi-
lar manner. The kernel framework above is written for three spatial
dimensions but can also be generalized to one or two dimensions.

2.2 Time integration

An explicit drag integrator requires us to resolve �t < ts for dust
particles, meaning drag time-steps may be more restrictive than
hydrodynamical or gravitational time-steps. To get an idea of typical
stopping time-scales, we can use equation (9) to write

ts ≈ 6.2 Myr
(

a
0.1 μm

)(
ρgr

2.4 g cm−3

)
×
(

ρg

10−24 g cm−3

)−1 (
cs

1 km s−1

)−1
, (14)

where we assume γ = 5/3 and neglect the higher-order stopping
time-scale correction for supersonic relative gas-dust velocity. As
noted by Laibe & Price (2012a), resolving stopping time-scales is
most prohibitive when gas and dust are highly coupled and thus
show little relative motion. In essence, we require high temporal
resolution only to find that dust and gas move as one. Worse yet,
if dust is not treated in the test-particle limit (where we assumed
ρd/ρg � 1) and backreaction on the gas is included, a high spatial
resolution is also needed to avoid artificial overdissipation of kinetic
energy when dust-gas dephasing is not resolved (Laibe & Price
2012a).

One alternative approach eschews the two-fluid formalism in
favour of a one-fluid method following the gas-dust barycentre
(Laibe & Price 2014b, 2014c). In the limit of small dust-to-gas
ratio, this simply treats dust as a passive scalar perfectly coupled to
gas motion. Another alternative approach, valid in the test-particle
limit, maintains the two-fluid formalism from Section 2 and employs
semi-implicit integrators to avoid the need for prohibitively small
drag time-steps. Here we therefore follow the semi-implicit time-
stepping approaches detailed in previous works (Monaghan 1997;
Laibe & Price 2012b; Lorén-Aguilar & Bate 2014; Booth et al.
2015; Lorén-Aguilar & Bate 2015) that make use of the analytical
solution of equation (3) in the case of constant stopping time-scale.

In practice, we employ the ρd/ρg � 1 limit of Lorén-Aguilar
& Bate (2015), whose semi-implicit, split-update method is well-
suited to the time integration routine in AREPO. The method presented
in Lorén-Aguilar & Bate (2015) fixes the limitations of the method
in Lorén-Aguilar & Bate (2014) pointed out by Booth et al. (2015),
namely the incorrect behaviour of relative velocity in cases of a net
dust-gas relative acceleration from external sources. We note that
equation (17) in Lorén-Aguilar & Bate (2015), the basis for our
drag kicks, can be recast in the form of equation (16) in Booth et al.
(2015), which is shown to be a second-order scheme. However,
Booth et al. (2015) suggest that a simpler first-order scheme may
be acceptable for general use. We refer the reader to Lorén-Aguilar
& Bate (2014) for discussion on the stability of semi-implicit drag
integrators.

Our semi-implicit second-order time integration is implemented
in the following way. Suppose the system is at time t and a dust
particle’s velocity is being updated over time-step �t. Let ṽd(t +
�t) and ṽg(t + �t) denote the dust particle’s velocity and SPH-
averaged gas velocity at time t + �t after non-drag (e.g. gravity)
kicks are applied, but before drag acts on velocities. Then, we update
the dust particle’s velocity to

vd(t + �t) = ṽd(t + �t) − ξ
[
ṽd(t + �t) − ṽg(t + �t)

]
+ [(�t + ts)ξ − �t]

[
ad,ext(t) − ag,ext(t) + ∇P

ρg

]
, (15)

where we define ξ ≡ 1 − exp ( − �t/ts). To maintain consistency
with equation (2), our notation differs slightly from that used in
Lorén-Aguilar & Bate (2015), where −∇P/ρg is folded into ag,ext.
While we adopt this semi-implicit approach and use it in most cases,
we also implement an explicit first-order time-stepping framework
for comparison purposes.

Dust particles are dynamically assigned individual time-steps
in the following manner. For each dust particle, we first calculate
the minimum hydrodynamical time-step for gas cells within the
smoothing kernel radius hd, which we denote �tg,ngb. Next, we
determine a Courant-Friedrichs-Lewy (CFL) type time-step using

�tCFL ≡ CCFLhd√
c2

s + |vg − vd|2
, (16)

where CCFL ∼ 0.3 and cs is the kernel-averaged gas sound speed. In
the case of the explicit integrator, we also calculate a time-step using
�tstop ≡ βstopts, where βstop controls what fraction of the stopping
time-scale must be resolved. Typically, βstop is a factor of order
0.1, although in practice we do not use the explicit drag integrator
beyond a simple test problem. Using these time-step values, the dust
particle time-step is chosen to satisfy all of these constraints via

�td = min(�tg,ngb, �tCFL,�tstop), (17)

where the final term involving �tstop only applies if using an explicit
integrator (i.e. the term is not included when using equation 15). In
addition, gravitational time-steps for dust particles are calculated in
the same manner as for dark matter, stars, and other collisionless
particles in AREPO.

In the following, we will present test problems to demonstrate
the performance of our dust integrator.

2.3 Drag in uniform gas flow

We start with a first simple test by simulating a periodic, three-
dimensional box of volume (1 kpc)3 using 163 gas cells and 163

dust particles, arranged in a body-centred configuration. Dust is
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Figure 1. Mean velocity evolution for dust particles travelling with initial
velocity vz, d(t = 0) = 1 km s−1 in a box where gas is at rest. Circles denote
velocities calculated using the explicit first-order integrator for fixed grain
sizes a = 0.05, 0.1, and 0.2μm, while squares indicate velocities from the
semi-implicit method of equation (15). Black lines show analytic results.
Times are normalized to the stopping time-scale for the run with a = 0.1μm.
For the explicit method, we require �t < ts, while the semi-implicit method
can adopt time-steps independent of stopping time-scale. The accuracy of
the explicit method could be improved by adopting smaller time-steps at the
expense of computational cost.

given an initial velocity vd = 1 km s−1 ẑ, and gas has uniform den-
sity ρg = 2 × 107 M
 kpc−3, corresponding to an ISM-like num-
ber density n ∼ 1 cm−3. The uniform dust density is taken to be
ρd = ρg/100, and grains are assumed to have a fixed radius a. We
perform runs with a = 0.05, 0.1, and 0.2μm.

We turn off self-gravity, so that only hydrodynamic forces act.
Since there is no drag backreaction on gas cells, their velocities
remain unchanged as the system evolves. We integrate these dust
particles over several stopping times, using the two integrators: the
explicit first-order method (requiring �t < ts) and the semi-implicit
second-order method given by equation (15). Fig. 1 shows the evo-
lution of dust velocity as a function of time. We note again that in
general the semi-implicit integrator chooses dust time-steps inde-
pendent of stopping time-scale, but for this test, we force it to use
the same time-steps as the explicit first-order integrator. Both inte-
grators yield exponential velocity decay, but the explicit first-order
method overdamps the dust velocity when resolving the stopping
time-scale. By contrast, the second-order semi-implicit drag inte-
grator offers much better agreement with the analytically calculated
expected velocity evolution tracks.

Our initial analysis of the benefits of semi-implicit drag integra-
tors agrees with findings from earlier two-fluid studies (Monaghan
1997; Laibe & Price 2012a,b; Booth et al. 2015). The conclusion
of the test in Fig. 1 is not that an explicit integrator is unsuitable
for gas-dust drag in theory, but rather that high-accuracy solutions
may require prohibitively small time-steps. This is especially the
case in highly coupled flows, where the stopping time-scale can be
much smaller than the hydrodynamical time-scale. We investigate
the convergence properties of these integrators in more detail in the
following section.

Figure 2. Velocity profiles in the dusty travelling wave test at t = 1 after
one wave crossing. Coloured points show velocities for gas (red) and dust
using various stopping time-scales: ts = 0.01 (green), ts = 0.1 (blue), and
ts = 1.0 (orange). Black lines show numerically integrated dust velocity
profiles. Dust most closely follows the gas when the stopping time-scale is
short, corresponding to high drag.

2.4 Dusty travelling wave

The propagation of linear sound waves that transport dust is a well-
studied test problem (Laibe & Price 2011, 2012a; Booth et al. 2015)
that we explore next. We perform the travelling wave test in one
dimension, where in internal units the periodic domain has length
1 and sound speed cs = 1. At equilibrium, gas and dust are at rest,
with the gas having density ρg = 1 and adiabatic index γ = 5/3. To
produce a linear wave, we add sinusoidal perturbations to the gas
density and velocity with amplitudes �ρg/ρg = �vg/cs = 10−6. As
this wave propagates, it accelerates the dust via the drag force. We
use various fixed stopping time-scales to test our implementation.

Fig. 2 shows the velocity structure of the wave at t = 1, after
one full period. While the gas wave returns to its original state, the
behaviour of the dust is more complex. When the stopping time-
scale is small (ts = 0.01), the drag force acts quickly and produces
a dust wave closely mirroring the gas wave. However, when the
stopping time-scale is large (ts = 1.0), dust is not strongly coupled
to the gas and experiences velocity amplitudes roughly one-tenth of
the gas velocity. Furthermore, as the drag strength decreases, there
is a clear phase offset between the gas and dust waves. A run with
medium stopping time-scale (ts = 0.1) displays a hybrid of these
two limiting cases.

We next study how the test results are affected by changes in
time-step. We use the parameter N to indicate how many time-steps
fit into one stopping time-scale: that is, we enforce �t < ts/N. In
this test, we fix ts = 0.1. To focus strictly on the accuracy of the
drag integrator, we do not use kernel smoothing to estimate the local
gas velocity in performing drag updates but instead use the known
analytic gas solution. As in Fig. 2, we let the wave propagate for
one full period. We estimate the error after one period using the L1
norm

L1 = 1

Nd

∑
i

|vi − vd(xi)|, (18)
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2856 R. McKinnon et al.

Figure 3. Convergence results for the dusty travelling wave test, plotting
L1 error in dust velocity at t = 1 after one gas wave-crossing for a constant
stopping time-scale of ts = 0.1. Here, N controls time-step resolution via
the constraint �t < ts/N, and we show results for explicit, forward Euler
(red) and semi-implicit (green) drag updates. We hard-code the analytic
gas velocity when computing dust drag forces to avoid interpolation noise.
Dotted lines show first-order (blue) and second-order (black) scalings. The
semi-implicit velocity update given by equation (15) produces a second-
order drag solver.

where Nd = 256 is the number of dust particles, xi and vi are the
position and velocity of the dust particle i and, following Booth
et al. (2015), vd(xi) is the dust velocity at t= 1 computed using a
high-resolution numerical integrator.

Fig. 3 shows the L1 error for dust after one wave-crossing as the
fineness of the time-steps (given by the parameter N) is increased.
As expected we find that the first-order explicit scheme has an
error scaling as N−1, while the second-order semi-implicit method
converges faster with an error proportional to N−2. In all subsequent
tests and simulations, we only use the second-order semi-implicit
scheme.

2.5 Hydrodynamical shock in a dusty medium

Next, we test the dynamics of dust particles in a Sod (1978)
shock tube, which has been studied both for high dust-to-gas ra-
tio (Paardekooper & Mellema 2006; Laibe & Price 2012a,b) and in
the test-particle limit (Booth et al. 2015).

We use an elongated box of dimensions
1.25 × 0.15625 × 0.15625 in code units, with 512 × 64 × 64
equally spaced gas cells and dust particles initially at rest and
arranged in a body-centred lattice with reflective boundary
conditions. Following Booth et al. (2015), gas cells have ρg = 1
and P = 1 for x < 0 and ρg = 0.25 and P = 0.1795 for x ≥ 0.
The adiabatic index is γ = 5/3. The dust-to-gas ratio is set to
ρd/ρg = 0.01. As a result of this configuration, gas cells and dust
particles across the jump have unequal mass.

Fig. 4 shows the density and velocity profiles obtained in this
shock tube at t = 0.2 for two choices of fixed stopping time-scale,
ts = 0.1 (low drag) and ts = 0.01 (high drag). Fixing the stopping
time-scale enables comparison with analytic dust profiles for parti-
cles satisfying x > 0 at t = 0 (see equations (20 and 21) in Booth

et al. 2015). The density of a gas cell is obtained directly from the
hydrodynamics solver in AREPO, while we calculate the dust den-
sity via kernel smoothing using an equivalent version of equation
(12). Smoothing lengths are calculated to ensure dust particles have
Nngb = 64 ± 8 neighbours.

Qualitatively, the dust profiles show good agreement with the
analytic predictions and are more similar to those of the gas for
shorter stopping time-scale. However, while the gas density profiles
show two discontinuities, corresponding to the contact discontinuity
and shock, the dust density has only one discontinuity. We note that
AREPO robustly captures the expected gas dynamics, and this in
turn improves the accuracy of our drag calculations. In contrast,
the shock test presented in fig. 5 of Booth et al. (2015) displays
gas velocity ringing near the contact discontinuity (i.e. gas velocity
dispersions of roughly 5−10 per cent of the sound speed). This leads
to numerical noise when integrating dust particles, although to some
degree this problem is ameliorated by smoothing over the velocities
of many gas neighbours. This test demonstrates that accurate dust
dynamics in part requires accurate gas dynamics.

2.6 Drag acceleration in an expanding Sedov blast wave

The Sedov blast wave test studies the dynamics of dust in a standard
three-dimensional Sedov (1959) blast wave. There exist analytical
solutions for the gas dynamics in the purely hydrodynamical case
(e.g. Landau & Lifshitz 1959), and these are still valid in the dust
test-particle limit.

This dust test has been introduced in Laibe & Price (2012a), and
we largely parallel that set-up. We simulate a periodic, cubic volume
of unit side length with 1283 gas cells and dust particles. The ini-
tial gas cells are determined by choosing random mesh-generating
points and relaxing the mesh using Lloyd’s algorithm (Lloyd 1982),
while dust particles are superimposed using a Cartesian lattice. In
code units, the initially uniform gas and dust densities are ρg = 1
and ρd = 0.01, respectively. We inject a total energy E = 1 into
the gas cell at the volume centre. For comparison, Laibe & Price
(2012a) spreads this blast energy over multiple gas particles us-
ing kernel-smoothing. Outside of this blast cell, we assign the gas
pressure such that the sound speed cs = 2 × 10−5. The gas has
adiabatic index γ = 5/3. For this test, we fix the stopping time-scale
at ts = 0.04.

We note that our test focuses strictly on grain dynamics and ig-
nores high-temperature sputtering (Ostriker & Silk 1973; Burke &
Silk 1974; Barlow 1978; Draine & Salpeter 1979; Dwek & Arendt
1992; Tielens et al. 1994), although hot blast waves are expected to
modify the grain-size distribution (Nozawa, Kozasa & Habe 2006;
Bianchi & Schneider 2007; Nath, Laskar & Shull 2008; Kozasa et al.
2009; Silvia, Smith & Shull 2010, 2012; Goodson et al. 2016). Evo-
lution in the grain-size distribution would in turn affect the strength
of dust-gas drag. The purpose of this test is not to realistically
model an SN remnant but to assess grain motion in a well-known
hydrodynamical problem.

Fig. 5 shows the resulting density and velocity profiles at t= 0.06
for both gas and dust. We compare against analytic gas profiles
predicted by the Sedov solution and dust profiles predicted by nu-
merically integrating the dust drag equation of motion. Here, we
see that dust shows qualitatively different features: the density and
velocity profiles peak before the radius of the blast wave and do
not show discontinuities. Because gas and dust are decoupled and
interact only through the drag force, dust lags behind the gas and ex-
periences smaller-amplitude increases in density and velocity. The
simulated dust profiles show good agreement with the numerical
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Simulating galactic dust grain evolution 2857

Figure 4. Density (top) and velocity (bottom) profiles for gas (red) and dust (green) in the shock test at t = 0.2, using fixed stopping time-scales ts = 0.1 (left)
and ts = 0.01 (right). Solid lines denote analytic profiles for gas (blue) and dust (black), while the dotted line in the top panels marks the initial density jump.
The dust density profile is constructed using kernel interpolation at dust particle positions and is multiplied by the overall gas-to-dust ratio to enable comparison
with gas density. The hydrodynamic methods from Springel (2010) prevent the spurious gas velocity ringing present in fig. 5 of Booth et al. (2015), leading to
reduced noise in the dust velocity profiles. The dust profiles more closely follow the gas profiles in the high-drag case with shorter stopping time-scale.

predictions, although we note that the dust velocity near the blast
wave tends to lie above its predicted value, exceeding the peak
velocity by about 10 per cent.

Two-dimensional slices of the mesh are shown in Fig. 6. To
improve the visibility of the mesh, this figure has been generated
from a run using only 643 gas cells and dust particles and at t = 0.08,
when the blast has expanded to fill more of the volume than in Fig. 5.
For each gas cell in this two-dimensional slice, we compute the local
dust density by kernel interpolation in three dimensions over nearby
dust particles, centring the interpolation about the cell centroid. The
dust-to-gas ratio is then estimated by dividing the local dust density
by the cell’s known gas density.

Fig. 5 shows that the dust density increases radially outwards
from the blast but peaks before reaching the radius of the blast
wave. Because the drag force coupling dust to the hydrodynamical
motion takes some time to act, dust appears to chase the expanding
blast. This results in a clear negative radial gradient for the dust-to-
gas ratio: the dust-to-gas ratio is highest near the centre of the blast,
since dust is delayed in expanding outwards, and lowest at the blast

radius, since gas compresses to higher density more rapidly than the
lagging dust. Simulations treating dust as perfectly coupled to the
hydrodynamical motion would not resolve these dust-to-gas ratio
variations.

2.7 Dust falling through gas under gravitational acceleration

Next, we study the dynamics of dust grains subject to an external
gravitational acceleration in a gaseous medium in hydrostatic equi-
librium (e.g. Monaghan 1997). We generate an equispaced lattice
of 1283 gas cells in a box of length 1 kpc centred on the origin
and apply an external gravitational acceleration pointing to the box
mid-plane, g = −2 sgn(x) x̂ km2 kpc−1 s−2, where sgn is the sign
function. The gas has adiabatic index γ = 5/3 and initial density
profile ρ(x) = 108exp ( − |x|/h) M
 kpc−3, where h = 0.05 kpc is
a scale height. We assume an isothermal gas, and the choices for
g and ρ(x) above determine the gas temperature needed for hydro-
static equilibrium. Thus, the gas has a pressure distribution that is
also exponential and a uniform sound speed cs = √

γ |g|h.
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2858 R. McKinnon et al.

Figure 5. Density (left) and velocity (right) profiles for gas (red) and dust (green) in the Sedov dust test at t = 0.06. We multiply the dust density by the
gas-to-dust ratio to compare densities on the same axes. The drag stopping time-scale is fixed to ts = 0.04. Solid blue lines denote analytic gas profiles, and solid
black lines indicate dust profiles predicted by numerically integrating the dust drag acceleration using the self-similar Sedov–Taylor solution. We randomly
sub-sample gas cells and dust particles to improve readability. Dust lags behind the gas and does not display sharp peaks in density and velocity.

Figure 6. Two-dimensional slices of the mesh structure in the Sedov dust test at t = 0.08, where gas cells are coloured by the local dust density (left) and
dust-to-gas ratio (right). These quantities are computed in a kernel-smoothed manner about the centroid of each two-dimensional cell. White circles denote the
radius where gas density peaks, computed using the analytic self-similar solution. As in Fig. 5, the stopping time-scale is set to ts = 0.04. Because dust is not
perfectly coupled to the hydrodynamical motion, the dust density peaks at a smaller radius than the gas density. Thus, there is a drop in dust-to-gas ratio near
the blast radius.

We place a dust particle at position r = 0.45 x̂ kpc, such that grav-
ity pushes the dust particle towards the box centre. The dust particle
starts with zero initial velocity. We assume a fixed grain radius a,
as described below, and an internal grain density ρgr = 2.4 g cm−3.
Note that because the gas density is not uniform, the stopping time-
scale given by equation (9) varies with position and is smallest near
the box centre, where the gas is most dense. We include the velocity-

dependent correction factor in equation (9) in our test, although it
does not qualitatively impact our results. Finally, we neglect self-
gravity.

While the gas maintains its pressure gradient to counteract the
external gravity and remain at rest, the dust particle is accelerated by
gravity and begins to move. However, as the dust velocity increases,
so too does the strength of the drag force opposing gravity. Fig. 7
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Figure 7. Position as a function of time for dust grains starting at
rest in isothermal, hydrostatic gas with constant external gravity g =
−2 x̂ km2 kpc−1 s−2. Coloured circles show simulation results for grains
of different radii, while coloured lines show analytic predictions. Grains
initially follow the parabolic profiles expected in the drag-free case (dotted
black line), but eventually the magnitude of the drag force is sufficient to
slow grain motion. Drag acts more quickly for small grains with shorter
stopping time-scale.

shows the dust particle’s position versus time, for three different
choices of grain radius a: 0.5, 1.0, and 2.0μm. Initially, the dust
particle follows the parabolic trajectory expected for drag-free mo-
tion in a uniform gravitational field. However, as the dust particle
moves towards x = 0 kpc, both its velocity and the local gas density
increase. This results in a shorter stopping time-scale and thus a
stronger drag acceleration. Around t ≈ 0.5 Gyr, the dust particle
deviates from the drag-free motion. As expected, a smaller grain
feels the effects of drag more quickly, since stopping time-scale
varies linearly with grain radius.

In Fig. 7, we compare our simulation results with predictions
obtained by numerically integrating the dust particle’s position and
velocity using a high-accuracy differential equations solver. The
gravitational acceleration is constant, while the drag acceleration
depends on the dust velocity and stopping time-scale. We compute
the stopping time-scale as a function of position using the analytic
gas density profile. Our simulations agree well with these expected
profiles.

3 GR A IN-SIZE EVOLUTION

Dust grains injected into the ISM by stars experience a range of
physical processes – accretion, sputtering, shattering, and coagula-
tion, among others – that affect their size distribution, as illustrated
in Fig. 8. In turn, the grain-size distribution affects the strength
of dust-gas drag (e.g. see Section 2), interstellar extinction (e.g.
Mathis, Rumpl & Nordsieck 1977; Weingartner & Draine 2001a),
and other processes like radiation pressure. Thus, it is important
to properly model the evolution of the grain-size distribution when
using a two-fluid approach.

Many theoretical and computational dust studies either evolve a
grain-size distribution but track only total dust mass (Liffman &

Clayton 1989; O’Donnell & Mathis 1997; Hirashita et al. 2015),
or evolve dust masses for various chemical elements but assume
fixed grain radii (Zhukovska, Gail & Trieloff 2008; Bekki 2015;
Popping, Somerville & Galametz 2017; McKinnon et al. 2017).
Here, we wish to do both. However, to combine chemical element
and grain-size distribution tracking without unwieldy complexity,
we make several assumptions.

First, we distinguish between a dust grain (a single, physical
object) and a dust particle (an element of our simulation consisting
of an ensemble of dust grains). In this work, we always assume
grains are spherical, so that a grain with radius a > 0 has mass

m(a) ≡ 4πρgra
3

3
. (19)

To simplify notation later, define m(a) ≡ 0 for the unphysical case
a ≤ 0. In reality, dust grains have some degree of non-sphericity
and internal voids (Mathis 1998; Draine 2003; Draine & Fraisse
2009), but this spherical, compact approximation is sufficient for
our applications.

Secondly, we assume that a dust particle’s grain-size distribution
is agnostic as to the chemical composition of the grains. That is, we
do not have separate grain-size distributions for grains of different
composition (e.g. SiO2 and MgSiO3). This reduces computational
complexity and also acknowledges the limitations of our galaxy
formation model (Vogelsberger et al. 2013), which tracks mass
for nine chemical elements: H, He, C, N, O, Ne, Mg, Si, and Fe.
Because we track mass only for chemical elements as a whole and
not individual chemical compounds, it would not be feasible to
assign different grain-size distributions to different grain types. As
in previous works (McKinnon et al. 2016, 2017), only C, O, Mg,
Si, and Fe are allowed to condense into dust.

Although we do not track complex grain compositions, we do
follow the mass of individual chemical elements locked in dust.
When a dust particle is created, we store what fraction of the total
dust mass came from each chemical element. The total dust mass
can be calculated just from the grain-size distribution. When we add
or subtract dust mass (e.g. grain growth or sputtering), we keep track
of what masses of each element are being added from or returned
to gas cells, and update the dust-mass fractions accordingly. In this
manner, the total masses of individual chemical elements in gas and
dust are conserved during a time-step. Thus, dust particles have one
array of dust mass fractions describing chemical composition and
one array describing the overall grain-size distribution.

In what follows, we begin with a generic, analytical description
of grain-size evolution. Then, we describe the discretization used
in our simulations and the various physical processes that modify
our grain-size distribution. Our framework builds off of Dwek et al.
(2008) and Hirashita & Yan (2009). Conceptually, our methods
handle two sorts of processes: those that conserve grain number
and those that conserve grain mass.

We first introduce methods to handle number-conserving pro-
cesses that grow or shrink the radii of individual grains. A dust
particle’s grain-size distribution thus satisfies the continuity equa-
tion:

∂

∂t

[
∂n(a, t)

∂a

]
+ ∂

∂a

(
∂n(a, t)

∂a
× da

dt

)
= 0, (20)

where ∂n(a, t)/∂a × da is the number of grains with radii in the
interval [a, a + da] at time t for a given dust particle. This differs
from the hydrodynamical continuity equation because the ‘velocity’
term da/dt for the grain-size distribution may be independent of
a and only a function of gas quantities (see discussion of grain
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2860 R. McKinnon et al.

Figure 8. Schematic illustration of the lifecycle of dust within a galaxy. Graphics depict stars (yellow), dust grains (red), and gas-phase metals (blue) in
the ISM. Dust grains are produced through stellar evolution, interact with other dust grains and gas-phase metals through collisional processes, and can be
destroyed near SNe. Collisional processes are divided into those that conserve grain number (top left) and those that conserve grain mass (top right). Accretion
and sputtering change total dust mass by growing or shrinking individual grains, while shattering and coagulation preserve overall mass but affect the number
of grains.

growth and thermal sputtering in Sections 3.3 and 3.4, respectively).
Thus, unlike the hydrodynamical case where changes in density
lead to changes in velocity, shifting the grain-size distribution to
smaller or larger radii does not directly affect da/dt. In the limit
where da/dt is constant (e.g. small dust-to-gas ratios where the
accretion of dust does not materially affect gas metallicities), the
grain-size distribution would simply obey the solution ∂n(a, t +
�t)/∂a = ∂n(a − ȧ�t, t)/∂a. In practice, although da/dt may not
explicitly depend on grain size, shifts in the grain-size distribution
lead to changes in dust and metal mass, which in turn can affect gas
properties like metallicity and temperature. Thus, da/dt evolves as
the gas evolves, and we develop methods to discretize this problem.

Secondly, we address mass-conserving processes like shattering
and coagulation in a framework that accounts for grain-grain colli-
sions. These processes do not conserve grain number (i.e. shattering
one large grain produces many smaller grains) and do not involve
mass transfer to or from gas cells. The underlying physics shares
similarities to a wide class of population balance equations (Smolu-
chowski 1916; Vigil & Ziff 1989; Dubovskii, Galkin & Stewart
1992).

Our methods below discretize the grain-size distribution into N
bins in a general way. The N = 1 case models a fixed grain size,
where changes in dust mass result only from changes in number
of grains, not changes in grain radii. The N = 2 case is similar
to the simplified two-size grain distribution used in recent works
(Hirashita 2015; Hou, Hirashita & Michałowski 2016; Hou et al.
2017; Chen et al. 2018).

3.1 Analytic formulation

We assume that grains can have radii in the interval Ifull ≡ [amin,
amax]. Define a differential grain-size distribution ∂n(a, t)/∂a over
Ifull such that ∂n(a, t)/∂a × da denotes the number of grains with
radii in the range [a, a + da] at time t.

Because we will later discretize this formulation, partition Ifull

into N bins with edges (ae
0, a

e
1, . . . , a

e
N ), where ae

0 ≡ amin and ae
N ≡

amax. At this point, we do not make any assumptions about the
spacing of these bins. Bin i covers the interval Ii ≡ [ae

i , a
e
i+1] with

mid-point

ac
i ≡ ae

i + ae
i+1

2
. (21)

We write the number of grains in bin i at time t as

Ni(t) ≡
∫

Ii

∂n(a, t)

∂a
da, (22)

and their mass as

Mi(t) ≡
∫

Ii

m(a)
∂n(a, t)

∂a
da. (23)

We discuss in later sections how various physical processes affect
the time-evolution of grain radius. For now we assume that we
have a known form of ȧ(a, t) ≡ da/dt . This may, in principle, be a
function of radius and time (the latter because, e.g. if grain radius
is changing through collisions with gas atoms, gas properties like
density and temperature may evolve in time).
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We next consider the time evolution by a small time-step �t. We
can rewrite the number of grains in bin j at time t + �t as the number
of grains in any bin at time t that evolve over the time-step to lie in
bin j, using

Nj (t + �t) =
∫

Ij

∂n(a, t + �t)

∂a
da

=
∫

Ifull

1j (a, ȧ, t)
∂n(a, t)

∂a
da, (24)

where the indicator function is

1j (a, ȧ, t) ≡
{

1, if a + ȧ(a, t)�t ∈ Ij ,

0, else.
(25)

Using the partition of Ifull,

Nj (t + �t) =
N−1∑
i=0

∫
Ii

1j (a, ȧ, t)
∂n(a, t)

∂a
da. (26)

In general, the form of ȧ(a, t) determines where the integrands are
non-zero. If ȧ(a, t) = ȧ(t), suitable for collisional processes like
grain accretion (e.g. Hirashita & Kuo 2011) or thermal sputtering
(e.g. Draine & Salpeter 1979), equation (26) can be simplified as

Nj (t + �t) =
N−1∑
i=0

∫
Ii∩(Ij −ȧ�t)

∂n(a, t)

∂a
da, (27)

where we use the shorthand Ij − ȧ�t ≡ [ae
j − ȧ(t)�t, ae

j+1 −
ȧ(t)�t] to indicate the range of grain radii at time t that later evolve
to fall in bin j at time t + �t. This expresses the number of grains
in each bin at time t + �t as a summation of integrals of the time
t grain-size distribution over overlapping intervals. In many cases,
Ii ∩ (Ij − ȧ�t) may trivially be the empty set: for example, in han-
dling grain growth with ȧ > 0, this overlap is non-empty only for i
≤ j since grains in bins j + 1 and above will not shrink.

To this point, we have neglected boundary conditions that enforce
amin ≤ a ≤ amax in the grain-size distribution. However, grains may
erode or grow such that a + ȧ�t < amin or a + ȧ�t > amax and
thus require rebinning. For notational convenience, we define ‘bin
−1’ and ‘bin N’ as the intervals I−1 ≡ ( − ∞, amin] and IN ≡
[amax, ∞), respectively. With these definitions, equation (27) can
be extended to bins −1 and N, where N−1(t + �t) and NN(t + �t)
represent the number of grains whose radius evolves below amin

or above amax, respectively. This formulation conserves total grain
number, i.e. N(t + �t) = N(t).

While total grain number is conserved, total mass evolves. Par-
alleling equation (27), the mass in bin j at time t + �t is given
by

Mj (t + �t) ≡
N−1∑
i=0

∫
Ii∩(Ij −ȧ�t)

m(a + ȧ�t)
∂n(a, t)

∂a
da, (28)

where integrals are over the time t grain-size distribution but use
the mass m(a + ȧ�t) to account for mass at time t + �t. Using the
definitions of I−1 and IN above and m(a + ȧ�t) ≡ 0 for a + ȧ�t ≤
0, equation (28) is valid for −1 ≤ j ≤ N. We note that that if ȧ < 0
(e.g. thermal sputtering) and �t → ∞, m(a + ȧ�t) → 0, implying
that all grain mass is destroyed.

An overall grain-size distribution update from time t to t + �t
takes place as follows. First, the numbers of grains in bins 0, 1, . . . ,
N − 1 at time t + �t are updated using equation (27) and the time t
grain-size distribution. Then, Mj(t + �t) is calculated using equation
(28) for −1 ≤ j ≤ N. The change in mass �md ≡ md(t + �t) − md(t)

for the dust particle over this time-step is

�md =
N∑

j=−1

Mj (t + �t) −
N−1∑
j=0

Mj (t). (29)

Our rebinning procedure places mass M−1(t + �t) back into bin
0 and mass MN(t + �t) into bin N − 1. This rebinning process
conserves the grain mass calculated at time t + �t (and thus �md)
but does not conserve total grain number. For example, if ȧ > 0
and MN(t + �t) > 0, rebinning will cause the number of grains
to increase since grains in bin N − 1 are less massive than those
in bin N. In the case of a continuous grain-size distribution, there
are various ways the grain-size distributions in bins 0 and N− 1
can be modified to increase the bin mass. In the following section,
we describe how to discretize the grain-size distribution using a
piecewise linear approximation.

3.2 Discrete formulation

3.2.1 Evolution of dust mass between grain-size bins

Following Hirashita & Yan (2009), we discretize the grain-size
distribution into N log-spaced bins in the following manner. Using
the minimum and maximum grain sizes amin and amax, respectively,
we define the logarithmic bin width

log δ ≡ log amax − log amin

N
. (30)

The edges of the N bins are then (ae
0, a

e
1, . . . , a

e
N ), where ae

i ≡
δiamin. This specifies the exact partition of Ifull that we use in the
formulation from Section 3.1.

We then assume that the differential grain-size distribution in bin
i at time t takes the linear form

∂n(a, t)

∂a
= Ni(t)

ae
i+1 − ae

i

+ si(t)(a − ac
i ), (31)

where ac
i is the mid-point of the bin and si(t) denotes the slope.

We note that the number of grains in bin i is determined only by
the first term, since the second term integrates to zero over the bin’s
interval. The piecewise linear grain-size distribution at time t is fully
determined by the set of Ni(t) and si(t) values for all bins. Fig. 9
shows a schematic of this discretization and its evolution in time,
which is described below in detail.

Discretizing equation (27), the number of grains in bin j at time
t + �t is

Nj (t + �t) =
N−1∑
i=0

∫
Ii,j

(
Ni(t)

ae
i+1 − ae

i

+ si(t)(a − ac
i )

)
da, (32)

where Ii,j ≡ Ii ∩ (Ij − ȧ�t) denotes the portion of bin i that ends
up in bin j after the time-step. To help determine whether the inter-
section of these two intervals Ii and Ij − ȧ�t is non-empty, we first
set x1(i, j ) ≡ max(ae

i , a
e
j − ȧ�t), the maximum of the intervals’

left edges, and x2(i, j ) ≡ min(ae
i+1, a

e
j+1 − ȧ�t), the minimum of

the intervals’ right edges. Then, Ii ∩ (Ij − ȧ�t) �= ∅ if and only if
x2(i, j) ≥ x1(i, j), in which case the intersection interval is [x1(i, j),
x2(i, j)]. We define the indicator function

1x2≥x1 (i, j ) =
{

1, if x2(i, j ) ≥ x1(i, j ),
0, else,

(33)

which is unity when any portion of bin i evolves into bin j over the
time-step. To improve readability below, we will often label x1(i,
j) and x2(i, j) without their implied arguments i and j. Simplifying
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Figure 9. Schematic illustration of a piecewise linear grain-size distribution evolving from time t (left) to t + �t (right). We assume that da/dt > 0 during
the time-step, although the opposite case is similar. Solid blue lines mark the piecewise linear discretization, with the shaded region in each bin giving the
number of grains. Dashed red lines show a possible piecewise constant discretization. At time t, we assume the piecewise linear and constant methods yield
the same number of grains in a given bin (i.e. dashed red lines pass through the mid-points of the solid blue lines). By the end of the time-step, this property
is not maintained (e.g. here, the piecewise constant method overestimates the number of grains leaving the leftmost bin). At time t + �t, the rightmost bin is
subject to slope limiting: if the mass and number of grains entering this bin yield a grain-size distribution that drops below zero (dotted purple line), the slope
is limited to remove this unphysical behaviour. Slope limiting preserves a bin’s total grain mass. To improve readability, this figure adopts linearly spaced bins.
In practice, the formulation outlined in Section 3.2 uses log-spaced bins.

equation (32) yields

Nj (t + �t)

=
N−1∑
i=0

1x2≥x1 (i, j )
∫ x2

x1

(
Ni(t)

ae
i+1 − ae

i

+ si(t)(a − ac
i )

)
da

=
N−1∑
i=0

1x2≥x1 (i, j )

[
Ni(t)a

ae
i+1 − ae

i

+ si(t)

(
a2

2
− ac

i a

)]a=x2

a=x1

. (34)

This reduces the calculation of the number of grains in bin j at
time t + �t to a sum over factors involving the time t grain-size
distribution. Similarly, the mass in bin j at time t + �t comes from
discretizing equation (28) as

Mj (t + �t) =
N−1∑
i=0

1x2≥x1 (i, j )Mi→j (t,�t), (35)

where

Mi→j ≡
∫ x2

x1

m(a + ȧ�t)

(
Ni(t)

ae
i+1 − ae

i

+ si(t)(a − ac
i )

)
da, (36)

denoting mass transfer from bin i to j. Then,

Mj (t + �t) = 4πρgr

3

N−1∑
i=0

1x2≥x1 (i, j )

[
Ni(t)(a + ȧ�t)4

4(ae
i+1 − ae

i )

+ si(t)f
M
i (a, ȧ, �t)

]a=x2

a=x1

, (37)

where we use equation (19) to evaluate m(a + ȧ�t) and define

f M
i (a, ȧ, �t) ≡ a5

5
+ (3ȧ�t − ac

i )
a4

4
+ ȧ�t(ȧ�t − ac

i )a3

+ (ȧ�t)2(ȧ�t − 3ac
i )

a2

2
− ȧ3�t3ac

i a. (38)

Equation (37) also holds for the two boundary bins with j = −1 and
j = N, although the case j = −1 requires a small modification. Since
bin −1 covers the interval I−1 = ( − ∞, amin] and m(a) = 0 for a
≤ 0, we need to ensure we only integrate over grain sizes a with
a + ȧ�t > 0. To do this, define a∗ ≡ −ȧ�t so that a > a∗ implies
a + ȧ�t > 0. Then, for the boundary bin j = −1 only, modify the
integrals in equation (37) to be over the intervals [x1, x2]∩[a∗, ∞).

Alternatively, if the number of grains Nj(t + �t) and slope
sj(t + �t) are known, the mass in bin j at time t + �t can be
expressed as

Mj (t + �t)

=
∫ ae

j+1

ae
j

4πρgra
3

3

(
Nj (t + �t)

ae
j+1 − ae

j

+ sj (t + �t)(a − ac
j )

)
da

= 4πρgr

3

[
Nj (t + �t)a4

4(ae
j+1 − ae

j )
+ sj (t + �t)

(
a5

5
− ac

j a
4

4

)]ae
j+1

ae
j

.(39)

One can think of Mj(t + �t) not as an explicit function of time but
as a function of Nj(t + �t) and sj(t + �t). We summarize how to
update the grain-size distribution in bin j from t to t + �t. First,
apply equations (34) and (37) to the grain-size distribution at time t
to calculate the number and mass of grains at time t + �t. Then, use
equation (39) to solve for the slope in bin j, sj(t + �t). This choice
of slope ensures bin j has the expected mass of grains.

However, this procedure may result in a slope sj(t + �t) whose
magnitude is so large that the grain-size distribution becomes neg-
ative at one of the edges of bin j. Since this is unphysical, we
introduce the following slope limiting step. We therefore calculate

∂n(a, t + �t)

∂a

∣∣∣∣
ae
j

≡ Nj (t + �t)

ae
j+1 − ae

j

+ sj (t + �t)(ae
j − ac

j ), (40)

and

∂n(a, t + �t)

∂a

∣∣∣∣
ae
j+1

≡ Nj (t + �t)

ae
j+1 − ae

j

+ sj (t + �t)(ae
j+1 − ac

j ). (41)

If both of these values are non-negative, no slope limiting is nec-
essary. Furthermore, since the grain-size distribution is piecewise
linear and the number of grains Nj(t + �t) > 0, at most one of these
values could be negative. Without loss of generality, we assume
∂n(a, t + �t)/∂a|a=ae

j+1
< 0, so that sj(t + �t) < 0. Let Mj(t + �t)

be the mass in bin j computed using equation (37). We will find a
new number of grains Ñj (t + �t) and slope s̃j (t + �t) so that the
grain-size distribution at edge ae

j+1 is zero (thus ensuring the grain-
size distribution is non-negative everywhere in bin j), while keeping
the mass in bin j is unchanged. To do this, we use equation (39)
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and the unlimited Nj(t + �t) and sj(t + �t) values to simultaneously
solve the linear system

Mj (Ñj (t + �t), s̃j (t + �t)) = Mj (Nj (t + �t), sj (t + �t)), (42)

and

Ñj (t + �t)

ae
j+1 − ae

j

+ s̃j (t + �t)(ae
j+1 − ac

j ) = 0, (43)

where the unknowns are Ñj (t + �t) and s̃j (t + �t). This procedure
keeps the slope negative but limits its magnitude. Flattening the
bin’s slope causes the number of grains in the bin to drop, since the
average grain mass increases and mass is conserved. We employ a
similar procedure when ∂n(a, t + �t)/∂a|a=ae

j
< 0, an alternative

case that causes the number of grains to increase as the positive
slope is flattened. In both cases, this slope limiting preserves the
mass in the bin, at the cost of changing the number of grains away
from the value predicted by equation (34). Afterwards, we omit the
tildes and assume that Nj(t + �t) and sj(t + �t) refer to the possibly
slope limited values in bin j.

3.2.2 Rebinning dust mass to obey grain-size limits

In order to complete the time-step update, we need to address grains
whose radii grow above amax or shrink below amin. There are several
approaches one could take. In this work, we move grains that evolve
beyond the allowed size limits back into the closest grain size bin
in a mass-conserving manner. Alternatively, we could assume that
grains whose radii evolve below amin are destroyed and set their
mass to zero. However, for the galaxy simulations presented in
Section 5, we have found that these two approaches yield similar
results.

Below, we describe our procedure for rebinning grains that be-
come too large or too small. Our steps are given for bin N − 1, which
contains the largest grains. The steps for bin 0 are similar. As in the
case of slope limiting, tildes indicate quantities after rebinning.

Before any rebinning, the average grain size in bin N − 1 is

〈a〉N−1(t + �t)

= 1

NN−1

∫ ae
N

ae
N−1

a

(
NN−1

ae
N − ae

N−1

+ sN−1(a − ac
N−1)

)
da

=
[

a2/2

ae
N − ae

N−1

+ sN−1

NN−1

(
a3

3
− ac

N−1a
2

2

)]a=ae
N

a=ae
N−1

, (44)

where on the right we drop the arguments of NN − 1(t + �t) and
sN − 1(t + �t) for brevity. The mass MN(t + �t) to be added
to bin N − 1 consists of grains with radii larger than ae

N , the
maximum radius allowed in bin N − 1. During rebinning, let
us suppose we shrink these grains to have radius ae

N , so that
N rebin

N−1 (t + �t) = MN (t + �t)/(4πρgra
e
N

3/3) denotes the equiva-
lent number of grains. Then, by rebinning this excess mass at the
maximum possible radius, the average grain size in bin N − 1
increases to

〈ã〉N−1(t + �t) = NN−1〈a〉N−1 + N rebin
N−1a

e
N

NN−1 + N rebin
N−1

, (45)

where for readability we omit the argument t + �t in quantities
on the right. We note that we can also rewrite equation (44) to
express the average grain size after rebinning in terms of unknowns
ÑN−1(t + �t) and s̃N−1(t + �t) that characterize the grain-size
distribution in bin N − 1 after rebinning. As in the case of slope

limiting, we enforce mass conservation, so that

MN−1(ÑN−1(t + �t), s̃N−1(t + �t))

= MN−1(NN−1(t + �t), sN−1(t + �t)) + MN (t + �t), (46)

where MN − 1 is computed using equation (39) and MN using equa-
tion (37). We perform the rebinning step by simultaneously solving
for ÑN−1(t + �t) and s̃N−1(t + �t) from equations (45) and (46),
which can be expressed as a linear system. This ensures that re-
binning conserves mass and places rebinned grains at the largest
possible grain radius. If necessary, we slope limit bin N − 1 af-
ter rebinning. The procedure for bin 0 is essentially identical, with
grains that evolve below the minimum grain radius ae

0 shifted back
to this edge.

This converts the continuous grain-size distribution framework
from Section 3.1 into a piecewise linear framework. In some of
the tests below, we also simulate a piecewise constant grain-size
distribution by forcing the slope in every bin to be zero. This con-
siderably simplifies the number and mass updates in equations (34)
and (39) and alleviates the need for slope limiting. We rebin bound-
ary mass during a time-step by adding MN(t + �t)/〈m〉N − 1 grains
to bin N − 1 and M−1(t + �t)/〈m〉0 grains to bin 0, where 〈m〉j is the
average mass of a grain in bin j and is completely specified only by
the edges of bins.

3.2.3 Transfer of mass between gas and dust

One additional complexity to discuss is the transfer of mass between
gas and dust. Let us assume that, during a time-step, changes in
the grain-size distribution cause a dust particle to change in mass
by �md. We carry out this mass transfer over Nngb neighbouring
gas cells in a kernel-weighted fashion, similar to equation (13). If
�md > 0, the dust particle expects to gain mass from gas cells, and
there is a risk that those cells do not contain enough metals. We
discuss this complication later.

As discussed at the start of Section 3, each dust particle and gas
cell tracks what fraction fk of its mass comes from each chemical
element k. If �md < 0 and dust mass is being returned to gas cells,
we choose to keep these dust mass fractions constant. For example,
if a dust particle with mass fractions fk is set to transfer mass wi�md

to gas cell i for some weight wi, the gas cell gains mass fkwi�md

in species k. Similarly, if �md > 0 and dust mass is being accreted
from gas cells, we choose to keep constant the relative ratios of
gas cell mass fractions corresponding to those chemical elements
which can condense onto dust grains. We reiterate that only C, O,
Mg, Si, and Fe can contribute to dust grains in our model. Using
the notation above, suppose gas cell i has mass fractions fk, and
define fsum ≡ fC + fO + fMg + fSi + fFe ≤ 1. Let f̂k ≡ fk/fsum for k
∈ {C, O, Mg, Si, Fe}. Then, the gas cell loses mass f̂kwi�md in
each of these five elements. Using these accreted masses, the dust
particle’s normalized mass fractions for each chemical element are
recalculated. Regardless of the sign of �md, the mass fractions in
affected gas cells are also recomputed.

This procedure assumes that gas cells always have enough metals
for dust particles to accrete in a time-step. However, this may not
be the case, particularly if a dust particle has already accreted many
nearby metals and surrounding gas cells have low or zero metal
mass. To account for this, we break the dust particle update into
two steps. First, we perform the grain-size distribution calculations
above to determine the new number of grains Nj(t + �t) and slope
sj(t + �t) in each bin j, assuming surrounding gas cells have enough
metals to accrete the expected mass �m

exp
d over the time-step. When
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performing the mass transfer from gas cells to the dust particle, we
keep track of the actual metal mass �mact

d that gas cells are able to
transfer. A gas cell i with kernel weight wi transfers the minimum
of wi�m

exp
d and its available metal mass, so that summing over

nearby gas cells gives �mact
d ≤ �m

exp
d . As the second step, once

mass transfer is complete, we perform the grain-size distribution’s
time-step update by setting the number of grains in bin j at time t + �t
to be Nj (t) + �mact

d /�m
exp
d × (Nj (t + �t) − Nj (t)) and the slope

to be sj (t) + �mact
d /�m

exp
d × (sj (t + �t) − sj (t)). This approach

ensures that the change in dust particle mass equals �mact
d , the

actual amount of accreted metals. The case of dust mass-loss is
much simpler: we are always able to transfer all desired mass back
to nearby gas cells (i.e. �mact

d = �m
exp
d ), and so no special handling

is needed.
When transferring mass between gas cells and dust particles,

we also update other conserved quantities like momentum. When
a dust particle of mass md and velocity vd transfers mass �md

to a surrounding gas cell of mass mg and velocity vg, the dust
particle and gas cell’s momenta are updated to mdvd − �mdvd and
mgvg + �mdvd, respectively. We employ this exchange not only
for �md > 0 but also for �md < 0, when dust accretes from
surrounding gas. In general galaxy applications, the stopping time-
scale (equation 14) is short enough that local gas and dust velocities
are similar.

During mass transfer, we keep a gas cell’s internal energy per
unit mass constant. Using its updated mass and momentum, the gas
cell’s energy is then recomputed as the sum of thermal and kinetic
components. More complicated momentum and energy exchanges
based on detailed fluid–solid interactions are beyond the scope of
this work.

3.2.4 Grain-size evolution test problems

Fig. 10 shows a test of the convergence properties of the piecewise
linear and piecewise constant methods. Using various choices for
number of bins N, we evolve the same initial grain-size distribution
and compare with the expected analytic result. The limits of the
grain-size distribution are amin = 0.001μm and amax = 1μm, and
the initial grain-size distribution ∂n(a, t = 0 Gyr)/∂a ∝ �acut

amin
(a) is

given in terms of the ‘boxcar’ function

�b
a(x) ≡

{
1, if a ≤ x ≤ b,

0, else.
(47)

Here, acut ≡ amin(amax/amin)1/4 lies one-quarter of the way be-
tween amin and amax on a logarithmic scale. We note that �b

a(x) =
H (x − a) − H (x − b), where H is the Heaviside step function.
Thus, the initial grain-size distribution takes a constant, non-zero
value over the interval amin to acut. The grain growth rate is fixed at
ȧ = 0.005μm Gyr−1, and we calculate the fractional error in dust
mass at t = 5 Gyr, after grains grow by 0.025μm. The analytic
grain-size distribution is simply ∂n(a, t)/∂a ∝ �

acut+ȧt
amin+ȧt (a).

The piecewise constant method yields first-order accuracy, while
the piecewise linear method largely displays second-order be-
haviour apart from a slight softening of the convergence rate for
N � 512. In this test, the fractional mass error for N= 64 bins is
roughly 40 per cent for the piecewise constant discretization and
just 1 per cent for the piecewise linear one. In the tests and appli-
cations below, we use the piecewise linear method for its improved
accuracy and convergence properties.

We next study the impact of the mass rebinning procedure given
by equation (46) in order to highlight the fact that rebinning may

Figure 10. Convergence results for the grain growth test, plotting frac-
tional dust mass error as a function of number of grain bins N. We
evolve a single dust particle whose grain-size limits are amin = 0.001μm
and amax = 1μm and whose initial grain-size distribution ∂n(a, t =
0 Gyr)/∂a ∝ �

acut
amin (a) is non-zero and uniform over the interval from amin

to acut ≡ amin(amax/amin)1/4. As a result, only a quarter of bins have a non-
zero number of grains at t = 0 Gyr. We fix the grain radius growth rate
ȧ = 0.005μm Gyr−1. Results are shown at t = 5 Gyr for the piecewise con-
stant (red) and piecewise linear (green) discretizations. Dashed lines show
1/N (blue) and 1/N2 scalings (black). The piecewise constant discretiza-
tion provides a first-order method, while the piecewise linear discretization
deviates slightly from a second-order scaling only at large N.

conserve mass during each time-step but not yield the expected
long-term behaviour. Fig. 11 shows the mass evolution of a dust
particle whose initial grain-size distribution has minimum grain size
amin = 0.015625μm and takes the form ∂n(a, t = 0)/∂a ∝ �ar

al
(a),

where al = aminδ
45, ar = 1μm, and

log δ = log ar − log amin

60
. (48)

Thus, al lies three-quarters of the logarithmic distance between amin

and ar. As a result, the initial grain-size distribution is non-zero and
uniform over [al, ar]. We perform three runs, all of which use the
same minimum grain size amin and bin-spacing factor δ but vary the
number of bins N. The maximum grain size amax = aminδ

N for these
runs is 1μm (for N = 60 bins), 2μm (N = 70), and 4μm (N= 80).
Since the initial grain-size distribution and bin spacing is the same
across all three runs, this test allows us to determine the impact of
the maximum allowable grain size and rebinning procedure on mass
evolution while keeping resolution fixed. The grain growth rate is
fixed to ȧ = 0.3μm Gyr−1.

The dust particle’s mass most closely follows the analytic result
when amax is large and the effect of rebinning is small. Because
the largest grains at t = 0 Gyr are 1μm in size, when amax = 1μm
some grains are subject to rebinning starting on the very first time-
step. In contrast, grains are rebinned less often for amax = 2μm,
whose profile displays better accuracy. Although the amax = 4μm
test should not involve any rebinning in theory (even the largest
grains that start at a = 1μm will not grow larger than amax), in
practice the slope limiting procedure will introduce some diffusion
that populates then largest grain-size bins over time. However, this
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Figure 11. Mass evolution of a dust particle with a grain-size distribution
that is uniform over a fixed range at t = 0 Gyr and whose largest grains are
1μm in size. We perform three runs that share the same minimum grain
size. These runs increase the maximum allowable grain size amax but also
increase the number of bins to keep the same bin-spacing factor δ from
equation (30). We fix ȧ = 0.3μm Gyr−1 and evolve the dust particle until
t = 8 Gyr so that grains grow by 2.4μm. Coloured circles show the mass
evolution of the dust particle, normalized to its initial mass, for these runs
using the piecewise linear formulation with boundary mass rebinning. The
black line denotes the expected analytic result. By increasing the maximum
allowable grain size, we reduce inaccuracies from the rebinning procedure
that artificially limits grain size.

effect is sufficiently small that the test with amax = 4μm yields mass
evolution visually indistinguishable from the analytic result.

This behaviour is easy to understand intuitively: consider a grain
of radius a = 1μm and time-steps such that ȧ�t = 1μm. Over two
time-steps without rebinning, the grain will grow to have radius
3μm. Next, suppose we adopt rebinning so that grains are not
allowed to grow beyond 1μm: then, after the first time-step, the
grain grows to radius 2μm and is replaced with eight grains of
radius 1μm. After the second time-step, this process repeats for
each of these eight grains, so that at the end we have 64 grains of
radius 1μm. The ratio of final mass with rebinning to final mass
without rebinning is 64/33> 1: in this case, mass has artificially
grown too quickly. Since mass scales non-linearly as radius cubed,
artificially limiting grain radii can allow mass discrepancies to build
up over time.

These results suggest rebinning mass is acceptable when the frac-
tion of dust particle mass affected is small (as in the amax= 2μm
run), not large (as in the amax = 1μm run). Rebinning is not guaran-
teed to provide the correct long-term behaviour, but it can preserve
mass from time-step to time-step. In practice, we recommend us-
ing knowledge of typical time-scales and grain growth rates (e.g.
in cosmological contexts, t ∼ 14 Gyr) to estimate a rough maxi-
mum grain size and adopting this as amax. For example, interstellar
grain-size distributions typically extend from amin = 0.001μm to
amax = 1μm (Weingartner & Draine 2001a), but the size distri-
bution for, say, protoplanetary applications would extend to much
larger radii.

Figure 12. Demonstration of grain growth in gas with a fixed amount of
metals. The grain growth rate is fixed at ȧ = 0.025μm Gyr−1, and the dust
particle’s smoothing length is chosen so that it encloses Nngb = 64 ± 8
neighbouring gas cells. Neighbouring gas cells are located on a uniform
lattice with equal mass and have metallicity Z = 0.1. The dust-to-gas ratio
D is the initial mass ratio between the dust particle and a neighbouring gas
cell. The dust particle increases its mass md(t) by a factor of NngbZ/D before
the surrounding gas runs out of metals. The black line shows the expected
analytic mass growth if the gas is treated as an infinite reservoir of metals.

Up to this point, we have considered cases where the gas sur-
rounding a dust particle always contains enough metals to deplete
onto grains. However, if the gas has a limited supply of metals, the
growth of dust may deviate from the expected behaviour. Fig. 12
shows the mass evolution of a single dust particle surrounded by
a uniform lattice of equal-mass gas cells. The ratio of initial dust
particle mass to gas cell mass, D, is chosen to be 10−4, 10−3,
or 10−2, and the initial gas metallicity is Z = 0.1. We intention-
ally choose a large value of metallicity to provide a reservoir
of metals for dust to deplete. The grain radius rate of growth is
fixed to ȧ = 0.025μm Gyr−1. The dust particle is able to accrete
metals in a kernel-weighted fashion from neighbouring gas cells
within its smoothing length, determined using equation (10) and
Nngb= 64 ± 8. The limits and initial condition of the grain-size
distribution are the same as those used in Fig. 10, although they do
not affect this test.

As expected, the dust particle is able to grow its mass by a
factor of NngbZ/D, at which point neighbouring gas cells within the
smoothing length run out of metals. Afterwards, the dust particle’s
mass is constant. Decreasing D increases the relative abundance of
metals to dust and prolongs the point at which dust accretion stops.
Of course, in a realistic setting it is possible for gas to be re-enriched
with metals (e.g. through stellar evolution) and dust to resume its
accretion.

Fig. 13 demonstrates how the piecewise constant and piecewise
linear methods reproduce a grain-size distribution as it evolves un-
der mass growth and mass-loss. We adopt amin = 0.001μm and
amax = 1μm and use N= 128 bins. The initial grain-size distri-
bution is non-zero and constant over the middle quarter of bins
covering the interval [aminδ

3N/8, aminδ
5N/8], where δ is the usual bin-

spacing factor from equation (30). The grain growth rate ȧ is a
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Figure 13. Grain-size evolution for dust where ȧ varies sinusoidally with amplitude 0.015μm Gyr−1 and period 1 Gyr. We compare the piecewise constant
(red) and piecewise linear (green) discretizations with the expected analytic solution (black). From top to bottom, we show the grain-size distribution as it
evolves over quarter-periods. The piecewise linear method better captures discontinuities where the grain-size distribution jumps to zero.

sinusoid with amplitude 0.015 μm Gyr−1 and period 1 Gyr. Grain-
size distribution boundary effects are unimportant for this choice of
amplitude.

As the grain-size distribution evolves over one full period, the
piecewise constant and piecewise linear discretizations experience
some numerical diffusion in reproducing the jump discontinuities in
the grain-size distribution. However, the piecewise linear method is
better able to preserve the steepness of the discontinuity. After one
period, the piecewise linear grain-size distribution takes an extra
three bins beyond the left-most analytic discontinuity to become
visually consistent with zero. In contrast, the piecewise constant
method requires an extra nine bins. In a test like this, combining
mass growth and mass-loss, the piecewise linear method does a far
better job of reproducing the analytic result and reducing numerical
diffusion.

In the above tests, we used arbitrary choices for ȧ to enable
comparison with analytic results. Below, we describe the form that
ȧ takes for various physical processes.

3.3 Grain growth

Dust grains in the ISM can grow by accreting gas-phase metals
(Draine 1990; Dwek 1998; Michałowski et al. 2010), and a number
of accretion parametrizations have been used in models in recent
years (e.g. Zhukovska et al. 2008; Hirashita & Kuo 2011; Hirashita
2012; Asano et al. 2013b; de Bennassuti et al. 2014; Hirashita &
Voshchinnikov 2014; Popping et al. 2017). In this work, we follow
equation 5 from Hirashita & Kuo (2011) and equations 19 and 20
from Hirashita & Voshchinnikov (2014). We calculate the growth

rate of a dust grain of radius a as

da

dt
≈

(
Z

Z


)( nH

103 cm−3

)(
T

10 K

)1/2 (
Sacc

0.3

)
μm Gyr−1, (49)

where Z
 = 0.0127 is the solar metallicity, Z, nH, and T the local
gas metallicity, hydrogen number density, and temperature, respec-
tively, and Sacc the accretion sticking efficiency. As in equation (13),
we determine Z, nH, and T by interpolating over neighbouring gas
cells.

Although the sticking efficiency Sacc is expected to be a function
of temperature and to vary in different ISM phases (e.g. Zhukovska
et al. 2016), the mass resolution available in cosmological simula-
tions is not sufficient to resolve detailed ISM structure. Thus, we
adopt Sacc = 0.3, as in the analytic work of Hirashita & Kuo (2011).
While this does not capture the temperature behaviour suggested
by some chemisorption and physisorption works (Leitch-Devlin &
Williams 1985; Grassi et al. 2011; Chaabouni et al. 2012), it avoids
the assumption of unit sticking efficiency adopted in prior works
(Asano et al. 2013b; McKinnon et al. 2017; Popping et al. 2017) that
has been suggested to overdeplete metals (Zhukovska et al. 2016).
Future work could improve on this assumption when more explicit
ISM models are implemented.

3.4 Thermal sputtering

Dust grains can be eroded through collisions with thermally excited
gas. A number of works have studied this thermal sputtering process
in detail for various grain materials and compositions (Ostriker &
Silk 1973; Burke & Silk 1974; Barlow 1978; Draine & Salpeter
1979; Dwek & Arendt 1992; Tielens et al. 1994). An analytic ap-
proximation to these detailed calculations was provided by equation
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14 in Tsai & Mathews (1995), with the rate of erosion for a grain
of size a given by

da

dt
= −(3.2 × 10−18 cm4 s−1)

(
ρg

mp

)[(
Tsput

T

)2.5

+ 1

]−1

, (50)

where ρg and T are the gas density and temperature, respectively,
mp is the proton mass, and Tsput ≡ 2 × 106 K. Thermal sputtering
is strongest for T � 106 K and can affect the size distribution in
hot plasmas like the intracluster medium (Yahil & Ostriker 1973;
McGee & Balogh 2010) and in interstellar SN shocks (Nozawa et al.
2006; Bianchi & Schneider 2007; Nath et al. 2008; Kozasa et al.
2009; Silvia et al. 2010, 2012).

The sub-resolution ISM model (Springel & Hernquist 2003) that
we adopt treats dense, star-forming gas using an effective equa-
tion of state. The star-forming ISM typically does not resolve hot,
T > 106K gas surrounding SNe that could thermally sputter dust
grains (see fig. 1 in Torrey et al. 2017, for an example gas-phase
diagram). We therefore also require a sub-resolution scheme that
accounts for the sputtering of grains by SNe in a star-forming ISM,
which we introduce in the following section. Together, Sections 3.4
and 3.5 combine to model grain sputtering outside and inside the
star-forming ISM, respectively. In the future, more explicit ISM
models with better resolution could attempt to directly capture the
multiphase structure of the ISM and avoid such sub-resolution pre-
scriptions.

3.5 Supernova destruction

High-velocity shocks produced by SNe can also destroy dust grains
and shift the grain-size distribution to smaller sizes (Nozawa et al.
2006; Bianchi & Schneider 2007; Nozawa et al. 2007; Nath et al.
2008; Silvia et al. 2010). Because we do not directly resolve indi-
vidual SNe in our galaxy formation model, we account for the de-
struction of dust in SN shocks using the sub-resolution ISM model
by tying the dust destruction rate to the local SN rate.

We parallel section 2.2.3 of Asano et al. (2013b), which applied
the methods developed in Yamasawa et al. (2011) to determine the
influence of SN shocks on the ISM grain-size distribution. These
methods are parametrized in terms of a function ξ (af, ai) such
that, for our bin discretization, ξ (ac

j , a
c
i ) × (ae

j+1 − ae
j ) denotes the

fraction of grains starting in bin i that end up in bin j after one SN
shock. Following the aforementioned works, we use the ξ values
calculated by Nozawa et al. (2006) in detailed modelling of SN
blasts.

Integrating equations 12 and 14 of Asano et al. (2013b) over the
width of bin j, we obtain the rate of change of number of grains in
bin j,

dNj

dt
= MsweptγSN

MISM

(
N−1∑
i=0

ξ (ac
j , a

c
i )(ae

j+1 − ae
j )Ni(t) − Nj (t)

)
,

(51)

and the rate of change of mass of grains in bin j,

dMj

dt
= MsweptγSN

MISM

×
{ N−1∑

i=0

[
ξ (ac

j , a
c
i )Ni(t)

(
πρgra

4

3

)]a=ae
j+1

a=ae
j

− Mj (t)

}
.

(52)

Here, γ SN/MISM is the ratio of SN rate to mass in the ISM, and
Mswept is the mass that an SN sweeps up. Following the fitting

function presented in equation 8 of Yamasawa et al. (2011), we use

Mswept

M

≡ 1535

( n

1 cm−3

)−0.202
(

Z

Z

+ 0.039

)−0.289

, (53)

in terms of the local ISM density n and metallicity Z. We calculate
the prefactor Msweptγ SN/MISM by kernel-averaging over neighbour-
ing gas cells, where γ SN and MISM are the local SN rate and mass
of each gas cell. The local SN rate in a gas cell is computed using
the star formation rate predicted by the sub-resolution ISM model
(Springel & Hernquist 2003) and the mass fraction of stars that
explode as SNe II for a chosen initial mass function (IMF). After
updating the number and mass of grains in each bin using equations
(51) and (52), we then apply equation (39) to determine each bin’s
slope and slope limit as before if necessary.

3.6 Shattering

To this point, we have discussed physical processes that conserve
grain number but not grain mass, with mass either gained from or
returned to gas by growing or shrinking grain radii. However, it
is important to also consider grain–grain collisional processes like
shattering and coagulation that conserve total grain mass. In general,
such processes could be treated as an inhomogeneous source term
in the grain number continuity equation (see equation20). However,
it is numerically easier to separate the treatment of shattering and
coagulation from the number-conserving methods in Section 3.2.
This enables us to take advantage of formalisms developed to study
particle population dynamics (e.g. Smoluchowski 1916).

Conceptually, shattering causes large grains to fragment and pro-
duces many smaller grains. Two grains can collisionally shatter
when their relative velocity is above a threshold value. Suppose
grains of size a1 and a2 have speeds v(a1) and v(a2), respectively.
In principle, grain speeds can be influenced by local gas properties
like density and temperature. When colliding, the grains have rel-
ative velocity vrel(a1, a2) =

√
v(a1)2 + v(a2)2 − 2v(a1)v(a2) cos θ ,

where cos θ accounts for impact angle. In this work, we follow Hi-
rashita & Li (2013) and stochastically calculate relative velocities
between two grains by drawing cos θ values randomly from the in-
terval [ −1, 1]. Because of the limited resolution of our ISM model,
we compute grain velocities as a function of grain size with a sub-
resolution scheme, using the small-scale turbulent ISM models of
Yan et al. (2004). In particular, Yan et al. (2004) studied the dynam-
ics of different size grains in a variety of ISM phases, including the
cold neutral medium (CNM) and warm ionized medium (WIM).
Grain velocities as a function of grain size tabulated for these ISM
phases and used in our work are shown in Fig. 14. Appendix A de-
tails how grain velocities in the CNM and WIM are combined with
our equation of state model to estimate velocities for populations
of grains in the ISM. These velocity curves allow us to calculate
the relative velocities vrel(a1, a2) that determine shattering rates,
which have been studied in a variety of works (Voelk et al. 1980;
Markiewicz, Mizuno & Voelk 1991; Cuzzi & Hogan 2003; Yan,
Lazarian & Draine 2004; Ormel & Cuzzi 2007; Ormel et al. 2009;
Hirashita & Li 2013; Paruta, Hendrix & Keppens 2016).

Because shattering and coagulation are mass-conserving and not
number-conserving processes, it is useful to define a differential
mass density

∂ρ(a, t)

∂a
≡

(
m(a)

Vd

)
∂n(a, t)

∂a
, (54)

such that ∂ρ(a, t)/∂a × da is the mass density of grains with radii
in the interval [a, a + da] at time t. Here, Vd ≡ md/ρd is the volume
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2868 R. McKinnon et al.

Figure 14. Grain velocities for the CNM and WIM phases of the turbulent
ISM predicted by Yan et al. (2004). For each phase, velocity curves are
shown for graphite grains (short dashed lines), silicate grains (long dashed
lines), and an average of the two (solid lines). Bigger grains tend to have
larger velocities, and velocities in the WIM exceed those of the CNM.
Relative velocities between grains of different sizes are used to compute
grain shattering and coagulation rates.

associated with a dust particle, where md is its known mass and
ρd is a kernel-weighted dust density estimate using neighbouring
dust particles. Because dust particles may vary in mass more than
gas cells, when finding dust neighbours we use a smoothing length
enclosing a desired amount of dust mass instead of a number of
neighbours. Further details on this procedure are provided in Section
4.5.

Shattering has been studied numerically using piecewise con-
stant discretizations (O’Donnell & Mathis 1997; Hirashita & Yan
2009) and analytically in the continuous case (Dubovskii et al. 1992;
Asano et al. 2013b; Mattsson 2016). We parallel these implemen-
tations in adapting shattering to our piecewise linear discretization,
noting that in Hirashita & Yan (2009) and Asano et al. (2013b),
what we label ∂ρ(a, t)/∂a they denote ρ(a, t). Following equation
(23) of Asano et al. (2013b), shattering causes the mass density for
grains of size a to evolve with the rate

∂

∂t

[
∂ρ(a, t)

∂a

]
= −m(a)

∂ρ(a, t)

∂a

∫ amax

amin

α(a, a1)
∂ρ(a1, t)

∂a1
da1

+ 1

2

∫ amax

amin

∫ amax

amin

[
α(a1, a2)

∂ρ(a1, t)

∂a1

∂ρ(a2, t)

∂a2

× mshat(a, a1, a2)

]
da2 da1, (55)

where

α(a1, a2) ≡
{

π(a1+a2)2vrel(a1,a2)
m(a1)m(a2) , vrel(a1, a2) > vshat,

0, vrel(a1, a2) ≤ vshat,
(56)

is a function of effective cross-section, grain relative velocity, and
grain masses that only allows collisions when relative velocities
are above the shattering threshold vshat, and mshat(a, a1, a2) da is the
mass of grains in the size interval [a, a + da] produced through shat-
tering grains of sizes a1 and a2. Apart from one test problem detailed
later in this section, in all other applications we calculate mshat(a, a1,

a2) following section 2.3 of Hirashita & Yan (2009), which allows
grains to fully or partially fragment depending on the sizes of collid-
ing grains. In equation (55), the first term accounts for the removal
of grains of size a in collisions with grains of size a1, while the
second term describes the injection of grains of size a in collisions
with grains of sizes a1 and a2. Because it is easier to work with,
our definition of mshat accounts for mass produced by both colliding
grains and not just one of the grains, as in Hirashita & Yan (2009).
This necessitates the factor of 1/2 in the second term in equation
(55). For vshat, Jones et al. (1996) uses 2.7 km s−1 for silicate grains
and 1.2 km s−1 for graphite grains. Because we do not track detailed
grain chemistry, we adopt vshat ≈ 2 km s−1 for all grain populations.
For simplicity, we use an indicator function to write α(a1, a2) ≡
π(a1 + a2)2vrel(a1, a2)1vrel>vshat (a1, a2)/(m(a1)m(a2)). We show in
Appendix A how these integrals can be discretized given a piece-
wise linear grain-size distribution and suitable approximations.

After discretizing and approximating, the mass evolution for bin
i turns into

Vd
dMi

dt
= −π

N−1∑
k=0

vrel(a
c
i , a

c
k)1vrel>vshat (a

c
i , a

c
k)〈m〉i I

i,k

+ π

2

N−1∑
k=0

N−1∑
j=0

vrel(a
c
k, a

c
j )1vrel>vshat (a

c
k, a

c
j )mk,j

shat(i)I
k,j ,

(57)

where 〈m〉i is the average mass of a grain in bin i computed using
only the bin edges and

I k,j (t) ≡
∫ ae

k+1

ae
k

∫ ae
j+1

ae
j

[(
Nk(t)

ae
k+1 − ae

k

+ sk(t)(a1 − ac
k)

)

×
(

Nj (t)

ae
j+1 − ae

j

+ sj (t)(a2 − ac
j )

)
(a1 + a2)2

]
da2 da1

(58)

is a polynomial function dependent on the grain-size distribution
at time t. For brevity, we do not write its analytic form here. In
the limit that bin slopes go to zero, equation (57) recovers the
piecewise constant update from equation 4 of Hirashita & Yan
(2009). Unlike the number-conserving processes in Section 3.2.2,
the shattering update in equation (57) requires no rebinning of grains
with radii below amin or above amax. Instead, we follow the steps
in equations 14 through 19 of Hirashita & Yan (2009) to ensure all
grains resulting from shattering have radii in the allowed size range.

Using the grain-size distribution at time t, for a time-step �t we
compute the change in mass in each bin using the simple first-order
update Mi(t + �t) = Mi(t) + dMi/dt × �t ≡ Mi(t) + �Mi, where
�Mi is the change in dust mass in bin i. Because of the numerical
approximation in equation (A4), it is possible for the change in dust
particle mass �md ≡ ∑N−1

i=0 �Mi to deviate slightly from zero. In
the limit N → ∞, this approximation is exact and does not introduce
any numerical error. To ensure �md = 0 during the time-step, we
use the following rescaling. When �md > 0, we choose to limit the
mass gain in those bins with �Mi > 0. More precisely, let

�msub ≡
∑

i|�Mi>0

�Mi (59)

be the total change in mass from the subset of bins gaining mass.
We then subtract �md × �Mi/�msub from each bin i with �Mi > 0,
ensuring the new bins satisfy

∑N−1
i=0 �Mi = 0. If instead �md < 0,

we follow a similar procedure, this time reducing the magnitude of
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�Mi of those bins with �Mi < 0. In the text below, we assume that
�Mi values refer to changes in bin mass after ensuring �md = 0.

Because the grain-size distribution is parametrized in terms of
the number of grains and slope in each bin, we break the number-
slope degeneracy by adding a heuristic modelling changes in av-
erage grain size. This mirrors the steps used to handle boundary
mass rebinning in Section 3.2. Assuming shattered grains have
the grain-size distribution ∂n/∂a ∝ a−3.3 (Jones et al. 1996; Hi-
rashita & Yan 2009), a shattered grain injected into bin i has av-
erage size 〈a〉shat

i ≡ 2.3/1.3 × [(ae
i+1)−1.3 − (ae

i )−1.3]/[(ae
i+1)−2.3 −

(ae
i )−2.3] and average mass 〈m〉shat

i ≡ 4πρgr/3 × −2.3/0.7 ×
[(ae

i+1)0.7 − (ae
i )0.7]/[(ae

i+1)−2.3 − (ae
i )−2.3]. If shattering injects

grains into bin i and causes it to gain mass (�Mi ≥ 0), we ap-
proximate the new average grain size as a weighted average of sizes
for grains already in the bin and those added to the bin. That is, we
assume the new average grain size in bin i is

〈a〉i(t + �t) = Ni(t) × 〈a〉i(t) + �Ni × 〈a〉shat
i

Ni(t) + �Ni

, (60)

where �Ni ≡ �Mi/〈m〉shat
i estimates the number of shattered

grains added to bin i. If bin i loses grain mass (�Mi < 0), we
assume the leftover grains in bin i maintain their average grain size
and set 〈a〉i(t + �t) = 〈a〉i(t). Using equations (39) and (44), we
combine the expression for 〈a〉i(t + �t) and

Mi(Ni(t + �t), si(t + �t)) = Mi(Ni(t), si(t)) + �Mi, (61)

and simultaneously solve for the new number of grains Ni(t + �t)
and slope si(t + �t) in bin i. We slope limit as before if necessary.
This finishes the time-step update due to shattering.

In addition to this piecewise linear discretization, we also im-
plement a piecewise constant method. This follows directly from
equation 4 of Hirashita & Yan (2009), or equivalently from equation
(57) in this work by enforcing that slopes si → 0 and evaluating
quantities at bin mid-points. The development of these two dis-
cretizations for mass-conserving processes parallels our treatment
of number-conserving methods in Section 3.2.

In the following test problem verifying the numerical implemen-
tation of shattering, we choose to adopt simplified forms of vrel and
m

k,j

shat(i) so that the grain-size distribution evolves in a more pre-
dictable way. All other applications – including the isolated galaxy
simulations presented in Section 5 – use the grain velocity and
shattering kernel functions detailed in Fig. 14 and equation (55),
respectively. Solely for this test, we adopt

vrel(ac
k, a

c
j )

km s−1
≡

{
3, ac

k > 0.1μm and ac
j > 0.1μm,

0, else,
(62)

so that only collisions between large grains cross the shattering
threshold. In this test, we do not use the effective relative veloc-
ity interpolated between tabulated CNM and WIM grain velocities,
since it introduces more complicated behaviour. Additionally, for
this test only, we do not compute m

k,j

shat(i) using section 2.3 of Hi-
rashita & Yan (2009), which allows for complex size dynamics (e.g.
colliding grains can partially fragment and leave behind remnants,
shatter over a small size range, etc.), and instead assume that all
colliding grains fully fragment and produce shattered grains in the
interval [amin, amax] according to a size power law with index −3.3
(Jones et al. 1996). Thus, in a collision between grains in bins k and
j, the resulting mass entering bin i is

m
k,j

shat(i) = (〈m〉k + 〈m〉j ) ×
(

(ae
i+1)0.7 − (ae

i )0.7

a0.7
max − a0.7

min

)
, (63)

Figure 15. Influence of shattering on grain-size evolution for an initially
lognormal size distribution (dotted black line), using a simplified set of grain
velocity and mass fragment parameters as detailed in the text. Coloured
circles show results at t = 100 Myr for the piecewise constant (red) and
piecewise linear (green) discretizations using N = 8 bins. We compare with
the expected solution at t = 100 Myr (solid black line) computed using a
high-precision differential equations solver. Shattering produces many small
grains following the power-law ∂n/∂a ∼ a−3.3, although most mass remains
in the largest bins.

where 〈m〉k is the average mass of a grain in bin k computed for a
constant size distribution, as in Section 3.2.

Paralleling a similar test in section 2.1 of Hirashita (2010), we
initialize one dust particle with a lognormal grain-size distribution

∂n(a, t = 0 Myr)

∂a
= C

a
exp

(
− ln2(a/a0)

2σ 2

)
(64)

over the interval from amin = 0.001μm to amax = 1μm, where
a0 = 0.1μm and σ = 0.6. The volume has a gas density corre-
sponding to nH ≈ 0.4 cm−3, and the normalization constant C is
chosen so that the dust-to-gas ratio is D = 3.7 × 10−3, the average
of values used in Hirashita (2010). We generate piecewise constant
initial conditions, so that they can be used with both discretizations.

Fig. 15 demonstrates the evolution of the initially lognormal
grain-size distribution under the influence of only shattering. We
compare results at t= 100 Myr using piecewise constant and piece-
wise linear discretizations. Both capture the formation of small
grains following a ∂n/∂a ∼ a−3.3 power law, although the piecewise
linear method better reproduces the solution predicted by a high-
accuracy numerical integrator. Despite shattering forming many
small grains, we caution that most mass remains in large grains: for
the piecewise linear discretization in this test, the fractions of mass
in the smallest and largest bins are 1 × 10−3 and 5 × 10−1, respec-
tively. Although we directly computed these values, one can use
a4 × ∂n(a, t)/∂a as a proxy for the mass-size distribution, given that
∂n(a, t)/∂a has dimensions of inverse length. Because shattering is
a collisional process, it will more rapidly transfer mass to smaller
grains in regions of higher dust density.
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3.7 Coagulation

Although dust grains in high-velocity collisions can shatter, grains
in low-velocity collisions can stick together and aggregate. This
process of coagulation shifts the grain-size distribution to larger
sizes, particularly in dense regions of the ISM (Chokshi et al. 1993;
Jones et al. 1996; Dominik & Tielens 1997; Hirashita & Yan 2009;
Mattsson 2016). The formalism of dust coagulation also shares
many similarities with a wide class of population balance equations
(Smoluchowski 1916; Vigil & Ziff 1989; Dubovskii et al. 1992;
Krivitsky 1995; Lee 2001; Filbet & Laurençot 2004; Fournier &
Laurençot 2005). A variety of methods have been used to numeri-
cally model dust coagulation, including a piecewise constant grain-
size discretization (Hirashita & Yan 2009), a Monte Carlo-based
collision evolution simulator (Ormel et al. 2009), direct numerical
integration of the integro-differential coagulation equation (Asano
et al. 2013b), a method of moments approach that does not explic-
itly evolve the grain-size distribution (Mattsson 2016), and a finite
volume method applied to the conservative form of the coagulation
equation (Paruta et al. 2016).

We explicitly include the effect of coagulation on the grain-size
distribution by modifying the piecewise linear formalism developed
in Section 3.6 for shattering. The governing equation for coagulation
is the same as equation (57) for shattering, except that we replace
m

k,j

shat(i) with the kernel

mk,j
coag(i) ≡

{
mk + mj , ae

i
3 ≤ mk+mj

4πρgr/3 < ae
i+1

3,

0, else.
(65)

That is, when grains in bins k and j coagulate, they form a larger
grain whose mass is the sum of the colliding masses. We also use
velocity indicator functions of the form

1vrel<vcoag (ac
k, a

c
j ) =

{
1, vrel(ac

k, a
c
j ) < vk,j

coag,

0, vrel(ac
k, a

c
j ) ≥ vk,j

coag.
(66)

This ensures that grains in bins k and j coagulate only when their
relative velocity is below the coagulation threshold velocity, which
depends on the indices k and j and is calculated following equation
8 in Hirashita & Yan (2009). Given their high velocities, grains in
the largest size bins do not coagulate (Hirashita & Yan 2009). As
a result, the sizes of grains resulting from coagulation are less than
the maximum allowed value of amax and require no rebinning.

We calculate the mass transfer between grain-size bins from co-
agulation using equation (57) together with the coagulation mass
kernel mk,j

coag(i). In order to solve for number of grains, Ni(t), and
slope, si(t), in each bin, we require a second constraint. For shatter-
ing, we utilized a heuristic about a bin’s average grain radius, since
the inclusion of shattering is expected to produce new grains fol-
lowing a roughly ∂n/∂a ∝ a−3.3 size distribution. For coagulation,
we do not have a similar analytic expression for the size distribu-
tion of new grains in a bin. As a result, we reuse the same form of
equation (60) and solve in bin i for an estimated average grain size
〈a〉i(t + �t) at the end of the time-step, where here �Ni denotes the
number of grains entering a bin from coagulation. Since 〈a〉i(t) and
〈a〉shat

i lie within bin i, so too will their weighted average 〈a〉i(t + �t).
We then solve for the number of grains and slope in each bin by
simultaneously solving equations (60) and (61).

While this procedure does not take into account some physical
intuition for the size distribution of grains within a bin that results
from coagulation, it provides a second constraint that can be used
together with the mass in a bin to solve for the post-coagulation bin
state. As we demonstrate in Fig. 16, even this simplified procedure
allows the grain-size distribution to track the effects of coagulation.

Figure 16. Evolution of an initial grain-size distribution ∂n(a,
t = 0 Myr)/∂a ∼ a−3.5 (black line) under the influence of coagulation.
Grain-size distributions are computed at various times (coloured circles)
using the piecewise linear discretization and N = 32 bins. Coloured lines
show profiles predicted by a numerical differential equations integrator with
many bins. Coagulation reduces the number of small grains and in this test
produces grains near a ≈ 0.03 μm.

Fig. 16 demonstrates the effect of coagulation on an initial grain-
size distribution ∂n(a, t = 0 Myr)/∂a ∼ a−3.5. To avoid unnecessary
complexity, in this test the velocities of grains in individual bins are
not calculated by interpolating the tabulated grain velocities from
Yan et al. (2004) but instead follow the form

v(a) = 1.1 × 103

(
a

0.1μm

)1/2

cm s−1 (67)

from Hirashita & Li (2013). For this test only, we set the threshold
velocity vk,j

coag = 1.1 × 103 cm s−1, independent of k and j. (That
is, we do not use the more complicated expression in equation 4
of Hirashita & Li 2013, which depends on the radii of colliding
grains.) We note that small grains will coagulate. For simplicity, we
assume a fixed collision angle cos θ = −1 when calculating relative
collision velocities. We adopt a gas density nH ≈ 105 cm−3 and dust-
to-gas ratio D= 0.01 and integrate for 20 Myr using the piecewise
linear discretization with N = 32 bins. We compare results with
those predicted by a numerical integrator solving coupled ordinary
differential equations, starting from the same initial conditions but
using many times more bins.

In this test, coagulation shifts mass from small grains to medium-
sized grains, producing a local peak in the grain-size distribution at a
≈ 0.03μm. Because mass is conserved, the number of small grains
lost is greater than the number of medium-sized grains created, and
so total grain number decreases. Since large grains have velocities
exceeding the coagulation threshold, the grain-size distribution for
a � 0.05μm is largely unchanged from its initial state. We do not
include shattering in this test, which would redistribute some of
these large grains to smaller sizes. The results from the piecewise
linear discretization with N = 32 bins capture the qualitative be-
haviour predicted by the numerical differential equations integrator.
Although there is some tension near a ≈ 0.02μm, where the grain-
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size distribution experiences a sharp increase, results improve as
more bins are added.

Together with Section 3.6, this demonstrates how shattering and
coagulation can shift grains to smaller or larger grain sizes in a
mass-conserving manner.

3.8 Time-step constraints and sub-cycling for grain-size
evolution

We apply a time-step constraint to ensure that changes in a dust par-
ticle’s grain-size distribution are resolved. When evolving a grain-
size distribution over a time-step �t to account for some grain size
process (e.g. shattering), we calculate the effective time-scale

τGSD ≡ min
i

md

�Mi/�t
, (68)

where md is the particle mass, �Mi is the change in mass in bin i,
and the minimization is over all grain-size bins.

We then update a grain-size distribution with a time-step obeying
�t < χτGSD, where χ is a CFL-like parameter less than unity.
This restricts the change in mass in a grain-size bin to be at most
a fraction χ of the total particle mass. We note that even processes
that conserve overall dust particle mass (shattering and coagulation)
may transfer mass between grain-size bins and thus impose a time-
step constraint.

It is often the case that grain-size evolution takes place on shorter
time-scales than those for gravity and drag. To improve computa-
tional efficiency, we use a sub-cycling procedure that resolves these
time-scales for grain-size evolution without subjecting dynamical
forces to such short time-steps. We introduce a parameter λ ≥ 1
and require the particle time-step to resolve λχτGSD. This con-
straint is combined with the dynamical time-step requirements in
equation (17) to determine a dust particle’s overall time-step, during
which dynamical forces like gravity and drag are applied and kernel
estimates are calculated. Local grain-size distribution updates are
then performed using approximately λ time-steps of smaller size
�t < χτGSD, using kernel estimates (e.g. gas density and dust den-
sity) computed at the start of the larger particle time-steps. While
there is some flexibility in choosing values for χ and λ in simula-
tions of isolated galaxies presented in Section 5, we adopt χ = 0.1
and λ = 2.

This sub-cycling avoids the need for many tiny updates to a dust
particle’s position and velocity from gravity and drag forces when
grain-size evolution takes place on time-scales much shorter than
these dynamical forces.

3.9 Dust drag with evolving grain-size distributions

In Section 2, we implemented a dust drag force assuming grains had
one fixed size. Here, we briefly extend that formulation to account
for drag on dust particles with a grain-size distribution. Since the
stopping time-scale for one grain depends linearly on grain size
a (see equation 9), let ts ≡ βa, where β accounts for all other
dependences. The magnitude of the drag force on a dust particle
with mass md is given by

Fd =
∫ amax

amin

(
∂n

∂a

)(
4πρgra

3

3

)( |vd − vg|
βa

)
da, (69)

recalling that ∂n/∂a × da gives the number of grains with radius in
the interval [a, a + da]. We can alternatively write the drag force as
Fd = md|vd − vg|/teff

s in terms of an effective stopping time-scale
teff
s . Equating these two expressions, applying the piecewise linear

grain-size discretization, and solving for the effective stopping time-
scale, we find

teff
s = 3βmd

4πρgr

[
N−1∑
i=0

∫ ae
i+1

ae
i

(
Ni

ae
i+1 − ae

i

+ si(a − ac
i )

)
a2 da

]−1

= 3βmd

4πρgr

{
N−1∑
i=0

[
Nia

3/3

ae
i+1 − ae

i

+ si

(
a4

4
− ac

i a
3

3

)]ae
i+1

ae
i

}−1

. (70)

In general, teff
s is a function of time, as the grain-size distribution

(i.e. Ni and si values) will evolve in time. Going forwards, we use
this calculation of effective stopping time-scale when applying drag
kicks to dust particles with a full grain-size distribution.

We caution, however, that applying an effective force to an entire
dust particle does not allow grains of different sizes to properly
segregate when moving in one direction. In the isolated galaxy
simulations presented in Section 5 without feedback, we neglect
forces like radiation pressure or unresolved galactic winds that could
drive outflows on large scales. However, Ferrara et al. (1991) suggest
that radiation pressure can drive grains more than 100 kpc from
the galactic centre, with grains of different sizes and compositions
experiencing different strength forces. Future simulations including
feedback should address the limitation of effective forces acting on
dust particles.

4 D U S T P RO D U C T I O N

To this point, we have discussed how a dust particle’s grain-size
distribution evolves in time, but we have not yet specified how the
initial grain-size distribution is set. In practice, dust is injected into
the ISM by evolving stars (e.g. Todini & Ferrara 2001; Ferrarotti &
Gail 2006), and stars of different types produce dust with different
size distributions and chemical compositions. This production of
solid dust happens simultaneously with the production of gas-phase
metals.

In this section, we first describe a stochastic procedure for form-
ing dust particles of a certain target mass as star particles evolve.
Then, we describe the initial grain-size distributions assigned to
these newly created dust particles. There are several competing
trends to balance in deciding whether to form many, lower-mass
dust particles or fewer, higher-mass dust particles. On the one hand,
adopting a low-mass threshold for dust particles reduces the stochas-
ticity of our particle creation scheme and better models continuous
dust injection from stars. The more dust particles we create, the
more finely we can sample from a star’s initial grain-size distribu-
tion and see grains of different sizes segregate during drag kicks. On
the other hand, creating many dust particles can make simulations
computationally inefficient.

4.1 Dust particle creation

Star formation prescriptions in cosmological simulations often
stochastically convert gas elements into star particles (e.g. Springel
& Hernquist 2003; Vogelsberger et al. 2013; Hopkins et al. 2014;
Schaye et al. 2015). Similarly, stochastic approaches have been used
to model stellar evolution and convert star particles to back into gas
particles in SPH simulations (Torrey et al. 2012). We parallel these
methods to stochastically create dust particles.

It is important to draw a distinction between the return of gas-
phase metals from a star to the ISM and the return of dust. The
galaxy formation physics in AREPO handles chemical enrichment of
gas-phase metals into the ISM by spreading the metal mass derived
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from stellar nucleosynthetic yields over neighbouring gas cells using
a kernel weighting. However, because dust is not tracked directly in
gas cells but instead as a separate particle type, a separate procedure
is needed for dust than for gas-phase metals.

During a time-step in which a star particle of mass m∗ is expected
to form mass �md of dust, a new dust particle of mass md is created
when a number chosen randomly between 0 and 1 is less than

pd = m∗
md

[
1 − exp

(
−�md

m∗

)]
. (71)

Multiplying equation (71) by md, this states that during a time-
step the expected dust mass formed equals the change in stellar
mass owing to dust synthesis. Over the lifetime of a star particle,
this ensures that the correct amount of dust mass is produced in
expectation. We initialize a dust particle with the same phase space
information as the star particle from which it was spawned.

The choice of desired dust particle mass md affects how often dust
particles are spawned. A natural parametrization is md = βdm

init
∗ ,

where βd is a constant and minit
∗ is the initial mass of the star particle

at birth. We note that minit
∗ will typically be within a factor of a

few of the mean gas cell mass used as a target mass in the (de-
)refinement scheme in AREPO (Vogelsberger et al. 2012). Thus, βd

controls what fraction of a star’s initial mass is converted into dust
during each spawn event. In Section 4.3, we show how βd impacts
the stochasticity of dust return.

Because chemical enrichment of gas-phase metals into surround-
ing gas cells does not involve the creation of new particles, it can
be handled during every time-step in a continuous way. However,
for computational reasons, it is sometimes advantageous to adopt
a discrete chemical enrichment scheme that only periodically per-
forms enrichment updates of accumulated mass in a deterministic
manner. Such discrete enrichment schemes have been used for dust,
too. For example, the chemical enrichment model in Bekki (2015)
has a star particle creating dust particles only at three times in its
evolution, corresponding to the typical lifetimes of SNe II, SNe
Ia, and asymptotic giant branch (AGB) stars. While this method
is deterministic, it introduces artificial delays in the return of dust
to the ISM and does not model continuous enrichment. We restrict
ourselves to stochastic dust production schemes in this work.

4.2 Initial grain-size distributions

Once the decision has been made to spawn a dust particle of mass
md, we next initialize its grain-size distribution. The form of the
grain-size distribution depends on the type of stars evolving off the
main sequence during the time-step.

Hydrodynamical modelling of pulsating AGB stars predicts that
newly created SiC grains obey a lognormal a4 × ∂n/∂a distribution,
with mass concentrated in large grains (Yasuda & Kozasa 2012).
Following Asano et al. (2013b), we assume that the initial grain-size
distribution for all dust produced by AGB stars takes the form

∂n

∂a
= C

a5
exp

(
− ln2(a/aAGB)

2σ 2
AGB

)
, (72)

where aAGB = 0.1μm, σ AGB = 0.47, and C is a normalization
constant that determines the overall mass of the dust particle.

Small grains are destroyed in the reverse shocks of SNe due to
sputtering (Bianchi & Schneider 2007; Nozawa et al. 2007), and
the resulting mass of dust produced by SNe is expected to be biased
towards large grains (Nozawa et al. 2007). The initial grain-size
distribution used for dust produced by SNe II follows from fig. 6(b)
in Nozawa et al. (2007), which presents the relative abundance of

dust grains at various discrete sizes for dust formed from a 20 M

core-collapse SN in a gas of initial density nH = 1 cm−3. However,
the discrete grain-size distribution from Nozawa et al. (2007) is not
calculated at exactly the same sizes as the edges of our grain bins.
To handle this, we calculate the grain-size distribution at each grain
bin edge by logarithmically interpolating between neighbouring
discrete ∂n/∂a values calculated in Nozawa et al. (2007). From the
∂n/∂a values at grain bin edges, we can calculate the number of
grains and slope in each bin. Finally, like for AGB stars, we scale
the initial grain-size distribution for dust particles produced by SNe
II by a constant to ensure the total mass in the grain-size distribution
equals the particle’s mass.

The time-scale for dust grains supplied by AGB stars to be in-
jected into the ISM is estimated as less than 105 yr (Mathews &
Brighenti 1999), and for the purposes of this work, we assume no
delay in transporting AGB dust into a dust particle in the surround-
ing gas. This is similar to the time-scale over which dust grains are
subjected to reverse shocks in SNe (Bianchi & Schneider 2007).
Since we employ the same stellar nucleosynthetic yields used by
Illustris (Vogelsberger et al. 2013), AGB stars are assumed to have
masses in the range 1−6 M
, while SNe II have masses in the
range of 6−100 M
.

Because the grain-size distribution for dust produced by SNe Ia
is uncertain, we assume that dust produced by SNe Ia follows the
same size distribution as that from SNe II. However, the net amount
of dust produced by SNe Ia is sub-dominant compared to that from
SNe II and AGB stars (Nozawa et al. 2011), and some works choose
to entirely ignore dust production from SNe Ia (e.g. Asano et al.
2013b). Because SNe Ia dust yields are so low, as discussed in
Section 4.3, our choice for the initial size distribution of dust from
SNe Ia thus does not meaningfully affect results.

When deciding to stochastically create total dust mass md with a
corresponding grain-size distribution ∂n/∂a, there are a few possible
approaches. One approach is to break ∂n/∂a into several contigu-
ous segments and create Nd dust particles of mass md/Nd, with
each particle’s initial grain-size distribution covering only a limited
grain-size range. This approach is illustrated in Fig. 17. Summing
over particles, this procedure gives the correct initial grain-size dis-
tribution, and it also allows for grains of different sizes to stratify
under a strong drag force. However, splitting the initial grain-size
distribution in this way increases the number of dust particles and
computational cost. Additionally, over time the dust particles’ ini-
tially narrow size distributions will shift to larger and smaller sizes
as a result of the physical processes detailed in Section 3, reducing
the advantages of creating multiple particles.

In the galactic simulations in this paper, we take the simplest
approach and assign the full grain-size distribution to one dust par-
ticle. This has the benefit of treating a large range of grain sizes with
just one particle, and effective drag updates can be applied using
equation (70). This method has a downside: it does not effectively
capture the separation of grains of different sizes via the drag force.
If constituent grains cover three orders of magnitude in size and thus
have drag accelerations varying by the same amount, moving the
dust particle using an effective drag acceleration forces its grains to
have the same drag acceleration. However, in galaxy applications
where the drag stopping time-scale is short and dust is well-coupled
to the gas, this is not a serious limitation.

4.3 Dust elemental yields

The probabilities used to stochastically create dust particles are set
by the total dust mass �md produced during a star’s time-step. The
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Figure 17. Schematic demonstrating the possible creation of multiple dust
particles from an initial grain-size distribution. In this example, we divide
the grain-size distribution corresponding to dust from AGB stars (given by
equation 72) into Nd = 4 contiguous, equal-mass segments (shaded regions),
each of which is assigned to one new dust particle. Here, the vertical axis
shows the differential mass density a3 × ∂n/∂a. Alternatively, setting Nd = 1
would create one dust particle covering the full grain-size distribution, an
approach used in Section 5.

total dust mass is the sum of dust masses contributed by individual
chemical elements, and these dust elemental yields are a function of
a star’s mass and metallicity. Dust yields for AGB stars (Zhukovska
et al. 2008; Ventura et al. 2012; Nanni et al. 2013; Schneider et al.
2014), SNe II (Todini & Ferrara 2001; Bianchi & Schneider 2007;
Nozawa et al. 2007, 2010; Gall, Hjorth & Andersen 2011; Temim
& Dwek 2013; Gall et al. 2014; Marassi et al. 2015), and SNe Ia
(Nozawa et al. 2011) have been studied in detail. Dust formation
can also be characterized in terms of condensation efficiency, the
fraction of metals returned that exist in solid dust grains, with the
remainder of metals occupying the gas phase. Below, we outline
the dust yields that we adopt in calculating dust mass return from
stellar populations.

For AGB stars, we interpolate the results from Schneider et al.
(2014), which predicts dust yields for stars in the mass range of
1−8 M
 and metallicity range of 0.001 ≤ Z ≤ 0.008. These yields
are calculated for four grain types: carbon, silicate, SiC, and iron. We
use these yields to determine the yields on an element-by-element
basis for C, O, Mg, Si, and Fe, which are tracked in our dust model.
Paralleling Zhukovska & Henning (2013), we assume that silicate
grains are 50 per cent Mg2SiO4, 30 per cent MgSiO3, and 20 per
cent Fe2SiO4 to set the element-by-element dust mass return and
thus condensation efficiencies.

For SNe II, we adopt dust yields from Nozawa et al. (2010), which
presents the mass of dust formed for each of the elements tracked in
our model (C, O, Mg, Si, and Fe) in the core-collapse of a SN IIb with
mass 18 M
 and metallicity Z = 0.02. We assume that these results
hold for core-collapse SNe of all types, noting that the condensation
efficiency of this SN IIb is similar to that predicted for SNe IIP
(Nozawa et al. 2003, 2010). Because Nozawa et al. (2010) models
only one SN IIb, we assume that the mass of dust formed from a
core-collapse SN scales linearly with progenitor mass. Future work
could explore more detailed models of SN dust condensation as a
function of different progenitor masses (e.g. Bianchi & Schneider
2007; Nozawa et al. 2007).

Figure 18. Cumulative mass of dust stochastically produced by a group
of star particles born at t = 0 Gyr. Solid coloured lines show dust mass as
a function of time (left axis) for three choices of βd, the ratio between a
spawned dust particle’s mass and the initial mass of a star particle. The solid
black line marks the cumulative amount of dust expected to form using the
dust yields, equivalent to the limit βd → 0. Dashed lines show the ratios
between the simulated dust mass profiles and the expected dust mass profile
(right axis). Smaller values of βd lead to less stochastic behaviour, at the
expense of spawning more dust particles.

For SNe Ia, we assume that the condensation efficiency of indi-
vidual elements is the same as for SNe II, noting that dust grains
produced by SNe Ia share a similar elemental distribution as dust
grains formed in core-collapse SNe (Nozawa et al. 2011). However,
because SNe Ia form fewer metals than SNe II in a stellar popula-
tion and are not thought to be major contributors of dust formation
(Nozawa et al. 2011), the choice of SNe Ia condensation efficiencies
does not strongly impact our results.

While there may be stochastic deviations from these dust yields
as individual dust particles are spawned, our procedure gives the
correct IMF-averaged dust yields in expectation. As discussed at
the start of Section 3, when a dust particle is spawned, we compute
the fraction of its total mass given by individual chemical elements.
These fractions are then updated when the dust particle accretes
mass from or returns mass to the ISM according to the procedure
outlined in Section 3.2.

Fig. 18 demonstrates the stochastic formation of dust for a group
of 512 star particles, all assumed to be born at t = 0 Gyr with solar
metallicity and subject to a Chabrier (2003) IMF over the mass
range of 0.1−100 M
. For the purposes of this test, dust particles
are not subject to any grain-size evolution in the ISM and thus do
not gain or lose mass after creation. We compare the expected mass
of dust that would be obtained by continually enriching surrounding
gas with the mass of dust obtained via the stochastic spawning of
dust particles. We vary the parameter βd, the ratio between a dust
particle’s mass and a star particle’s initial mass. As βd decreases, the
mass of stochastically spawned dust particles more closely follows
the expected dust mass. However, this improved accuracy comes
at the expense of needing to spawn more, lower-mass dust par-
ticles compared to larger values of βd. The optimal value of βd

for a particular simulation should be determined by balancing the
need for accurate dust mass return with the need for computational
efficiency.
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Figure 19. Number of dust particles as a function of dust mass at t = 1.5 Gyr
for the isolated disc galaxy presented in Section 5. Distributions are shown
for the medium resolution full physics run with (de)-refinement (green)
and a run without (de)-refinement (red). Dust masses are shown in units of
βd mtarget, where βd = 0.1 and mtarget is the fixed target gas cell mass. Vertical
dotted lines show the minimum and maximum dust particle masses allowed
by the (de)-refinement scheme. Without (de)-refinement, the distribution of
dust particle masses develops tails at low and high mass.

4.4 Dust refinement and de-refinement

In some circumstances, it may be desirable to constrain the mass of
individual dust particles. For example, a dust particle that undergoes
rapid accretion may become much more massive than dust particles
newly spawned from stars, while a dust particle in hot gas could
see a significant fraction of its mass thermally sputtered. Here, we
outline algorithms that can be used to reduce the spread in dust
particle masses.

Large dust particles can be refined by splitting them in two when-
ever their mass exceeds some threshold value mmax

d . While the grain-
size distribution can be divided between these two new particles in
various ways, it is simplest to divide it equally so that each new
particle has half of the number of grains and slope in every bin. The
two new dust particles are displaced in opposite directions from
the old dust particle’s position along a randomly chosen axis by
a distance of 0.025h, where h is the smoothing length enclosing
neighbouring gas cells computed via equation (10). The new parti-
cles keep the same dust velocity so that momentum is conserved.
This procedure has no communication overhead but increases the
dust particle count, adding computational cost.

De-refinement of dust particles works in a similar way. If the
mass of a dust particle falls below mmin

d , we search for its nearest
dust particle neighbour with mass above mmin

d . A new dust particle
with mass equal to sum of the two particles’ masses is placed at the
centre of mass, given a new velocity to conserve momentum, and
assigned a grain-size distribution obtained by adding the particles’
individual distributions. In principle, the neighbour lookup could
require communication between processors.

We implement these schemes for dust refinement and de-
refinement in AREPO, ensuring no significant variation among dust
particle masses. Fig. 19 shows the dust particle mass distributions
that arise at t = 1.5 Gyr in the medium-resolution isolated galaxy

simulations detailed in Section 5. We contrast runs with and without
(de)-refinement. Both runs employ βd = 0.1, meaning dust particles
are created with mass one-tenth of their star particle’s initial mass.
Initial star particle masses are close to mtarget, the mean gas cell mass
adopted as a target mass when (de)-refining gas cells (Vogelsberger
et al. 2012). The isolated galaxy run with dust (de)-refinement
limits dust particle masses to be between mmin

d = 0.01 mtarget and
mmax

d = mtarget. However, in the run without (de)-refinement some
dust particles reach masses more than an order of magnitude be-
yond these mass limits. In this run, the tails in the dust particle mass
distribution become wider with time and are undesirable.

4.5 Dust-dust neighbour searches

When dust particles search for neighbouring gas cells, smoothing
lengths enclose a weighted number of gas cells (e.g. see equation
10). However, we also need to perform searches for neighbouring
dust particles: dust density estimates are needed for shattering and
coagulation. Because dust particle masses can vary more strongly
than gas cell masses, even with dust (de)-refinement turned on,
we calculate dust-dust smoothing lengths by enclosing a desired
amount of dust mass rather than a desired number of neighbours.
This avoids circumstances where a dust particle with many low-
mass dust neighbours calculates a small smoothing length and esti-
mates a dust density despite little dust mass enclosed in the kernel.

To be precise, we iteratively solve for dust–dust smoothing
lengths by forcing the kernel to enclose total dust mass in the range
(64 ± 16) × (βdmtarget), where βdmtarget is the typical mass of dust
particles when produced by stars and βd = 0.1 is our fiducial value.
Using this smoothing length, we then perform dust density estimates
with the usual kernel-weighting scheme (see equation 12).

When de-refinement is active, we also require the smoothing
length to enclose a dust neighbour with mass above mmin

d , the min-
imum allowable dust mass. This way, a dust particle in need of
de-refinement can follow the procedures in Section 4.4 and be de-
refined into its high-mass neighbour. If necessary, we temporarily
allow the kernel’s enclosed dust mass to exceed the upper bound in
the previous paragraph in order to find a high-mass dust neighbour.

5 I SOLATED DI SC GALAXY SI MULATI ONS

As a first application of our dust model, we simulate the formation
and dust content of an isolated disc galaxy.

5.1 Initial conditions

The initial matter distribution consists of slowly rotating gas super-
imposed on a collisionless dark matter halo following a Hernquist
(1990) profile. Initially, the halo has a mass of 1012 M
 with a 10
per cent gas fraction. We set the dimensionless spin parameter to
λ = 0.05 with a concentration c = 6. To start, the number of gas
cells and dark matter particles is 8 × 106 for each component and
16 × 106 in total. We run this test with cooling and star forma-
tion, but without any feedback processes. The grain-size evolution
calculations are performed using the piecewise linear discretization
with N = 16 bins covering the size range from amin = 0.001μm
to amax = 1μm. Dust particles are stochastically created with mass
equal to 10 per cent of a star particle’s initial mass (i.e. βd = 0.1),
refined when the particle mass exceeds the target gas cell mass (i.e.
mmax

d = mtarget), and de-refined when the particle mass is less than 1
per cent of the target gas cell mass (i.e. mmin

d = 0.01mtarget). In this
test, we only create Nd= 1 dust particle per spawn event and do not
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sub-divide the grain-size distribution across multiple particles. For
the grain-size evolution time-step constraint detailed in Section 3.8,
we adopt χ = 0.1. We perform grain-size evolution updates using
the sub-cycling parameter λ = 2, meaning that dust particle dy-
namical time-steps are only required to resolve twice the grain-size
evolution time-step.

We study the evolution of this isolated disc galaxy using three
dust models, each adding progressively more grain-size physics as
summarized in Table 1. The first, ‘production only,’ creates dust
particles using the stochastic prescription from Section 4 but does
not include any grain-size evolution (i.e. a dust particle’s grain-
size distribution is set upon creation and is fixed). The second, ‘no
shattering/coagulation,’ includes dust production and also allows
grains to undergo number-conserving size evolution processes like
accretion (Section 3.3), thermal sputtering (Section 3.4), and SN
destruction (Section 3.5). Finally, the ‘full physics’ model adds
shattering (Section 3.6) and coagulation (Section 3.7). This latter
model thus includes all of the grain-size physics detailed in Section
3.

In all of these models, dust is dynamically coupled to the gas
through the drag force detailed in Section 2. However, typical drag
stopping time-scales (e.g. equation 14) are short compared to the
simulation duration, and dust and gas are not significantly decou-
pled. The results we present below are largely unchanged in the limit
where stopping time-scale ts → 0 and drag acts instantaneously to
set a dust particle’s velocity equal to the local gas velocity. However,
dust and gas may be more decoupled in future galaxy simulations
including feedback or when studying smaller portions of the ISM.

Furthermore, to improve the performance of our code, we sim-
plify the integral in equation (58) used during shattering and coag-
ulation to determine the total cross-section for collisions between
grains in two different bins. We ignore grain-size distribution bin
slopes when calculating Ik, j(t) (i.e. we assume that sk(t) = sj(t) = 0)
and instead only use the numbers of grains Nk(t) and Nj(t) in the
bins. This reduces considerably the number of floating-point opera-
tions needed to evaluate these integrals, and we have verified that in
this isolated galaxy application this change has no significant effect
on our results.

5.2 Predicted dust population

Fig. 20 shows the time evolution of the full physics model, pre-
senting face-on and edge-on projections of dust surface density,
dust-to-gas ratio, and dust-to-metal ratio. We note that numerical
convergence properties of the dust model across different resolu-
tions are discussed in Appendix B. The panels illustrate the forma-
tion of a disc galaxy whose dust mass increases with time. The dust
surface density shows a clear radial gradient, with a peak central
value at t = 1.5 Gyr of roughly 109 M
 kpc−2. It is important to
note that we use no stellar feedback, and so no winds are driven
from the disc that could reduce star formation (and in turn dust for-
mation) or produce dust outflows. Thus, our dust surface densities
should not be compared to observations of Milky Way-like systems.
Similarly, dust-to-gas ratios decrease with radius from the galactic
centre but lie above the approximate 10−2 value associated with the
Milky Way (Draine et al. 2007).

The absence of feedback strongly affects the normalization in
dust-to-gas and dust-to-metal ratios, since gas is overconsumed
and dust is overproduced. The dust-to-metal ratio is defined as the
ratio of dust mass to total (dust plus gas-phase) metal mass and
is near unity for this run without feedback. In our current model,
dust particles are not removed when nearby gas cells stochastically

convert to star particles. As a result, star formation in our model
reduces the supply of ISM gas-phase metals but not dust. However,
the depletion of dust via star formation, known as astration, is not the
only physical process that can reduce ISM dust mass. In AppendixC,
we compare the time-scales for astration and the destruction of
dust in SN shocks, two processes that scale with dust-to-gas ratio
and star formation rate. Dust loss via astration is expected to be
sub-dominant compared with SN destruction. In our full physics
model that includes SN dust destruction, the dust-to-metal ratio
only changes by a few per cent when incorporating an estimate
of the astration rate. The dust content of the production only run
is more strongly affected when we include a model for astration,
producing a dust mass and dust-to-metal ratio lower by about a
factor of 4 at t = 1 Gyr. However, we argue in Appendix C that
the production only run with an astration model is not physically
realistic: it includes astration but neglects the SN dust destruction
process that is expected to dominate dust mass-loss in the ISM.
Furthermore, it neglects the ability for dust grains to gain mass and
offset the effects of astration and SN dust destruction. Although
astration is expected to be sub-dominant to other dust destruction
processes, we plan to directly model this process in future work.

To assess the impact of grain-size evolution, Fig. 21 shows the
dust surface density, dust-to-gas ratio, and dust-to-metal ratio in the
isolated disc galaxy at t = 1 Gyr using the different dust physics
models listed in Table 1. In all three models, dust surface den-
sity, dust-to-gas ratio, and dust-to-metal ratio decrease as a function
of radial distance from the disc centre. However, the no shatter-
ing/coagulation and full physics runs show higher dust surface den-
sity, dust-to-gas ratio, and dust-to-metal ratio than the production
only run, which lacks grain-size evolution. Overall, the results in
Fig. 21 suggest that accretion increases dust mass more quickly than
sputtering and SN destruction decrease dust mass. We note that the
normalization in dust-to-metal ratio is strongly affected by the lack
of feedback and overconsumption of gas (and gas-phase metals)
into stars.

Fig. 22 shows the time evolution of dust and stellar mass us-
ing the three grain-size evolution models. Because the presence
of dust affects gas dynamics and star formation only slightly, we
display the stellar mass evolution for just one model. Stellar mass
increases rapidly at early times – reaching roughly 1010 M
 after
about 200 Myr – before slowing. As suggested by the visuals in
Fig. 21, the three grain-size models show similar qualitative be-
haviour, characterized by a sharp rise in dust mass over the first half
Gyr.

The production-only model with no grain-size evolution is easi-
est to understand. In this model, dust particle masses never change,
and dust mass closely traces stellar mass, albeit with a lower nor-
malization owing to an effective dust yield for mass return from
stars. The no shattering/coagulation model with accretion, thermal
sputtering, and SN destruction produces about three times as much
dust as in the production-only run. The amount of dust gained by
allowing grains to grow and accrete gas-phase metals thus exceeds
the amount of dust destroyed by thermal sputtering and SN shocks.
This trend is likely to persist in runs with feedback, given that
reduced star formation rates will lead to reduced SN destruction.

The final, full physics model variation increases the dust mass
by about 50 per cent at t = 1.5 Gyr compared to the no shatter-
ing/coagulation run. As we show later in Fig. 23, the presence of the
shattering process in the full physics model efficiently shifts grains
to smaller sizes. Thus, by shattering big grains, this model increases
the total grain surface area. Since the grain growth mechanism in
Section 3.3 specifies a form of da/dt dependent on gas quantities
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Table 1. Description of the grain-size physics included in the three dust models used in isolated galaxy simulations. Each model adds successively more physics:
the ‘production only’ run solely produces dust particles and includes no grain-size evolution, the ‘no shattering/coagulation’ run includes all number-conserving
processes, and the ‘full physics’ run includes both number-conserving and mass-conserving processes.

Name Grain-size physics

Production only No grain-size evolution
No shattering/coagulation Grain growth, thermal sputtering, SN shock-driven destruction
Full physics Grain growth, thermal sputtering, SN shock-driven destruction, shattering, coagulation

but independent of grain size a, the radii of grains of different sizes
end up growing at the same rate. As a result, a population of small
grains gains mass more quickly than a population of large grains
with the same total mass. Because stars tend to produce large grains
(see Section 4.2), grains in the no shattering/coagulation model do
not gain mass as quickly as in the full physics model with shattering.

While the various models predict similar total dust mass evo-
lution, they differ in how this mass is distributed among grains.
Although dust particles spawned by stars have grain-size distribu-
tions initialized in the same manner, these models have different
components evolving the grain-size distribution. Fig. 23 shows the
total grain-size distribution predicted for the isolated galaxy under
these three models at t= 1 Gyr, obtained by summing over all dust
particles. We multiply this grain-size distribution (∂n/∂a) by the
mass of a grain of size a in order to compare the mass contributed
by grains of different sizes. The two models without shattering and
coagulation are most similar: switching from the production only
model lacking grain-size evolution to the no shattering/coagulation
model including grain growth shifts grains to larger sizes, producing
an increase in mass contained in grains with size a � 0.4μm.

The full physics model is qualitatively different from the two pre-
vious models. The inclusion of shattering shifts grains to smaller
sizes, strongly enhancing the amount of mass in grains with a �
0.03μm. Thus, although the dust models predict similar total dust
masses in Fig. 22, the distribution of this mass into various size
grains significantly differs. We caution that the absence of feedback
in these runs leads to an overproduction of dust, and inflated dust
densities could shatter grains more rapidly than expected (see equa-
tion 55). We note that the grain size at which the distribution starts
to rise is set implicitly by our model due to the shattering velocity
scale.

Figs. 22 and 23 focused on galaxy-integrated dust-mass and
grain-size distribution, but we can also study predictions of our
dust models locally within the galaxy. Radial profiles of dust sur-
face density and dust-to-gas ratio for the three different dust models
at t = 1 Gyr are shown in Fig. 24. The full physics model, which
produced the most amount of dust overall, shows the highest dust
surface density at essentially all radii. However, all three runs show
similar profiles: a relatively constant surface density near the galac-
tic centre and a rapid fall off at larger radii.

In the left-hand panel of Fig. 25, we show the median grain size
as a function of radial distance for the three dust models at t= 1 Gyr.
We assign dust particles to a series of two-dimensional radial bins,
sum the total grain-size distribution within each radial bin, and
then use these size distributions to compute median grain sizes
as well as 32nd and 68th percentiles. In the production-only run
lacking grain-size evolution, dust particles’ grain-size distributions
are frozen in time. As a result, the median grain size for this run
shows essentially no radial variation. The profile is not exactly
flat because dust particles created by AGB stars and SNe II have
different initial grain-size distributions, and so not every individual

dust particle has the same median grain size. The runs with grain-
size evolution show more variation than the production-only run.

Both the no shattering/coagulation and full physics runs show a
decline in median grain size with radius. Fig. 22 illustrates that these
runs increase total dust mass above the production-only run lacking
grain-size physics. For the no shattering/coagulation run, this sug-
gests that accretion, which increases dust mass, dominates thermal
sputtering and SN-based destruction, which reduce dust mass. The
radial-size profile for this no shattering/coagulation run in Fig. 25
is consistent with a strong accretion mechanism: since accretion is
strongest in regions of high gas density and metallicity (see equa-
tion 49), we expect grain sizes to be highest near the galactic centre.
While the median grain size in the no shattering/coagulation run
decreases by one order of magnitude out to 2 kpc, from roughly
0.1 μm to 0.01 μm, the full physics model shows a shallower de-
cline. Median grain sizes in the full physics model are lower overall
and decrease from about 0.004 μm to 0.002 μm over this same
region. Grain sizes in the full physics run are subject to a wider
variety of processes: for example, both accretion and coagulation
are expected to affect how grains grow (Hirashita 2012). However,
even these simple radial size profiles, which smooth over angular
variations within the disc, suggest that median grain sizes are not
uniform in the galaxy.

For more detail, the right panel of Fig. 25 shows the grain-size
distribution in the full physics model at 1 Gyr in three, kpc-wide
radial intervals about the galactic centre. There are two main trends
to note. First, the relative abundance of small grains (a � 0.01 μm)
to large grains (a � 0.1 μm) decreases with radius. This is intuitive,
since the abundance of small grains likely results from shattering,
and shattering is strongest at low radii, where densities are highest.
Secondly, among the population of small grains – which dominate
the overall grain count – the peak in the mass-size distribution in
Fig. 25 shifts slightly to smaller sizes with larger radial distance.
This is similar to the negative slope seen in the left-hand panel of
Fig. 25 and is possibly a consequence of small grains accreting mass
from gas more quickly near the galactic centre, pushing small grain
radii somewhat higher. However, coagulation can also play a role
in shifting central grains to larger sizes (e.g. Hirashita 2012).

We expect the overall cycle between shattering and accretion to
proceed as follows. Regions of high-gas and dust-density shatter
grains more quickly (increasing the ratio of small to large grains),
but these small grains then grow in size more quickly (increasing
the median size for small grains and overall dust mass). This cycle
continues itself over time, and so dust in the central region of the
galaxy changes more rapidly than in the outskirts.

Tracking the grain-size distribution locally within the galaxy also
allows us to generate mock extinction curves, with grains of differ-
ent sizes along a line-of-sight contributing different opacities. We
refer the reader to Appendix D for the full details of how these
extinction curves are constructed. Here, we note that, in addition
to dust particles’ grain-size distributions, these extinction curves
depend on parameters like the extinction efficiency Qext(a, λ), the
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Simulating galactic dust grain evolution 2877

Figure 20. Evolution of face-on and edge-on projected dust surface density (left), dust-to-gas ratio (centre), and dust-to-metal ratio (right) for the full grain
physics run at t = 0.5, 1, and 1.5 Gyr. Dust surface density, dust-to-gas ratio, and dust-to-metal ratio decrease with radius. This simulation lacks feedback,
overconsuming gas and overproducing dust.

dimensionless ratio of extinction cross-section to geometric cross-
section for grains of size a at wavelength λ. The dust-mass opacity

at wavelength λ, κext(a, λ), can also be written in terms of the ex-
tinction efficiency via κext(a, λ) = 3Qext(a, λ)/(4aρgr). In this work,
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2878 R. McKinnon et al.

Figure 21. Projections of dust surface density (left), dust-to-gas ratio (centre), and dust-to-metal ratio (right) at t = 1 Gyr for three grain physics models:
the run with only dust production and no grain-size evolution (top), the model with all number-conserving grain processes (accretion, sputtering, and SN
destruction) but lacking shattering and coagulation (middle), and the full physics model (bottom).

we use tabulated grain extinction efficiencies from Draine & Lee
(1984) and Laor & Draine (1993). These papers present separate

extinction efficiencies for silicate and graphite grains, Qsil
ext(a, λ)

and Q
gra
ext (a, λ), respectively, which can be converted into dust-mass
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Figure 22. Time evolution of the isolated galaxy’s dust mass, computed for
models with various dust physics (coloured lines). Stellar mass evolution is
nearly identical across these dust model variations and for readability, we
plot the stellar mass from only one of these runs (black line). Dust mass is
shown for the model with dust production but without grain-size evolution
(red), the model including solely number-conserving grain processes like
accretion, thermal sputtering, and SN destruction (green), and the full grain
physics model including shattering and coagulation (blue). The full physics
model produces the largest dust mass.

Figure 23. Distribution of dust mass among grains of different sizes pre-
dicted for the isolated galaxy at t = 1 Gyr by the same models presented in
Fig. 22. The grain-size distribution (∂n/∂a, with units of inverse length) is
summed over all dust particles in the galaxy, and the vertical axis plots this
total grain-size distribution weighted by the masses of grains of different
sizes. Integrating these profiles gives the total dust masses predicted for the
galaxy. The model with shattering is qualitatively different, shifting dust
mass to smaller grain sizes, although its total dust mass from Fig. 22 is
similar to those of the other models.

opacities κ sil
ext and κ

gra
ext . To calculate extinction curves, we compute

an effective dust-mass opacity using the following approximation.
Letting fgra be the fraction of total dust mass in the isolated galaxy
contributed by carbon, the effective dust-mass opacity is estimated
as κext(a, λ) = fgraκ

gra
ext (a, λ) + (1 − fgra)κ sil

ext(a, λ). This dust-mass
opacity is what enters into extinction curve calculations via equation
(D4).

Fig. 26 presents a synthetic extinction curve at t = 1 Gyr for
each dust model. Curves are shown over the full wavelength range
for which there are tabulated extinction efficiencies (10−3 μm ≤
λ ≤ 103 μm) and over the UV and optical region (0.1μm ≤ λ

≤ 1μm, plotted in terms of inverse wavelength as is customary).
Extinction is computed using a line of sight directed towards the
galactic centre from a point 5 kpc above and 5 kpc radially outside
the disc. We compare with the observed Galactic extinction curve
from Fitzpatrick & Massa (2007), as compiled by Hou et al. (2017).

All three dust models predict qualitatively similar extinction
curves for λ� 10μm, wavelengths that are much larger than typical
grain sizes. In this far-IR regime, extinction falls off according to a
A(λ) ∝ λ−2 power law. At shorter wavelengths, the production-only
and no shattering/coagulation runs lacking shattering and contain-
ing larger grains yield qualitatively different extinction than the
full physics model. For example, extinction for the production-only
and no shattering/coagulation models – which from Fig. 23 predict
much of the total dust exists in large grains – is nearly flat for λ �
1μm. In particular, there is essentially no change in extinction from
the optical to the UV, as observed in the Galaxy.

The full physics model, on the other hand, contains many more
small grains and so predicts more features in the extinction curve
at small wavelength, like a 2175 Å bump. Extinction peaks in the
UV near λ ≈ 0.1μm, and the full physics run predicts more than
an order of magnitude more UV extinction than the production-
only and no shattering/coagulation runs with large grains. The full
physics model does show an increase in steepness from optical to
UV, albeit one that rises more steeply than observed in the Galaxy.
This steepness is likely influenced by the lack of feedback, since the
overproduction of dust leads to high dust densities and thus overly
rapid shattering. An excess of small grains could exacerbate the
rise in UV extinction, motivating future work with this dust model
coupled to feedback methods.

5.3 Comparison to other models

We can compare the predictions for our isolated disc galaxy with
several other works that model grain dynamics or size evolution.

For example, recently Aoyama et al. (2017) performed SPH sim-
ulations of an isolated galaxy with total mass 1.3 × 1012 M
,
where dust evolution calculations take place on each gas particle
using a simplified two-size grain distribution (i.e. grains are clas-
sified as either small, roughly 0.005μm, or large, roughly 0.1μm).
Because there are no separate dust particles, this model implicitly
assumes dust and gas are perfectly coupled and omits a drag force.
At t = 1 Gyr, Aoyama et al. (2017) predict that the mass surface
density of small grains is highest in the galactic centre, a result
also suggested by the right-hand panel of Fig. 25. In contrast, the
two models disagree about whether most dust mass at t = 1 Gyr is
locked in small or large grains: Aoyama et al. (2017) find that the
total mass ratio of small to large grains is roughly 0.2, while our
results in Fig. 23 suggest this ratio is well above unity. However,
Aoyama et al. (2017) include a model for thermal stellar feedback,
which suppresses the dust mass in their galaxy compared to ours.

MNRAS 478, 2851–2886 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/478/3/2851/4995927 by M
IT Libraries user on 17 July 2019



2880 R. McKinnon et al.

Figure 24. Profiles of dust surface density (left) and dust-to-gas ratio (right) as a function of two-dimensional radial distance from the spin axis at t = 1 Gyr
for the runs shown in Fig. 21.

Figure 25. Left-hand panel: grain size versus two-dimensional radial distance for the three dust models at t = 1 Gyr. Solid lines show median grain size,
while shaded regions extend to 32nd and 68th percentiles. In each radial bin, these statistics are calculated using the total grain-size distribution obtained by
summing over size distributions for constituent dust particles. Right-hand panel: grain-size distribution of dust in different radial slices at t = 1 Gyr in the full
physics model. The prefactor multiplying the grain-size distribution (∂n/∂a) means that integrating these profiles yields the total dust mass in each radial slice.

This lowers their dust surface densities, in turn slowing the rate
of shattering. In the future, a fairer comparison of small-to-large
grain mass ratio requires us to couple our dust model to a feedback
implementation.

The two-size grain approximation used in Aoyama et al. (2017)
has been extended by Hou et al. (2017) to account for carbona-
ceous and silicate dust grains. This is necessary to predict galac-
tic extinction curves, since carbonaceous and silicate grains have
different extinction cross-sections. Reddening caused by different
grain species can be important not only for extinction in galaxies
but also in the circumgalactic medium (Hirashita & Lin 2018). In
Hou et al. (2017), the relative abundance of small-to-large grains
increases with time and grows most rapidly in the central region of
the galaxy. At t= 1 Gyr, the right-hand panel of Fig. 25 also predicts
this small-to-large abundance ratio to peak in the galactic centre.
The presence of small grains creates more pronounced extinction

curve features, like the 2175 Å bump and the UV slope. The lack
of feedback and abundance of small grains in our runs yields a full
physics extinction curve in Fig. 26 that rises more quickly from
the optical to the UV than observed. However, Hou et al. (2017)
demonstrate that at t = 1 Gyr this UV slope is correlated with the
small-to-large abundance ratio: regions in the galaxy with decreased
small-to-large abundance ratio also see decreased the UV slope. A
lower rate of shattering in our model would produce fewer small
grains and a slope in the UV more in line with observations.

Separately, the two-size grain approximation has also been ap-
plied in one-zone models of galaxy evolution, which lack spatial
resolution and instead solve for galaxy-integrated quantities (Hi-
rashita 2015; Hou et al. 2016). Other one-zone models evolve the
full grain-size distribution, which is more computationally expen-
sive but tracks the range of sizes grains may have (Hirashita & Yan
2009; Asano et al. 2013b). For example, Asano et al. (2013b) run
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Figure 26. Predicted extinction as a function of wavelength at t = 1 Gyr for the dust models from Figs 22 and 23. Extinction curves are shown for the full
wavelength range 10−3 μm ≤ λ ≤ 103 μm (left) and for the zoomed in the range of 0.1μm ≤ λ ≤ 1μm (right), with the latter plotted in terms of inverse
wavelength. Extinction is calculated along a line-of-sight pointing to the centre of the galaxy from 5 kpc above and 5 kpc radially outside and is normalized by
extinction in the V band, AV. The full dust physics run is the only one to show a 2175 Å bump and a rise in extinction in the UV. Observations of the Galactic
extinction curves are shown in black (Fitzpatrick & Massa 2007).

their one-zone model with and without shattering, finding that at
t = 1 Gyr, the inclusion of shattering increases the abundance of
grains with a � 0.01μm by orders of magnitude. The grain-size
distributions at t = 0.1 and 1 Gyr are unaffected by the inclusion of
coagulation. Only at much larger times (t ≈ 10 Gyr) does coagula-
tion materially affect the grain-size distribution, shifting grain mass
to larger sizes. However, even at late times the effect of shattering
is more significant than that of coagulation. These predictions from
Asano et al. (2013b) parallel our grain-size distribution findings in
Fig. 23, that at t= 1 Gyr shattering is more efficient than coagulation
and that the galaxy-wide grain-size distribution forms many more
small grains than stars produce.

Another class of model has been developed by Bekki (2015),
coupling dust particles to gas in SPH simulations through a drag
law but neglecting grain-size evolution. All dust grains share the
same fixed size (roughly 0.1μm), limiting the ability to construct
extinction curves that capture the range of grain sizes that exist in
the ISM. However, these dust particles are coupled to a scheme
modelling radiation pressure from stellar sources, and simulations
in Bekki (2015) predict that radiation pressure can increase the
vertical extent of dust in the disc while reducing radial gradients in
the dust distribution. As we work to couple our dust dynamics and
size evolution model to more forces like radiation pressure, we will
be in position to test these dynamical predictions and additionally
investigate their impact on the grain-size distribution and extinction.

6 C O N C L U S I O N S

We have implemented a novel scheme to track the dynamical motion
and grain-size evolution of interstellar dust grains in the moving-
mesh code AREPO.

Simulation dust particles represent ensembles of grains of differ-
ent sizes and are characterized by individual grain-size distributions
that are evolved in time. Each grain-size distribution is discretized
using a piecewise linear method and updated according to a vari-
ety of physical processes. Processes like accretion, sputtering, and
destruction from supernova shocks conserve grain number but shift

mass between dust and gas phases, while dust–dust collisional pro-
cesses like shattering and coagulation conserve total grain mass
but not grain number. We demonstrate that the piecewise linear
discretization is second-order accurate in the number of grain-size
bins. The dynamical drag force for each particle is calculated based
on its internal grain-size distribution to couple gas and dust motions.

The drag force implementation is based on a second-order semi-
implicit scheme that makes use of analytic properties of the drag
force and alleviates the need for small time-steps when dust and gas
are strongly coupled; i.e. when the stopping time-scale governing
drag is short. The drag force acting on dust grains depends on local
gas properties, and our methods benefit from the accurate treatment
of hydrodynamics in AREPO. For example, in simulating gas and dust
dynamics in a Sod shock tube test, dust particle velocities do not
suffer from spurious post-shock velocity ringing seen in some SPH
methods.

The actual production of dust particles is coupled to the stellar
evolution scheme of our galaxy formation model. We implement
dust mass return during stellar evolution using a stochastic proce-
dure that probabilistically spawns dust particles from star particles.
When spawning new dust particles, we adopt dust elemental yields
according to theoretical models of mass return from AGB stars
and SNe. Similarly, initial grain-size distributions for dust particles
are set according to theoretical predictions for grain populations
formed during stellar evolution. Newly created dust particles are
then subjected to the aforementioned physical processes shaping
their grain-size distributions.

Processes like shattering, coagulation, sputtering, and dust
growth can lead to rather significant changes in the number of
dust particles and their masses. This can lead, for example, to very
heavy dust particles or many low-mass particles, which is com-
putationally disadvantageous. We have therefore also implemented
refinement and de-refinement schemes for dust particles, to keep
the mass distribution of dust particles within predefined limits. Fur-
thermore, we have also implemented time-step sub-cycling for the
dust time-steps to avoid too many small dust-dominated time-steps.
While our model currently neglects astration, the consumption of
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ISM dust during star formation, we use a time-scale argument to
show that SN destruction of dust is expected to dominate astration
as a sink of ISM dust mass.

To demonstrate the simultaneous application of dust dynamics,
grain-size evolution, and dust particle creation, we simulate an iso-
lated disc galaxy with cooling and star formation but no feedback
and study the relative strengths of various grain-size processes. For
example, a model without grain-size evolution and a model with full
grain-size physics produce galactic dust masses differing by a factor
of four and qualitatively very different grain-size distributions. The
inclusion of shattering is particularly efficient at shifting large dust
grains to smaller sizes. Using the simulated spatial distribution of
grains, we produce sample extinction curves, with small grains in
the full physics run producing an increase in extinction towards the
UV.

Our framework for simulating dust and gas mixtures can readily
be extended to account for other dynamical processes relevant in
galaxy formation, like magnetohydrodynamics, radiation pressure,
and thermochemical processes. Ultimately, our model represents a
step towards a more comprehensive treatment of dust dynamics and
grain-size evolution in galaxy formation.
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APP ENDIX A: DISCRETIZATION OF SHATTERI NG I NTEGRALS

This section converts the analytic shattering framework presented in Section 3.6 into one capable of handling a piecewise linear grain-size
distribution. Namely, we show how equation (57) can be derived from equation (55).

To start, multiply equation (55) by V 2
d , apply equation (54) to convert mass densities into number densities, and rewrite integrals using the

partition of [amin, amax], so that

Vd
d

dt

[
m(a)

∂n(a, t)

∂a
da

]
= −m(a)2 ∂n(a, t)

∂a
da

N−1∑
k=0

∫ ae
k+1

ae
k

α(a, a1)m(a1)
∂n(a1, t)

∂a1
da1

+ 1

2

N−1∑
k=0

N−1∑
j=0

da

∫ ae
k+1

ae
k

∫ ae
j+1

ae
j

α(a1, a2)m(a1)m(a2)
∂n(a1, t)

∂a1

∂n(a2, t)

∂a2
mshat(a, a1, a2) da2 da1. (A1)

Integrating a over the interval [ae
i , a

e
i+1] and substituting in the piecewise linear grain-size distribution from equation (31), we find that the

mass of grains in bin i, Mi, evolves as

Vd
dMi

dt
=

∫ ae
i+1

ae
i

−m(a)2

(
Ni(t)

ae
i+1 − ae

i

+ si(t)(a − ac
i )

) N−1∑
k=0

∫ ae
k+1

ae
k

α(a, a1)m(a1)

(
Nk(t)

ae
k+1 − ae

k

+ sk(t)(a1 − ac
k)

)
da1 da

+ 1

2

∫ ae
i+1

ae
i

N−1∑
k=0

N−1∑
j=0

∫ ae
k+1

ae
k

∫ ae
j+1

ae
j

[
α(a1, a2)m(a1)m(a2)

(
Nk(t)

ae
k+1 − ae

k

+ sk(t)(a1 − ac
k)

)

×
(

Nj (t)

ae
j+1 − ae

j

+ sj (t)(a2 − ac
j )

)
mshat(a, a1, a2)

]
da2 da1 da. (A2)

Substituting for α using equation (56) and rearranging, this can be simplified as

Vd
dMi

dt
=

N−1∑
k=0

∫ ae
i+1

ae
i

∫ ae
k+1

ae
k

[
− π(a + a1)2vrel(a, a1)1vrel>vshat (a, a1)m(a)

(
Ni(t)

ae
i+1 − ae

i

+ si(t)(a − ac
i )

)

×
(

Nk(t)

ae
k+1 − ae

k

+ sk(t)(a1 − ac
k)

)]
da1 da

+ 1

2

N−1∑
k=0

N−1∑
j=0

∫ ae
i+1

ae
i

∫ ae
k+1

ae
k

∫ ae
j+1

ae
j

[
π(a1 + a2)2vrel(a1, a2)1vrel>vshat (a1, a2)

(
Nk(t)

ae
k+1 − ae

k

+ sk(t)(a1 − ac
k)

)

×
(

Nj (t)

ae
j+1 − ae

j

+ sj (t)(a2 − ac
j )

)
mshat(a, a1, a2)

]
da2 da1 da. (A3)

Apart from the terms vrel(a1, a2) and mshat(a, a1, a2), equation (A3) only involves integrals of two-dimensional polynomials. We wish to
evaluate this integral analytically so that we can explicitly update the mass in each bin using the piecewise linear grain-size distribution [i.e.
the set of known Ni(t) and si(t) values]. We make two simplifying assumptions.

First, we assume that all grains in the same bin share the same speed. As a result, the relative velocity between two grains in bins k and j can
be simplified as vrel(a1, a2) ≈ vrel(ac

k, a
c
j ), independent of the integration variables a1 and a2. Following Hirashita & Yan (2009) and Asano

et al. (2013b), we adopt relative grain velocities from Yan et al. (2004), who calculated grain speeds as a function of grain size for various
ISM phases, assuming a turbulent, magnetized fluid. Given our intent to use this dust model in cosmological simulations, we recognize that
we will not resolve some of the phases studied by Yan et al. (2004), such as the DC1 and DC2 phases with T = 10 K and nH = 104 cm−3.

The current galaxy formation model in AREPO employs the Springel & Hernquist (2003) multiphase ISM model, which adopts a hybrid
mixture of hot and cold components. We define the effective relative velocity veff

rel (a1, a2) ≡ xvCNM
rel (ac

k, a
c
j ) + (1 − x)vWIM

rel (ac
k, a

c
j ), where x

is a kernel-smoothed estimate of the cold cloud mass fraction (see section 3 in Springel & Hernquist 2003) in neighbouring gas cells and
vCNM

rel and vWIM
rel are the relative velocities computed for the CNM and WIM phases, respectively, using Yan et al. (2004). As we do not track

detailed grain chemistry, the grain velocities for the CNM and WIM are averaged over the curves calculated in Yan et al. (2004) for silicate
and graphite grains. This is a minor assumption, since the silicate and graphite curves are qualitatively similar. We use this form of veff

rel in
equation (A3). A more realistic ISM model would allow us to probe grain velocities in the variety of phases studied in Yan et al. (2004).

Secondly, we assume that the mass of grains produced with radius a by shattering grains of sizes a1 and a2 depends only on the bins
involved in the collision. That is, for grains of sizes a1 and a2 in bins k and j, we adopt mshat(a, a1, a2) ≈ mshat(a, ac

k, a
c
j ). This assumption

is reasonable given the physical uncertainties in grain–grain collisions, and the exact mass distribution of shattered grains is not expected to
strongly affect shattering calculations (Jones et al. 1996; Hirashita & Yan 2009). Performing the second integral in equation (A3) over a, we
express the mass of grains injected into bin i from a collision of grains with sizes ac

k and ac
j , the mid-points of bins k and j, as

m
k,j

shat(i) ≡
∫ ae

i+1

ae
i

mshat(a, ac
k, a

c
j ) da ≈

∫ ae
i+1

ae
i

mshat(a, a1, a2) da. (A4)
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In practice, we compute m
k,j

shat(i) by following the steps in section 2.3 of Hirashita & Yan (2009), which depend on vrel(ac
k, a

c
j ). In dividing

shattered grain mass among different bins, these calculations assume that shattered grains obey the new size distribution ∂n/∂a ∝ a−3.3 (Jones
et al. 1996).

Using these steps, we can approximate the integrals in equation (A3) and bring them to the form presented in equation (57).

APPEN D IX B: CONVERGENCE STUDY OF I SOLATED DI SC GALAXI ES

We analyse the convergence properties of our full physics dust model using simulations at three different resolutions. In these runs, dark
matter and gas each initially have 1.25 × 105, 106, and 8 × 106 resolution elements. Fig. B1 shows the isolated galaxy’s total dust mass as
a function of time as well as the galaxy-integrated grain-size distribution at 1 Gyr. The largest deviation in dust mass is at early times, with
the highest resolution run producing dust more quickly than the other runs. However, this trend is largely being driven by the underlying star
formation rate: the star formation rate increases slightly with resolution at fixed time. This translates into a small spread in dust mass in the
early stages of the galaxy’s formation, before grain-size processes have had much time to act. Beyond 1 Gyr, the dust mass profiles show
improved convergence, and, by 1.5 Gyr, the dust masses differ by less than 0.1 dex across these resolutions. The grain-size distributions show
similar qualitative features, with an abundance of small grains and a drop off in the mass contained in large grains. However, the radius at
which the size distribution falls off does vary: the low resolution simulation predicts this feature at a ≈ 0.01μm, while the high-resolution
run predicts a ≈ 0.03μm. The medium resolution run is more similar to the high-resolution one than the low-resolution one, suggesting the
profiles are converging, but more simulations would be needed to fully investigate this.

Figure B1. Properties of the full physics isolated disc galaxy simulated at three resolutions, with initial gas cell counts 1.25 × 105 (red), 106 (green), and
8 × 106 (blue). The left-hand panel shows total dust mass versus time, while the right-hand panel shows the total grain-size distribution at 1 Gyr, when the
galaxy dust masses differ by about 0.1 dex. For comparison with the dust mass evolution, we also show the total stellar mass for the high-resolution simulation
(black).

APPEN D IX C : C OMPARISON OF SN DESTRUCTI ON AND ASTRATI ON TI ME-SCALES

Physically, dust in the ISM is depleted during star formation, a process known as astration. In our model used in Section 5, star particles form
stochastically from gas cells, which contain gas and gas-phase metals. Notably, dust is not treated as a component of gas cells but instead
using simulation particles. As a result, when gas cells convert to stars, the ISM supply of gas and gas-phase metals is reduced, but the supply
of dust is unchanged. In this section, we quantify the expected rate of astration of dust and compare it to the rate at which dust is depleted
through other means (e.g. SN destruction).

We can estimate the rate at which dust mass is lost due to astration following equation (3) in Hjorth, Gall & Michałowski (2014), giving
(dMd/dt)astr = −D × dM∗/dt, where Md denotes dust mass in some region of the ISM, D is the local dust-to-gas ratio and dM∗/ dt is the local
star formation rate. This rate assumes that when stars form, dust and gas are depleted according to their relative abundance.

Similarly, the rate of dust destruction in SN shocks is estimated from equations 2 and 5 in McKee (1989) as (dMd/dt)dest = −Md/tSNR. Here,
tSNR is a time-scale given by the ratio of local ISM gas mass Mg to the rate at which gas mass is shocked by SNe, which depends on the local
SN II rate RSN. This time-scale is calculated using 1/tSNR = εMclfSNRSN/Mg. This expression relies on several parameters (with typical values
estimated in sections 3 and 4 in McKee 1989): ε ≈ 0.4 denotes a grain destruction efficiency factor, fSN ≈ 0.34 reduces the nominal SN rate
to account for inefficiencies in correlated SN blasts, and Mcl is the mass of gas shocked by an SN. This latter value is estimated by McKee
(1989) as being in the range Mcl ≈ 2460−6800 M
. Since we are interested in whether astration can be important relative to SN destruction,
we will assume Mcl ≈ 2460 M
. This places the SN shock time-scale tSNR at the upper end of its expected range and adopts a weak rate of
SN dust destruction. For our Chabrier (2003), IMF with mass range from 0.1 to 100 M
 and SN II cut-off at 6 M
, roughly 26.4 per cent
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of stellar mass that forms exists as SNe II. Additionally, the average SN II mass is calculated as roughly 15.2 M
. If we assume that SNe II
immediately die after being formed, then we can estimate the SN II rate RSN from the star-formation rate as

RSN ≈
(

0.264

15.2 M


)
dM∗
dt

. (C1)

Using all of these values and noting that Md/Mg is the dust-to-gas ratio D, we can write the rate of dust loss due to SN destruction as a function
of star-formation rate and in turn the expected astration rate via(

dMd

dt

)
dest

≈ −5.8D
dM∗
dt

= 5.8

(
dMd

dt

)
astr

. (C2)

That is, the rate of dust loss due to SN destruction is expected to be roughly five times greater than the rate of dust loss from astration.
To test whether dust mass-loss from astration is important, we rerun the isolated discs presented in Section 5 using the medium resolution

initial conditions and a stronger SN destruction mechanism. Since both astration and SN dust destruction rates scale with the product of
dust-to-gas ratio and star formation rate, we can use a larger SN destruction rate to indirectly model the effects of astration, which is not
otherwise included in our simulations. To be precise, in these tests we calculate the SN destruction rate as usual and add an extra dust
destruction rate equal to δ times the SN destruction rate to model astration. (In the production only model that does not include SN destruction
of dust, we calculate what the SN destruction rate would be and use this to estimate the astration rate.) The calculations in equation (C2)
suggest δ = 1/5.8 ≈ 0.17. Given that these physical time-scales have some uncertainty and our desire to assess the maximum impact astration
could have, we actually employ δ = 0.25. This can be considered an upper bound on the strength of astration relative to SN destruction.

We acknowledge that this prescription does not perfectly model astration, since dust destruction via SNe does not directly transfer metal
mass from dust to newly formed stars but instead star-forming gas. Additionally, SNe dust destruction affects grain sizes by shifting them to
smaller values. However, given that the factor by which SN dust destruction is enhanced is only 25 per cent and not a factor of several or
more, this enhancement should not significantly affect grain-size distributions.

Using these tests, we can estimate the impact astration would have on dust content in our isolated discs. For the full physics model, the
run without (with) astration predicts a t = 1 Gyr dust mass of 1.1 × 108 M
 (1.1 × 108 M
) and dust-to-metal ratio in the star-forming disc
of 0.96 (0.93). In this model, astration is sub-dominant to SN dust destruction in shaping the overall dust mass and shifts the dust-to-metal
ratio down by a few per cent. This is not surprising, given that the astration rate is several times lower than the SN destruction rate – and
the fact that, overall, dust mass experiences a net increase in the ISM over time. The production only run lacking grain-size evolution does
experience a stronger effect: without (with) astration, the t = 1 Gyr dust mass and dust-to-metal ratio are 2.8 × 108 M
 (5.8 × 107 M
)
and 0.48 (0.14), respectively. However, we note that the production only run lacks SN destruction. While astration is sub-dominant to SN
dust destruction, if the latter is not included, then astration can reduce dust masses and dust-to-metal ratios by roughly a factor of 4. This
production-only set-up should not be taken as physically plausible: since SN dust destruction dominates astration, the former should be
included in any model accounting for the latter. In our full physics model where SN destruction is already present, the addition of astration
affects results less strongly than SN destruction. None the less, for completeness we intend to model astration directly in future work.

APP ENDIX D: GENERATING EXTINCTION CURVES

The optical depth at wavelength λ contributed by grains with sizes in the interval [a, a + da] along a path P is given by

τ (a, λ) da =
∫
P
πa2Qext(a, λ)nd(r, a) da ds, (D1)

where nd(r, a) × da is the number density of grains with sizes in [a, a + da] at position r, calculated by interpolating over the grain-size
distributions of nearby dust particles. The extinction efficiency Qext(a, λ) = Qabs(a, λ) + Qsca(a, λ) is the ratio of extinction cross-section to
geometric cross-section, πa2, and includes absorption and scattering contributions. Extinction efficiencies also vary depending on whether
grains are assumed to be silicate or graphite. We adopt extinction efficiencies for silicate and graphite grains from Draine & Lee (1984) and
Laor & Draine (1993), interpolating to our grain-size bins as necessary.

We can rewrite equation (D1) in terms of κext(a, λ) = 3Qext(a, λ)/(4aρgr), the dust mass opacity at wavelength λ and grain size a. This
produces

τ (a, λ) da =
∫
P

4π

3
a3ρgrκext(a, λ)nd(r, a) da ds. (D2)

The magnitude of the extinction along this line of sight is then obtained by integrating over the grain-size distribution, yielding

A(λ) = 2.5 log10(e)
∫ amax

amin

τ (a, λ) da = 2.5 log10(e)
4π

3
ρgr

∫ amax

amin

a3κext(a, λ)
∫
P

nd(r, a) ds da. (D3)

If we break the grain-size integral into the sum of integrals over the N grain-size bins and approximate grain sizes with the mid-points of the
N bins, we can discretize this as

A(λ) = 2.5 log10(e)
4π

3
ρgr

N−1∑
i=0

ac
i

3
κext(a

c
i , λ)(ae

i+1 − ae
i )
∫
P

nd(r, ac
i ) ds. (D4)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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