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Assessing the reliability of a chemical engineering problem-
solving rubric when using multiple raters 

 
Abstract 
 
This evidence-based practice paper discusses the preliminary validation of a project modified 
version of the Promoting Problem Solving Proficiency in First Year Engineering (PROCESS). 
The full rating plan required four raters to use the PROCESS to assess the problem-solving 
ability of ~70 engineering students randomly selected from two undergraduate cohorts at two 
Midwest universities. The many-facet Rasch measurement model has the psychometric 
properties to determine if there are any characteristics other than problem-solving that influence 
the scores assigned to students, such as rater bias or differential item functioning. Prior to 
implementing the full rating plan, the analysis examined how raters interacted with the six items 
on the modified PROCESS when scoring a random selection of 20 students’ solutions to one 
textbook homework problem. Follow up inter-rater reliability meetings enabled rater discussion 
of rationale for discrepancies observed in the ratings. Differences in conceptions of the latent 
construct of problem-solving were resolved by recourse to the theoretical framework that 
informed the development of the PROCESS. This iterative process resulted in substantial 
increases in construct validity and measurement reliability when raters completed another round 
of assessment. Evidence indicated that raters increased their understanding of how rating scale 
categories related to levels of the latent construct. This paper describes the impacts and benefits 
this method of psychometric evaluation of rater-mediated assessments hold for the 
implementation of the full rating plan of student outcomes, as well as for the field of engineering 
education more broadly. 
 
Introduction 
 
Engineers require precision and reliability in the tools they use to conduct research. For instance, 
the optimal design of planning vessels that transport goods around the world relies on the 
consistency of repeated particle image velocimetry measurements of flow characteristics around 
a ship [1, 2]. Yet much work is still required to develop tools for use in engineering education 
that meet the same rigorous standards of accuracy and repeatability when it comes to the 
assessment of student outcomes [3-5]. 
 
The attempts in engineering education to meet the demands of accountability and to provide 
assurances in the assessment of student knowledge have been marked by several components. 
There are institutes and committees comprised of engineering professors from across the country 
who develop and validate cognitive/declarative knowledge exams that serve as summative 
course assessments [6]. In response to the call for more robust learning outcomes, many science 
and engineering departments have integrated professional development programs that bolster 
faculty familiarity with course evaluation concepts [7, 8]. Incorporating multiple types of student 
assessment in classroom instructional design has been found to increase proficient practice in the 
field [9]. 
 
Methods of student assessment often incorporate rater-mediated assessment [10-13]. These 
methods of assessing student knowledge move beyond traditional notions of student grades that 



are just the calculation of correct responses divided by total possible items on a formative test. In 
rater-mediated assessment, student performance on a given task (e.g. presentation, homework 
solution, concept paper) is judged by a rater along any number of domains through the use of a 
rating scale [14]. The inclusion of these additional components provides the prospect of more 
nuanced and detailed student assessments, but also the threat of greater inconsistency. Efforts 
need to be made to ensure that the rubric used for rating students represents the intended 
construct. This task necessitates the development of a continuum where students can be placed 
according to their possession of less or more of the latent construct attempted to be measured 
indirectly through their performance on the given task. Rating scales need to distinguish between 
distinct levels of performance. Raters need to be consistent in their use of the rating scales. 
Figure 1 provides a model of rater-mediated assessment of problem-solving. This model shows 
that students are placed along the continuum of problem-solving ability by raters using rating 
scale judgments of student performance on a set of tasks.  
 

 
Figure 1. A model for rater-mediated assessment. Adapted from [14]. 
 
The qualitative levels defined by each category on a rating scale represent unequal intervals 
along the latent construct [15]. The conveniently adopted ordinal level ratings given to the 
qualitative categories (e.g. a “score” of 1 for “Inadequate,” “2” for “Acceptable,” etc.) need to be 
converted into linear measures before they can be used in any meaningful way as proxy 
measures of student ability levels. For example, one would be hard pressed to argue that 
“Disagree” minus “Strongly Disagree” equals an integer value of 1. Therefore, each facet of the 
assessment situation as shown in Figure 1, above, becomes a parameter that is estimated in a 
many-faceted measurement approach. Figure 2 describes the many-facet Rasch model (MFRM) 
developed by Linacre based upon the Rasch measurement paradigm [15-17]. This approach 
treats the assigned ordinal ratings in an assessment as the outcomes of the linear combination of 
the parameters. A comparison of the empirical variance encountered during parameter estimation 
with the level of measurement error expected by the model indicates how well the data fit the 
model. Unlike other item response and classical test theory traditions that try to fit measurement 
models to the data, the Rasch model is built on the fundamental measurement property of 
invariance: the measurement of persons must be independent of particular items used for 
measuring (item-invariant person measurement) and the calibration of items must be independent 
of particular persons used for calibration (person-invariant item calibration) [18, 19]. The task of 
measurement in the Rasch paradigm becomes an investigation of how well a particular data set 
adhere to the principles of invariant measurement embedded in an ideal-type model [14, 20]. 
 
 
 



log (
𝑃𝑛𝑖𝑗𝑗𝑘

𝑃𝑛𝑖𝑗𝑘-1
) = 𝐵𝑛 − 𝐷𝑖 − 𝐶𝑗 − 𝐹𝑘 

where: 
Pnijk is the probability of examinee n, when rated on item i by judge j, being awarded a 
rating of k. 
Pnijk-1 is the probability of examinee n, when rated on item i by judge j, being awarded a 
rating of k-1. 
Bn is the ability of examinee n. 
Di is the difficulty of item i. 
Cj is the severity of judge j. 
Fk is the extra difficulty overcome in being observed at the level of category k, relative to 
category k-1. 

Figure 2. Equation for the many-facet Rasch model. 
  
The purpose of this paper is to estimate the reliability of rater-mediated assessments of 
undergraduate engineering student problem-solving. Latent constructs such as problem-solving 
ability and content mastery comprise the domain of learning outcomes and variables of interest 
in the field of education. The MFRM was developed using philosophical principles similar to 
those that underpin the physical measures in engineering. Use of the MFRM can determine the 
fairness and objectivity of the estimations of student problem-solving by accounting for all of the 
aspects of the measurement process that can introduce error into that estimation, such as poorly 
functioning items, ill-defined rating categories, and differing levels of rater severity. Establishing 
reliability in rater-mediated assessments provides evidence that the scores obtained on the test 
actually represent the latent construct instead of being an artifact of rater discrepancies [21]. This 
paper argues that the MFRM provides necessary evidence toward the validity of inferences that 
can be made regarding student learning outcomes in engineering education.  
 
Methods 
 
Participants 
 
A total of 113 students were enrolled in an undergraduate Material and Energy Balance chemical 
engineering course as part of a control cohort (23 students; 22% female) and a treatment cohort 
(93 students; 41% female) at two Midwest Universities. Table 1 shows different distributions for 
highest mathematics courses completed by cohort. This discrepancy can be explained as a 
consequence of the course sequence occurring in the sophomore year for the control cohort (fall 
and spring semesters) compared to the spring semester of the freshmen year for the treatment 
cohort. 
 
Table 1 

 

Highest completed mathematics course by cohort type

Count % Count %
Calculus 1 2 9% 61 68%
Calculus 2 12 52% 11 12%
Calculus 3 7 30% 11 12%
Differential Equation 2 9% 3 3%
> Differential Equation 0 0% 4 5%

Control Treatment



 
Instrument 
 
The PROCESS was used to score students’ homework problem solutions [10]. The PROCESS 
was developed using several theoretical frameworks that consider the conceptual, analytical, and 
phenomenological process demands and cognitive skills involved in problem solving [22]. 
PROCESS was modified to assess the problem-solving process for solved handwritten 
homework problems, which differs from its original use where participants’ solutions were 
collected on tablets and custom software to see erasing and other details [23, 24]. The tool was 
modified to suit material and energy balance problems. The modified PROCESS consists of a 6-
stage rubric assessing: Problem definition, Representing the problem, Organizing information, 
Calculations, Solution completion and Solution accuracy. Each item in the revised PROCESS 
consists of four scaling levels ranging from 0 to 3 with the following categories to rate student 
performance on each of the six the stages of problem solving: missing, inadequate, acceptable, 
and accurate. Any identification regarding group identity was removed prior to scoring and 
replaced with a project-assigned ID number to maintain privacy and to mask group membership 
from raters.  
 
A complete rating plan was proposed where four raters would use the PROCESS tool to score all 
solutions submitted by all students from both cohorts. The four raters consisted of one chemical 
engineering faculty member, one high school science teacher, and one graduate and one 
undergraduate student in chemical engineering. All students completed ten traditional textbook 
problems during the respective courses. 
 
Analyses 
 
Initial inter-rater reliability was assessed in line with best practices as a means to evaluate how 
consistently raters measured student problem-solving ability [25]. The first assessment involved 
the PROCESS scores that five raters assigned to 20 randomly selected students for one textbook 
problem. An additional chemical engineer faculty member joined the four raters above to provide 
a benchmark reference point. Figure 3 presents a portion of the problem that was purposefully 
selected for piloting the use of the rubric. This specific problem was chosen in part because the 
research team decided it was of average difficulty and representative of the ten textbook 
problems assigned.   
 

 
 
Figure 3. Example of the textbook problem used to rate student problem-solving ability 



 
The FACETS [16] computer program was used to produce parameter estimates for the facets 
involved in the rater-mediated assessment (rating scale function, rater severity, item difficulty, 
etc.). Subsequently, qualitative focus group meetings were conducted where raters deliberated 
rationale for their ratings and their understanding of the underlying continuum of problem-
solving. Discrepancies in ratings were resolved by recourse to the theoretical framework of the 
problem-solving cycle that informed the development of the PROCESS [22, 26]. Raters were 
then rescore that problem in light of their refined understanding of the latent trait and function of 
PROCESS. Those results were then analyzed in the same manner as before using the FACETS 
program to estimate parameters. The resulting logit scores were rescaled to conform to the 
original scale of 0 points (a rating of “missing” for all six PROCESS items, representing the 
lowest problem-solving ability level) through 18 points (a rating of “accurate” for all six 
PROCESS items, representing the highest problem-solving ability level).  
 
These interval level measures were then used to calculate Cohen’s kappa and intraclass 
correlation coefficients as extra measures of inter-rater reliability in addition to the standard 
errors and fit statistics provided by FACETS.  Several types of descriptive statistics were 
calculated to assess the inter-rater reliability of the four raters using the PROCESS. The goal was 
to ensure that all of the raters used the rating scale consistently so that differences in student 
performance can be attributed to different problem-solving abilities and not a result of receiving 
a rating from a more or less severe rater. 
 
Results 
 
The problem-solving continuum developed by FACETS as a result of the parameter estimations 
of rater severity, student ability level, item difficulty, and rating scale function are displayed in 
Figure 4. Students with higher scores indicate more advanced problem-solving skills, such that 
student 4835 was identified as exhibiting the most advanced problem-solving skills and student 
1874 as the least advanced. For the PROCESS Item column, the higher the item is on the “ruler,” 
the more difficult it is for students to answer it correctly. Therefore, “Final Solution Accuracy” 
was the most difficult item, with “Representing the Problem” and “Final Solution Completion” 
being the easiest items (i.e. students scored the highest on these items). The Rater column places 
the more severe raters (i.e. gave the lowest scores—Raters 3 and 5) higher on the ruler and the 
more lenient raters (i.e. awarded the highest scores—Rater 4) lower on the ruler. 
 



 
Figure 4. Yardstick representation of student ability level, produced in FACETS  
 
Figure 5 provides more descriptive statistics regarding the estimation of the rater severity 
parameter. The raters are ordered in rows from most to least severe, with their overall measure 
being reported in the fifth column. Of particular interest is the Strata statistic of 2.48 (highlighted 
in yellow). This indicates that there were two distinct groups of raters, a more severe group and a 
more lenient group.  
 
Several types of rater agreement could be achieved [16]. If the desire is to have raters agree 
exactly with each other then we would expect the third to last column in Figure 5 (Exact Agree. 
Obs. %) to be greater than 90%. This would mean that raters were agreeing on exact scores for 
student performance on individual PROCESS items greater than 90% of the time. As can be 
seen, in this instance this is not the case. Of greater concern to most measurement contexts is the 
determination of similar leniency/severity in rater assessments. This is reported by the 
‘Reliability (not inter-rater)’ statistic, highlighted in red in Figure 5, and calculated by taking [1 – 
Separation Reliability], [1 – 0.72 = 0.28], with numbers closer to 0 being best. While there are no 
hard and fast guidelines, 0.28, in conjunction with other evidence, suggests that the raters were 
rating with different levels of severity. Similarly, the null hypothesis for the “Fixed (all same) 
chi-square tests” shown in the third row from the bottom of Figure 5, assumes that all raters are 
rating the same. The significant statistic chi-square value (highlighted in green, Figure 5) 
indicates that we must reject this null hypothesis, providing further evidence that raters are rating 
with different levels of severity and therefore the raters are bringing different interpretations of 
the rating scale into their scoring of student problems 
 



 
Figure 5. Descriptive statistics for parameter estimation of rater severity. 
 
Figure 6 models the discrepancy in rater severity by plotting the range of precision in the 
estimation of rater scores (calculated as Rater Measure ± (2 x S.E.)). This shows that Rater 5 
when most lenient was still significantly more severe than Rater 4 at their most severe. This 
indicates that assessment of student problem-solving in this initial example was influenced by 
measurement error introduced as a result of different levels of rater severity or, rather, different 
interpretations by raters of what constituted each level of the rubric. Thus, a student would get a 
different problem-solving ability score dependent on which rater assessed their assignment. 
 

 
 
Figure 6. Calculation of the range of rater severity from FACET parameter estimation 
 
Further diagnosis revealed some of the overarching areas of disagreement. For example, Table 2 
reveals statistically significant bias regarding how Rater 5 scored the first PROCESS item, 
“Identify the Problem,” and Rater 3’s rating of the second item, “Represent the problem.” The 
scores the raters gave on those respective items across all 20 students they rated were statistically 
significantly lower than expected by the model given the estimated student problem-solving 
ability level and item difficulty. The t-statistics were computed to test the hypothesis that there 
was no bias present in the ratings besides what was to be expected by measurement error. This 
analysis indicated bias in how these raters scored these particular items; specifically, they were 
harsher when scoring these items compared to other PROCESS items.  
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Table 2 
Bias in rater interaction with PROCESS items 

 
 
Comparisons between how pairs of raters scored specific items can lead to fruitful conversations 
regarding the characteristics of responses that belong to each rating category on the items, i.e. 
“What does an answer to Item 1, Identify the problem, need to look like to be considered in the 
acceptable category (score of 2)?” The data in Table 3 suggest that the raters employed different 
understandings of item 1, “Identify the problem.” This was the greatest source of disagreement 
leading to different levels of rater severity. For example, row 1 reports that Rater 1 (overall 
severity estimate of -0.48 logits on item 1) has a statistically significantly more lenient 
understanding/rating of item 1, Identify the problem when compared to Rater 5’s (0.84 logit) 
more strict position on that item, t (35) = -2.55, p =.015. This indicates that a student solution 
that was assessed by Rater 5 was likely to receive a significantly lower score on the “Identify the 
problem” item than if that same solution was assessed by Rater 1.  
 
Table 3 
Pairwise comparison of rater discrepancies in scores assigned to PROCESS items 

 
 
The qualitative meeting between raters examined the discrepancies highlighted above, in 
addition to those found in the raw scores raters provided to some of the students, displayed in 
Table 4. Highlighted cells show areas of considerable discrepancy in ratings that could 
potentially represent different understandings of the underlying construct and its measurement. It 
can be seen that the majority of the ratings provided by the raters were similar across the 
PROCESS items for most of the students. The solution provided by student 4036, a moderate 
performing student, provided difficulties that led to fruitful conversations about the different 
characteristics of responses in the “inadequate” and “acceptable” rating scale categories. The 
meeting offered the opportunity for the raters to clarify any fundamental disagreements or 
misunderstandings pertaining to the latent construct of problem-solving ability. 
 

Rater PROCESS Item Observed 
Score

Expected 
Score

Bias Size (log 
odds units)

Model 
standard 

error
t-statistic d.f. p-value

5 Identify the problem 36 47.2 -0.82 0.25 -3.29 19 0.0038
3 Represent the problem 44 50.8 -0.66 0.28 -2.34 19 0.0302

PROCESS Item Rater Pair Contrast S. E. t-statistic d. f. p-value

Identify the problem Rater 1 - 
Rater 5 -1.32 0.52 -2.55 35 0.015

Identify the problem Rater 2 - 
Rater 3 -1.54 0.64 -2.39 33 0.023

Identify the problem Rater 2 - 
Rater 5 -2.01 0.63 -3.19 32 0.003

Identify the problem Rater 3 - 
Rater 4 1.73 0.76 2.27 32 0.030

Identify the problem Rater 4 - 
Rater 5 -2.21 0.75 -2.94 30 0.006



Table 4  
Discrepancies in use of rating scale categories 

 
 
Following the qualitative meeting, the four primary raters were asked to rescore the student 
solutions for the “methanol reactor” problem described above. Inter-rater reliability statistics 
were computed to assess the extent to which the raters understood and scored “problem-solving 
ability” in a consistent manner with each other. The results in Table 5 report the two forms of 
Cohen’s kappa that were calculated. The second column reports the standard Cohen’s kappa for 
absolute agreement. This statistic quantifies how many instances of exact agreement occurred for 
the ratings (e.g. both raters would have to give a particular student the same rating on a specific 
item). This method is best suited to determine absolute level of agreement, essentially treating 
the ratings as binary outcomes, and therefore only has limited applicability here. It is included in 
the present study just to provide a baseline for comparison. Column 3 reports the quadratic 
weighted kappa statistics. These take into account the nature of ordered categories and adjust for 
the fact that adjacent categories are more alike than non-adjacent (i.e. ratings of 0 from one judge 
and 1 from another are more similar than ratings of a 0 and a 3). Moderate levels of agreement 
(kappa statistic in the range of .60 - .79) mark half of the rater relationships; specifically all of 
those relationships that do not involve Rater 3. Table 5 highlights the need to follow up with 
Rater 3 to discuss their understanding of the latent variable and potentially provide additional 
training on their understanding of the rating scale categories that comprise the assessment tool. 
 
Table 5  
Cohen’s kappa coefficient estimates based on recalibrated ratings 

 
 

Pair κ value 
(absolute)

κ value (quadratic 
weights)

Rater 1 - Rater 2 0.384 0.707
Rater 1 - Rater 3 0.115 0.573
Rater 1 - Rater 4 0.465 0.743
Rater 2 - Rater 3 0.100 0.421
Rater 2 - Rater 4 0.395 0.792
Rater 3 - Rater 4 0.254 0.536



Additionally, intraclass correlation coefficients (ICC) were computed to assess how similar the 
group of raters as a whole (rather than rater pairs) scored problem-solving ability for the student 
solutions. This correlation shows the reproducibility of the measurement of student problem-
solving ability.  Table 6 reports the results of the intraclass correlation coefficient computed 
using the interval level estimates produced by FACETS as the measure. The ICC coefficient was 
calculated using the initial assessment of the raters and then again using the ratings of the second 
round of assessment. Specifically, a two-way mixed effects, multiple-raters model was 
employed. The initial ICC coefficient of .844, indicates good reliability.  Yet, when taking into 
consideration the 95% CI [.570, .973], there was a wide range from very low moderate to 
excellent reliability in the raters’ scores. The ratings from the post-qualitative meeting show 
appreciable increases in reliability and a narrower confidence interval. Provided the raters score 
student solutions with a similar conceptualization of problem-solving ability, then adding more 
student solutions will help reduce the high standard error caused by the relative small sample 
size in this analysis. 
 
Table 6 
Intraclass correlation coefficient for rater agreement 

 
 
Figure 7 maps the rater-mediated student scores used to calculate the post-qualitative meeting 
ICC coefficient. Data came from six randomly selected students. This plot provides a snapshot of 
how raters differed in the sum scores given to each of the students. It should be noted that Rater 
3 shows significant separation from the other three raters on three of the six assessments (A, C, 
and F), while Rater 2 was drastically lower for the ratings on student B. This provides further 
explanation for the variation in the 95% CI of the ICC coefficient. 
 

 
Figure 7. Plot of the student problem-solving ability level used for the ICC coefficient  

Lower 
Bound

Upper 
Bound F value df1 df2 Sig

Pre-qualitative meeting 0.85 0.57 0.97 22.57 5 15 < .001

Post-qualitative meeting 0.90 0.69 0.98 34.99 5 15 < .001

Ratings Intraclass 
Correlation

95% Confidence 



Discussion 
 
This study estimated the reliability of scores from a rubric designed to measure chemical 
engineering problem-solving ability. The analyses mark an important step in the validation of the 
PROCESS itself which has only been validated previously using traditional correlational 
techniques. The many-facet Rasch model (MFRM) was used to explore a set of rater-mediated 
data. This evaluative approach and choice of measurement models was designed to meet the 
increasing demands of accountability in engineering, and in this case specifically chemical 
engineering, education [3, 6, 27]. The models in the Rasch measurement paradigm are 
particularly well suited to the task of evaluating the defensibility of measures pertaining to the 
assessment of student learning outcomes. The demands of specific objectivity, as set out by 
Rasch, require person-free item calibration and item-free person measures [18]. The Rasch 
models also expect the measures resulting from data to meet other requirements similar to those 
maintained for the physical measures that define the field of chemical engineering. Examples 
include the requirements of monotonicity and local independence. These conditions demand that 
items with increasing levels of difficulty require increasing presence of the latent variable in 
order for an individual to succeed on that item/receive a higher rating [28]. 
 
The initial findings show promise for the validity of the measures of problem-solving ability 
produced by the PROCESS. Qualitative meetings discussed the raters’ conceptions of the latent 
construct and how the rating scales mapped progress along the continuum of lower to greater 
levels of the construct. The conversations produced a more stable understanding of the thresholds 
of each of the rating categories, e.g. the hallmarks of an “inadequate” (rating of 1) response to a 
PROCESS item and at what point that response became “acceptable” (rating of 2). Future 
analyses will monitor the function of the rating scale categories as different chemical engineering 
problems are scored. The inclusion of more rater-mediated assessments will make for more 
precise parameter estimations and therefore lead to student assessments that more accurately 
represent actual student ability. Fortunately, the MFRM evaluation process is iterative in nature 
and can (and should) be conducted as assessments are ongoing [25]. This evaluation process can 
identify sources of measurement error in any of the facets estimated, including the parameter of 
rater severity. Discrepancies in use of the rating scale on the PROCESS tool can provide 
opportunities for additional training. These evaluative steps can increase not only the accuracy of 
the scores among the raters, but also the precision of those scores in measuring the latent 
construct, provided the raters maintain fidelity in their use of the rating scale rubric and the 
operationalization of the problem-solving framework. 
 
Reports suggest that there will only be an increase in the call for authentic, meaningful measures 
of student outcomes in engineering programs as the 21st Century proceeds [29]. Novel methods 
of engaging students in the content and methods of engineering appear promising [11, 30, 31]. 
The validity of the pedagogical interventions and the inferences that can be drawn from resulting 
measures will be enhanced through the use of robust measurement and evaluation techniques. 
Engineering educators who demand measures as sturdy as the measures used to build the 
machines that cultivate alternative energy [32] and fuel the next modes of transportation [33] 
need to implement a rigorous system of evaluation of their pedagogical assessments through the 
use of a measurement model that makes such demands on the data. To that end, the 
implementation of Rasch measurement models will provide robust validation for the measures of 



student learning outcomes, which in turn can improve course curricula by accurately targeting 
domains and transferable skillsets critical to the development of this generation’s chemical 
engineers. 
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