
 

Complexity of Jackiw-Teitelboim gravity

Adam R. Brown,1,2 Hrant Gharibyan,1 Henry W. Lin,3 Leonard Susskind,1

Lárus Thorlacius,1,4 and Ying Zhao1,5
1Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,

Stanford, California 94305, USA
2Google, Mountain View, California 94043, USA

3Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
4University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland

and The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,
AlbaNova, 106 91 Stockholm, Sweden

5Institute for Advanced Study, Princeton, New Jersey 08540, USA

(Received 8 January 2019; published 25 February 2019)

The Jackiw-Teitelboim (JT) model arises from the dimensional reduction of charged black holes.
Motivated by the holographic complexity conjecture, we calculate the late-time rate of change of action of
a Wheeler-DeWitt patch in the JT theory. Surprisingly, the rate vanishes. This is puzzling because it
contradicts both holographic expectations for the rate of complexification and also action calculations for
charged black holes. We trace the discrepancy to an improper treatment of boundary terms when naively
doing the dimensional reduction. Once the boundary term is corrected, we find exact agreement with
expectations. We comment on the general lessons that this might hold for holographic complexity and
beyond.

DOI: 10.1103/PhysRevD.99.046016

I. INTRODUCTION

The Jackiw-Teitelboim (JT)model of 1þ 1-dimensional
dilaton gravity [1,2] is useful for studying conjectures
relating the geometry of black holes and scrambling in
dual quantum systems. This simple model holographically
reproduces the nearly conformal dynamics [3] of the
Sachdev-Ye-Kitaev (SYK) model [4,5] at low energies.
In the present paper, we will focus on a particular aspect of
the duality—the conjectured relationship between quan-
tum complexity and emergent spacetime.
The SYK model is a good place to test the conjectured

relation between complexity and the size of wormholes
[6–8]. For one thing the SYK model is, from the beginning,
a theory of (fermionic) qubits, which means that in
principle the definition of complexity could be fairly
standard. On the other hand, the gravitational dual at
sufficiently low energies is fairly well understood.
In particular, the low-energy dynamics of the SYK

model is characterized by a spontaneously and explicitly

broken reparametrization symmetry, with the effective
action of the associated Nambu-Goldstone modes given
by the Schwarzian [9–11]. The resulting universal dynam-
ics exhibits a number of distinctive features, including out-
of-time-order four-point functions that saturate the chaos
bound [12]. The boundary dynamics of 1þ 1-dimensional
JT dilaton gravity is governed by the same broken time-
reparametrization symmetry and Schwarzian action, moti-
vating its identification as a bulk dual for low-energy SYK
dynamics. At the same time, JT theory is simple enough
to allow explicit computations of both the volume of a
maximal surface and the action of a Wheeler-DeWitt
(WDW) patch. This gives us the opportunity to test both
the complexity-volume (CV) duality and complexity-action
(CA) duality against expectations from the quantum-chaotic
nature of the SYK model.
For most purposes, JT theory is the dimensional

reduction of the near-horizon dynamics of a near-
extremal Reissner-Nordström (RN) black hole of
Einstein-Maxwell theory, and one might think they give
identical results for holographic complexity. Indeed for
CV duality JT and RN agree with each other, and with the
expected behavior of complexity for SYK quantum
mechanics. Surprisingly, when we compute the action
in WDW patches we do not find agreement. The late-time
rate of growth of action for the JT theory vanishes, in
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disagreement with our expectations for the growth of
complexity for chaotic systems like SYK.1

At first sight, this seems to be a serious counterexample
to the CA conjecture. On the other hand when the Einstein-
Maxwell action is computed for the near-extremal RN
black hole, we find perfect agreement with the expectations
for complexity growth. By carefully constructing the
dimensional reduction of RN we have been able to trace
the origin of the discrepancy. In eliminating the gauge field
from RN, the dimensional reduction inadvertently intro-
duces an inappropriate boundary term at the edge of the
WDW patch. There does not seem to be a consistent way to
remove this term without bringing back the gauge field as a
degree of freedom (d.o.f.).
We emphasize that for the purposes for which it has

been used up till now the JT model correctly reflects much
of the physics of the SYK model, including the low-
energy dynamics governed by broken reparametrization
symmetry at low temperature. We find, however, that for
more subtle quantities, such as holographic complexity,
the standard formulation of the JT model as a theory of
two-dimensional dilaton gravity fails to give sensible
results, whereas the original higher-dimensional Einstein-
Maxwell theory succeeds.
The paper is organized as follows. In Sec. II we set the

stage for the rest of the discussion by reviewing salient
features of the near-extremal limit of electrically charged
RN black holes in 3þ 1-dimensional Einstein-Maxwell
theory. In Sec. III we write down the action of the JT model
and describe its black hole solutions. This serves to fix
notation and set up a simple 1þ 1-dimensional framework
where explicit calculations can be carried out to test
proposals for holographic complexity. CV duality for JT
black holes is considered in Sec. IVand found to reproduce
predictions for higher-dimensional near-extremal RN black
holes. In Sec. V we turn our attention to CA duality and
find that it apparently runs into a problem in the JT theory.
In Sec. VI we take steps to resolve the problem by
reexamining how JT gravity arises as an effective theory
for low-energy radial modes in the near-horizon region of a
near-extremal RN black hole. The eventual resolution
involves a careful treatment of boundary terms in the
action and is presented in Sec. VII. Further examples of
systems where boundary terms play similar roles are
presented in the Appendixes.

II. COMPLEXITY=ACTION FOR RN
BLACK HOLES

We begin our discussion by recalling some facts about
charged black holes in 3þ 1-dimensional Einstein-Maxwell
theory with action

S ¼ 1

16π

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
1

l2
R − FμνFμν

�

þ 1

8πl2

Z
∂M

d3y
ffiffiffiffiffiffi
−h

p
ðK − K0Þ; ð2:1Þ

where l≡ ffiffiffiffiffiffiffi
GN

p
is the 3þ 1-dimensional Planck length.

This action describes an electromagnetic field gravita-
tionally backreacting on curved spacetime. It includes
the usual Gibbons-Hawking-York boundary term [13,14]
involving the trace of the extrinsic curvature K at an
asymptotic spacetime boundary with induced metric hij.
It also includes a regulator term that subtracts K0, the
trace of the extrinsic curvature of the same boundary
surface when embedded in a flat spacetime, in order to
obtain a finite free energy from the corresponding on-shell
Euclidean action.2

The boundary conditions obeyed by the electromagnetic
field at ∂M will play an important role in our discussion.
As it stands, the action (2.1) does not include any boundary
term involving the Maxwell field and Aμ is kept fixed at the
boundary. In the Euclidean formalism this corresponds to a
thermal ensemble where the chemical potential is held fixed
but the total electric charge of the system is allowed to
fluctuate. If, on the other hand, the following boundary
term is added to the action,

Sem
b ¼ 1

4π

Z
∂M

d3y
ffiffiffiffiffiffi
−h

p
n̂μFμνAν; ð2:2Þ

then free variations of Aμ are allowed at the boundary and
the corresponding thermal ensemble is that of fixed charge
but varying chemical potential. We will revisit 3þ 1-
dimensional Maxwell boundary terms in Appendix C.
A notable solution for the action (2.1) is the spherically

symmetric Reissner-Nordström black hole with electric
charge Q > 0 and mass M ≥ Q=l, described by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2;

fðrÞ ¼
�
1 −

rþ
r

��
1 −

r−
r

�
;

Frt ¼
Q
r2
; ð2:3Þ

where r� ¼ l2M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4M2 − l2Q2

p
are the locations of

the outer and inner horizon.
We will be interested in these black holes when they are

very near to extremality, M → M0 ¼ Q=l. In the extremal

1Throughout this paper, “late time” refers to much longer than
the thermal timescale but less than the exponential timescale on
which complexity is expected to saturate and on which classical
geometry no longer provides a reliable description [6].

2Alternatively, one can introduce a small negative cosmologi-
cal constant into the 3þ 1-dimensional theory and include the
standard boundary counterterms that render the free energy
finite.
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limit, the horizons are degenerate rþ ¼ r− ¼ lQ and the
Hawking temperature,

T ¼ ðrþ − r−Þ
4πr2þ

; ð2:4Þ

goes to zero. Thus for near-extremal black holes rþ−
r− ≪ rþ, or equivalently β ≫ rþ. Following our recent
work [15], we find it useful to divide the spacetime
geometry outside a near-extremal black hole into the three
regions shown in Fig. 1:

(i) Closest to the outer horizon of the black hole is
the Rindler region, rþ < r≲ 2rþ − r−, where the
proper distance from the horizon, Δρ ¼ R rrþ dr0=ffiffiffiffiffiffiffiffiffiffi
fðr0Þp

, is in the range

0 < Δρ≲ rþ: ð2:5Þ

(ii) The “throat” region, 2rþ − r− ≲ r≲ 2rþ, becomes
long in the low-temperature limit,

rþ ≲ Δρ≲ rþ log

�
β

rþ

�
; ð2:6Þ

and in this case the spacetime geometry is well
approximated locally by AdS2 × S2. The long throat
supports a low-energy sector of long-wavelength
radial excitations that are described by an effective

two-dimensional theory, the Jackiw-Teitelboim
model, discussed in Sec. III below.

(iii) Finally, there is the Newtonian region, 2rþ ≲ r,
where the metric approaches that of flat spacetime
fðrÞ ≈ 1. The JT boundary from Fig. 5 may be
identified with where the AdS2 throat meets the
Newtonian region.

In [7,8], the late-time rate of change of the action of a
WDW patch for RN black holes was calculated to be

dS
dðtL þ rRÞ

¼ Q2

r−
−
Q2

rþ
¼ 4ST; ð2:7Þ

where T is the Hawking temperature (2.4) and S ¼ πr2þ=l2

is the Bekenstein-Hawking entropy. For our purposes, the
essential aspect of this result is that the action advances
linearly at late times. This is consistent with expectations
for complexity—at preexponential times, a generic quan-
tum system will complexify with a constant rate. However,
it is superficially inconsistent with the vanishing rate of
action advance that we obtain for the JT theory in Sec. V.
This inconsistency will be resolved in Sec. VII, in favor
of Eq. (2.7).

III. JACKIW-TEITELBOIM MODEL

We now turn to our main object of study, the JT model of
1þ 1-dimensional dilaton gravity [1,2]. We start by intro-
ducing the basic equations of the model and write down a

FIG. 1. The three regions outside the horizon of a near-extremal RN black hole. The transition from throat to Newtonian region occurs
at r ∼ 2rþ, which is also the approximate location of the top of the potential barrier [15], and also the approximate location of the curved
JT boundary in Fig. 5.
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family of static solutions. This serves to establish notation3

and sets the stage for our subsequent calculations testing
the CV and CA conjectures.
The fields of the JT model consist of a metric and a real-

valued dilaton field, defined on a 1þ 1-dimensional
manifold M with timelike boundary ∂M. By adopting a
suitable field redefinition, the action can be expressed in a
simple form, with no derivatives acting on the dilaton,

SJT ¼ φ0

2

�Z
M

d2x
ffiffiffiffiffiffi
−g

p
Rþ 2

Z
∂M

dτK

�

þ 1

2

Z
M

d2x
ffiffiffiffiffiffi
−g

p
φ

�
Rþ 2

L2

�

þ
Z
∂M

dτφ

�
K −

1

L

�
; ð3:1Þ

where L is a characteristic length scale of the model.
The boundary terms in the action involving the extrinsic

curvature are needed to make the gravitational variational
problem well defined and we have also included a
boundary counterterm that renders the Euclidean on-shell
action finite. The terms on the first line are independent of
the dilaton field φ and are instead multiplied by a constant
φ0. Their sum is proportional to a topological invariant, the
Euler character of the 1þ 1-dimensional manifold, and
thus they do not contribute to the equations of motion. They
do, however, contribute to thermodynamic quantities such
as the free energy and entropy of the black hole. As we shall
see in Sec. VI below, this model, including the topological
terms, arises naturally when one considers the spherical
reduction of 3þ 1-dimensional Einstein-Maxwell theory
around near-extremal charged black holes. In this context,
the higher-dimensional black hole charge Q determines the
constant φ0 in front of the topological terms via the relation
φ0 ¼ Q2=2. For now, we want to explore the JT theory on
its own terms as a 1þ 1-dimensional model and for this
purpose we can simply assume that φ0 ≫ 1 but leave it
otherwise undetermined.
The boundary of the 1þ 1-dimensional spacetime is

taken to be along a curve of constant dilaton field,
φj∂M ¼ φB, and the integration variable τ in the boundary
terms in the action is the proper time along this boundary
curve. We can introduce a separation of scales in the
JT model by imposing the condition φB ≪ φ0. For the
time being, we impose this by hand, but in the higher-
dimensional context it amounts to restricting the range of
the 1þ 1-dimensional effective description to lie well
inside the throat region of a near-extremal Reissner-
Nordström black hole.

A. AdS2 geometry and JT black holes

The action (3.1) gives rise to the following field
equations,

0 ¼ Rþ 2

L2
; ð3:2Þ

0 ¼ ∇α∇βφ − gαβ

�
∇2φ −

1

L2
φ

�
: ð3:3Þ

The variational equation for the dilaton field (3.2) implies
that the spacetime geometry is always locally AdS2. We
find it convenient to use global coordinates ðν; σÞ, where
the AdS2 metric takes the form

ds2 ¼ L2

sin2 σ
ð−dν2 þ dσ2Þ: ð3:4Þ

The full range of the coordinates is −∞ < ν < ∞ and
0 < σ < π, but when we take the dilaton field into con-
sideration the coordinate range is restricted by the boundary
at φ ¼ φB. This is best illustrated by considering a specific
field configuration.
A one-parameter family of solutions to the Einstein

equations (3.3) is given by

φðν; σÞ ¼ φH
cos ν
sin σ

; ð3:5Þ

where the integration constant φH > 0 is the value of φ on
the event horizon of the two-dimensional black hole, as we
will see shortly. The boundary at φ ¼ φB is located on a set
of timelike curves,

sin σ ¼ ε cos ν; ð3:6Þ

with ε ¼ φH=φB, that intersect the AdS2 boundary at
ν ¼ � π

2
, as shown in Fig. 2. In the following we assume

that ε ≪ 1 and work to leading order in powers of ε.
The dilaton field φ in (3.5) is periodic in the global time

ν. It is negative in the range π
2
< ν < 3π

2
and becomes

arbitrarily negative as σ → 0 or σ → π. This means that
Φ≡ φ0 þ φ goes to zero along another set of timelike
curves (also shown in Fig. 2). In the spherical reduction
from 3þ 1 dimensions discussed in Sec. VI, the field Φ is
proportional to the area of the transverse two-sphere and
with the higher-dimensional interpretation in mind it is
natural to view the Φ ¼ 0 curves as singularities. The
associated event horizon is along the diagonal lines ν ¼
�ðσ − π

2
Þ and it is easily checked that φ ¼ φH everywhere

on the horizon. We note that the spherically reduced
Reissner-Nordström solution, given in (6.10) below, indeed
has a timelike curvature singularity precisely where Φ
vanishes. However, the small φ truncation that leads to the
field equations of the JT model breaks down long before φ

3For the most part, our conventions in this section follow those
of [3].

ADAM R. BROWN et al. PHYS. REV. D 99, 046016 (2019)

046016-4



approaches −Q2=2 so the Φ ¼ 0 curve of the JT model is
only a proxy for the true physical singularity.

B. JT black hole thermodynamics

The relationship betweenΦ and the area of the transverse
two-sphere will be derived in Sec. VI and is given in (6.1).
The corresponding entropy of the 1þ 1-dimensional black
hole is

S ¼ 2πΦjHorizon ¼ 2πφ0 þ 2πφH: ð3:7Þ

This entropy assignment can of course be made without
giving it any higher-dimensional interpretation but in that
case it would appear rather arbitrary. The entropy of an
extremal 3þ 1-dimensional Reissner-Nordström black
hole is S0 ¼ πQ2 ¼ 2πφ0 so we see that 2πφH amounts
to the added entropy of a near-extremal black hole with the
same charge.
The black hole character of the solution (3.5) is more

immediately apparent when we write it in a 1þ 1-dimen-
sional version of Schwarzschild coordinates,

ds2 ¼ −
r2 − r2H
L2

dt2 þ L2

r2 − r2H
dr2: ð3:8Þ

In this coordinate system, there is a coordinate singularity
at the event horizon at r ¼ rH and the dilaton is linear in r,

φ ¼ φH
r
rH

: ð3:9Þ

The requirement that the Euclidean continuation of the
metric (3.8) be smooth at r ¼ rH yields the following
Hawking temperature for the 1þ 1-dimensional black
hole:

T ¼ rH
2πL2

: ð3:10Þ

It is straightforward to work out the Kruskal extension of
the Schwarzschild form of the AdS2 metric (3.8) and find
an explicit coordinate transformation relating ðν; σÞ and
ðt; rÞ. In particular, the relationship between the global
time and Schwarzschild time along the boundary curve at
r ¼ rB is

tan

�
ν

2
þ π

4

�
¼ e2πTt; ð3:11Þ

up to Oðε2Þ correction terms that are small in the limit
rB ≫ rH. Slices of constant Schwarzschild time are shown
in Fig. 3.
The on-shell Euclidean action can be obtained from the

Euclidean version of (3.1) including all the boundary terms.
A straightforward calculation gives

SE ¼ −Sþ βE; ð3:12Þ

where

S ¼ 2πφ0 þ 4π2L2
φB

rB
T; ð3:13Þ

E ¼ 2π2L2
φB

rB
T2; ð3:14Þ

which has the form of a free energy of a near-extremal
Reissner-Nordström black hole in a fixed charge ensemble
(see Appendix B). By comparing with (B3) we identify S
as the 3þ 1-dimensional black hole entropy and E as the

FIG. 2. Jackiw-Teitelboim black hole in global AdS2 coordi-
nates. The red curves indicate the outer boundary of the 1þ 1-
dimensional black hole spacetime, while the solid black curves
indicate singularities where Φ ¼ 0. The dashed diagonal lines
show the location of the black hole horizon.

FIG. 3. Jackiw-Teitelboim black hole. Curves of constant
Schwarzschild time outside the event horizon are shown in blue.
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added mass of the near-extremal black hole compared to the
extremal mass. Furthermore, by equating the coefficients of
T and T2 in S and E, respectively, of the 1þ 1-dimensional
black hole to the corresponding terms in (B3) one finds that
φðrÞ ¼ r=l, where l is the 3þ 1-dimensional Planck
length.

IV. COMPLEXITY=VOLUME IN THE JT MODEL

We are now in a position to test proposals for the
holographic dual of quantum complexity in the simplified
setting of 1þ 1-dimensional dilaton gravity. We start with
the complexity-volume (CV) duality and then consider the
complexity-action (CA) duality in Sec. V. The CV proposal
[6] states that the complexity of the quantum state dual to
the black hole is proportional to the spatial volume of a
maximal slice behind the horizon,

C ∼
V

Gl0

; ð4:1Þ

where G is Newton’s constant and l0 is a characteristic
length scale associated with the black hole in question.
In the case at hand, the “volume” of a maximal slice is
simply the length Ls of a spacelike geodesic and the
characteristic length scale l0 can be taken to be the AdS2
scale L. There is, however, no notion of Newton’s constant
that is intrinsic to 1þ 1-dimensional gravity and we need to
adapt the prescription accordingly. Our proposal is to
include a factor of φ0 in the proportionality factor between
complexity and volume in the JT model,

C ∼
φ0Ls

L
: ð4:2Þ

This is motivated by the general expectation that the
complexity should grow at a rate that is proportional to
the number of d.o.f. of the dual quantum system. The
number of d.o.f. is in turn proportional to the black hole
entropy and for our 1þ 1-dimensional black holes the

entropy is dominated by the extremal entropy, S0 ¼ 2πφ0.
This is of course also intimately related to the higher-
dimensional origins of the Jackiw-Teitelboim model.
Under spherical reduction, each 1þ 1-dimensional event
is accompanied by a transverse sphere, whose area in
Planck units is given by the dilaton field, and from this
point of view the 1þ 1-dimensional definition (4.2) is a
special case of (4.1).
Let us first consider a maximal slice of the form shown

in the left panel of Fig. 4, where the spacelike geodesic
connects boundary points that have the same value of
global time, νL ¼ νR ≡ ν0. The complexity is proportional
to the proper length that lies inside the horizon,

Ls ¼ L
Z π

2
þν0

π
2
−ν0

dσ
sin σ

¼ 2L log
�
tan
�
ν0
2
þ π

4

��
≈ 4πLTt0; ð4:3Þ

where in the final step we have used (3.11) to convert from
global time to Schwarzschild time. It then immediately
follows from (4.2) that complexity-as-volume grows lin-
early with Schwarzschild time in the JT model,

C ∼ ϕ0Tt; ð4:4Þ

and the rate of growth is proportional to the black hole
temperature dC=dt ∼ ST.
More generally, we can consider a spacelike geodesic

that connects left- and right-hand boundary points at
different global time, νL ≠ νR, as shown in the right-hand
panel of Fig. 4. A geodesic satisfying these boundary
conditions [up toOðε2Þ corrections] is given by the following
curve in the ðν; σÞ plane,

sin ðν − νþÞ ¼ sin ν− cos σ; ð4:5Þ

FIG. 4. Minimal slices forC ¼ V calculation. The left panel shows a “horizontal” slice with νL ¼ νR. On the right, a more general slice
with independent values of νL, νR.
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where ν� ¼ 1
2
ðνL � νRÞ. The geodesic meets the horizon

σ ¼ π
2
� ν at two intersection points at σ ¼ σ1 and σ ¼ σ2 as

indicated in Fig. 4. The locations of the intersection points
are easily obtained from the geodesic curve and are given
by the relations

tan σ1 ¼
ðcos νþ − sin ν−Þ

sin νþ
;

tan σ2 ¼ −
ðcos νþ þ sin ν−Þ

sin νþ
: ð4:6Þ

The geodesic length inside the horizon is then given by the
integral

Ls ¼ L
Z

σ2

σ1

dσ
sin σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
dν
dσ

�
2

s
; ð4:7Þ

with νðσÞ obtained from (4.5). This yields a relatively
simple closed form expression involving σ1 and σ2,

Ls¼
L
2

"
log

�
1−cosσ
1þcosσ

�

þ log

�
1þsin2ν−cosσþcosν−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2ν−cos2σ

p
1− sin2ν− cosσþcosν−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− sin2ν−cos2σ

p �#σ2
σ1

;

ð4:8Þ

which can in turn be expressed in terms of νL and νR
via (4.6).
As a side note, in the Schwarzian regime [3] this formula

simplifies when the usual Schwarzian variables νLðuÞ and
νRðuÞ are used, where u is the proper time along the
boundary trajectories:

Ls ¼ − log

�
ν0LðuÞν0RðuÞ
cos2ðνL−νR

2
Þ
�
þOðϵ2Þ: ð4:9Þ

In this expression, we have dropped the constant IR
regulator ∼ log ϵ2. We see explicitly that the volume is
invariant under SLð2; RÞ transformations. In fact, we could
have guessed the form of this expression based on SLð2; RÞ
symmetry and the fact that the length is only a function of ν
and its first derivative.
We are mainly interested in the late-time limit on one

boundary, i.e., νR → π
2
while keeping νL fixed. From Fig. 4

it is immediately apparent that σ2 → π in this limit, and the
geodesic length inside the horizon is dominated by a single
term,

L0 ¼ −
L
2
log ð1þ cos σ2Þ þ � � �

¼ −L logðcos νRÞ þ � � �
≈ 2πLTtR þ � � � : ð4:10Þ

The “…” refers to terms that remain finite as tR → ∞ while
keeping tL fixed. We again find that the complexity-as-
volume grows linearly with time at late times, but now at
half the rate we found previously when both tL and tR
progressed towards late times. We conclude that the CV
conjecture makes similar predictions for 1þ 1-dimensional
black holes as it does in higher dimensions, provided we
“by hand” multiply the geodesic length inside the horizon
by a factor of the black hole entropy.
One comment on the volume calculation is that the

volume of the wormhole is determined entirely by the
motion of the boundary, which in turn is governed by
the Schwarzian effective action. In any quantum mechani-
cal model such as the SYK model, with a spontaneously
and explicitly broken time-reparametrization symmetry, it
is expected that the Schwarzian action will dominate at
low energies due to the N=βJ enhancement. If the CV
conjecture is correct, any quantum mechanical model with
such a nearly conformal symmetry should exhibit a com-
plexity that matches the above calculations in the appro-
priate low-energy regime. In other words, we do not expect
that an improved understanding of the bulk dual of SYK
will change the calculation of the volume, as long as we are
not interested in exponentially late times or energies
outside of the low-energy regime βJ ≲ 1. The CV con-
jecture thus suggests that the complexity in a NCFT1 is
universal in the above sense. It would be interesting to
understand this better from the boundary perspective.

V. COMPLEXITY ≠ ACTION IN THE JT MODEL

In this section we carry out a test of CA duality by
evaluating the classical action of the JT model on a WDW
patch anchored on boundary points at ν ¼ νL and ν ¼ νR as
shown in Fig. 5. An immediate problem that arises is that
the boundary of the WDW patch includes segments of null
curves but the boundary terms in the action (3.1) involving
the extrinsic curvature are only well defined if the boundary
is spacelike or timelike. Another problem is that the
boundary of the WDW patch fails to be everywhere
smooth. The null segments that make up the boundary
meet at sharp corners and the corner points will contribute
to the bulk action even if they are of codimension two. Both
these issues, i.e., the degeneracy of extrinsic curvature
terms on null boundary segments and the corner contri-
butions, can be addressed by applying a limiting procedure
involving a family of timelike curves that approach the null
boundary curves as a parameter is varied. In the following,
we will adopt the prescription of Lehner et al. [16] for
calculating the action on a WDW patch, which can be
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applied directly to intersecting null boundary segments and
is known to be equivalent to the original results of [7,8] for
various black hole geometries.
The boundary of the WDW patch V in Fig. 5 consists of

four null segments that intersect pairwise at four corner
points labeled by i ∈ fL; T; R; Bg. According to the pre-
scription of [16], the contribution from a null boundary is
given by an integral whose value depends on how the
boundary curve is parametrized. The choice of boundary
parametrization also affects the value of the corner con-
tributions but when all the boundary and corner terms are
added up the total is independent of parametrization. In
particular, if we choose affine parametrization, so that each
boundary segment is a null geodesic connecting two corner
points, then the boundary integrals vanish and the action on
the WDW patch consists of bulk and corner contributions
only,

SWDW ¼ φ0

2

Z
V
d2x

ffiffiffiffiffiffi
−g

p
Rþ φ0

X
i

ai

þ 1

2

Z
V
d2x

ffiffiffiffiffiffi
−g

p
φ

�
Rþ 2

L2

�

þ
X
i

φiai; ð5:1Þ

where φi is the value of the dilaton field at the ith corner
point and ai ¼ � log j 1

2
ðk · k0Þj, with k and k0 future

directed tangent vectors of the null segments that intersect
at the corner point in question, subject to a certain
normalization condition at the JT boundary that ensures
the parametrization independence of the overall result. The
sign of the corner contribution ai associated to a given
corner point is determined as follows [16]: consider either
of the two null boundary segments that intersect at the
corner in question. The sign is positive if the bulk region V
lies to the future (past) of the segment and the corner point
is at the past (future) end of the segment. Otherwise the sign
is negative. This translates into a positive sign for the top
and bottom corners in Fig. 5 and a negative sign for the left

and right corners. This procedure gives an action that is
invariant under the SLð2; RÞ gauge symmetry which acts on
the boundaries by an AdS2 isometry [3]. These SLð2; RÞ
transformations can be viewed as coordinate transforma-
tions, and our procedure for regulating the action (or the
volume) is manifestly coordinate invariant. This is of
course a desirable feature of any regulator, since complex-
ity is a gauge-invariant quantity.
The bulk terms in the action on the WDW patch (5.1) are

easily evaluated. The curvature scalar is given by R ¼
−2=L2 everywhere so the bulk JT term is manifestly zero.
Therefore the only bulk contribution comes from the
topological term and the integral over the WDW patch
gives

Sbulk ¼ −φ0

Z
V
dνdσ

1

sin2 σ
¼ 2φ0ðlog ðsin σLÞ

þ log ðsin σRÞ − log ðsin σTÞ − log ðsin σBÞÞ:
ð5:2Þ

The corner terms are also easily evaluated once we settle
on a choice of parametrization for each null boundary
segment ðνðλÞ; σðλÞÞ. In general the parametrization can be
arbitrary but for reasons explained above we will assume
λ is an affine parameter. It is easy to check that a given
boundary segment is indeed a geodesic if the components
of its (future directed) tangent vector have the form

dν
dλ

¼ � dσ
dλ

¼ A sin2 σðλÞ; ð5:3Þ

for some normalization constant A > 0. Different values of
A correspond to the usual freedom to rescale the affine
parameter. The prescription of [16] is to impose a nor-
malization condition on the tangent vector involving its
inner product with the timelike Killing vector that generates
Schwarzschild time translations at the JT boundary,

�
dν
dλ

;
dσ
dλ

�
·

�
dν
dt

;
dσ
dt

�
¼ −c; ð5:4Þ

where c > 0 is a constant. The inner product is to be
evaluated at the corner point where the boundary segment
under consideration meets the JT boundary. It is important
that c is time independent, i.e., that the same value of c is
chosen when normalizing boundary tangent vectors for
WDW patches anchored at different boundary times, but c
is otherwise a free parameter. As it turns out, the formulas
below simplify for c ¼ L and we will choose this value
throughout. The normalization constant in (5.3) is then
given by

A ¼
�
L
dνL
dtL

�
−1

or A ¼
�
L
dνR
dtR

�
−1
; ð5:5Þ

FIG. 5. Wheeler-DeWitt patch for CA calculation.
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depending on whether the boundary segment in question
intersects the left- or right-hand boundary in Fig. 5, and the
corner factors ai in (5.1) reduce to

aL ¼ −2 log ðsin σLÞ þ 2 log

�
dνL
dtL

�
;

aR ¼ −2 log ðsin σRÞ þ 2 log

�
dνR
dtR

�
;

aT ¼ 2 log ðsin σTÞ − log

�
dνL
dtL

dνR
dtR

�
;

aB ¼ 2 log ðsin σBÞ − log

�
dνL
dtL

dνR
dtR

�
: ð5:6Þ

The total contribution to the action from the corners of the
WDW patch is

Scorners ¼ φ0

X
i

ai þ
X
i

φiai: ð5:7Þ

The first sum comes from the topological part of the action
(3.1) while the second comes from the dynamical part.
The sum over the topological corner terms evaluates to

φ0

X
i

ai ¼ 2φ0ð− logðsin σLÞ − logðsin σRÞ

þ logðsin σTÞ þ logðsin σBÞÞ; ð5:8Þ
which precisely cancels the topological bulk contribution
(5.2).
This leaves us with the very simple result that the sole

contribution to the WDW patch action comes from the sum
over nontopological corner terms in (5.7). Let us first
consider the left and right corners, which are located on the
JT boundary, where the dilaton takes the value φ ¼ φB
independent of the boundary time. It turns out that the
corner factors aL;R are also time independent at leading
order in ε and thus the overall contribution from the left-
and right-hand corners to the WDW action is constant in
time.4 To see this, we first use (3.11) to evaluate the
Jacobian factor between global time and Schwarzschild
time,

dνL;R
dtL;R

¼ 2πT cos νL;R; ð5:9Þ

and then use that sin σL;R ¼ ε cos νL;R on the JT boundary
to find

aL;R ¼ 2 log

�
4πT
ε

�
: ð5:10Þ

Finally, we consider the top and bottom corners.
Working to leading order in ε one finds that

σT ¼ π

2
−
νl
2
þ νR

2
; σB ¼ π

2
þ νl

2
−
νR
2
; ð5:11Þ

and then a short calculation gives

aT ¼ aB ¼ 2 logcos

�
νL−νR

2

�
− log

�
dνL
dtL

dνR
dtR

�
: ð5:12Þ

It follows that both the top and bottom corner factors grow
linearly with time,

aT;B ≈ 2πLTtL;R þ � � � ; ð5:13Þ

as tL;R → ∞. However, their combined contribution to the
WDW patch action cancels at late times due to the dilaton
prefactors in (5.7). To see this, consider the WDW patch
in Fig. 5 and let either tL or tR approach infinity; i.e., let
νL → π

2
or νR → π

2
. Either way, the top corner of the WDW

patch will approach a point on the inner horizon, where
ϕ ¼ −ϕH, while the bottom corner approaches a point on
the outer horizon, where ϕ ¼ þϕH. The leading linear
growth thus cancels between the top and bottom corners.
Bringing everything together we reach the conclusion

that the action on a WDW patch in Jackiw-Teitelboim
gravity does not grow linearly with time at late boundary
times but instead approaches a constant value. This is a
surprising result in view of the conjectured duality between
low-energy sectors of JT gravity and the SYKmodel. In the
latter, quantum complexity is expected to grow linearly for
a very long time. The JT model prediction for complexity is
also at odds with (2.7), which gives the rate of growth of
the action on a WDW patch of a Reissner-Nordström black
hole in 3þ 1-dimensional Einstein-Maxwell theory. The
discrepancy can be resolved but only after a careful
reexamination of how JT gravity is obtained from the
higher-dimensional theory, to which we now turn.

VI. JT GRAVITY FROM DIMENSIONAL
REDUCTION

Consider theReissner-Nordströmblack holes described in
Sec. II. In the near-extremal limit, the throat has approx-
imately constant width and is very long, and supports a low-
energy sector of radial excitations that is governed by an
effective two-dimensional theory. This effective theory is JT
gravity [17,18]. To derive the action for JT gravity from the
3þ 1-dimensional Einstein-Maxwell theory, Navarro-Salas
and Navarro integrated out the transverse directions [17].We
review that reduction here.5

4This is in line with the general expectation that the contri-
bution to the WDW patch action from outside the horizon does
not depend on the boundary time at which the WDW patch is
anchored.

5An alternative derivation of JT gravity via dimensional
reduction from a higher-dimensional Einstein-Maxwell-Dilaton
theory is presented in [19].
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The first step is to adopt an ansatz for a spherically
symmetric metric,

ds2 ¼ 1ffiffiffiffiffiffiffi
2Φ

p gαβdxαdxβ þ 2l2ΦdΩ2; ð6:1Þ

and insert it into the 3þ 1-dimensional action (2.1). Here
gαβðx0; x1Þ is a 1þ 1-dimensional metric and the dilaton
Φðx0; x1Þ is a scalar field that describes how the area of the
transverse two-sphere depends on time and radial position.
The resulting action is

S2d ¼
1

2

Z
d2x

ffiffiffiffiffiffi
−g

p �
ΦRþ 1

l2
ð2ΦÞ−1

2 −
l2

2
ð2ΦÞ32FαβFαβ

�

þ
Z

dy0
ffiffiffiffiffiffiffiffiffi
−γ00

p �
ΦK −

1

l
ð2ΦÞ14

�
; ð6:2Þ

with the boundary terms evaluated along a timelike
boundary with induced metric γ00. The two-dimensional
field strength Fαβ is inherited unchanged from the 3þ 1-
dimensional theory but the contraction in the F2 term in the
action is now with the two-dimensional metric. The Φ-
dependent prefactor in front of gαβ in (6.1) implements a
Weyl transformation on the two-dimensional metric that
eliminates derivative terms involving Φ from (6.2). Under
spherical reduction, the extrinsic curvature term in the
original 3þ 1-dimensional action (2.1) gives rise to the
boundary term containing the one-dimensional extrinsic
curvature in (6.2) and also a term involving the normal
derivative of the dilaton field on the boundary. This latter
term cancels against a total derivative term involving the
dilaton that comes from the 3þ 1-dimensional Ricci scalar.
The last term in (6.2) comes from the spherical reduction of
the K0 regulator term in the original action. Finally, if the
electromagnetic boundary term (2.2) is included in the
3þ 1-dimensional action, then the 1þ 1-dimensional
action will include its spherical reduction,

Sem
b;2d ¼ l2

Z
dy0

ffiffiffiffiffiffiffiffiffi
−γ00

p ð2ΦÞ32n̂αFαβAβ; ð6:3Þ

as an additional boundary term.
The field equations of the 1þ 1-dimensional theory are

0 ¼ ∇αðΦ3=2FαβÞ; ð6:4Þ

0 ¼ R −
1

l2
ð2ΦÞ−3=2 − 3

2
l2ð2ΦÞ1=2F2; ð6:5Þ

0 ¼ ∇α∇βΦ − gαβð∇2Φ −
1

2l2
ð2ΦÞ−1=2Þ

þ l2ð2ΦÞ3=2
�
FαγF

γ
β −

1

4
gαβF2

�
: ð6:6Þ

The Maxwell equation determines the electromagnetic field
strength in terms of the dilaton,

Fαβ ¼
Q
l2

ð2ΦÞ−3=2εαβ; ð6:7Þ

where εαβ is the two-dimensional Levi-Cività tensor,6 and
this can be used to eliminate Fαβ from the remaining field
equations,

0 ¼ R −
1

l2
ð2ΦÞ−3=2 þ 3Q2

l2
ð2ΦÞ−5=2; ð6:8Þ

0¼∇α∇βΦ− gαβ

�
∇2Φ−

1

2l2
ð2ΦÞ−1=2þ Q2

2l2
ð2ΦÞ−3=2

�
:

ð6:9Þ

We note that these equations are satisfied by the dimen-
sional reduction of the Reissner-Nordström solution, (2.3),

ds2 ¼ −

 ffiffiffiffiffi
2x
l

r
− 2lM þQ2

ffiffiffiffiffi
l
2x

r !
dt2

þ dx2� ffiffiffiffi
2x
l

q
− 2lM þQ2

ffiffiffiffi
l
2x

q � ; ð6:10Þ

and a linear dilaton field ΦðxÞ ¼ x=l. The results of
Appendix B on charged black hole thermodynamics can
be reproduced from the 1þ 1-dimensional Euclidean on-
shell action, evaluated on this solution. In particular, the
presence or absence of the Euclidean counterpart to the
spherically reduced electromagnetic boundary term (6.3)
determines whether the ensemble is at a fixed chemical
potential or fixed charge.
In the following, we will mainly be interested in near-

extremal black holes. More specifically, we want to study
the near horizon physics of a near-extremal black hole. For
this purpose, we expand the dilaton field around its value at
the horizon of an extremal black hole,

Φ ¼ Q2

2
þ φ; ð6:11Þ

and work order by order in φ=Q2. At leading order, the field
equations (6.8) and (6.9) reduce to

0 ¼ Rþ 2

Q3
; ð6:12Þ

0 ¼ ∇α∇βφ − gαβ

�
∇2φ −

1

Q3
φ

�
; ð6:13Þ

6With the convention ε01 ¼ þ ffiffiffiffiffiffi−gp
.

ADAM R. BROWN et al. PHYS. REV. D 99, 046016 (2019)

046016-10



which are precisely the field equations (3.2) and (3.3) of the
JT model with L≡Q3=2l. It immediately follows that in
the near-horizon region the 1þ 1-dimensional radial geom-
etry is that of AdS2, with a characteristic length scale L that
is parametrically large compared to the 3þ 1-dimensional
Planck length when Q ≫ 1. This is the long throat of the
near-extremal Reissner-Nordström black hole referred to
in Sec. II.
We arrived at the reduced set of field equations byusing the

1þ 1-dimensional Maxwell equations to eliminate Fαβ and
it is natural to ask if the Jackiw-Teitelboim action (3.1) can
similarly be obtained by integrating out the gauge field from
the spherically reduced action and considering the near-
horizon limit. The answer is yes but with a somewhat subtle
twist. Themost naive approach, where one simply inserts the
solution (6.7) for Fαβ into the full 1þ 1-dimensional action
(6.2), does not work. This naive procedure does lead to a
dilaton gravity theory but one where the term in the effective
potential for the dilaton that comes from the gauge field has
the wrong sign to reproduce the Jackiw-Teitelboim theory in
the near-horizon limit. The problem can be traced to the fact
that the gauge field we are integrating out is an electric field
and we are replacing its kinetic energy by an effective
potential for the dilaton. In fact, this kind of sign flip occurs
any time a dynamical variable carrying kinetic energy is
integrated out in favor of a potential energy term.
We illustrate this effect in Appendix A using the familiar

example of a nonrelativistic particle moving in a central
potential. The analysis of particle orbits is facilitated by
introducing an effective potential for radial motion with a
centrifugal term involving the conserved angular momen-
tum. This is usually done at the level of the equations of
motion but if one instead attempts to integrate out the
angular variable at the level of the Lagrangian before
deriving the radial equation then an analogous sign issue
arises. The remedy, both for motion in a central potential
and in the case at hand, is to include appropriate boundary
terms for the kinetic variable in the original action. Adding
a boundary term involving the gauge field does not change
its dynamical equations, i.e., the Maxwell equations are not
affected, but a boundary term will in general contribute to
the effective dilaton potential that results from integrating
out the gauge field.
As it turns out, we have already introduced a boundary

term (6.3) that has the desired effect. To see this, we can use
the divergence theorem to rewrite the boundary term as a
1þ 1-dimensional bulk term involving a total derivative,
apply the chain rule, and then use the Maxwell equa-
tion (6.4) to simplify the result:

Sem
b;2d ¼ l2

Z
d2x

ffiffiffiffiffiffi
−g

p ∇αðð2ΦÞ32FαβAβÞ

¼ l2

2

Z
d2x

ffiffiffiffiffiffi
−g

p ð2ΦÞ32FαβFαβ: ð6:14Þ

This has the same form as the electromagnetic bulk term in
the 1þ 1-dimensional action that we obtained from spheri-
cal reduction but has a coefficient in front that is twice as
large and of opposite sign. This is precisely what is needed
to reverse the sign of the electromagnetic contribution to
the dilaton effective potential when we insert the solution
(6.7) for the Maxwell field into the action. The resulting
bulk effective action is

Sbulk ¼
1

2

Z
d2x

ffiffiffiffiffiffi
−g

p �
ΦRþ 1

l2
ð2ΦÞ−1

2 −
Q2

l2
ð2ΦÞ−3

2

�
:

ð6:15Þ

To capture the near-horizon physics of a near-extremal
black hole we write the dilaton as in (6.11) and work order
by order in φ,

Sbulk ¼
Q2

4

Z
d2x

ffiffiffiffiffiffi
−g

p
Rþ1

2

Z
d2x

ffiffiffiffiffiffi
−g

p
φ

�
Rþ 2

L2

�
þ�� � ;

ð6:16Þ

This agrees precisely with the bulk terms in the Jackiw-
Teitelboim action (3.1) if we make the identification

φ0 ¼ Q2

2
. The … denotes terms that are suppressed in the

near-horizon region where φ ≪ Q2. Further away from the
horizon the additional terms are no longer small and this
simple truncation does not apply. We can ensure that we
stay inside the region of interest by introducing a boundary
inside the AdS2 throat region, where (6.16) remains valid,
and supplementing the bulk terms by appropriate boundary
terms. The boundary terms in (6.2) are evaluated in the
asymptotic region far outside the AdS2 throat so we have to
look elsewhere for a good definition of the boundary terms
inside the throat. A Gibbons-Hawking boundary term
involving the extrinsic curvature of the boundary curve
is needed in order to have a well-posed variational problem
for the 1þ 1-dimensional metric. The further requirement
that the Euclidean on-shell action give a finite free energy is
satisfied by including an additional boundary term. The
final form of the 1þ 1-dimensional action of the near-
horizon dilaton gravity theory, including the boundary
terms, is then precisely the JT action (3.1). The boundary
is placed along a curve of constant dilaton, φj∂M ¼ φB. The
requirement that the boundary be inside the near-extremal
AdS2 × S2 region translates into φB ≪ Q2.

VII. COMPLEXITY = ACTION RESTORED
IN THE JT MODEL

We now return to our test of CA duality. In Sec. V we
evaluated the JT action on a 1þ 1-dimensional WDW
patch and found that it does not exhibit the expected linear
growth at late times but instead approaches a constant
value. This discrepancy can be traced to the procedure by
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which the JT model is obtained from higher-dimensional
Einstein-Maxwell theory via dimensional reduction. The
particular step we have in mind is where an electromagnetic
boundary term had to be introduced in order to get the
correct sign for the dilaton potential when integrating out
the 1þ 1-dimensional Maxwell field. The boundary term
does not affect the field equations of the theory but it does
change the value of the action itself and a choice has to be
made whether to include it when calculating the action of
a WDW patch. Our calculation in Sec. V is based on the JT
action (3.1) and thus includes the boundary term in
question. The calculation can easily be repeated without
the boundary term included. Rather than starting from
scratch, we can simply evaluate the contribution from the
electromagnetic boundary term on the same WDW patch
and subtract it from our previous answer for the JT model.
The most convenient way to proceed is to work with the
equivalent bulk form (6.14) and evaluate it on shell using
the AdS2 metric (3.4) with L2 ¼ Q3l2 and the identifica-
tion φ0 ¼ Q2=2,

SWDW ¼ SJT
WDW þQ2

l2

Z
V
d2x

ffiffiffiffiffiffi
−g

p ð2ΦÞ−3=2

¼ −4φ0 log ðcos νLÞ − 4φ0 log ðcos νRÞ þ � � � :
ð7:1Þ

The “…” denotes subleading terms that do not grow in the
late-time limit. The holographic complexity thus grows
linearly with time at late times when the electromagnetic
boundary term is omitted,

dSWDW

dtL;R

����
tL;R→∞

¼ 8πφ0T

¼ 4ST þOðT2Þ: ð7:2Þ
Furthermore, the late-time growth rate matches the known
result (2.7) for a near-extremal Reissner-Nordström
black hole in 3þ 1 dimensions, to leading order at low
temperature.
Adding a total derivative to an action does not change

the equations of motion but can still affect the physics.
Boundary terms can, for instance, implement a change of
thermodynamic ensemble when evaluating the free energy
via the Euclidean on-shell action. We have demonstrated
in this paper that the complexity is another physical
quantity affected by boundary terms. The action of the
JT theory, as it is usually written, descends from a higher-
dimensional Einstein-Maxwell theory that inadvertently
includes a boundary term that implies impermeable rather
than permeable boundary conditions. For many purposes
this is not a problem, but for calculating holographic
complexity it is: we find that the CA conjecture is not
consistent with the standard JT action. However, when we
restore the two-dimensional Maxwell field and remove
the spurious boundary term then we get the correct answer

for charged black holes and, it seems reasonable to
believe, SYK.
Fixing the electric field is tantamount to introducing an

obstruction to the flow of charge, whereas fixing the
vector potential (equivalent to fixing the chemical poten-
tial) makes the boundary permeable. It is unphysical to
impose boundary conditions on a Wheeler-DeWitt patch
that inhibit the flow of charge across what is essentially
an arbitrary internal boundary. As we have seen with the
JT model, imposing an unphysical internal boundary
condition gives an unphysical result for the complexity
growth.

VIII. CONCLUSION

New physics often fixes ambiguities in the action. What
was once a redundancy of the description becomes physi-
cally meaningful. For example, in nongravitational physics
adding a constant to the Lagrangian density makes no
difference as the absolute zero of energy is unobservable.
But all energy gravitates, and so in gravitational physics
additive constants matter. Similarly, in classical physics
the action is ambiguous with respect to multiplication by
a constant. In quantum mechanics, on the other hand,
multiplying the action by a constant changes ℏ and so
changes the importance of quantum effects—multiplicative
constants matter. As a third example, quantum gravity fixes
topological terms in the gravitational action, because the
path integral includes integrals over different topologies.
In this paper we have seen that holographic complexity

fixes yet another ambiguity in the action—in holographic
complexity even boundary terms that lie at unobserved
internal boundaries become physically meaningful. Indeed,
we saw that it was just such an internal boundary term that
explained the discrepancy between the WDW action of
JT gravity and the corresponding predictions of highly
charged RN black holes. In integrating out the gauge field
from RN black holes to arrive at the JT theory, an internal
boundary term was inadvertently introduced, which is
why JT gave the wrong answer for holographic complexity
growth. For most purposes (e.g., calculating boundary
correlation functions), this extra term in the action does
not matter—for holographic complexity, it does.
This does raise the problem of how, given an action, we

are to know whether it contains all the d.o.f. necessary to
describe holographic complexity. At this stage, we do not
really know except to say that the Einstein-Maxwell
Lagrangian produces plausible answers. Since these are
the only massless d.o.f. in the theory there does not seem to
be much room to add anything else.
A related open question is what principles determine the

calculation of the WDW action. Does the ambiguity in the
choice of boundary terms have to be fixed, or is it related
to some ambiguity in the complexity? Said differently, does
the WDW action with the “wrong” choice of boundary
terms have any complexity interpretation?
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In addition to the SYK theory, there are other known
holographic descriptions of charged RN black holes. A
particularly well-known example is the D1-D5 system, and
its description in terms of long multiply wound strings. It
would be interesting to investigate the connection between
such string theoretic constructions and the SYK model. In
particular, are there approximations to the D1-D5 system
whose holographic dual could be described by SYK? The
multiply-wound nature of the D1-D5 long string allows the
string to self-intersect and leads to an effective all-to-all
coupling amongst the different windings of the string. This
is known to be the origin of the fast scrambling nature of
such systems and is reminiscent of the SYK model.
To summarize, we calculated the late-time rate of change

of action of the WDW patch of JT gravity. We found it to be
zero. The CA conjecture would then predict that the rate of
complexification of the holographic dual should be zero,
but this makes no sense. Instead, we traced the discrepancy
to the boundaries of the WDW patch, and it was there that
we found the missing gates.
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APPENDIX A: NOT ALL ACTIONS ARE EQUAL:
THE r− θ MODEL

The sign change that we saw in the effective action for
the dilaton in Sec. VI is familiar. As a particularly simple
example, consider a particle in a central potential,

L ¼ _r2

2
þ r2

_θ2

2
− VðrÞ: ðA1Þ

The angular momentum l ¼ r2 _θ is conserved and the
Lagrangian L can be expressed as

L ¼ _r2

2
þ l2

2r2
− VðrÞ: ðA2Þ

This equation is a numerical equality but it does not mean
that we can use (A2) to get the equation of motion by

thinking of l2

2r2 as a potential energy. It would incorrectly
give the centrifugal force as attractive. To get the right
equation you need to flip the sign of the l2

2r2 term,

L0 ¼ _r2

2
−

l2

2r2
− VðrÞ: ðA3Þ

With the flipped sign, the Euler-Lagrange equation for r
yields the correct orbital motion but the actual numerical
value of the action from the original Lagrangian is
correctly given by the “wrong-sign” Lagrangian in (A2)
and not by (A3).
This sort of thing always happens when the kinetic

energy of a d.o.f. that you integrate out becomes an
effective potential energy [21]. When deriving the JT
model it happens because electric field energy is kinetic
energy,  E2 ¼ ð∂t

 AÞ2, which becomes an effective dilaton
potential when the electric field is integrated out.
In Sec. VI we saw that the required sign-flip in the

dilaton potential can be achieved by adding a suitable
boundary term to the action. The same is true in the r − θ
model. The difference between the actions coming from
(A2) and (A3) is

I − I0 ¼
Z

dt
l2

r2
; ðA4Þ

which can be written

I − I0 ¼
Z

dtl_θ: ðA5Þ

Using the conservation of l this gives

I − I0 ¼ l
Z

dt_θ ¼ lθjfi ; ðA6Þ

which can be expressed as a boundary term,

IB ¼ r2θ _θjfi : ðA7Þ
Our calculations involving the JT model show that the

complexity-as-action is sensitive to whether the action is
expressed in terms of kinetic energy or potential energy.
In some sense, kinetic energy computes whereas potential
energy does not. When you integrate out d.o.f. you may
lose track of potential vs kinetic energy, and so lose track of
the true rate of computation in the system.

APPENDIX B: CHARGED BLACK HOLE
THERMODYNAMICS

The free energy of a static black hole may be obtained
by continuing to Euclidean signature and evaluating the
Euclidean on-shell action [13]. Which free energy this
gives is determined by the boundary terms in the action.
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Let us apply this method to the Reissner-Nordström
solution (2.3).

In the absence of the electromagnetic boundary term
(2.2) one finds

SE ¼ βFjμ ¼ −Sþ βM − βμQ; ðB1Þ

where S ¼ πr2þ=l2 is the Bekenstein-Hawking entropy and
μ ¼ Q=rþ is the black hole chemical potential. This is the
free energy for an ensemble where the chemical potential μ
is kept fixed. On the other hand, when the electromagnetic
boundary term is included, a cancellation occurs and the
free energy reduces to that of a fixed charge ensemble,

βFjQ ¼ −Sþ βM: ðB2Þ

The free energy of a two-dimensional JT black hole (3.12)
is related to that of a near-extremal Reissner-Nordström
black hole at fixed charge rather than at fixed chemical
potential. To facilitate the comparison it is useful to express
the Reissner-Nordström black hole mass M and entropy S
in terms of temperature T and (fixed) charge Q,

M ¼ M0 þ 2π2Q3lT2 þ � � � ;
S ¼ S0 þ 4π2Q3lT þ � � � ; ðB3Þ

where M0 ¼ Q=l and S0 ¼ πQ2 are the mass and entropy
of an extremal black hole of charge Q and the “…” in each
equation refers to higher order terms in T.

APPENDIX C: MAXWELL BOUNDARY TERMS
IN 3 + 1 DIMENSIONS

In this paper, we have seen the need to be careful about
creating 1þ 1-dimensional Maxwell boundary terms when
integrating down from 3þ 1 dimensions. However, we
were able to get away without considering Maxwell
boundary terms in the original 3þ 1-dimensional action,
Eq. (2.1). This is because for electric RN solutions, the F2

bulk action on its own requires no further boundary terms to
implement our desired ensemble. However, even in 3þ 1
dimensions, there is a time when we need to carefully
consider Maxwell boundary terms, and that is when the
black holes are not electric but magnetic.
There is, on the face of it, a bit of a puzzle about

how magnetic black holes fit into the complexity ¼
action conjecture. On the one hand, one might have
thought that because of electric-magnetic duality, magneti-
cally charged black holes should complexify at the same
rate as their electrically charged duals. On the other hand,
since the bulk Maxwell Lagrangian changes sign under
 E ↔  B,

FμνFμν ∼  B2 −  E2; ðC1Þ

it looks like electric and magnetic black holes cannot have
the same rate of action growth.
The resolution is in the boundary condition for electro-

magnetism [8]. The form of the Einstein-Maxwell action
given in Eq. (2.1), with an F2 bulk term and no further
boundary term, is appropriate to an ensemble that keeps Aμ

fixed on the boundary. To keep the dual vector potential Ãμ

fixed at the boundary, as would be the ensemble appropriate
for a magnetically charged black hole, we should include a
boundary term. Adding the appropriate boundary term
from Braden et al. [22] gives the rate of action growth
for a RN black hole of magnetic charge P as

dS
dðtL þ rRÞ

¼ P2

r−
−
P2

rþ
: ðC2Þ

Comparing to Eq. (2.7), we see that the action growth of
magnetic and electric black holes are related by a Q ↔ P
symmetry. Even though the value of the bulk action
apparently breaks electric-magnetic duality, the duality is
restored by boundary terms. This is analogous to the
situation encountered in [23,24].
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