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ABSTRACT 
In this paper, a control design for a flexible link co-robot 

with safety constraints is proposed. The safety constraints are 
converted to the constraints on the tip position and velocity. To 
handle this constrained control problem, a barrier Lyapunov 
function (BLF) is employed in the control design. The derivative 
of the logarithmic BLF is more complicated compared with the 
derivative of a quadratic Lyapunov function, which makes the 
problem of “explosion of terms” more serious. Thus, the 
dynamic surface control is used to deal with the problem. 
Furthermore, an extended state observer is adopted to estimate 
and compensate the uncertainty and disturbance in the system. 
The stability analysis via the singular perturbation theory shows 
the local practical exponential stability of the system. Simulation 
results indicate that the control performance is guaranteed 
without violation of the constraints. 

1 INTRODUCTION 
In the past decade, the attention paid to corobots [1] increases 

rapidly. Unlike the conventional robots which usually have 
independent workspace isolated from human interactions, the 
corobots usually share a workspace with human workers. Thus, 
safety becomes an important concern for corobots [2].  

To address the safety concerns, mechanical flexibility is often 
introduced in the design of corobots, such as the flexible joint 
robots [3] and flexible link robots [4] [5]. The flexibility enables 
the low-inertia design of the arms’ link and decouples the 
actuators’ rotor inertia from the links’ inertia, which increases 
the safety of physical human-robot interaction (pHRI) [2]. 
However, the flexibility makes the dynamics of the robots more 
complicated than the conventional rigid robots. Involving with 
the safety requirements, the control designs for the flexible 
corobots can be challenging. 

In this paper, we will discuss the control design for flexible 
link corobots whose main goals can be summarized as follows. 

1) To make the tip motion tracks a desired trajectory.
2) To keep safety during the motion (limits on position and

velocity). 
In recent years, several techniques for motion control of 

flexible link robots have been proposed, such as the boundary 
control [6] [7], PD control [8], feedback linearization [9], 
backstepping [10], neural networks [11], adaptive control [12]. 
These approaches mentioned above mainly aim to the motion 
control of the flexible link robots (goal 1) without explicit 
consideration of the safety requirements (goal 2). To achieve the 
performance on motion control and safety simultaneously, we 
propose a barrier Lyapunov function (BLF) based control design 
for the flexible link corobots here. 

In this design, we treat the safety requirements as constraints 
on the system. Thus, the control problem of the flexible link 
corobots is a constrained control problem. Significant efforts 
have been made to address the constrained control problems for 
electromechanical systems. Some representative methods are 
predictive control [13] and reference governors [14]. Besides 
these methods, the barrier Lyapunov function (BLF) has been 
proposed to handle constraints in strict-feedback systems [15]. 
Combined with the backstepping method, the design procedure 
based on BLF can be systematic and intuitively. However, 
besides those advantages, the backstepping method suffers from 
the so-called “explosion of terms” issue [16]. The BLF usually 
has a complex form, compared with the quadratic Lyapunov 
function (QLF). This makes the derivatives of the virtual controls 
more complicated than the QLF design. This problem is more 
serious for high-order systems because of the repeated 
differentiations of the virtual control. Another problem is that the 
backstepping design depends on the information of the model. In 
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the real situation, the information from the plant is always 
limited and uncertainties because unknown dynamics and 
inaccurate parameters exist. The neglect of uncertainty in the 
design procedure may lead to a lack of robustness. 

To overcome the two problems mentioned above, the 
dynamic surface control and the extended state observer are 
employed to improve the backstepping based controller.  

The dynamic surface control (DSC) [16] technique is a 
practical way to deal with the problem of “explosion of terms”. 
To avoid the derivations of the virtual control, the DSC design 
makes the virtual control pass through a first-order filter. For this 
sake, we combine the DSC technique with the BLF and 
backstepping design to prevent the “explosion of terms”. 

The extended state observer (ESO) in [17] is widely used to 
estimate and compensate for the system uncertainty and 
disturbance.  The idea of the ESO is to extend the disturbance 
and uncertainty to a new system state and then design an 
observer for the extended system. The ESO estimates the 
generalized disturbance between the plant and the nominal 
model by observing the extended state. In this process, it does 
not need much information from the model to design the ESO 
which makes the ESO easy to implement. The modeling of the 
flexible link robots usually involves uncertainties coming from 
the reduction of the model and inaccurate parameters. Besides 
the uncertainties, disturbances like friction and unknown 
payload are common in robotic systems. Therefore, it is 
necessary to have a specific design to improve the robustness of 
the system. In this paper, we propose to use a reduced-order ESO 
to deal with the uncertainty and disturbance in the flexible link 
robot model. 

In this paper, we integrate the DSC and ESO with the BLF 
based backstepping and propose a novel control design for the 
flexible link corobots. With this novel controller, both the 
performance on motion control and safety are ensured 
simultaneously. 

The rest of this paper is organized as follows. In Section 2, 
preliminaries and the model of flexible link robots are 
introduced. The proposed control design including BLF design, 
ESO design and DSC design, are described in Section 3. The 
stability analysis of the closed-loop system is given in Section 4, 
where it is shown that the local practical exponential stability of 
the closed-loop system. The simulation results are presented in 
Section 5. The conclusion is given in Section 6. 

2 PRELIMINARIES AND PROBLEM FORMULATION 
2.1 MATHEMATICAL MODEL OF FLEXIBLE LINK 
ROBOT 

For flexible link robots, a partial differential equation (PDE) 
by the Euler-Bernoulli beam theory is usually employed to 
describe their behaviors. Such models usually involve infinite 
vibration modes of the flexible link robots, and the control design 
problem based on these models are usually infinite dimension 
problems. However, with the increasing of the frequency of these 
modes, the amplitudes of these modes become insignificant. This 
feature enables the reduction of the model by ignoring the high-
order modes of vibration. A popular way to reduce the model is 

using the lumped parameters model. In this paper, a lumped 
linear model of the flexible link robots is used as the one in [8] 
and [11]. Fig. 1 illustrates the lumping process.  
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Figure 1. The lumped parameters model. 

The distributed mass of the link is lumped to an equivalent 
tip mass. The flexibility is lumped to a spring with equivalent 
stiffness. The generalized coordinates are chosen as the motor 
hub angle   and the arc tip position p . The arc position can be 

denoted by tp Ly   , in which ty  is the tip deflection, L  is 
the length of the link. The model of the flexible link robot can be 
described by the following ordinary differential equations.  

 ,A B Fd  x x   (1) 
where T,[ ,, ]p p  x  are the state variables, p  and    are the 
tip position and the motor hub angle, respectively. d  represents 
disturbances and modeling uncertainties, i.e., generalized 
disturbance. The matrices A , B and F  are defined as follows:    
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  (2) 

in which, k  is the equivalent stiffness, t eM M M   , tM  and 

eM  are the mass of the payload and the equivalent mass of the 
link, respectively, hI  is the inertia of the motor hub,   is the 
input torque and d is the generalized disturbance. Note that the 
matrices A  and B  are in strict-feedback form. This property will 
be used in the following design procedures. And we have a 
standard assumption for the generalized disturbance d . 

Assumption 1 [18]: The generalized disturbance is bounded, 
continuous and differentiable. 

2.2 SAFETY CONSTRAINTS 
 Safety is always the most critical issue in the physical human-

robot interaction. Several types of safety criteria are defined in 
literature, for instance, the Head Injury Criterion (HIC) and the 
maximum impact force [19]. The analytical expressions of such 
criteria are usually multivariable functions involving the mass of 
the robot RM  , mass of the payload PM  , mass of human parts 
(where the impact happens) HM , the stiffness of the robot k  and 
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the velocity of the robot Rv  . The analytical expressions of HIC 
[2] and maximum impact force [20] are given below. 
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  (3) 

Among the variables above, the mass and the stiffness are usually 
considered as constants for a specific task. Therefore, the 
functions of safety criteria can be simplified to single variable 
functions that only relate with the velocity of the robot. In this 
design, we use velocity constraint as a general safety criterion 
instead of a specific safety criterion like the HIC and impact force. 
Besides the velocity constraints, the position constraints such as 
limited workspace and obstacles are common as well. In this 
paper, we consider the safety constraints on position and velocity 
simultaneously. 

2.3 LEMMAS AND DEFINITIONS 
To facilitate the analysis, we introduce the following 

definition and lemma. 
Definition 1 [15]: A BLF is a scalar function ( )V x  , defined 

with respect to the system ( )x f x  on an open region   
containing the origin, that is continuous, positive definite, has 
continuous first-order partial derivatives at every point of , has 
the property ( )V x    as x   approaches the boundary of , 
and satisfies ( ( )) , 0x t tV b    along the solution of ( )x x t   
for (0)x    and some positive constant b . 

Lemma 1: For any positive constants ak  and r  satisfy
0ak r  , 0a a   , such that [ , ]x r r   , the following 

inequality holds.    

 
2

2 2
2 2

1 log .
2

a

ak
k

x
x

ax a 


  (4) 

Proof:  Let  
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It is obvious that (0) 0f  . Furthermore, we have 
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and 
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Thus, we can obtain 

 2 21 ( ), ( , ).
2 a a axk f x x k k     (8) 

For any given r  satisfies 0ak r  , we have 
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Similarly, we can obtain 

 2 2 21 ( ) ( ), ( , ).
2 ak f x x rr x r     (10) 

Let 21
2 aa k  and 2 21 ( )

2 aa k r . From (8) and (10), we know 

the inequality (4) holds. ∎ 

3 CONTROL DESIGN 
3.1 ESO DESIGN 

To estimate and compensate for the disturbance, we extend 
the disturbance d  to a new system state 5x . For convenience, we 
denote the reduced-order extended system as 
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where ( )h t  is the derivative of d and it is locally Lipschitz. For 
system (11), a linear type of the ESO (LESO) [21] is designed to 
observe the generalized disturbance. 
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where 0  is the bandwidth of the observer. The estimation error 
can be obtained from (11) and (12). 
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Let 3
0/ i

i ie     with 3,4,5i   and 3
T

4 5[ , , ]  ε .  Rewrite 
(13) into the matrix form 
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We will use this result in the stability analysis.  
By Theorem 2 in [21], the estimation error system (14) is 

stable and the estimation error of the LESO can be made to be 
arbitrarily small by increasing the bandwidth 0 . The 
generalized disturbance can be estimated by 5x̂ .  

3.2 STEP 1: BARRIER LYAPUNOV FUNCTION BASED 
DESIGN 
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For a tracking problem, we hope the tip position can track the 
desired trajectory dx  and the tip velocity can track the desired 
trajectory of velocity dx . Meanwhile, the constraints on position 
and velocity are not violated. i.e., 1 1 2 2| | ,| |c cx k x k  , where 1ck  
and 2ck  are positive constants. 

The following standard assumption is exploited for the 
control design. 

Assumption 2: 4( )dx t C  and ( )| ( ) |d i
ix t M  with 0iM   

and 0,1,2,3,4i  . 
The model (1) of the flexible link robots is a strict-feedback 

system. Therefore, we can propose a backstepping-based control 
design. Define the tracking error as 1i i iz x     for 1,2,3,4i   
and  0 ( ) ( )dt x t  , where 1( )i t 

 are virtual controls. Let 
T

1 2 3 4[ , , , ]z z z zz . 
Considering the constraint on position, define the barrier 

Lyapunov function candidate (BLFC) as 
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Then the Lie derivative of 1V  is 
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where 1 0k   is a constant. Similarly, to meet the velocity 
constraint, we define the BLFC as 
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Because 2 2 1z x   ,  we choose  
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then we can obtain the derivative of 2V  as   
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To cancel the nonlinear term in (19), we choose 2  as 
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in which 2 0k   is a constant. From (22) and (23), the derivative 
of 2V  can be obtained. 
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For 3z  and 4z , choose the quadratic Lyapunov function 
candidate (QLFC) as 
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Repeat the recursive design procedures, we can choose the 
virtual control 3  and the input u  as follows 
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where 3k  and 4k  are positive constants. Then the derivatives of 

3V  and 4V  are as follows 
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Combining (1), (18), (23) and (26), the dynamics of the tracking 
errors can be obtained. 
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The stability of the error dynamics (28) is given by the following 
theorem. 

Theorem 1: For system (1) with Assumption 2, if the control 
input is determined by (18), (23) and (26), then 

0, ,   a br r k r k    , such that for any initial condition 
4

0 1 2: :(0 | |) { | }, |z r z r  z Z z  , the following properties 
hold. 

i. The origin of system (28) is locally exponentially stable 
on 0Z  . 

ii. The constraints on position and velocity are never 
violated. i.e., 4

1 1 2 2:| |( ) ,|{ | }c cx xt k k   x x .  

iii. The tracking errors 1z  and 2z  are constrained with 

1| | az k  and 2| | bz k . 

Proof: (i) Define the Lyapunov function candidate as  

 
4

1i
iV V



  . (29) 

The derivative of V  can be calculated from (19), (24) and (27). 
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where ,  min{ 4}1,2,3,min i ik k  . From Lemma 1, 

, , , 0a a b b  , such that 1| |z r  , 2| |z r  the following 
inequalities hold. 
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Selecting min{ },  , ,1/ 2 , ,1/ 2max{ }min maxa b a ba a  , then we 
have the following inequality.  

 2min
2 2

2|| || ( ) || ||maxVa a z z z  . (32) 
From (30) and (32), the origin of the system (28) is locally 
exponentially stable by Theorem 4.10 in [22]. 

(ii) From 0V  , it can be shown that )( () 0V t V . From 
Lemma 1 in [15], for 0(0)z Z , infers 1( )| | az t k , 2 ( )| | bz t k , 

0t  . Since 1 1( ) ( ) ( )dx t tt z x  ,  2 2 1( ) ( ) ( )t z tx t  , and 

0( )dx t M , 1( )d tx M , we know 1 0 1| ( ) | a ckt M kx    , and 
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1
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2
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3 3
a
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t k M kx    . i.e., all constraints are never 

violated.  ∎  
We already have the estimation of the generalized 

disturbance, i.e., 5x̂ . To compensate for the disturbance, the 
input u  is designed as  

 3 1 4 3 4 4 3 3 5ˆ( ) / .x a x k z zu a x b       (33) 
Then the error dynamics (28) is rewritten as 
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The closed-loop system (34) and (14) can be denoted as 
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in which, 01/eso   is a small parameter. To analyze the 
stability of (35), we refer to the method in [23].  We have the 
following theorem for the stability on the origin of system (35). 

Theorem 2: For system (35), there exists a constant * 0   
such that *

eso   , the origin of system (35) is locally 
exponentially stable. 

Proof: The local exponential stability of the reduced system 
(28) infers the stability of  (35). The detailed proof is omitted due 
to the limited space. The reader can refer to the proof of Theorem 
3.4 in [23].   

3.3 STEP 2: DYNAMIC SURFACE CONTROL DESIGN 
It is obvious that the control law (18), (23) and (26) involves 

the calculation of the derivatives of virtual control inputs i . 
Due to the using of logarithmic BLFC, the “explosion of terms” 
problem in this design is more serious than the one in traditional 

integrator backstepping control using the QLFC. To deal with 
this problem, we apply the dynamic surface control technique to 
the BLF based design. 

Based on the idea of DSC [16], a set of first-order filters are 
applied to the virtual controls. Different from the traditional 
DSC, we also apply a filter to the input u  to make the input 
smooth. Redefine the tracking errors as 

 1

0

,  1, 2,3,4,
( ) ( ).

i i i

d

z x i
t x t
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

 
  (36) 

The DSC control law can be denoted by  
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  (37) 

where the first-order filters are 
 ( ),  1,2,3,4,i    λ α λ   (38) 

in which T
1 2 3 4, , ,[ ]   λ , 1 2 3 4, ,[ ],diag       and 

0i   with 1,2,3,4i  , 2
T

41 3, , ,[ ]   α , (0,1)  .  From 
(36) and (37), the dynamics of the tracking error can be obtained 
as 
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  (39) 

where i i i     with 1,2,3,4i  . The analysis of  the closed-
loop system (39) and (38) can be denoted as a standard singular 
perturbation problem 

 2 ( , )

(
.

,

, , )

f

g



 









z z λ

λ z λ
  (40) 

The stability analysis of system (38) and (39) is in the next 
section. 

4 STABILITY ANALYSIS 
Inspired by [24], the singular perturbation theory is applied to 

the stability analysis. Consider the singular perturbation problem 
(40). From the expression of (38), ( , ,0) 0g z λ  has a unique 
isolated root ( ),  ( ) λ h z h z α . Substituting ( )λ h z  into

2 ( )f  , the reduced system is denoted as 
 2 ( , ( ),0).fz z h z   (41) 

Note that the reduced system is same as (35). We define a new 
state variable (: )y λ h z . The boundary-layer system can be 
derived from (38) 
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 ( , ( ),0) .g    y z y h z y   (42) 
in which d / d y y  and /t   is the stretched time scale. 
Let ( )tz  and ( )y  be the solutions of (41) and (42), 
respectively. The following definitions are introduced to facilitate 
the analysis. 

Definition 2 [22]: The signal ( , )t z  is said to be of the order
 , denoted as ( , ) ( )t   z , if there exist constant 0,k    
such that 0|| |( |, ) ,  (0, )t k     z .  

Definition 3 [25]: The system ( , )f z z  has practical 
exponential stability as 0   if for any given constant     
there exist 0 0, ,z    such that 

 
0 0

( ) || (0) || exp( ) ,
0,  (0, ),  (0

| |
.)

| |t t
t

 

 

  

     

z z
z Z

  (43) 

The theorem of the stability of (40) is given in here. 
Theorem 3: For the system (40) with Assumption 1 and 

Assumption 2, if the control input is given from (37), then for any 
given control gain ik   with 1,2,3,4i  , there exists a small 
constant ** (0,1)   such that the closed-loop system (40) is 
locally practically exponentially stable, **(0, )   , 

0(0) z Z . Meanwhile, the constraints in Theorem 1 are never 
violated. 

Proof: Let 0cz  Z  and 4
cy   be compact sets of z  

and y , respectively. To apply Theorem 11.2 in [22], we need to 
show that all the assumptions for the theorem are satisfied. 

1.  From (37), (38) and Assumption 2, 2 ( )f  , ( )g   and their 
partial derivatives with respect to ( , , )z λ  are bounded and 
continuous on compact sets 4

cz cy   , ( )h z  and 
( , ,0) /[ ]g z λ λ  have bounded first partial derivatives with 

respect to their arguments, and 2 ( , ( ), ) /[ ]0f z h z z  is Lipschitz 
in z  and uniformly in t .  

2.  By Theorem 2, the origin of the reduced system (41) is 
exponentially stable. Als, there exists a Lyapunov function ( )V z  
that satisfies 21( ) ( ) ( )VW W z z z  and 3( ) ( )V W z z , where 

( )iW z  with 1,2,3i   are positive definite functions on 4 . 

3. Because (42) is independent of ( , )t z , it infers that the origin 
of the boundary-layer system (42) is an exponentially stable 
equilibrium, uniformly in ( , )t z . Let 0cy cy   be the region of 
attraction of (42). 

So far, all conditions for applying Theorem 11.2 in [22] are 
satisfied. Let ,c r   be constants satisfying || || 2min ( )rc W z z , 

20 , (0,1){ ( ) }cz cW     z  be the attraction region of z . 
Then for each compact set 0cz , there is a positive constant ***  
such that for all 0t  , 0czz , 0cyy  and ***0     , the  

singular perturbation problem has a unique solution 
( , ),  ( , )t t z λ  on [0, )t   and  
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t t O
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z z
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  (44) 

holds uniformly for  [0, )t  . Furthermore, for any given 0at 

, there exists a ** ***   such that 
 ( , ) ( ( )) ( )t t O  λ h z   (45) 

holds uniformly for [ , )at t  , **(0, )  . As a further matter, 
since ( )tz  and ( )y  are the solutions of exponentially stable 
system (41) and (42) with [0, )t  , respectively. It infers that 
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From (44), (45) and (46), we can obtain 

 0,

0,

lim

lim

|| ( , ) || 0

|| ( , ) ( ) || 0
t

t

t

t u
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





 

 



 

z

λ α
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which indicates the local practical exponential stability of the 
system (40) by the Definition 2.    ∎ 

5 SIMULATIONS 
Numerical simulation results are presented in this section. The 

controller is tested with a planar single-link flexible manipulator 
model developed based on the finite element analysis (FEA). The 
parameters of the robot are 0.1 kg/m  ,  0.4 mL  , 

4 24 10  kghI m   , 0.1 kgtM   and 29.62N mEI    , in 
which   is the linear density of the link. The corresponding 
parameters for the nominal model (1) are 

450.94,  0.0411ek M  . In the simulation, the desired position 
trajectory is a “smooth” step signal. The step signal passes 
through a fourth-order system to satisfy the Assumption 2. The 
transfer function of the fourth-order system is as follows 

 41
( ,) 1

( )T
s

s
G


   (48) 

where the time constant 0.05T  .   
The desired trajectory of velocity can be obtained by a 

differentiator. Two controllers are designed to demonstrate the 
performance of the proposed design. (1) The quadratic Lyapunov 
function based DSC control (QLF). (2) The barrier Lyapunov 
function based DSC control with ESO (BLFESO). The 
constraints for position and velocity are 1 1.05mx   and

2 4.705m/sx  , respectively. From (16) and(21), we can choose 
0.04ak   and 0.2bk   to make sure the constraints will not be 

violated. The control gains for BLFESO are 1 1000k  , 

2 500k  , 3 4k 1k  , the filter parameters for the DSC are 
selected as 0.002   and , ,0.[1 1 1 0.005],diag  . The 
bandwidth of the ESO is selected as 0 100  .  Control gains for 
the QLF method are 1 2 3 4k 3kk k    .  
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The simulation results are shown in the following figures. 
From Figure 2 and Figure 3, both controllers reach the final set 
point. However, the QLF controller violates the position and the 
velocity constraints. In the practice, the unexpected overshoot on 
the position may cause a dangerous collision and higher speed 
may cause more severe injury to human operators. The violations 
of position and velocity constraints are clear to be seen from 
Figure 4 and Figure 5 as well. In fact, the BLF governs the 
tracking errors of positon and velocity. By constraining the 
tracking errors, the safety constraints on position and velocity are 
guaranteed.  The torque input of the BLFESO controller is shown 
in Figure 6. 

Although the performance of QLF based controller can be 
improved by increasing the gains, the constraints are not 
considered in the design procedures. In the design of the 
BLFESO, by adjusting the two parameters ak  and bk  , the 
tracking errors of position and velocity are governed to ensure the 
constraints are not violated.  

 
Figure 2 Tracking of tip position.

 

Figure 3 Tracking of velocity. 

 
Figure 4 Tracking error of position. 

 
Figure 5 Tracking error of velocity. 

 
Figure 6 Input torque of BLFESO. 
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6 CONCLUSIONS 
In this paper, we propose a control design for flexible link 

robot with safety constraints. The stability of the closed-loop 
system is proven via the singular perturbation theory. The 
simulation results show that the tracking of position is successful 
and constraints on both position and velocity are not violated. In 
this work, we use velocity constraint instead of specific safety 
criteria like the HIC and maximum impact force. We will design 
a controller with HIC or maximum impact force constraints in the 
future. 
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