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ABSTRACT

In this paper, a control design for a flexible link co-robot
with safety constraints is proposed. The safety constraints are
converted to the constraints on the tip position and velocity. To
handle this constrained control problem, a barrier Lyapunov
function (BLF) is employed in the control design. The derivative
of the logarithmic BLF is more complicated compared with the
derivative of a quadratic Lyapunov function, which makes the
problem of “explosion of terms” more serious. Thus, the
dynamic surface control is used to deal with the problem.
Furthermore, an extended state observer is adopted to estimate
and compensate the uncertainty and disturbance in the system.
The stability analysis via the singular perturbation theory shows
the local practical exponential stability of the system. Simulation
results indicate that the control performance is guaranteed
without violation of the constraints.

1 INTRODUCTION

In the past decade, the attention paid to corobots [1] increases
rapidly. Unlike the conventional robots which usually have
independent workspace isolated from human interactions, the
corobots usually share a workspace with human workers. Thus,
safety becomes an important concern for corobots [2].

To address the safety concerns, mechanical flexibility is often
introduced in the design of corobots, such as the flexible joint
robots [3] and flexible link robots [4] [5]. The flexibility enables
the low-inertia design of the arms’ link and decouples the
actuators’ rotor inertia from the links’ inertia, which increases
the safety of physical human-robot interaction (pHRI) [2].
However, the flexibility makes the dynamics of the robots more
complicated than the conventional rigid robots. Involving with
the safety requirements, the control designs for the flexible
corobots can be challenging.
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In this paper, we will discuss the control design for flexible
link corobots whose main goals can be summarized as follows.

1) To make the tip motion tracks a desired trajectory.

2) To keep safety during the motion (limits on position and
velocity).

In recent years, several techniques for motion control of
flexible link robots have been proposed, such as the boundary
control [6] [7], PD control [8], feedback linearization [9],
backstepping [10], neural networks [11], adaptive control [12].
These approaches mentioned above mainly aim to the motion
control of the flexible link robots (goal 1) without explicit
consideration of the safety requirements (goal 2). To achieve the
performance on motion control and safety simultaneously, we
propose a barrier Lyapunov function (BLF) based control design
for the flexible link corobots here.

In this design, we treat the safety requirements as constraints
on the system. Thus, the control problem of the flexible link
corobots is a constrained control problem. Significant efforts
have been made to address the constrained control problems for
electromechanical systems. Some representative methods are
predictive control [13] and reference governors [14]. Besides
these methods, the barrier Lyapunov function (BLF) has been
proposed to handle constraints in strict-feedback systems [15].
Combined with the backstepping method, the design procedure
based on BLF can be systematic and intuitively. However,
besides those advantages, the backstepping method suffers from
the so-called “explosion of terms” issue [16]. The BLF usually
has a complex form, compared with the quadratic Lyapunov
function (QLF). This makes the derivatives of the virtual controls
more complicated than the QLF design. This problem is more
serious for high-order systems because of the repeated
differentiations of the virtual control. Another problem is that the
backstepping design depends on the information of the model. In
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the real situation, the information from the plant is always
limited and uncertainties because unknown dynamics and
inaccurate parameters exist. The neglect of uncertainty in the
design procedure may lead to a lack of robustness.

To overcome the two problems mentioned above, the
dynamic surface control and the extended state observer are
employed to improve the backstepping based controller.

The dynamic surface control (DSC) [16] technique is a
practical way to deal with the problem of “explosion of terms”.
To avoid the derivations of the virtual control, the DSC design
makes the virtual control pass through a first-order filter. For this
sake, we combine the DSC technique with the BLF and
backstepping design to prevent the “explosion of terms”.

The extended state observer (ESO) in [17] is widely used to
estimate and compensate for the system uncertainty and
disturbance. The idea of the ESO is to extend the disturbance
and uncertainty to a new system state and then design an
observer for the extended system. The ESO estimates the
generalized disturbance between the plant and the nominal
model by observing the extended state. In this process, it does
not need much information from the model to design the ESO
which makes the ESO easy to implement. The modeling of the
flexible link robots usually involves uncertainties coming from
the reduction of the model and inaccurate parameters. Besides
the uncertainties, disturbances like friction and unknown
payload are common in robotic systems. Therefore, it is
necessary to have a specific design to improve the robustness of
the system. In this paper, we propose to use a reduced-order ESO
to deal with the uncertainty and disturbance in the flexible link
robot model.

In this paper, we integrate the DSC and ESO with the BLF
based backstepping and propose a novel control design for the
flexible link corobots. With this novel controller, both the
performance on motion control and safety are ensured
simultaneously.

The rest of this paper is organized as follows. In Section 2,
preliminaries and the model of flexible link robots are
introduced. The proposed control design including BLF design,
ESO design and DSC design, are described in Section 3. The
stability analysis of the closed-loop system is given in Section 4,
where it is shown that the local practical exponential stability of
the closed-loop system. The simulation results are presented in
Section 5. The conclusion is given in Section 6.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 MATHEMATICAL MODEL OF FLEXIBLE LINK
ROBOT

For flexible link robots, a partial differential equation (PDE)
by the Euler-Bernoulli beam theory is usually employed to
describe their behaviors. Such models usually involve infinite
vibration modes of the flexible link robots, and the control design
problem based on these models are usually infinite dimension
problems. However, with the increasing of the frequency of these
modes, the amplitudes of these modes become insignificant. This
feature enables the reduction of the model by ignoring the high-
order modes of vibration. A popular way to reduce the model is

using the lumped parameters model. In this paper, a lumped
linear model of the flexible link robots is used as the one in [8]
and [11]. Fig. 1 illustrates the lumping process.

Lumped mass
M,+M,

Y Y

Payload

y, Lumping Spring k

Motor hub X Motor hub

Figure 1. The lumped parameters model.

The distributed mass of the link is lumped to an equivalent
tip mass. The flexibility is lumped to a spring with equivalent
stiffness. The generalized coordinates are chosen as the motor
hub angle & and the arc tip position p . The arc position can be

denoted by p =y, + 0L , in which y, is the tip deflection, L is

the length of the link. The model of the flexible link robot can be
described by the following ordinary differential equations.
X=Ax+ Br+Fd, ()

where x =[p, p,0,6]" are the state variables, p and €@ are the

tip position and the motor hub angle, respectively. d represents
disturbances and modeling uncertainties, i.e., generalized
disturbance. The matrices A, B and F are defined as follows:

01 0 0 0 0

a 0 a O 0 0
A= ,B=| |, F=| |,

0 0 0 1 0 0

a 0 a, 0 b 1
a,=—k/M, a,=kL/M, ()

a,=kL/1,, a,=—kI’ /I, b=1/1,.
in which, & is the equivalent stiffness, M =M, +M, , M, and
M, are the mass of the payload and the equivalent mass of the

link, respectively, 7, is the inertia of the motor hub, 7 is the

input torque and d is the generalized disturbance. Note that the
matrices A and B are in strict-feedback form. This property will
be used in the following design procedures. And we have a
standard assumption for the generalized disturbance d .

Assumption 1 [18]: The generalized disturbance is bounded,
continuous and differentiable.

2.2 SAFETY CONSTRAINTS

Safety is always the most critical issue in the physical human-
robot interaction. Several types of safety criteria are defined in
literature, for instance, the Head Injury Criterion (HIC) and the
maximum impact force [19]. The analytical expressions of such
criteria are usually multivariable functions involving the mass of
the robot M, , mass of the payload M, , mass of human parts

(where the impact happens) A, , the stiffness of the robot & and
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the velocity of the robotv, . The analytical expressions of HIC
[2] and maximum impact force [20] are given below.

HIC=1016( k )0.75( MR )1.75VR2.5
M, M,+M,

MRMH
M,+M,
Among the variables above, the mass and the stiffness are usually
considered as constants for a specific task. Therefore, the
functions of safety criteria can be simplified to single variable
functions that only relate with the velocity of the robot. In this
design, we use velocity constraint as a general safety criterion
instead of a specific safety criterion like the HIC and impact force.
Besides the velocity constraints, the position constraints such as
limited workspace and obstacles are common as well. In this
paper, we consider the safety constraints on position and velocity
simultaneously.

2.3 LEMMAS AND DEFINITIONS

To facilitate the analysis, we introduce the following
definition and lemma.

Definition 1 [15]: A BLF is a scalar function V' (x) , defined

with respect to the system x= f(x) on an open regionD

b

3)
)0.5 kO.Sv

max:( R*

containing the origin, that is continuous, positive definite, has
continuous first-order partial derivatives at every point of I , has
the property V(x) - o0 as x approaches the boundary of I,

and satisfies V' (x(¢)) <b,Vt >0 along the solution of x = x(¢)
for x(0) e D and some positive constant b .

Lemma 1: For any positive constants k, and r satisfy
k,>r>0,3a >a>0, such that Vxe[-r,r], the following

inequality holds.
1 kP
ax® < Elog P <ax’. 4
Proof: Let
R
f(x)=510g PERR (5)
It is obvious that £(0) =0 . Furthermore, we have
, X
f'(x)= W’ (6)
and
S S (k) S e (k0L
' X ): 1 @
m > k_2 = (Eijz)',x S (O,ka).
Thus, we can obtain
SR S f@x e (hok) ®)

For any given r satisfies k, >» >0, we have

x x 1

kz_xz Zm:(z(kaz_rz)xz)’:’xe(_kaao]a

a a (9)
* X Ay reon)

K—-x* k-t 20 ’

Similarly, we can obtain

%(kj —7? )x2 > f(x),x e (-r,r). (10)

Let a = %kﬂz and @ :%(ka2 —7r?) . From (8) and (10), we know
the inequality (4) holds. m

3 CONTROL DESIGN

3.1 ESO DESIGN

To estimate and compensate for the disturbance, we extend
the disturbance d to a new system state x, . For convenience, we

denote the reduced-order extended system as

X, =X,
X, = ax, +a,x; +bu+x;, 11
X, = h(t)

where h(¢) is the derivative of d and it is locally Lipschitz. For

system (11), a linear type of the ESO (LESO) [21] is designed to
observe the generalized disturbance.

€ =X~ X,
%, =%, +3me
;3 4 03 ) L (12)
X, = ax, +a,x; +bu+ X, +3w;e,
A 3
Xs = W6,
where @, is the bandwidth of the observer. The estimation error
can be obtained from (11) and (12).
e, =e, —3w,e,
¢, =e,—3we, . (13)
é =h(t)—w]e,
Let ¢ =e /@)’ with i=3,4,5 and £=[¢,,&,,&,]" . Rewrite
(13) into the matrix form
&= w,Ae+ @, Eh(1),

31
3 0 0 14)
A=|-3 0 1|,E=|0]|
-1 0 0 1

We will use this result in the stability analysis.

By Theorem 2 in [21], the estimation error system (14) is
stable and the estimation error of the LESO can be made to be
arbitrarily small by increasing the bandwidthw,. The

generalized disturbance can be estimated by x, .

3.2 STEP 1: BARRIER LYAPUNOV FUNCTION BASED
DESIGN
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For a tracking problem, we hope the tip position can track the
desired trajectory x, and the tip velocity can track the desired
trajectory of velocity x,. Meanwhile, the constraints on position

and velocity are not violated. i.e., | x, [<k_,| x, |<k,

., » Where &,

and k,, are positive constants.

The following standard assumption is exploited for the
control design.

Assumption 2: x,(¢1)e@* and |x\’(t)|< M, with M, >0
and 1=0,1,2,3,4.

The model (1) of the flexible link robots is a strict-feedback
system. Therefore, we can propose a backstepping-based control
design. Define the tracking error as z, =x, —«,_, fori=1,2,3,4
and «,(t)=x,(t), where «, (t) are virtual controls. Let
z2=[z,,2,,25,2,]" .

Considering the constraint on position, define the barrier
Lyapunov function candidate (BLFC) as

2
K=%bgﬁ%#, (15)
where
0<k,<k,-M,. (16)
Then the Lie derivative of V] is
= a7
where z, =z, + o, —X,. Design the «, as
a, =—k(k:—z)z, +x,, (18)
then the derivative of ¥, can be rewritten as
V= kg (19)
ka 4

where & >0 is a constant. Similarly, to meet the velocity
constraint, we define the BLFC as

1 k;
V, ==log——"—. (20)
2 b %2
Because z, =x, —q,, we choose
2k k
0<k,<k,—M —===L, 21)
33
then we can obtain the derivative of V, as
; Z,Z
V= (22)
ky =z

To cancel the nonlinear term in (19), we choose «, as

-z .
2 i L +a,—ax)la,, (23)

kZ 2
a, =(-k, (kb2 _Zg)zz -
a 1

in which &, > 0 is a constant. From (22) and (23), the derivative
of ¥, can be obtained.

Z,Z a,z,z
12+223

I}2 = _kzz§ -

24)

2 2 2 2
.~z Kk, -z

For z, andz,, choose the quadratic Lyapunov function
candidate (QLFC) as

(25)

Repeat the recursive design procedures, we can choose the

virtual control ¢, and the input u as follows
aZZZ

ky -z’ (26)

u=(—a,x, —a,x, —k,z,—z, +c,) /b,

o, =—kz, +a, -

where k, and k, are positive constants. Then the derivatives of

V, and V, are as follows
. a,z,z
V,=-k,z ——222 2.z,
3 343 k; —Z; 3<4 (27)
V'4 =—k,z; - z,2,.
Combining (1), (18), (23) and (26), the dynamics of the tracking
errors can be obtained.

. 2 2
z =z, —k(k; —z)z,

kl—z2
. 2 2 b %
2y = a2, = ky (ky, —2y)7, _Tzzzl
o Tt (28)
a,z
. 2%,
Zy=2z,—kzy ——5—=
ky —z;

z, =—k,z, -z,
The stability of the error dynamics (28) is given by the following
theorem.

Theorem 1: For system (1) with Assumption 2, if the control
input is determined by (18), (23) and (26), then
Ir>0,r<k,, r<k, , such that for any initial condition

2(0)eZ, ={zeR" |z |<r,| z |<r} , the following properties

hold.
i. The origin of system (28) is locally exponentially stable
on Z, .

ii. The constraints on position and velocity are never
violated. i.e., x(t) e {x e R* | x, [< k.| x, [<k,,} -

iii. The tracking errors z and z, are constrained with
|z, <k, and |z, |<k,.

Proof: (i) Define the Lyapunov function candidate as
V= 24: V.. (29)
The derivative of V' can be callczllllated from (19), (24) and (27).
V==Y kz <k, 121220, (30)
i=1

Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/15/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



where k,, =min{k,, i=1,2,3,4y. From Lemma I,
Ja,a,b,b >0, such that Y|z |<r, |z,|<r the following

inequalities hold.

IA
~

IA
o
A IA

2 2
Z) 2y 5

IR

€2))

sy
S R

2 2
ZZ ZZ
— min{a,b,1/2}, a
have the following inequality.

i 12132V (@) < 0, |25 - (32)
From (30) and (32), the origin of the system (28) is locally
exponentially stable by Theorem 4.10 in [22].

(ii) From ¥ <0, it can be shown that V() <V (0). From
Lemma 1 in [15], for z(0) € Z, , infers |z, () |< k, ,| z,(t) |< &, ,
Vt>0. Since x,(t)=z,@)+x,(), x,()=z,()+ (), and
x,®)<M,, x,(t)<M,, we know |x,()[<k,+M,<k,, and

2Kk, . .
|x, () [k, + M, +—=<k, . ie., all constraints are never
33

Selecting a "= max{c_z,l;,l/Z} , then we

min

violated. m
We already have the estimation of the generalized
disturbance, i.e., x,. To compensate for the disturbance, the
input u is designed as
u=(—a,x —kyz, —z,+a, —Xx5)/b. (33)
Then the error dynamlcs (28) is rewritten as
g =2,k (k; —z)z

22
-z
. 2 2 b %
2y = a2, —ky (ky —2y)z, = 2_ 2 4
o T (34)
a,z
2%
Zy=z,—kz, ——5—=
k, —z,

=—k,z, -z, + &
The closed-loop system (34) and (14) can be denoted as
z=f(t,2,871,,)
{r é=Ae+7t Eh(t)
in which, z

" =1/, is a small parameter. To analyze the

stability of (35), we refer to the method in [23]. We have the
following theorem for the stability on the origin of system (35).

(35)

Theorem 2: For system (35), there exists a constant 7~ >0
such that Vr, <", the origin of system (35) is locally
exponentially stable.

Proof: The local exponential stability of the reduced system
(28) infers the stability of (35). The detailed proof is omitted due
to the limited space. The reader can refer to the proof of Theorem
3.41n [23].

3.3 STEP 2: DYNAMIC SURFACE CONTROL DESIGN
It is obvious that the control law (18), (23) and (26) involves
the calculation of the derivatives of virtual control inputs ¢, .
Due to the using of logarithmic BLFC, the “explosion of terms”
problem in this design is more serious than the one in traditional

integrator backstepping control using the QLFC. To deal with
this problem, we apply the dynamic surface control technique to
the BLF based design.

Based on the idea of DSC [16], a set of first-order filters are
applied to the virtual controls. Different from the traditional
DSC, we also apply a filter to the input # to make the input
smooth. Redefine the tracking errors as

z,=x,— A, i=1,2,3,4,
(36)
Ay (1) = x4 (2).
The DSC control law can be denoted by
a, =k (kj _le)zl + Xy
K — 22 .
a, = (~ky(k; = 2,)z, _ﬁzl +A4—ax)/ ay,
a 1
—kyz A - ”2222, (37)
b 22
a, = (—ax, —a,x, —k,z, —z, + 1y — %) / b,
u=21,,
where the first-order filters are
th=0(a—1), i=1,2,3,4, (38)

in which A=[4.,4,,4.4,]1",

o, >0 with 1=1,2,3,4, a=[¢,2,,a;,2,]", 7€(0,1). From

® =diaglo,,0,,0,,0,] and

(36) and (37), the dynamics of the tracking error can be obtained
as
=z, —k(k; —z)z +

2

2
Z ~
%Z] +a,l,
o« , (39

. 2 2
Z, =a,z; —ky(k, —2;)z, -

=—k,z, —z, + & +b],
where 4, = 4, —a, with i =1,2,3,4. The analysis of the closed-

loop system (39) and (38) can be denoted as a standard singular
perturbation problem

z=f,(z,\7)
Ti:g(z,k,z')'

The stability analysis of system (38) and (39) is in the next
section.

4 STABILITY ANALYSIS
Inspired by [24], the singular perturbation theory is applied to
the stability analysis. Consider the singular perturbation problem
(40). From the expression of (38), g(z,A,0)=0 has a unique
isolated root A =h(z), h(z) =a. Substituting A =h(z) into
1, (), the reduced system is denoted as
z= f,(z,h(2),0). (41)
Note that the reduced system is same as (35). We define a new
state variable y :=A—h(z). The boundary-layer system can be
derived from (38)

(40)
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y' =g(z,y+h(z),0) = -Oy. (42)
in which y'=dy/do and o=t/ is the stretched time scale.
Let z(¢#) and y(o) be the solutions of (41) and (42),
respectively. The following definitions are introduced to facilitate
the analysis.

Definition 2 [22]: The signal z(z,7) is said to be of the order
7, denoted as z(t,7) = O(z), if there exist constant k,z, € R"
such that || z(z,7) ||< k7, V7 €(0,7,).

Definition 3 [25]: The system z= f(z,z) has practical

exponential stability as 7 — 0 if for any given constant 6 € R*
there exist z,,z,, € R" such that

| z(0) [|1<]| 2(0) || exp(—pt) + 6,
Vtz0, Vre(0,7,), Vz(0) € Z,.
The theorem of the stability of (40) is given in here.
Theorem 3: For the system (40) with Assumption 1 and
Assumption 2, if the control input is given from (37), then for any
given control gain k, e R* with i=1,2,3,4, there exists a small

(43)

constant 7~ €(0,1) such that the closed-loop system (40) is
Ve, r**) s
Vvz(0) € Z,, . Meanwhile, the constraints in Theorem I are never

locally practically exponentially stable,

violated.
Proof: Let Q_ cZ, and Q < R* be compact sets of z

and y, respectively. To apply Theorem 11.2 in [22], we need to

show that all the assumptions for the theorem are satisfied.
1. From (37), (38) and Assumption 2, £,(-), g(-) and their

partial derivatives with respect to (z,A,z) are bounded and
continuous on compact sets Q_xQ cR*, h(z) and
[Og(z,)1,0)/0)] have bounded first partial derivatives with
respect to their arguments, and [df,(z,h(z),0)/dz] is Lipschitz

inz and uniformly in ¢ .

2. By Theorem 2, the origin of the reduced system (41) is
exponentially stable. Als, there exists a Lyapunov function V'(z)

that satisfies W,(z) <V (z)<W,(z) and V(z) < -W,(z), where
W,(z) with i=1,2,3 are positive definite functions on R*.

3. Because (42) is independent of (¢,z), it infers that the origin
of the boundary-layer system (42) is an exponentially stable
equilibrium, uniformly in (z,z) . Let Q_, < Q,_, be the region of
attraction of (42).

So far, all conditions for applying Theorem 11.2 in [22] are
satisfied. Let ¢, € R" be constants satisfying ¢ < min,  W,(z),
Q_, <, (z) < pc,pe(0,1)} be the attraction region of z.

|zl|=r

Then for each compact set Q. _ , there is a positive constant 7~

cz0 2

such that forall 7>0, zeQ_,, yeQ,, and 0<7< ™", the

singular perturbation problem has a unique solution
z(t,7), Mt,7) on t €[0,0) and

{z(t, 7)—Z(t) = O(7)
Mt,7)~h(z(1)) -¥(0) = O(7)
holds uniformly for ¢ €[0,c0) . Furthermore, for any given ¢, >0

(44)

,there existsa 7~ <z~ such that

M1, 7)—h(z(1)) = O(7) (45)
holds uniformly for ¢ €[t,,0), 7 €(0,7" ). As a further matter,
since z(z) and y(o) are the solutions of exponentially stable
system (41) and (42) with ¢ €[0,0) , respectively. It infers that

limZ(t) = 0
1—>®©
lim¥(c) =0 (46)

limh(z(¢)) = a(¢).
t—o
From (44), (45) and (46), we can obtain
lim |2(t,7) =0
T~>(.),14>ac , (47)
lim [[A(1,7) —a(u) ||= 0

70,0
which indicates the local practical exponential stability of the
system (40) by the Definition 2. =

5 SIMULATIONS

Numerical simulation results are presented in this section. The
controller is tested with a planar single-link flexible manipulator
model developed based on the finite element analysis (FEA). The
parameters of the robot are p=0.1kg/m, L= 04m,

I,=4x10" kg-m>, M,=0.1kg and EI=9.62N-m’ , in
which p is the linear density of the link. The corresponding
parameters for the nominal  model (1) are
k =450.94, M, =0.0411. In the simulation, the desired position
trajectory is a “smooth” step signal. The step signal passes
through a fourth-order system to satisfy the Assumption 2. The
transfer function of the fourth-order system is as follows

G(s) =

1
(Ts+1)*° (48)

where the time constant 7'=0.05 .

The desired trajectory of velocity can be obtained by a
differentiator. Two controllers are designed to demonstrate the
performance of the proposed design. (1) The quadratic Lyapunov
function based DSC control (QLF). (2) The barrier Lyapunov
function based DSC control with ESO (BLFESO). The
constraints for position and velocity are x, <1.05m and

x, <4.705mv/s , respectively. From (16) and(21), we can choose
k,=0.04 andk, =0.2 to make sure the constraints will not be
violated. The control gains for BLFESO are 4 =1000,
k, =500, k, =k, =1, the filter parameters for the DSC are
selected as7=0.002 and O =diag[1,1,0.1,0.005]. The
bandwidth of the ESO is selected as «, =100 . Control gains for
the QLF method are k, =k, =k, =k, =3.
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The simulation results are shown in the following figures. ' T T

From Figure 2 and Figure 3, both controllers reach the final set /\

point. However, the QLF controller violates the position and the 0.05 .
velocity constraints. In the practice, the unexpected overshoot on \

the position may cause a dangerous collision and higher speed o | 1 _ _ _ _ _ Thoe—e

may cause more severe injury to human operators. The violations
of position and velocity constraints are clear to be seen from

Error of position: m

Figure 4 and Figure 5 as well. In fact, the BLF governs the 0051 l
tracking errors of positon and velocity. By constraining the
tracking errors, the safety constraints on position and velocity are 041 —AQLF .

~— = BLFESO

guaranteed. The torque input of the BLFESO controller is shown X .
Constraint on position error

in Figure 6. 015+
Although the performance of QLF based controller can be
improved by increasing the gains, the constraints are not

. M . . 0.2+
considered in the design procedures. In the design of the 0 . o ; e )
BLFESO, by adjusting the two parameters k, andk, , the Time: Sec
tracking errors of position and velocity are governed to ensure the
constraints are not violated. Figure 4 Tracking error of position.
P ——— T I . . .
1 R
o~ 15+ .
0.8 . l |
R4
£ 05
E 1 5,
e —OQLF T 0 ‘~___k _____
2 ~ — BLFESO 3 \ —
(7] . . .
Soa Deswedltlp tra;ectf)ry 5 0.5 |
Constraint on position 5
5ol —aLF |
0.2 — - = BLFESO
a5k Constraint on velocity error| |
0 . ol i
0 05 1 15 2 0 0s i 5 2
Time: Sec Time: Sec
Figure 2 Tracking of tip position. Figure 5 Tracking error of velocity.
‘ ‘ ' | 4 : .
—arr 1 al

— — BLFESO
'''''' Desired velocity
Constraint on velocity | -

Velocity: m/s
Input torque: m/s

b e e

0 05 1 15 2 2 x | .
Time: Sec 0 0.5 1 1.5 2
Time: Sec
Figure 3 Tracking of velocity. Figure 6 Input torque of BLFESO.
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6 CONCLUSIONS

In this paper, we propose a control design for flexible link
robot with safety constraints. The stability of the closed-loop
system is proven via the singular perturbation theory. The
simulation results show that the tracking of position is successful
and constraints on both position and velocity are not violated. In
this work, we use velocity constraint instead of specific safety
criteria like the HIC and maximum impact force. We will design
a controller with HIC or maximum impact force constraints in the
future.
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