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1 Introduction

Many-body quantum chaos is of fundamental interest in a variety of fields of physics,

including condensed matter, quantum information, and quantum gravity. Considerable

recent progress has come from the realization that it is possible, in some cases, to define

a kind of quantum butterfly effect and a corresponding quantum Lyapunov exponent via
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so-called out-of-time-order correlators (OTOCs) [1, 2]. It was also discovered that the expo-

nent so defined obeys a universal bound, the Maldacena-Shenker-Stanford (MSS) bound,

λN ≤ 2πT [3], and that the bound is saturated by strongly coupled quantum systems

holographically dual to Einstein gravity [4, 5].

This notion of quantum Lyapunov exponent has since received intense scrutiny; it is

related to information scrambling [4, 6–8] and thermalization [9–12], it can be measured

experimentally [13–23], it relates to operator growth [24–31], and can be computed ei-

ther numerically or analytically in many model systems [5, 24–26, 32–51]. However, to

the best of our knowledge, these recent developments have focused almost exclusively on

what, in retrospect, might be called the largest quantum Lyapunov exponent (two excep-

tions [52, 53], are discussed below). Yet at least for systems near a classical limit, the whole

spectrum of Lyapunov exponents (the classical Lyapunov spectrum) makes sense and can

contain additional useful information. For example, the sum of the positive Lyapunov

exponents, called the Kolmogorov-Sinai (KS) entropy, characterizes the strength of chaos

more precisely than the largest Lyapunov exponent alone.

Given these rapid developments, it is natural and desirable to attempt to extend the

notion of a classical Lyapunov spectrum to general quantum systems away from the classical

limit. In this paper, we give one definition of a quantum Lyapunov spectrum which makes

sense for any many-body quantum system. There are several motivations for this study.

One question is do black holes become more or less chaotic as they grow in size? To answer

this basic question, we need to define the strength of chaos precisely. As explained in

section 2, the KS entropy is a better indicator than the largest exponent alone. It is likely

that, as a black hole grows, the KS entropy increases, while the largest Lyapunov exponent

decreases [54]. Hence looking at the entire Lyapunov spectrum gives a different picture

of chaos in black holes than the largest Lyapunov exponent alone. Another motivation is

universality in the classical Lyapunov spectrum [55]: in some chaotic systems, the classical

spectrum converges to a random matrix theory (RMT) spectrum, with the time scale

for the onset of universality seemingly related to the strength of chaos. In particular, a

matrix model of black holes [56–58] shows the universality from t = 0, indicating a possible

signature of gravity in the Lyapunov spectrum.

In this paper, we introduce a generalization of the classical Lyapunov spectrum to

quantum many-body systems, including systems far from any classical limit. Our definition

has a natural physical interpretation and, when the classical limit can be taken, it reduces

to the usual classical Lyapunov spectrum. Furthermore, the largest Lyapunov exponent

agrees with the usual quantum Lyapunov exponent in the literature as obtained from

OTOCs at sufficiently late times.

To elucidate the physics of our definition, we study two systems, the non-local Sachdev-

Ye-Kitaev (SYK) model [5, 59, 60] and the local XXZ model with random magnetic field

(see e.g. [61]). In the case of SYK, disordered couplings are part of the basic definition.

In the case of XXZ, the model is considered in the isotropic (Heisenberg) limit with an

additional disordered magnetic field. We analyze both by performing systematic exact

diagonalization studies of the quantum Lyapunov spectrum including disorder averaging.

Our main results can be summarized as follows.
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• We observe a period of approximately exponential growth, meaning an approximately

time-independent Lyapunov spectrum, for the nonlocal SYK model. For the local

XXZ model we observe a brief period of approximately exponential growth followed

by a period of power law growth.1

• We numerically demonstrate that a naive generalization of the classical KS entropy

— just the sum of positive quantum Lyapunov exponents — is close to the produc-

tion rate of the entanglement entropy, with a proper normalization needed for the

connection to classical coarse-grained entropy.

• We also suggest that this ‘quantum KS entropy’ is maximized when the quantum

system has dual gravity description on the black hole background. In other words,

we suggest that black hole is not just the fastest scrambler but also the fastest entropy

generator.

• For both SYK and XXZ models in the appropriate regime we observe random matrix

theory (RMT) behavior for the quantum Lyapunov spectrum. This universality fails

in expected ways, including for integrable and localized systems.

The outline of the remainder of the paper is as follows. Section 2 recalls the basic

definition of the classical Lyapunov spectrum. Section 3 introduces the SYK and XXZ

models. Section 4 defines the notion of a quantum Lyapunov exponent. Section 5 studies

the growth characteristics of the quantum spectrum with time. Section 6 studies the

distribution of the quantum Lyapunov spectrum, establishing a link to random matrix

statistics. Section 7 contains concluding remarks and outlook.

2 Lyapunov spectrum in classical chaos

First let us see how the classical Lyapunov exponents are defined. For simplicity we

consider only Hamiltonian systems. Suppose the phase space is described by coordi-

nate variables xi (i = 1, 2, · · · , N) and conjugate momenta pi(i = 1, 2, · · · , N). We use

zi (i = 1, 2, · · · , 2N) to denote xi and pi together. The sensitivity to the initial condition

at t = 0 is captured by

Mij(t) ≡
δzi(t)

δzj(0)
. (2.1)

The finite-time Lyapunov exponents λi(t) are defined by

λi(t) ≡
1

t
log si(t), (2.2)

where si(t) are singular values of Mij(t). These exponents converge to constant values

at sufficiently late time. Note that they are calculated for each initial condition, which is

1Because the growth is not exponential, the Lyapunov exponents vanish at late time. Still they quan-

titively capture the growth of the OTOCs. Intuitively it would be easier if we look at si, rather than λi.

(For the definition of λi and si, see eq. (2.2).)
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analogous to the microstate in the quantum theory. Often the average over initial conditions

is taken. Note also that we can calculate the exponents from the eigenvalues of

Lij(t) = [M †(t)M(t)]ij = M∗ki(t)Mkj(t), (2.3)

which are (si(t))
2.

Often the limit t→∞ is considered. In this paper, we will be interested in the finite-t

behavior.

2.1 Kolmogorov-Sinai entropy

Suppose our knowledge about the initial condition is limited and we only know that it is

in a small region in the phase space, say the blue disk in figure 1. As time passes by, this

region is stretched along some directions and compressed along the others. If we introduce

a grid like in figure 1 and count the number of cells needed for covering the region, more

and more cells are needed at later time; the number scales as∏
λ>0

eλt = ehKSt, hKS ≡
∑
λ>0

λ. (2.4)

This exponential growth characterizes the loss of our knowledge about a given initial condi-

tion. The coarse-grained entropy, which is the log of the uncertainty, increases as hKSt. The

Kolmogorov-Sinai (KS) entropy hKS is the growth rate of the coarse-grained entropy [62]

(although for exceptions see ref. [63]).2

The quantum counterpart of the coarse-grained entropy is the entanglement entropy.

Indeed, the growth of the entanglement entropy of a subregion of a system is an essential

part of quantum thermalization. It would be desirable if the KS entropy hKS could be

identified with the growth rate of the entanglement entropy as well, at least near the

classical limit.

2.1.1 Application to black hole

In the sense discussed above, the spreading of information in phase space is better charac-

terized by the KS entropy than the largest Lyapunov exponent alone. This is particularly

so for a black hole. In order to understand why, let us consider the matrix model of black

hole made of D0-branes and strings [56–58], which is the original setup used by Sekino

and Susskind to argue for fast scrambling [7]. (Essentially the same argument applies to

black hole described by other gauge theories as well.) This model contains nine N × N
Hermitian matrices as bosonic degrees of freedom. Diagonal and off-diagonal elements are

interpreted as the locations of D0-branes in nine-dimensional space and open strings con-

necting D0-branes. As shown in figure 2, a big black hole consisting of all N D0-branes

and many open string excitations is described by fully excited N ×N matrices, while block

diagonal configurations describe several black holes and the diagonal matrices describe a

gas of D0-branes without strings.

2Strictly speaking, d(hKSt)/dt is the entropy production rate. At late time, hKS converges to a constant,

and hence d(hKSt)/dt = hKS.
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Figure 1. Suppose we know that the initial condition is contained in the blue disk in the upper

left corner. As this region evolves with time, although the volume is conserved due to the Liou-

ville theorem, the shape changes nontrivially, in particular, it is stretched exponentially in several

directions. The rate is governed by the positive Lyapunov exponents.

Suppose two black holes described by two blocks of the sizes αN × αN and (1 −
α)N × (1 − α)N (the middle of figure 2), with the same temperature Tinit, come close

and merge to a single black hole (the left of figure 2). During this process, open strings

stretched between two black holes (off-diagonal blocks) become shorter, and hence lighter,

and eventually get excited. In this way the number of dynamical degrees of freedom are

doubled, and hence temperature, which is roughly equivalent to the energy per degree of

freedom, goes down [54]. For example, in the highly stringy region where the matrix model

admits a classical description, the energy is E = 6N2Tfin = 6(α2 + (1 − α)2)N2Tinit, and

hence Tfin = (α2 + (1 − α)2)Tinit < Tinit. This is the gauge theory description of a key

property of a black hole discovered in Hawking’s seminal paper [64]: a black hole in flat

spacetime cools down as it grows in size.

The largest Lyapunov exponent scales as (λT )1/4, where λ = g2
YMN is the ’t Hooft

coupling [65]. When the block sizes are αN and (1 − α)N , the ’t Hooft coupling changes

effectively to αλ and (1− α)λ, respectively, and hence the largest Lyapunov exponents in

two blocks scale as α1/4(λTinit)
1/4 and (1−α)1/4(λTinit)

1/4. Except for α = 1
2 , one of them

is larger than (λTfin)1/4, namely the largest Lyapunov exponent decreases as black hole

becomes larger. However the number of positive Lyapunov exponents increases because of

the dynamical increase of the degrees of freedom. Hence there are two competing contribu-

tions — the decrease of the temperature pushes down the KS entropy, while the increase of

the degrees of freedom pushes it up. Based on the distribution of the Lyapunov exponents

studied in ref. [65], we can see that the KS entropy is the block size (α2N2, (1−α)2N2 and

N2 in this case) times the largest exponent times an order one factor. Hence, up to the same

overall factor, the KS entropies before and after merger are (α5/4 +(1−α)5/4)N2(λTinit)
1/4

and N2(λTfin)1/4 = N2(α2 + (1 − α)2)1/4(λTinit)
1/4. The latter is bigger than the former

except for a special point α = 1
2 . Hence a bigger black hole is a faster entropy generator.

– 5 –
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Figure 2. Matrix configurations for one big black hole (left), two black holes (middle) and the gas

of D0-branes (right).

2.2 Universality in the Lyapunov spectrum

The Lyapunov spectrum of the classical limit of the matrix model of black holes has been

studied in ref. [65] and ref. [55]. In particular, the level correlations of the Lyapunov

spectrum have been studied. Ref. [55] studied other classically chaotic systems as well, and

found a universal random-matrix description: when the number of degrees of freedom is

sufficiently large, the level correlation of the finite-time Lyapunov exponents converges to

the one determined by a Gaussian random matrix theory. Furthermore, the matrix model

of a black hole shows this universality already at t = 0.

If this universality can be generalized to quantum chaos, it should serve as a new

characterization of quantum chaos. Note that this universality is different from (though it

might be related to) the usual Wigner-Dyson universality of the energy spectrum. First

of all we are looking at different things — Lyapunov exponents and energy levels — and

furthermore the onsets of the universal distribution are observed at different time scales:

while the latter sets in at rather late time (see [66] for a detailed discussion), the former

can set in at earlier time, as it is there already at t = 0 for the matrix model of black

holes. As we will see later in this paper, the SYK model shows this Lyapunov universality

at t = 0 as well.

2.3 Technical remarks

A few technical remarks are in order here. Firstly, there is an ambiguity in the definition

of the Lyapunov exponents at finite time associated with a choice of variables, although

there exists a unique t → ∞ limit. If we choose another basis z′ = z′(z), Mij(t) = δzi(t)
δzj(0)

changes to

M ′ij(t) =
δz′i(t)

δz′j(0)
=
δz′i(t)

δzk(t)

δzk(t)

δzl(0)

δzl(0)

δz′j(0)
= JikMkl(t)J

−1
lj , (2.5)

– 6 –



J
H
E
P
0
4
(
2
0
1
9
)
0
8
2

where Jij =
δz′i
δzj

is the Jacobian matrix. Still, this definition captures the Lyapunov growth.

Furthermore, at sufficiently late time, the Lyapunov exponents converge to the same values.

The choice of the basis may affect the details at early time, and hence we will choose a

natural one which makes the physical interpretation more transparent.

Secondly, for the Hamiltonian system, M is symplectic, and the Lyapunov exponents

form pairs of +λ and −λ. It provides us with an easy way to estimate the numerical error,

namely this pair structure is gone when the error accumulates too much. This property

does not necessarily hold for the quantum Lyapunov exponents introduced in section 4.

Thirdly, the finite-time Lyapunov exponents depend on the initial condition zi(0).

In the thermodynamic limit, as long as a sufficiently generic initial condition is chosen,

the same global structure (overall distribution) and microscopic spectral properties are ob-

tained. Practically, because our simulation is always with finitely many degrees of freedom,

we consider the average over many samples. See refs. [55, 65] for details.

3 Models

We will study two physically distinct models. The first will be Sachdev-Ye-Kitaev (SYK)

model of four-local Majorana fermions coupled randomly and non-locally. The second

model is the XXZ spin chain composed of nearest neighbor spin interactions and random

magnetic field along the z-axis.

3.1 Sachdev-Ye-Kitaev (SYK)

The SYK model [5, 59, 60] (see ref. [67] for a recent review) with N Majorana fermions is

given by

Ĥ =

√
6

N3

∑
i<j<k<l

Jijklψ̂iψ̂jψ̂kψ̂l, (3.1)

where the anti-commutation relations are given by

{ψ̂i, ψ̂j} = δij (3.2)

and Jijkl is random Gaussian with mean zero and standard deviation J . We set J to be 1,

so all times are measured in units of 1/J . The dimension of the Hilbert space is 2N/2. We

will also consider slightly more general version

Ĥ =

√
6

N3

∑
i<j<k<l

Jijklψ̂iψ̂jψ̂kψ̂l +

√
−1√
N

∑
i<j

Kijψ̂iψ̂j , (3.3)

where Kij is also a random Gaussian variable with mean zero and standard deviation K.

At K = 0, this model is ‘maximally chaotic’ at low temperatures, in the sense that the MSS

bound [5, 59] is saturated. When K > 0, it is not chaotic at sufficiently low temperature,

while it remains chaotic at high temperature [68, 69].

– 7 –
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3.2 XXZ spin chain

We will also consider one-dimensional spin chain

Ĥ =

Nsite∑
i=1

(
1

4
~σi~σi+1 +

wi
2
σz,i

)
, (3.4)

with periodic boundary condition σNsite+1 = σ1. wi is the random magnetic field along

z-direction, chosen to be uniform random number between [−W,+W ]. At W & 2.75, most

of the energy eigenstates are in the many-body localized (MBL) phase [61, 70]. (For the

physics of the MBL phase, see e.g. [71–74]; for OTOC calculations see [75–79].) As W is

lowered, ergodic phase expands from the center of the spectrum, and gradually the system

becomes ergodic except for a small region at low and high energy regions. The boundary

between the ergodic and MBL phases can be obscure when the system size is small.

4 A definition: quantum Lyapunov exponents

A natural quantum analogue of Mij(t) defined by eq. (2.1) is3

M̂ij(t) ≡
√
−1[ẑi(t), Π̂j(0)], (4.1)

where Π̂j is the canonical conjugate of ẑj . For a given state |φ〉, M̂ij(t)|φ〉 can grow

exponentially, and

L
(φ)
ij (t) ≡ 〈φ|M̂∗ki(t)M̂kj(t)|φ〉 (4.2)

(where ∗ is a conjugate as an operator acting on the Hilbert space) is a natural counterpart

of Lij(t) in the classical theory.4 From this we can define the Lyapunov exponents λ
(φ)
i (t).

The classical Lyapunov exponents in the Hamiltonian systems have degeneracy ±λ.

The quantum Lyapunov exponents defined above do not necessarily have such degeneracy.

Below we omit (φ) in λ
(φ)
i (t), because we do not think there is a risk of confusion. We

will take |φ〉 to be energy eigenstates.

4.1 Lyapunov exponents in SYK

As a natural counterpart of eq. (4.1) in a fermionic system, we can use

M̂ij(t) = {ψ̂i(t), ψ̂j(0)}. (4.3)

We will again take |φ〉 in eq. (4.2) to be energy eigenstates. When K is zero, for N

not a multiple of eight, the eigenstates of the Hamiltonian are doubly degenerate due to a

symmetry. If N is not a multiple of four, the degeneracy occurs within each parity sector. In

order to avoid this uncertainty, we will not consider K = 0, instead we consider very small

but finite value of K. For each |φ〉, we obtain N Lyapunov exponents, λ1 ≤ λ2 ≤ · · · ≤ λN .

3Here we assumed a bosonic system. We will consider a fermionic system (SYK model) later.
4Note that 〈φ|M̂ij(t)|φ〉 cannot capture the growth properly, because the overlap between M̂ij(t)|φ〉 and

|φ〉 becomes exponentially small.

– 8 –



J
H
E
P
0
4
(
2
0
1
9
)
0
8
2

4.2 Lyapunov exponents in XXZ

Some caution is in order when we define the Lyapunov exponents for the XXZ spin chain.

Because the total z-spin S
(total)
z = 1

2

∑
i σz,i commutes with the Hamiltonian, it is better to

define M̂ so that it commutes with S
(total)
z as well, in order to avoid a mixture of different

spin sectors which may complicate the analysis. Furthermore σx, σy and σz are redundant,

in the sense that σxσy =
√
−1σz.

One possible option is to use the fermion representation obtained by the Jordan-Wigner

transformation,

ψ̂1 = (σ1 ⊗ 12 ⊗ · · · ⊗ 12) /
√

2,

ψ̂2 = (σ2 ⊗ 12 ⊗ · · · ⊗ 12) /
√

2,

ψ̂3 = (σ3 ⊗ σ1 ⊗ · · · ⊗ 12) /
√

2,

ψ̂4 = (σ3 ⊗ σ2 ⊗ · · · ⊗ 12) /
√

2,

· · ·
ψ̂2Nsite−1 = (σ3 ⊗ σ3 ⊗ · · · ⊗ σ1) /

√
2,

ψ̂2Nsite = (σ3 ⊗ σ3 ⊗ · · · ⊗ σ2) /
√

2, (4.4)

which satisfy the standard anticommutation relation {ψ̂i, ψ̂j} = δij .

Still, it is probably better if M̂ is compatible with the locality which is manifest in

terms of the ~σi variables. Then there are several other options such as
√
−1[σz,i(t), σz,j(0)] (4.5)

and

[σ+,i(t), σ−,j(0)], (4.6)

where σ± =
σx+iσy

2 . Note that the latter is neither Hermitian or skew-Hermitian. The

former vanishes at t = 0, which makes it difficult to define the Lyapunov growth precisely

at early time, while the latter gives [σ+,i(0), σ−,j(0)] = σzδij . Here we use the latter:

M̂ij ≡ [σ+,i(t), σ−,j(0)], L
(φ)
ij (t) ≡ 〈φ|M̂∗ki(t)M̂kj(t)|φ〉. (4.7)

Then L
(φ)
ij (0) = δij . The physical interpretation is clear: σ+,i(t) and σ−,j(0) creates/

annihilates the z-spin at point i, j and time t, 0, respectively.

4.3 Kolmogorov-Sinai entropy

For classical systems, the Kolmogorov-Sinai entropy hKS is defined as the sum of all positive

Lyapunov exponents. We use the same definition here, by using the Lyapunov exponents

we have defined in this paper:

hKS =
∑
λi>0

λi. (4.8)

Away from the classical limit, the properties of this quantity are not immediately clear. It

will be studied in section 5.1.2.

This ‘KS entropy’ is not necessarily the same as the definition in other literature. See

refs. [80–85] for other approaches.
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Figure 3. The generalized Majorana SYK model. d1 and d2 vs j/L. Averages over 50 samples

(N = 12, 16) and 5 samples (N = 20). [Left] K = 0.01, [Right] K = 10.

4.4 Is the ‘perturbation’ actually small?

In the study of quantum chaos based on OTOCs, and also in our approach, one usually

assumes that the perturbation — multiplication of local operators V̂ and Ŵ — does not

change the state too much. This should be the case when the system size is sufficiently

large provided W and V are few-body operators. However it is not necessarily the case

in actual numerical calculations. Below we see that, with realistic system sizes within our

reach, this assumption is not valid for the SYK model and hence some care is needed when

we extract physics from the numerical data.

SYK. When an energy eigenstate |E〉 is ‘perturbed’ by the multiplications of ψ̂’s, the

‘perturbation’ is small when the energy is still well localized around E after the ‘perturba-

tion’. To see it quantitatively, we take |E〉 to be the ground state |E0〉, and plot d1(j) ≡
2
N

∑N
k=1

∑j
i=1 |〈Ei|ψ̂k|E0〉|2 and d2(j) ≡ 4

N

∑N
k=1

∑j
i=1 |〈Ei|ψ̂kψ̂k+1|E0〉|2 for N = 12, 16

and 20 in figure 3. Here the energy eigenvalues are ordered as E0 ≤ E1 ≤ · · · ≤ EL−1

(L = 2N/2). We can see rather large deviations of d1(j) and d2(j) from 1 even at large

values of j, which means that ψ̂k|E0〉 and ψ̂kψ̂k+1|E0〉 involve large contributions from

the excited states. When K is close to zero, they are almost uniform superposition of all

eigenstates. Therefore, with the resources we used for this paper, it is difficult to study

physics at different energy scales separately, especially when K is close to zero.

According to refs. [68, 69], the model under consideration is integrable at sufficiently

low temperature, when K > 0 and N = ∞. As we have seen already, it is hard to study

the properties of the integrable phase and chaotic phase separately. However by varying

the value of K we can change the numbers of integrable and chaotic states; as K becomes

larger, more energy eigenstates belong to the integrable sector. Hence we can learn about

the difference between two phases by looking at the way the property of the mixture

changes.
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Figure 4. The XXZ model. d ≡ 1
Nsite

∑Nsite
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∑j
i=0 |〈Ei,1/2|σ

+
k |E0,0〉|2. Averages over 100 samples

(Nsite = 6, 8) and 5 samples (Nsite = 10). The horizontal axis is j/LSz=1/2, where LSz=1/2 is the

dimension of Sz = 1/2 Hilbert space.

XXZ. In order to estimate the size of the perturbation, we calculated

d ≡ 1

Nsite

Nsite∑
k=1

j∑
i=0

|〈Ei,1/2|σ+
k |E0,0〉|2. (4.9)

Here |Ei,s〉 is the energy eigenstate in the total spin s sector, ordered as E0,s ≤ E1,s ≤ · · · .
The results are shown in figure 4. We can see that the perturbations are actually small,

unlike the case of SYK.

4.5 Relations to other approaches

Usually the Lyapunov exponent is defined in terms of OTOC,

〈[V̂ (t), Ŵ (0)]2〉β ∼ e2λ(OTOC)t, (4.10)

where V̂ and Ŵ are arbitrary local operators and 〈 · 〉β stands for the thermal average with

temperature T = β−1. The idea is that the Lyapunov growth with the largest exponent

can be captured by M̂ij with any combination of ẑi and Π̂j , and we do not need to take a

specific basis. By assuming the eigenstate thermalization hypothesis, the thermal average

should be indistinguishable from the expectation value taken in a typical energy eigenstate,

and then the components of L
(φ)
ij (with |φ〉 taken to be a typical energy eigenstate) should

grow as e2λit, and the largest eigenvalue should grow as e2λN t. At late time, the largest

exponent dominates the growth. Hence the largest Lyapunov exponent obtained by us-

ing our definition should be the same as the Lyapunov exponent defined from OTOC at

sufficiently late time.

One might consider
∑

i L
(φ)
ii (t) instead of 〈[V̂ (t), Ŵ (0)]2〉β ; if a given theory were gauge

theory, it would be a gauge invariant quantity. Actually the spectrum λi can naturally
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capture the sub-leading contributions in the Lyapunov growth, because∑
i

L
(φ)
ii (t) =

∑
i

s2
i =

∑
i

e2λit. (4.11)

In ref. [27], an operator which is essentially the same as
∑

i L
(φ)
ii (t) has been considered,

and the interpretation as the growth of a size of local operator has been explained.

Note that, even when one is interested only in the largest Lyapunov exponent, a

use of the spectrum can have technical gain for numerical calculations. If one uses the

usual OTOC to define the Lyapunov exponent as e2λ(OTOC)t ≡ 1
N

∑
i L

(φ)
ii (t) = 1

N

∑
i e

2λit,

the contribution from the smaller exponents can have non-negligible contribution at early

time. Numerically, it is not easy to study sufficiently late time where the largest exponent

dominates. By calculating the spectrum, it is possible to extract the largest exponent even

at early time. We will demonstrate this in section 5 (figure 9 and figure 13).

Lyapunovian. A related notion called the ‘Lyapunovian’ was recently proposed in

ref. [53]. Suppose we have a system with one x̂ and one Π̂. By using energy eigenstates

|Em〉, we can make the ‘Lyapunovian matrix’

〈Em|[x̂(t), Π̂(0)]2|En〉. (4.12)

Then one can study the eigenvalue statistics of this matrix. A natural counterpart for the

many-body case is

〈Em|[ẑi(t), Π̂j(0)]2|En〉. (4.13)

This is complementary to our approach, in which we tried to see the fixed-energy physics

for each reference state. Note also that the size of this Lyapunovian matrix in the many-

body case is exponentially large, unlike our approach where the size of the matrix is of

order the number of degrees of freedom.

We can also consider a hybrid,

Lim;jn(t) ≡ 〈Em|M̂∗ki(t)M̂kj(t)|En〉. (4.14)

Then there is no ambiguity associated with a choice of a reference state |φ〉. It would be

interesting to study the properties of the spectrum obtained from this matrix.

Lyapunov spectrum from projection. Another recently proposed approach due to

ref. [52] considers projecting the many-body Schrodinger equation onto a subspace of states

in the full Hilbert space, specifically a set of low-entanglement matrix product states. The

resulting projected dynamics can be viewed as a classical nonlinear dynamical system with

a symplectic structure. As such, it can exhibit classical chaos and has a notion of Lyapunov

spectrum. This auxiliary classical problem gives another way of associating a Lyapunov

spectrum with an arbitrary quantum system.

Based on the results of ref. [26], we expect that this projected low-entanglement dy-

namics can accurately capture the long-distance early growth of OTOCs. Hence, one
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might expect that part of their spectrum agrees with our definition, although we have not

checked this. However, there has also been some work advocating caution with such an

approach [86]. More generally, it is not clear to us how their full spectrum relates to the

spectrum we defined. It would be interesting to determine if their spectrum also exhibits

random matrix statistics, as suggested by our results.

5 Lyapunov growth

In this section, we present numerical results for the Lyapunov growth in SYK and XXZ

models. We then compare the Kolmogorov-Sinain entropy growth to the entanglement

entropy growth inspired by classical analogy of KS entropy and coarse grained entropy.

5.1 Lyapunov growth in SYK

5.1.1 The largest exponent vs λ(OTOC)

Let us start with the ‘usual’ OTOC (4.11), which is

e2λ(OTOC)t ≡ 1

N

N∑
i=1

L
(φ)
ii (t) =

1

N

N∑
i,j=1

〈
φ|{ψi(t), ψj(0)}2|φ

〉
=

1

N

N∑
i=1

e2λit. (5.1)

In the left panel of figure 5, we plot λ(OTOC)t at β = 1/T = 0. We can see the exponential

growth followed by the saturation at λ(OTOC)t ∼ logN as in figure 6.5 Two red vertical

lines show the times at which this growth reached 20% and 80% for N = 20. Between

them, the slope is approximately constant for each N . We can see it more clearly in the

middle panel, where λ(OTOC) is shown. At 6 ≤ N ≤ 24, the exponent λ(OTOC) changes

substantially with N , and it is not easy to take the large-N limit. In the right panel, we

have shown the energy dependence of λ(OTOC), by taking |φ〉 to be the energy eigenstates.

Strangely, the exponent in the ground state is larger than the one in the excited states. As

we will explain later, this is because the finite-N effect is large.

Next let us see the Lyapunov spectrum obtained from our definition. In the first two

panels of figure 7, we have plotted λN t for several values of K and N = 14, 16 at β = 0; we

can see the exponential growth followed by the saturation. The third and fourth panels in

figure 7 show the N dependence of λN t and λN for K = 0.01. Compared to λ(OTOC), the

value at each N is larger (see figure 9), because λ(OTOC) contains the ‘contamination’ from

the smaller exponents λ1, · · · , λN−1. As we will see shortly, the finite-N corrections to the

smaller exponents are larger than the one to the largest exponent. For this reason, λ(OTOC)

depends more severely on N . Note also that the N -dependence of λN is not smooth, but

rather it shows sensitive dependence on N mod 8, which suggests that λN captures the

finer detail of the theory at finite N .

5The fit value is close to e2λ
(OTOC)t = N

2
. This is value can be explained as follows.

At late time, all
〈
φ|{ψi(t), ψj(0)}2|φ

〉
in (5.1) give the same contribution. Each of them con-

tains four terms, 〈φ|ψj(0)ψi(t)ψi(t)ψj(0)|φ〉, 〈φ|ψi(t)ψj(0)ψj(0)ψi(t)|φ〉, 〈φ|ψi(t)ψj(0)ψi(t)ψj(0)|φ〉 and

〈φ|ψj(0)ψi(t)ψj(0)ψi(t)|φ〉. The first two terms are 1
4
, while the latter two terms are suppressed at large

N . Hence e2λ
(OTOC)t → 1

N

∑N
i,j=1 2× 1

4
= N

2
up to a small correction.
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Figure 5. The generalized SYK model with K = 0.01. [Left] The Lyapunov growth from

OTOC, the almost linear dependence on time t of λ(OTOC)t = 1
2 log

(
1
N

∑N
i=1 e

2λit
)

. 10 samples

for N = 24, 22 and 1000 samples for N = 20, 18, . . . , 6 are used. Vertical lines correspond to

20% and 80% for N = 20. [Middle] The Lyapunov exponent estimated from OTOC, λ(OTOC) ≡
1
2t log

(
1
N

∑N
i=1 e

2λit
)

. [Right] At each N , the exponent λ(OTOC) at t = 2 is shown as the function

of the energy Ei. The horizontal axis is (i + 1/2)/L, so that the left and right corresponds to low

and high energies.

In figure 8, all the exponents λi are shown for N = 16. When K is small, all the

exponents are positive. For larger K (K & 10), beyond t & 1, a gap emerges between

the larger half and smaller half of the exponents, and the density distribution of the lower

eight exponents become increasingly sharper and get closer to zero. Two red vertical lines

represent the 20% and 80% saturation of λN t. Between them the exponents are almost

constant.

In figure 9, the largest exponent λN is compared with λ(OTOC). As explained around

eq. (4.11), λ(OTOC) is contaminated by the smaller exponents; indeed, we can see clear

difference in the plot. It is interesting to note that the difference between λN and λ(OTOC)

becomes smaller as N increases. In section 5.1.3, we will study this point further.

Figure 10 is made in order to see the effect of the choice of the reference state. The

left panel is the energy vs the largest exponent λN at N ≤ 24. There are two peculiar

points here (note that we observed the same for λ(OTOC) in figure 5): the growth rate

does not seem to depend heavily on the choice of the energy eigenstate. Even when we
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Figure 7. The average of the largest Lyapunov exponents obtained using all eigenvectors of

the generalized SYK model. [Upper-left] λN t vs t for N = 14, various K. [Upper-right] λN t vs t

for N = 16, various K. [Lower-left] The N dependence of λN t for K = 0.01. The vertical lines

corresponding to 20% and 80% of the plateau value (at t = 10) of λLt for N = 20 are also shown.

[Lower-Right] The N dependence of λN for K = 0.01.
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points omitted) plotted against time t for the generalized Majorana SYK model with K = 0.01.

take |φ〉 to be the ground state, we can still see the exponential growth. Furthermore, the

ground state gives faster growth. Seemingly it has a tension with the large-N result at low

temperature, λ = 2πT . Presumably this is because the values of N studied here are so
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Figure 10. The generalized Majorana SYK model with K = 0.01. [Left] At each N , the largest

Lyapunov exponent λN at t = 2 is shown as the function of the energy Ei. The horizontal axis is

(i + 1/2)/L, so that the left and right corresponds to low and high energies. [Middle] hKS/N vs

energy, at t = 2. [Right] hKS/N against 1/N , for the ground state and the center of the energy

spectrum.

small that the energy excitation caused by operator M̂ is not negligible, as we have seen

in section 4.4. At least, as we can see from the right panel, the exponents calculated by

using the ground state |E0〉 become smaller than the ones obtained from the state at the

center of the energy spectrum |EL/2〉 at N & 26. Still, our numerics is not good enough to

show whether λN defined from the ground state vanishes in the large-N limit, as expected

from both the usual intuitive picture and the MSS bound.

5.1.2 Kolmogorov-Sinai and entanglement entropy

For classical systems, the Kolmogorov-Sinai entropy hKS is defined as the sum of all positive

Lyapunov exponents. We use an analogous definition here for the quantum Lyapunov

exponents we have defined in this paper; see eq. (4.8).

Kolmogorov-Sinai entropy (KS). In the middle panel of figure 10, the energy depen-

dence of hKS/N is shown. At small N , the curve is concave due to the finite-N effect. As

N becomes large, it will become convex as we can see from the right panel of figure 10.

Entanglement entropy (EE). Let us introduce Dirac fermions ĉk =
ψ̂2k−1+

√
−1ψ̂2k√

2
(k = 1, 2, . . . , N/2). Then we can label the states by using the excitation number 0 or 1 for

ĉk. We use the state |00 · · · 0〉 to calculate the entanglement entropy. (Note this is not the

ground state of the Hamiltonian.) We factorize the Hilbert space to be H|A| × HN/2−|A|,
where H|A| and HN/2−|A| are generated by acting ĉ†1, · · · , ĉ

†
|A| and ĉ†|A|+1, · · · , ĉ

†
N/2 to the

ground state, respectively.6 Then we trace out HN/2−|A|.

KS vs EE. As discussed in section 2.1, in the classical limit the growth rate of the coarse

grained entropy should agree with the Kolmogorov-Sinai entropy hKS. Therefore, we expect

that, in quantum theories, NSEE/|A|,7 which corresponds to the coarse grained entropy of

the system, and hKSt should agree up to an additive constant. As we have emphasized, for

6Here we are defining fermions in terms of spin variables via the Jordan-Wigner transform. The spin

Hilbert space then has a sensible tensor product structure and this decomposition is what we are referring to.
7Note that we are proposing to use the entanglement entropy as a quantum analog of classical course

grained entropy.
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Figure 11. [Left] SYK model, comparison of thKS and NSEE/|A|. As an initial state, the Fock

vacuum annihilated by ĉj =
ψ̂2j−iψ̂2j−1√

2
for all j = 1, 2, · · · , N2 has been used. [Right] Essentially

the same plot, but SEE is shifted by a constant.

the values of N studied in this paper, hKS captures contributions from almost all energy

eigenstates.

In the left panel of figure 11, we have plotted NSEE/|A| and hKSt obtained from the

SYK model at β = 0. At early time, they show similar growths; indeed, as we can see the

right panel, at 1 . t . 2 they agree very well just by a constant shift.8 This results are not

conclusive, however, they are suggestive that the KS entropy can actually be understood

as the entropy production rate in quantum systems.

5.1.3 Fastest entropy generator?

As we have seen in section 5.1.1, the difference between λN and λOTOC becomes smaller as

N increases. This means the largest exponent λN and the smallest exponent λ1 get close.

We can actually numerically confirm that λN − λ1 scales as 1/N at t . 2. This strongly

suggest that the Lyapunov spectrum peaks like the delta function in the large-N limit.

This is consistent with the previous analysis on the OTOC at N =∞: if the spectrum has

nontrivial distribution, it can give a power law correction tνeλOTOCt with ν > 0. But such

correction has not been found [59].

It is interesting to compare this behavior with the usual (weakly coupled) string theory

dual. The Lyapunov spectrum of the D0-brane matrix model in the classical limit (highly

stringy region) converges to the semi-circle distribution with an O(N0) width [65], unlike

the weak coupling region of SYK. Hence the large-N limit of the D0-brane theory does not

by itself make the distribution peaked, unlike in the SYK model. However the analyses on

the dual gravity side including the finite coupling correction at large N (the α′ correction

in gravity side) to the Lyapunov exponents [43] suggest that the Lyapunov exponents peak

at the largest possible value (the MSS bound) at strong coupling (for example, a power-law

correction has not been seen). The same seems to be true for other quantum field theories

which can be analyzed with dual gravity calculations [43].

8This shift can be understood as the ambiguity of the size of the cell in figure 1.
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Assuming this is true, both in the SYK model and quantum field theory with the usual

string theory dual, all exponents saturate the MSS bound at strong coupling and large N .

Therefore, both of them appear to take the largest possible Kolmogorov-Sinai entropy, or

the largest possible entropy production rate.9

For the canonical ensemble, the largest possible value of each exponent is 2πT . Ap-

parently, when all exponents saturate this bound, the sum is maximal. Hence, it would be

natural to conjecture that black hole has the largest possible KS entropy. Note that we

have the single black hole configuration (the leftmost figure in figure 2) in mind.

For the microcanonical ensemble, it would be natural to conjecture that the entropy

generation rate increases as the black hole grows, as demonstrated for a simple case in

section 2.1.1. We can also show the same pattern for more generic initial conditions, and

we can also show that the KS entropy decreases as black hole evaporates [54]. Therefore we

conjecture that the KS entropy is maximal when all the degrees of freedom are absorbed

in one black hole and thermalized.

5.2 Lyapunov growth in XXZ

Because the total z-spin S
(total)
z commutes with the Hamiltonian (3.4), we focus on the

Lyapunov growth in the zero-spin sector, 〈S(total)
z 〉 = 0. As we have seen in section 4.4, the

multiplication of σ can actually be regarded as a small perturbation, and hence it makes

sense to study the temperature dependence, unlike the case of SYK.

In figure 12 we have plotted λNsitet and λ(OTOC)t as functions of t for Nsite = 12 and

λNsitet for various temperatures. For each Nnsite, λ
(OTOC)t converges to the same value,

1
2 log

(
1 + Nsite

2

)
.10

The N -dependence of λNsite and λ(OTOC) are shown in figure 13 for W = 0.5 and

W = 4.

In figure 14, we plot λNsitet in order to see the detail of the Lyapunov growth. The

left figure is the ergodic phase, W = 0.5. The exponential growth λNsitet ∼ t, λNsite ∼ 0.3

can be seen at early time. At some intermediate O(N0
site) time, the power-law growth sets

in. Similar behaviors both in ergodic and MBL phases (W = 4.0) shown in the middle.

However the late-time behaviors are rather different. In the ergodic phase, the power

growth continues all the way up to the plateau, which scales ∼ logN . On the other hand,

in the MBL phase, the power growth stops at O(N0
site) time, and much slower growth sets

in. In the left panel of figure 14, the deviation from the late-time plateau in the MBL

9We repeat that we have used ‘Kolmogorov-Sinai entropy’ to mean the sum of the Lyapunov exponents.

Where this agrees with the entropy production rate even at quantum level is a subtle issue which requires

further study, although qualitative agreement has been observed as shown in section 5.1.2.
10For each energy eigenstate |E〉, terms of the form 〈E|σ+,j(0)σ−,i(t)σ+,i(t)σ−,j(0)|E〉 =

||σ+,i(t)σ−,j(0)|E〉||2 and 〈E|σ−,i(t)σ+,j(0)σ−,j(0)σ+,i(t)|E〉 = ||σ−,j(0)σ+,i(t)|E〉||2 give dominant con-

tributions at late time. Because we are taking |E〉 to be in the total spin zero sector, when σ−,j(0)

is multiplied on |E〉, half of the terms in the z-spin basis — terms with down spin at j-th sire —

is annihilated. Hence σ−,j(0)|E〉 is roughly norm 1/
√

2, and consists of terms with Nsite/2 + 1 down

spins and Nsite/2 − 1 up spins. Then when we further multiply σ+,i(t), (Nsite/2 + 1)/Nsite terms sur-

vive. Hence ||σ+,i(t)σ−,j(0)|E〉||2 ' (Nsite/2 + 1)/2Nsite. For the same reason, ||σ−,j(0)σ+,i(t)|E〉||2 '
(Nsite/2 + 1)/Nsite. Hence e2λ

(OTOC)t ' 1
Nsite

∑
i,j

Nsite/2+1
2Nsite

× 2 = Nsite
2

+ 1.
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Figure 12. λNsitet (with data points and error bars) and λ(OTOC)t (with the same color as λNsite

but data points omitted) plotted against time t for the XXZ model with Nsite = 12, W = 0.5 and

various temperatures T . 215 samples have been used for each data point.
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Figure 13. λNsite
(with data points and error bars) and λ(OTOC) (with the same color as λNsite

but data points omitted) at T =∞ plotted against time t for the XXZ model with Nsite = 12, [left]

W = 0.5 (215 samples for Nsite = 12, more samples for N ≤ 10) and [right] W = 4 (at least 102

samples for Nsite = 12, more samples for N ≤ 10).

phase is plotted in the log-log scale. We can see a straight line, which means the late-

time behavior is A−Bt−p. This is consistent with the theoretical expectation in ref. [45].

With the range of Nsite available at this moment, it is hard to take the large volume limit,

Nsite →∞.

A possible explanation of this pattern is as follows. In the classical theory, the per-

turbation at t = 0 can be sent arbitrarily small, and the exponential growth can continue

forever. However when the perturbation is finite, the exponential growth stops at a finite

time; otherwise the causality is broken! (In the nonrelativistic theory the speed is not

limited, but once the initial condition is set, then the energy conservation sets the upper

limit of the speed at later time.)
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Figure 14. [Left] XXZ model, 〈λNsitet〉, W = 0.5 (ergodic phase), T = 1. The growth starts as

λNsite
t ∼ 0.22t (usual exponential growth), then accelerated to λNsite

t ∼ 1.1t1.5, and then a power

growth λNsite
t ∼ 0.36 log t is observed all the way up to the plateau. [Middle] 〈λNsite

t〉, W = 4.0

(MBL phase), T = 1. The growth starts as λNsite
t ∼ 0.78t (usual exponential growth), then from

t ∼ 0.3 the power growth λNsitet ∼ 0.35 log t sets in, but unlike the case of W = 0.5, it ends at

t ∼ O(N0
site) before the plateau is reached at exponetially long times. [Right] The late-time behavior

of 〈λNsite
t〉, W = 4.0 (MBL phase), T = 1. The deviations from the late time values are plotted for

several values of Nsite.

In the quantum theory, the perturbation is necessarily finite and hence the exponential

growth has to stop at some point. In nonlocal systems like the matrix model and SYK

model, the exponential growth stops when the ‘local’ perturbation (say the multiplication

of ψ1) affects all other degrees of freedom substantially. This is typically O(logNsite) time.

For local systems like the spin chain, the exponential growth has to stop at O(1) time,

because σj(t) and σi(0) commute when t is smaller than |i − j| divided by the butterfly

velocity; when the exponential growth stops, only O(1) number of degrees of freedom talk

to each other. (The system size does not matter, otherwise the causality or the Lieb-

Robinson bound is broken.) M̂ij(t) is a banded matrix with width w ∼ t, and if we use a

very rough approximation that all the nonzero entries are of order one, then the singular

values scale as
√
w. It leads to a late time behavior λt ∼ 0.5 log t, which is in the right

ballpark compared to 0.35 log t and 0.32 log t in the left panels of figure 14.

As a related example, let us consider planar black p-brane (p > 0), which is described

by U(N) super Yang-Mills on R1,p. How is a localized perturbation scrambled in this

theory? Firstly the fast scrambling with λ ∼ 2πT mixes the information among the gauge

degrees of freedom; then the information gradually spreads along Rp. In terms of gravity,

the horizon has a topology of S8−p × Rp, and the fast scrambling takes place along S8−p

while the growth along Rp is slower and dominant at late time. The 1d spin chain is

analogous to p = 1 and very small N .

In the explanation above, only the local physics is important for the early-time expo-

nential growth. Hence the same pattern is expected both in the ergodic and MBL phases.

The time scale of the saturation of the power growth can be different; in the ergodic phase

the saturation time scale should increase with the system size, while in the MBL phase it

is independent of the system size, instead only the volume of the region affected by the

perturbation matters. It is consistent with the numerical results: in the left plot of fig-

ure 14 the saturation time scale increases with the system size, while in the middle plot of

figure 14 it seems to be insensitive to the system size. The results here are averaged over

the eigenstates; see figure 15 for the energy dependence.
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Figure 15. For XXZ model, the dependence on the eigenstate energy of λOTOC, λN and hKS are

plotted. For i = 1, 2, . . . , 924, the sample average of these quantities for the eigenstate with the i-th

smallest energy eigenvalue of the Hamiltonian is plotted against the average of the energy. Upper:

W = 0.5. Lower: W = 4.

For local quantum systems, the absence of the exponential Lyapunov growth should be

generic. As we have seen above, it is not easy to distinguish the ergodic and MBL phases

just from the power growth. However, as we will see in section 6.2, the statistical features

of the Lyapunov exponents are clearly different in these two phases.

6 Random matrix statistics of Lyapunov spectrum

In this section we study the statistical properties of the quantum Lyapunov spectrum,

motivated by the universality in the classical Lyapunov exponents explained in section 2.2.

6.1 Lyapunov spectrum vs RMT in SYK

According to refs. [68, 69], the q = 2 deformed SYK model (eq. (3.3)) is integrable at

sufficiently low temperature, when K > 0. Therefore, by carefully choosing the energy

eigenstates, we can study the statistical features of the Lyapunov spectra in the integrable

and chaotic phases, in principle. However, as we have seen already, perturbations by

multiplications of ψ̂ is not really ‘small’ at the system size we can study numerically, and

hence it is hard to study the properties of the integrable phase and chaotic phase separately.
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Figure 16. Nearest neighbor correlation for the unfolded Lyapunov spectrum of the generalized

Majorana SYK model, N = 14, β = 0, 0.02 ≤ t ≤ 100 with K = 0.01, 10. [Upper] standard

unfolding is conducted by fitting the density of exponents using a polynomial. [Lower] The fixed-i

unfolding has been performed. When K is small, good agreement with GUE is observed, until very

late time. When K is large, small deviation from GUE can be seen at early time, and the deviation

grows quickly at later time.

Below, in addition to the nearest-neighbor level correlation, we study the nearest-

neighbor gap ratio,

ri =
min(λi − λi−1, λi+1 − λi)
max(λi − λi−1, λi+1 − λi)

. (6.1)

In the upper row of figure 16, we have shown the nearest neighbor level separation esti-

mated after the standard unfolding procedure. Namely, we have estimated the distribution

of the Lyapunov exponents by using energy eigenstates within certain range (between 5%

and 10% in these specific plots), numerical fit it by polynomial of degree 10 and used it for

the unfolding. We can see good agreement with GUE at small K, but there is a small but

visible deviation.

A possible flaw of this method is that, when Nsite is small, peaks arising due to the

level repulsion can be visible and the unfolding can eliminate them as well, so that the uni-

versal random matrix behavior is erased. To circumvent such possibility, we tried another

unfolding prescription as well: normalize the gap gi = λi+1−λi so the average is 1. Define

g̃i ≡ gi/〈gi〉 and look at the distribution of g̃i. We call it ‘fixed-i unfolding’. The result is
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Figure 17. The r-parameter 〈r〉 for the N = 14 SYK model, with fixed-i unfolding, obtained

by [left] using the larger N/2 = 7 exponents, and [right] using all the exponents. The early time

behaviors are almost identical. (Different late time behaviors appear because a large gap sets in

between λN/2 and λN/2+1.) At K = 10 and 100, large deviation from the GUE value is observed

before the Lyapunov growth (with almost constant Lyapunov exponent) sets in. At K = 1, a large

deviation is observed before the Lyapunov growth ends. At K = 0.01 and 0.1, the r-parameter

stays close to the GUE value even at t = 100.

shown in the lower row of figure 16. Compared to the standard unfolding (the upper row

of figure 16), the agreement with GUE is improved substantially for K = 0.01. On the

other hand, for K = 10, there is no improvement.

In figure 17, we show the time dependence of r at β = 0. (As discussed around

figure 8 for the case of N = 16, a gap develops between λN/2 and λN/2+1 for larger K

as t is increased. In order to check that this gap does not affect the result, we have

also calculated 〈r〉 using only the larger N/2 exponents. We can see that the early time

behaviors are almost identical.) At K = 10 and 100, large deviation from the GUE value is

observed before the Lyapunov growth (with almost constant Lyapunov exponent) sets in.

At K = 1, a large deviation is observed before the Lyapunov growth ends. At K = 0.01

and 0.1, the r-parameter stays close to the GUE value even at t = 100. In figure 18,

we show essentially the same plot, but using |E0〉, |EL/2〉 and |EL−1〉. We don’t see a

significant change as expected; for the value of N we study, the perturbation is too large,

so that we can only see a mixture of almost all states. At sufficiently large N we expect

different behaviors depending on the energy.

As K becomes larger, more energy eigenstates belong to the integrable sector. That

the Poisson statistics sets in with larger K suggests that the spectrum in the integrable

sector follows Poisson. Note that the GUE appears as t → 0 even at large K. We do not

have understanding about this property.

6.2 Lyapunov spectrum vs RMT in XXZ

Because the total z-spin S
(total)
z commutes with the Hamiltonian (3.4), we focus on the

Lyapunov spectra obtained by using eigenstates with 〈S(total)
z 〉 = 0.
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Figure 18. The r-parameter 〈r〉 with fixed-i unfolding, obtained using all exponents for the

Nsite = 14 SYK model, for the ground state (left), the state at the center of the energy spectrum

(center) and the highest energy state, plotted as a function of t for K = 0.01, 0.1, 1, 10.

As explained in section 3.2, this theory has ergodic and MBL phases. We will study

W = 0.5 and 1.0, which are mainly in the ergodic phase except for the edges of the energy

spectrum, and W = 4.0, which is dominantly in the MBL phase.

In figure 19 we have plotted P (s) obtained by using eigenstates with the energy within

45%–55% from the lower edge of the spectrum,11 with the fixed-i unfolding introduced in

section 6.1. We can see a good agreement with GUE for W = 0.5 and 1.0 (the ergodic

phase) at sufficiently late time, while the Poisson distribution is favored for W = 4.0 (the

MBL phase). In figure 20, we fixed W = 0.5 and varied the energy band. We can see

the time evolution strongly depends on the choice of the energy. We can also see that the

GUE is not obtained near the ground state, which is close to the MBL phase. Note that

we have shown two results, one obtained by using all exponents and the other obtained

by only the largest three exponents. The reason is as follows. When we plot the sample

averaged values of λi against the eigenstate index, for the XXZ model with smaller values

of W , at short times large gaps between the smaller, nearly twofold degenerate exponents

are observed for lower energy eigenstates. For larger N/2 exponents, the averaged values

are evenly distributed for t & 5. Therefore, in order to make sure the universal behavior

can be seen regardless of the choice of the exponents, we have shown two results. Below,

we will also study the gap ratio r. This is more sensitive to the change of the gap size, and

hence, we will use the largest three exponents for safety.

In order to see the time and energy dependence quantitatively, we have plotted 〈r〉
with the fixed-i unfolding in figure 21, for W = 0.5, for various energy bands. We can see

better agreement with GUE (both the value and time window) at the center of the energy

spectrum. Recalling that the middle of the energy spectrum is in the ergodic phase except

that the small region near the edges remain MBL, this is consistent with the interpretation

that GUE is obtained for the ergodic phase but not for the MBL phase.

11We have used such a narrow energy band because we can actually see the energy dependence unlike

the case of SYK, as explained in section 4.4.
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Figure 19. XXZ model, distribution of the normalized gap P (s). Nsite = 10 and 900 samples

have been used for each case. The fixed-i unfolding [upper] for the two gaps between the three

largest exponents and [lower] for all gaps have been used for the Lyapunov exponents obtained

using 45%–55% of the spectrum for each sample, in which 0% corresponds to the ground state.

Left: W = 0.5. Middle: W = 1. Right: W = 4.

The Nsite-dependence of 〈r〉 is shown in figure 22. The GUE can be seen with good

precision at Nsite ≥ 8. We studied the values of 〈r〉 for N = 6, 8, 10 and 12 until very late

time (t . 108). For these values of N , 〈r〉 becomes almost constant, which is different from

the GUE value, at t & 10. Therefore we expect the importance of the large-N limit before

t→∞ for the emergence of the universality.

7 Conclusion and outlook

In this paper we have proposed a generalization of the Lyapunov spectrum to quantum

theories, and studied its properties by using the SYK model and the XXZ model with

random magnetic field as examples. By definition, the Lyapunov spectrum contains more

information than just the largest exponent.

The KS entropy — which we defined by the sum of the positive exponents — is likely

to be a better characterization of the strength of the chaos, because it can describe the

entropy production rate. We conjectured that the black hole maximized the KS entropy.

We also found the numerical evidence for the universality of the Lyapunov spectrum.

(Previously, this universality has been observed in classical chaos as well [55].) It is inter-

esting if we could understand the meaning of the onset of the universal RMT behavior. It
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Figure 20. XXZ model, distribution of the normalized gap P (s). Nsite = 10, W = 0.5 and 900

samples have been used for each case. The fixed-i unfolding [upper] for the two gaps between the

three largest exponents and [lower] for all gaps have been used for the Lyapunov exponents obtained

using 0%–5% (left), 45%–55% (middle; the same as the left panel in figure 19), and 85%–90% (right)

of the spectrum for each sample.
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Figure 21. Plot of 〈r〉 for the two gaps between the three largest exponents for XXZ, Nsite = 10,

W = 0.5. Better agreement with GUE (both the value and time window) can be seen at the center

of the energy spectrum, which is consistent with the fact that the center of the energy spectrum is

in the ergodic phase while the edges remain MBL.
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Figure 22. XXZ model, plot of averaged nearest gap ratio 〈r〉, obtained using individual gap

unfolding for the two gaps between the three largest exponents for Nsite = 12, 10, 8, 6. Top: W = 0.5.

Bottom: W = 4. Both in upper and lower rows, the plots are obtained using the eigenstates in

between [left] 0% and 5%, [middle] 45% and 55%, and [right] 90% and 95% of the energy spectrum

for each sample.

should have something to do with holography, because special theories which are dual to

quantum black holes — the SYK model, and classical D0-brane matrix model, as demon-

strated in ref. [55] — show the universality already at t = 0. We propose that the quantum

systems holographically dual to Einstein gravity satisfy this ‘strong’ universality.

The conjectures above are based mainly on the numerical observations for limited

number of theories. It is important to study more examples, and also, to develop the

understanding on the gravity side. Another important issue is how the universality class

is determined. For the examples studied in this paper we observed only GUE ensemble,

regardless of the system size.

It is also important to apply the method presented in this paper to various physical

systems, especially in the contexts of condensed matter and quantum gravity. It should

be possible to get new insight into scrambling and thermalization by observing the Lya-

punov growth, and with various examples we might be able to understand the meaning of

the characteristic time scales associated with the Lyapunov growth and the onset of the

universal spectral behavior. Toward the study of full string theory, probably the weakly

coupled region of D0-brane matrix model [87, 88] is a good place to start.
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It would also be interesting to develop a measurement protocol for the Lyapunov

spectrum along the lines on ref. [13]. A brute force way to approach the problem is to

consider performing a whole set of many-body interference experiments to measure the

various matrix elements needed to construct the spectrum-defining matrix. A detailed

study of the feasibility of the this approach, and the search for more economical approaches,

is left to future work.
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