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ABSTRACT: We introduce a simple quantum generalization of the spectrum of classical
Lyapunov exponents. We apply it to the SYK and XXZ models, and study the Lyapunov
growth and entropy production. Our numerical results suggest that a black hole is not just
the fastest scrambler, but also the fastest entropy generator. We also study the statistical
features of the quantum Lyapunov spectrum and find universal random matrix behavior,
which resembles the recently-found universality in classical chaos. The random matrix
behavior is lost when the system is deformed away from chaos, towards integrability or
a many-body localized phase. We propose that quantum systems holographically dual to
gravity satisfy this universality in a strong form. We further argue that the quantum Lya-
punov spectrum contains important additional information beyond the largest Lyapunov
exponent and hence provides us with a better characterization of chaos in quantum systems.
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1 Introduction

Many-body quantum chaos is of fundamental interest in a variety of fields of physics,
including condensed matter, quantum information, and quantum gravity. Considerable
recent progress has come from the realization that it is possible, in some cases, to define
a kind of quantum butterfly effect and a corresponding quantum Lyapunov exponent via



so-called out-of-time-order correlators (OTOCs) [1, 2]. It was also discovered that the expo-
nent so defined obeys a universal bound, the Maldacena-Shenker-Stanford (MSS) bound,
Ay < 27T [3], and that the bound is saturated by strongly coupled quantum systems
holographically dual to Einstein gravity [4, 5].

This notion of quantum Lyapunov exponent has since received intense scrutiny; it is
related to information scrambling [4, 6-8] and thermalization [9-12], it can be measured
experimentally [13-23], it relates to operator growth [24-31], and can be computed ei-
ther numerically or analytically in many model systems [5, 24-26, 32-51]. However, to
the best of our knowledge, these recent developments have focused almost exclusively on
what, in retrospect, might be called the largest quantum Lyapunov exponent (two excep-
tions [52, 53], are discussed below). Yet at least for systems near a classical limit, the whole
spectrum of Lyapunov exponents (the classical Lyapunov spectrum) makes sense and can
contain additional useful information. For example, the sum of the positive Lyapunov
exponents, called the Kolmogorov-Sinai (KS) entropy, characterizes the strength of chaos
more precisely than the largest Lyapunov exponent alone.

Given these rapid developments, it is natural and desirable to attempt to extend the
notion of a classical Lyapunov spectrum to general quantum systems away from the classical
limit. In this paper, we give one definition of a quantum Lyapunov spectrum which makes
sense for any many-body quantum system. There are several motivations for this study.
One question is do black holes become more or less chaotic as they grow in size? To answer
this basic question, we need to define the strength of chaos precisely. As explained in
section 2, the KS entropy is a better indicator than the largest exponent alone. It is likely
that, as a black hole grows, the KS entropy increases, while the largest Lyapunov exponent
decreases [54]. Hence looking at the entire Lyapunov spectrum gives a different picture
of chaos in black holes than the largest Lyapunov exponent alone. Another motivation is
universality in the classical Lyapunov spectrum [55]: in some chaotic systems, the classical
spectrum converges to a random matrix theory (RMT) spectrum, with the time scale
for the onset of universality seemingly related to the strength of chaos. In particular, a
matrix model of black holes [56-58] shows the universality from ¢ = 0, indicating a possible
signature of gravity in the Lyapunov spectrum.

In this paper, we introduce a generalization of the classical Lyapunov spectrum to
quantum many-body systems, including systems far from any classical limit. Our definition
has a natural physical interpretation and, when the classical limit can be taken, it reduces
to the usual classical Lyapunov spectrum. Furthermore, the largest Lyapunov exponent
agrees with the usual quantum Lyapunov exponent in the literature as obtained from
OTOCs at sufficiently late times.

To elucidate the physics of our definition, we study two systems, the non-local Sachdev-
Ye-Kitaev (SYK) model [5, 59, 60] and the local XXZ model with random magnetic field
(see e.g. [61]). In the case of SYK, disordered couplings are part of the basic definition.
In the case of XXZ, the model is considered in the isotropic (Heisenberg) limit with an
additional disordered magnetic field. We analyze both by performing systematic exact
diagonalization studies of the quantum Lyapunov spectrum including disorder averaging.
Our main results can be summarized as follows.



e We observe a period of approximately exponential growth, meaning an approximately
time-independent Lyapunov spectrum, for the nonlocal SYK model. For the local
XXZ model we observe a brief period of approximately exponential growth followed
by a period of power law growth.!

e We numerically demonstrate that a naive generalization of the classical KS entropy
— just the sum of positive quantum Lyapunov exponents — is close to the produc-
tion rate of the entanglement entropy, with a proper normalization needed for the
connection to classical coarse-grained entropy.

e We also suggest that this ‘quantum KS entropy’ is maximized when the quantum
system has dual gravity description on the black hole background. In other words,
we suggest that black hole is not just the fastest scrambler but also the fastest entropy

generator.

e For both SYK and XXZ models in the appropriate regime we observe random matrix
theory (RMT) behavior for the quantum Lyapunov spectrum. This universality fails
in expected ways, including for integrable and localized systems.

The outline of the remainder of the paper is as follows. Section 2 recalls the basic
definition of the classical Lyapunov spectrum. Section 3 introduces the SYK and XXZ
models. Section 4 defines the notion of a quantum Lyapunov exponent. Section 5 studies
the growth characteristics of the quantum spectrum with time. Section 6 studies the
distribution of the quantum Lyapunov spectrum, establishing a link to random matrix
statistics. Section 7 contains concluding remarks and outlook.

2 Lyapunov spectrum in classical chaos

First let us see how the classical Lyapunov exponents are defined. For simplicity we
consider only Hamiltonian systems. Suppose the phase space is described by coordi-
nate variables xz; (i = 1,2,---,N) and conjugate momenta p;(i = 1,2,--- ,N). We use
z; (i=1,2,--- ,2N) to denote x; and p; together. The sensitivity to the initial condition
at t = 0 is captured by

(521(15)
Mz" t) = . 2.1
0= 500 (2.1)
The finite-time Lyapunov exponents \;(¢) are defined by
1
Ai(t) = n log s;(t), (2.2)

where s;(t) are singular values of M;;(t). These exponents converge to constant values
at sufficiently late time. Note that they are calculated for each initial condition, which is

!Because the growth is not exponential, the Lyapunov exponents vanish at late time. Still they quan-
titively capture the growth of the OTOCs. Intuitively it would be easier if we look at s;, rather than ;.
(For the definition of A; and s;, see eq. (2.2).)



analogous to the microstate in the quantum theory. Often the average over initial conditions
is taken. Note also that we can calculate the exponents from the eigenvalues of

Liy(t) = [MT )M (®)];; = My (8) My (0, (2.3)

which are (s;(t))?.
Often the limit ¢ — oo is considered. In this paper, we will be interested in the finite-¢
behavior.

2.1 Kolmogorov-Sinai entropy

Suppose our knowledge about the initial condition is limited and we only know that it is
in a small region in the phase space, say the blue disk in figure 1. As time passes by, this
region is stretched along some directions and compressed along the others. If we introduce
a grid like in figure 1 and count the number of cells needed for covering the region, more
and more cells are needed at later time; the number scales as

H eM = ehist hks = Z A (2.4)

A>0 A>0

This exponential growth characterizes the loss of our knowledge about a given initial condi-
tion. The coarse-grained entropy, which is the log of the uncertainty, increases as hxst. The
Kolmogorov-Sinai (KS) entropy hks is the growth rate of the coarse-grained entropy [62]
(although for exceptions see ref. [63]).2

The quantum counterpart of the coarse-grained entropy is the entanglement entropy.
Indeed, the growth of the entanglement entropy of a subregion of a system is an essential
part of quantum thermalization. It would be desirable if the KS entropy hgksg could be
identified with the growth rate of the entanglement entropy as well, at least near the
classical limit.

2.1.1 Application to black hole

In the sense discussed above, the spreading of information in phase space is better charac-
terized by the KS entropy than the largest Lyapunov exponent alone. This is particularly
so for a black hole. In order to understand why, let us consider the matrix model of black
hole made of DO-branes and strings [56-58], which is the original setup used by Sekino
and Susskind to argue for fast scrambling [7]. (Essentially the same argument applies to
black hole described by other gauge theories as well.) This model contains nine N x N
Hermitian matrices as bosonic degrees of freedom. Diagonal and off-diagonal elements are
interpreted as the locations of DO-branes in nine-dimensional space and open strings con-
necting D0-branes. As shown in figure 2, a big black hole consisting of all N DO0-branes
and many open string excitations is described by fully excited N x N matrices, while block
diagonal configurations describe several black holes and the diagonal matrices describe a
gas of DO-branes without strings.

2Strictly speaking, d(hkst)/dt is the entropy production rate. At late time, hxs converges to a constant,
and hence d(hkst)/dt = hxs.



Figure 1. Suppose we know that the initial condition is contained in the blue disk in the upper
left corner. As this region evolves with time, although the volume is conserved due to the Liou-
ville theorem, the shape changes nontrivially, in particular, it is stretched exponentially in several
directions. The rate is governed by the positive Lyapunov exponents.

Suppose two black holes described by two blocks of the sizes alN x aN and (1 —
a)N x (1 — a)N (the middle of figure 2), with the same temperature Ti,;, come close
and merge to a single black hole (the left of figure 2). During this process, open strings
stretched between two black holes (off-diagonal blocks) become shorter, and hence lighter,
and eventually get excited. In this way the number of dynamical degrees of freedom are
doubled, and hence temperature, which is roughly equivalent to the energy per degree of
freedom, goes down [54]. For example, in the highly stringy region where the matrix model
admits a classical description, the energy is E = 6N?Tx, = 6(a? + (1 — a)?)N?Tin, and
hence Ty, = (oz2 + (1 - a)2)Tinit < Tinit- This is the gauge theory description of a key
property of a black hole discovered in Hawking’s seminal paper [64]: a black hole in flat
spacetime cools down as it grows in size.

The largest Lyapunov exponent scales as ()\T)l/ 4 where A = g%MN is the 't Hooft
coupling [65]. When the block sizes are aN and (1 — )N, the 't Hooft coupling changes
effectively to a and (1 — a))A, respectively, and hence the largest Lyapunov exponents in
two blocks scale as a1/4()\Tinit)1/4 and (1— a)1/4()\Tinit)1/4. Except for a = %,
is larger than (ATﬁn)l/ 4 namely the largest Lyapunov exponent decreases as black hole

one of them

becomes larger. However the number of positive Lyapunov exponents increases because of
the dynamical increase of the degrees of freedom. Hence there are two competing contribu-
tions — the decrease of the temperature pushes down the KS entropy, while the increase of
the degrees of freedom pushes it up. Based on the distribution of the Lyapunov exponents
studied in ref. [65], we can see that the KS entropy is the block size (a?N?2, (1 —a)2N? and
N? in this case) times the largest exponent times an order one factor. Hence, up to the same
overall factor, the KS entropies before and after merger are (a®/*+ (1 —a)%/*) N2 (ATjnit) /4
and N2(A\Tg,)* = N2(a® + (1 — a)?)Y*(\Tjni) /4. The latter is bigger than the former
except for a special point o = % Hence a bigger black hole is a faster entropy generator.
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Figure 2. Matrix configurations for one big black hole (left), two black holes (middle) and the gas
of DO-branes (right).

2.2 Universality in the Lyapunov spectrum

The Lyapunov spectrum of the classical limit of the matrix model of black holes has been
studied in ref. [65] and ref. [55]. In particular, the level correlations of the Lyapunov
spectrum have been studied. Ref. [55] studied other classically chaotic systems as well, and
found a universal random-matrix description: when the number of degrees of freedom is
sufficiently large, the level correlation of the finite-time Lyapunov exponents converges to
the one determined by a Gaussian random matriz theory. Furthermore, the matriz model
of a black hole shows this universality already at t = 0.

If this universality can be generalized to quantum chaos, it should serve as a new
characterization of quantum chaos. Note that this universality is different from (though it
might be related to) the usual Wigner-Dyson universality of the energy spectrum. First
of all we are looking at different things — Lyapunov exponents and energy levels — and
furthermore the onsets of the universal distribution are observed at different time scales:
while the latter sets in at rather late time (see [66] for a detailed discussion), the former
can set in at earlier time, as it is there already at ¢ = 0 for the matrix model of black
holes. As we will see later in this paper, the SYK model shows this Lyapunov universality
at t =0 as well.

2.3 Technical remarks

A few technical remarks are in order here. Firstly, there is an ambiguity in the definition

of the Lyapunov exponents at finite time associated with a choice of variables, although

there exists a unique t — oo limit. If we choose another basis 2’ = 2/(z), M;;(t) = 0zi(1)
6z;(0)

changes to

;o 0zi(t)  0z(t) dzk(t) 02(0)
M0 = 520) = 524(1) 51(0) 521(0)

= Ji My ()51 (2.5)




where J;; = % is the Jacobian matrix. Still, this definition captures the Lyapunov growth.
Furthermore, at sufficiently late time, the Lyapunov exponents converge to the same values.
The choice of the basis may affect the details at early time, and hence we will choose a
natural one which makes the physical interpretation more transparent.

Secondly, for the Hamiltonian system, M is symplectic, and the Lyapunov exponents
form pairs of +\ and —\. It provides us with an easy way to estimate the numerical error,
namely this pair structure is gone when the error accumulates too much. This property
does not necessarily hold for the quantum Lyapunov exponents introduced in section 4.

Thirdly, the finite-time Lyapunov exponents depend on the initial condition z;(0).
In the thermodynamic limit, as long as a sufficiently generic initial condition is chosen,
the same global structure (overall distribution) and microscopic spectral properties are ob-
tained. Practically, because our simulation is always with finitely many degrees of freedom,

we consider the average over many samples. See refs. [55, 65] for details.

3 Models

We will study two physically distinct models. The first will be Sachdev-Ye-Kitaev (SYK)
model of four-local Majorana fermions coupled randomly and non-locally. The second
model is the XXZ spin chain composed of nearest neighbor spin interactions and random
magnetic field along the z-axis.

3.1 Sachdev-Ye-Kitaev (SYK)

The SYK model [5, 59, 60] (see ref. [67] for a recent review) with N Majorana fermions is
given by

. 6 N
H—\/; Z Jijrithi Vi, (3.1)

i<j<k<l

where the anti-commutation relations are given by
{¥i ¢} = di5 (3.2)

and J;jx; is random Gaussian with mean zero and standard deviation JJ. We set J to be 1,
so all times are measured in units of 1/J. The dimension of the Hilbert space is 2V/2. We
will also consider slightly more general version

e

TN Kiji;, (3.3)

1<j

H= \/ % Z Jz’jkll;iz/;jl/;kq/;l +
1<j<k<l
where Kj; is also a random Gaussian variable with mean zero and standard deviation K.
At K = 0, this model is ‘maximally chaotic’ at low temperatures, in the sense that the MSS
bound [5, 59] is saturated. When K > 0, it is not chaotic at sufficiently low temperature,
while it remains chaotic at high temperature [68, 69].



3.2 XXZ spin chain

We will also consider one-dimensional spin chain

Niite
H= ZZ; (45¢5¢+1 + 112}10372') s (34)
with periodic boundary condition oy, +1 = 01. w; is the random magnetic field along
z-direction, chosen to be uniform random number between [—W, +W]. At W 2> 2.75, most
of the energy eigenstates are in the many-body localized (MBL) phase [61, 70]. (For the
physics of the MBL phase, see e.g. [71-74]; for OTOC calculations see [75-79].) As W is
lowered, ergodic phase expands from the center of the spectrum, and gradually the system
becomes ergodic except for a small region at low and high energy regions. The boundary
between the ergodic and MBL phases can be obscure when the system size is small.

4 A definition: quantum Lyapunov exponents

A natural quantum analogue of M;;(t) defined by eq. (2.1) is®

N () = V=T[5, 15 (0)), (4.1)

where ﬂj is the canonical conjugate of Z;. For a given state |¢), Mz-j(t)kb} can grow
exponentially, and

L (1) = ($I N, (£) My (1)) (4.2)

(where * is a conjugate as an operator acting on the Hilbert space) is a natural counterpart
of L;;(t) in the classical theory.? From this we can define the Lyapunov exponents )\l@) (t).
The classical Lyapunov exponents in the Hamiltonian systems have degeneracy +A.
The quantum Lyapunov exponents defined above do not necessarily have such degeneracy.
Below we omit (¢) in )\z@) (t), because we do not think there is a risk of confusion. We
will take |¢) to be energy eigenstates.

4.1 Lyapunov exponents in SYK

As a natural counterpart of eq. (4.1) in a fermionic system, we can use

V() = {6:(), 05 (O)}. (4.3)

We will again take |¢) in eq. (4.2) to be energy eigenstates. When K is zero, for N
not a multiple of eight, the eigenstates of the Hamiltonian are doubly degenerate due to a
symmetry. If IV is not a multiple of four, the degeneracy occurs within each parity sector. In
order to avoid this uncertainty, we will not consider K = 0, instead we consider very small
but finite value of K. For each |¢), we obtain N Lyapunov exponents, A\ < Ay < -+ < Ay.

3Here we assumed a bosonic system. We will consider a fermionic system (SYK model) later.
“Note that (¢|M;;(t)|¢) cannot capture the growth properly, because the overlap between M;;(t)|¢) and
|¢) becomes exponentially small.



4.2 Lyapunov exponents in XXZ

Some caution is in order when we define the Lyapunov exponents for the XXZ spin chain.

Because the total z-spin Sﬁt‘“a‘) = % > ;02 commutes with the Hamiltonian, it is better to

define M so that it commutes with SZ(,tOtal) as well, in order to avoid a mixture of different

spin sectors which may complicate the analysis. Furthermore o, oy and o are redundant,
in the sense that 0,0y = v/—10-.
One possible option is to use the fermion representation obtained by the Jordan-Wigner

transformation,
b= (0191 ®1s) /V2,
77/32 = (02®12®'~-®12)/\/§,
Q/13 = (03®01®--~®12)/\@,
i = (03@02@ - @ 12) /V2,

’lﬁstite_l = (03 ® 03 ® e ® 01) /\/57
Yong. = (3R 03 @09) [V2, (4.4)

which satisfy the standard anticommutation relation {@Z;Z, 1@} = 0ij.
Still, it is probably better if M is compatible with the locality which is manifest in
terms of the &; variables. Then there are several other options such as

V—=1[o:(t),0:,4(0)] (4.5)
and

[U-‘ni (t)v 0—j (0)]7 (46)

Um;& Note that the latter is neither Hermitian or skew-Hermitian. The

where o4 =
former vanishes at ¢ = 0, which makes it difficult to define the Lyapunov growth precisely
at early time, while the latter gives [0y ;(0),0_ ;(0)] = 0.0;;. Here we use the latter:

Mij = [ori(t),o- O], L (1) = QM5 (0) Mii ()] ). (4.7)
Then LE?) (0) = 6;5. The physical interpretation is clear: o ;(t) and o_ ;(0) creates/
annihilates the z-spin at point ¢, 7 and time ¢, 0, respectively.

4.3 Kolmogorov-Sinai entropy

For classical systems, the Kolmogorov-Sinai entropy hkg is defined as the sum of all positive
Lyapunov exponents. We use the same definition here, by using the Lyapunov exponents
we have defined in this paper:
hks = Y A (4.8)
Ai>0

Away from the classical limit, the properties of this quantity are not immediately clear. It
will be studied in section 5.1.2.

This ‘KS entropy’ is not necessarily the same as the definition in other literature. See
refs. [80-85] for other approaches.
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Figure 3. The generalized Majorana SYK model. d; and ds vs j/L. Averages over 50 samples
(N =12,16) and 5 samples (N = 20). [Left] K = 0.01, [Right] K = 10.

4.4 Is the ‘perturbation’ actually small?

In the study of quantum chaos based on OTOCs, and also in our approach, one usually
assumes that the perturbation — multiplication of local operators V and W — does not
change the state too much. This should be the case when the system size is sufficiently
large provided W and V are few-body operators. However it is not necessarily the case
in actual numerical calculations. Below we see that, with realistic system sizes within our
reach, this assumption is not valid for the SYK model and hence some care is needed when
we extract physics from the numerical data.

SYK. When an energy eigenstate |E) is ‘perturbed’ by the multiplications of 1[1’5, the
‘perturbation’ is small when the energy is still well localized around E after the ‘perturba-
tion’. To see it quantitatively, we take |E) to be the ground state |Ep), and plot di(j) =
25N S (B B and do(j) = 4 S, S [(Buldedert | Eo)? for N = 12,16
and 20 in figure 3. Here the energy eigenvalues are ordered as Fy < EF; < --- < Ep_
(L = 2N/2), We can sce rather large deviations of di(j) and da(j) from 1 even at large
values of j, which means that @@k]E0> and ¢k¢k+1|EO> involve large contributions from
the excited states. When K is close to zero, they are almost uniform superposition of all
eigenstates. Therefore, with the resources we used for this paper, it is difficult to study
physics at different energy scales separately, especially when K is close to zero.

According to refs. [68, 69], the model under consideration is integrable at sufficiently
low temperature, when K > 0 and N = oco. As we have seen already, it is hard to study
the properties of the integrable phase and chaotic phase separately. However by varying
the value of K we can change the numbers of integrable and chaotic states; as K becomes
larger, more energy eigenstates belong to the integrable sector. Hence we can learn about
the difference between two phases by looking at the way the property of the mixture
changes.

~10 -
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Figure 4. The XXZ model. d = Nslne ;{}V:ie g:o [(E;1 /2101 | Eo,0)|?. Averages over 100 samples
(Nsite = 6,8) and 5 samples (Ngjte = 10). The horizontal axis is j/Lg —1/2, where Lg _1 /o is the

dimension of S, = 1/2 Hilbert space.

XXZ. In order to estimate the size of the perturbation, we calculated

Nate g
=S S Bulo ool (4.9)

51t k=1 i=0

Here |E; 5) is the energy eigenstate in the total spin s sector, ordered as Ey s < Eq s <
The results are shown in figure 4. We can see that the perturbations are actually small,
unlike the case of SYK.

4.5 Relations to other approaches
Usually the Lyapunov exponent is defined in terms of OTOC,

A 9\ (OTOC);

([V(t), W(0)]*)s ~ e : (4.10)

where V and W are arbitrary local operators and ( - )g stands for the thermal average with
temperature T = $~!. The idea is that the Lyapunov growth with the largest exponent
can be captured by Mij with any combination of Z; and ﬁj, and we do not need to take a
specific basis. By assuming the eigenstate thermalization hypothesis, the thermal average
should be indistinguishable from the expectation value taken in a typical energy eigenstate,
and then the components of Lz(?) (with |¢) taken to be a typical energy eigenstate) should

grow as e2M! and the largest eigenvalue should grow as e?*~?

. At late time, the largest
exponent dominates the growth. Hence the largest Lyapunov exponent obtained by us-
ing our definition should be the same as the Lyapunov exponent defined from OTOC at
sufficiently late time.

One might consider ), LZ(?) () instead of ([V/(t), W(0)]?)s; if a given theory were gauge
theory, it would be a gauge invariant quantity. Actually the spectrum \; can naturally

- 11 -



capture the sub-leading contributions in the Lyapunov growth, because
NI =D=M (4.11)

%)

In ref. [27], an operator which is essentially the same as ), LEZ

(t) has been considered,
and the interpretation as the growth of a size of local operator has been explained.

Note that, even when one is interested only in the largest Lyapunov exponent, a
use of the spectrum can have technical gain for numerical calculations. If one uses the
usual OTOC to define the Lyapunov exponent as 22 ©"77t = + >, Lgb) t) = %>, e,
the contribution from the smaller exponents can have non-negligible contribution at early
time. Numerically, it is not easy to study sufficiently late time where the largest exponent
dominates. By calculating the spectrum, it is possible to extract the largest exponent even

at early time. We will demonstrate this in section 5 (figure 9 and figure 13).

Lyapunovian. A related notion called the ‘Lyapunovian’ was recently proposed in
ref. [53]. Suppose we have a system with one & and one I1. By using energy eigenstates
|Ep,), we can make the ‘Lyapunovian matrix’

(B [2(1), TL(0)]*| ). (4.12)

Then one can study the eigenvalue statistics of this matrix. A natural counterpart for the
many-body case is

<Em’[2l(t)7ﬁj(0)]2|En> (4'13)

This is complementary to our approach, in which we tried to see the fixed-energy physics
for each reference state. Note also that the size of this Lyapunovian matrix in the many-
body case is exponentially large, unlike our approach where the size of the matrix is of
order the number of degrees of freedom.

We can also consider a hybrid,

Limijn(t) = (Ep | Mg (8) My (£)| E). (4.14)

Then there is no ambiguity associated with a choice of a reference state |¢). It would be
interesting to study the properties of the spectrum obtained from this matrix.

Lyapunov spectrum from projection. Another recently proposed approach due to
ref. [52] considers projecting the many-body Schrodinger equation onto a subspace of states
in the full Hilbert space, specifically a set of low-entanglement matrix product states. The
resulting projected dynamics can be viewed as a classical nonlinear dynamical system with
a symplectic structure. As such, it can exhibit classical chaos and has a notion of Lyapunov
spectrum. This auxiliary classical problem gives another way of associating a Lyapunov
spectrum with an arbitrary quantum system.

Based on the results of ref. [26], we expect that this projected low-entanglement dy-
namics can accurately capture the long-distance early growth of OTOCs. Hence, one
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might expect that part of their spectrum agrees with our definition, although we have not
checked this. However, there has also been some work advocating caution with such an
approach [86]. More generally, it is not clear to us how their full spectrum relates to the
spectrum we defined. It would be interesting to determine if their spectrum also exhibits
random matrix statistics, as suggested by our results.

5 Lyapunov growth

In this section, we present numerical results for the Lyapunov growth in SYK and XXZ
models. We then compare the Kolmogorov-Sinain entropy growth to the entanglement
entropy growth inspired by classical analogy of KS entropy and coarse grained entropy.

5.1 Lyapunov growth in SYK

5.1.1 The largest exponent vs \(OT0OC)

Let us start with the ‘usual’ OTOC (4.11), which is

2)\(OTOC)t ZL” Z <¢le } |¢ Z€2At (5.1)

,Jl

In the left panel of figure 5, we plot A(OTOC)¢ at g = 1/T = 0. We can see the exponential
growth followed by the saturation at A(OTOC)¢ ~ log N as in figure 6.° Two red vertical
lines show the times at which this growth reached 20% and 80% for N = 20. Between
them, the slope is approximately constant for each N. We can see it more clearly in the
middle panel, where A(©TOC) is shown. At 6 < N < 24, the exponent \(©TOC) changes
substantially with N, and it is not easy to take the large-/N limit. In the right panel, we
have shown the energy dependence of A(OTOC) by taking |@) to be the energy eigenstates.
Strangely, the exponent in the ground state is larger than the one in the excited states. As
we will explain later, this is because the finite-N effect is large.

Next let us see the Lyapunov spectrum obtained from our definition. In the first two
panels of figure 7, we have plotted Ayt for several values of K and N = 14,16 at § = 0; we
can see the exponential growth followed by the saturation. The third and fourth panels in
figure 7 show the N dependence of Ayt and Ay for K = 0.01. Compared to A(OTOC) the

0TOC)

value at each N is larger (see figure 9), because Al contains the ‘contamination’ from

the smaller exponents A1, -+, Ay_1. As we will see shortly, the finite- N corrections to the
smaller exponents are larger than the one to the largest exponent. For this reason, A(OTOC)
depends more severely on N. Note also that the N-dependence of Ay is not smooth, but
rather it shows sensitive dependence on N mod 8, which suggests that Ay captures the

finer detail of the theory at finite IV

OTOC
5The fit value is close to e%( L % This is value can be explained as follows.

At late time, all (¢|{i(t),%;(0)}?|¢) in (5.1) give the same contribution. Each of them con-

tains four terms, (4[¢;(0)¢ ()wz() 5 (0)[e), <¢|¢z() 5 (0)95(0)¢s(8)] @), (Blepi(t)h; (0)hi(t)¢h;(0)[4) and
(plh; (0)9i (t)2h; (0)9i(t)|$). The first two terms are %, while the latter two terms are suppressed at large

2)\(OTOC)t 1 o
N. Hence e -~ Zid:l 2 % Z = 5 up to a small correction.
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Figure 5. The generalized SYK model with K = 0.01. [Left] The Lyapunov growth from
OTOC, the almost linear dependence on time ¢t of AOTO9¢ = Llog (% ZZ\; e”it) 10 samples
for N = 24,22 and 1000 samples for N = 20,18,...,6 are used. Vertical lines correspond to
20% and 80% for N = 20. [Middle] The Lyapunov exponent estimated from OTOC, A(OTOC) =

3 log (ﬁ Zfil 62)‘it). [Right] At each N, the exponent A(OTOC) at ¢ = 2 is shown as the function
of the energy E;. The horizontal axis is (i + 1/2)/L, so that the left and right corresponds to low
and high energies.

In figure 8, all the exponents A; are shown for N = 16. When K is small, all the
exponents are positive. For larger K (K 2 10), beyond ¢ 2 1, a gap emerges between
the larger half and smaller half of the exponents, and the density distribution of the lower
eight exponents become increasingly sharper and get closer to zero. Two red vertical lines
represent the 20% and 80% saturation of Ayt. Between them the exponents are almost
constant.

In figure 9, the largest exponent Ay is compared with A(OTOC) " Ag explained around
eq. (4.11), AOTOC) is contaminated by the smaller exponents; indeed, we can see clear
difference in the plot. It is interesting to note that the difference between Ay and A\(OTOC)
becomes smaller as N increases. In section 5.1.3, we will study this point further.

Figure 10 is made in order to see the effect of the choice of the reference state. The
left panel is the energy vs the largest exponent Ay at N < 24. There are two peculiar

(OTOC)

points here (note that we observed the same for A in figure 5): the growth rate

does not seem to depend heavily on the choice of the energy eigenstate. Even when we
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the generalized SYK model. [Upper-left] Ayt vs t for N = 14, various K. [Upper-right] Ayt vs ¢
for N = 16, various K. [Lower-left] The N dependence of Ayt for K = 0.01. The vertical lines
corresponding to 20% and 80% of the plateau value (at ¢ = 10) of Apt for N = 20 are also shown.
[Lower-Right] The N dependence of Ay for K = 0.01.
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Figure 8. The Lyapunov spectrum of the generalized Majorana SYK model, N = 16, § = 0, with
K =0.01,0.1,1,10. For K Z 10, the separation between the larger eight exponents and the lower
eight exponents become increasingly clear for larger ¢. The times at which the Lyapunov growth
(Ant in our notation) reaches 20% and 80% of its plateau value are shown by red vertical lines. We

can see near-constant behavior of \y there.

0.25

Apy OTO0)
o
o

Figure 9. Ay (with data points and error bars) and A(©TO€) (with the same color as Ay but data
points omitted) plotted against time ¢ for the generalized Majorana SYK model with K = 0.01.

take |¢) to be the ground state, we can still see the exponential growth. Furthermore, the
ground state gives faster growth. Seemingly it has a tension with the large- N result at low
temperature, A = 277. Presumably this is because the values of N studied here are so
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Figure 10. The generalized Majorana SYK model with K = 0.01. [Left] At each N, the largest
Lyapunov exponent Ay at ¢t = 2 is shown as the function of the energy E;. The horizontal axis is
(i 4+1/2)/L, so that the left and right corresponds to low and high energies. [Middle] hxs/N vs
energy, at t = 2. [Right] hks/N against 1/N, for the ground state and the center of the energy
spectrum.

small that the energy excitation caused by operator M is not negligible, as we have seen
in section 4.4. At least, as we can see from the right panel, the exponents calculated by
using the ground state |Ey) become smaller than the ones obtained from the state at the
center of the energy spectrum |E}, /2) at N 2 26. Still, our numerics is not good enough to
show whether Ay defined from the ground state vanishes in the large- N limit, as expected
from both the usual intuitive picture and the MSS bound.

5.1.2 Kolmogorov-Sinai and entanglement entropy

For classical systems, the Kolmogorov-Sinai entropy hkg is defined as the sum of all positive
Lyapunov exponents. We use an analogous definition here for the quantum Lyapunov
exponents we have defined in this paper; see eq. (4.8).

Kolmogorov-Sinai entropy (KS). In the middle panel of figure 10, the energy depen-
dence of hxg/N is shown. At small N, the curve is concave due to the finite-N effect. As
N becomes large, it will become convex as we can see from the right panel of figure 10.

Entanglement entropy (EE). Let us introduce Dirac fermions ¢ = LETS RV (P

V2
(k=1,2,...,N/2). Then we can label the states by using the excitation number 0 or 1 for
¢x. We use the state [00---0) to calculate the entanglement entropy. (Note this is not the
ground state of the Hamiltonian.) We factorize the Hilbert space to be H 4 X Hy/o—|4)s
where H| 4 and Hy/o_|4) are generated by acting éJ{, e ’érAl and érAH-l’ ‘e 7é}LV/2 to the

ground state, respectively.> Then we trace out H N/2—|A|-

KS vs EE. As discussed in section 2.1, in the classical limit the growth rate of the coarse
grained entropy should agree with the Kolmogorov-Sinai entropy hxg. Therefore, we expect
that, in quantum theories, N Sgg/|A|,” which corresponds to the coarse grained entropy of
the system, and hkst should agree up to an additive constant. As we have emphasized, for

SHere we are defining fermions in terms of spin variables via the Jordan-Wigner transform. The spin
Hilbert space then has a sensible tensor product structure and this decomposition is what we are referring to.

"Note that we are proposing to use the entanglement entropy as a quantum analog of classical course
grained entropy.
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Figure 11. [Left] SYK model, comparison of thxs and NSgg/|A|. As an initial state, the Fock
vacuum annihilated by ¢é; = %1527_1 for all j = 1,2,---, % has been used. [Right] Essentially

the same plot, but Sgg is shifted by a constant.

the values of N studied in this paper, hks captures contributions from almost all energy
eigenstates.

In the left panel of figure 11, we have plotted NSgg/|A| and hkst obtained from the
SYK model at 5 = 0. At early time, they show similar growths; indeed, as we can see the
right panel, at 1 < ¢ < 2 they agree very well just by a constant shift.® This results are not
conclusive, however, they are suggestive that the KS entropy can actually be understood
as the entropy production rate in quantum systems.

5.1.3 Fastest entropy generator?

As we have seen in section 5.1.1, the difference between Ay and Aoroc becomes smaller as
N increases. This means the largest exponent Ay and the smallest exponent A; get close.
We can actually numerically confirm that Ay — A; scales as 1/N at ¢ < 2. This strongly
suggest that the Lyapunov spectrum peaks like the delta function in the large-N limit.
This is consistent with the previous analysis on the OTOC at N = oo: if the spectrum has
nontrivial distribution, it can give a power law correction t¥e*oToct with v > 0. But such
correction has not been found [59].

It is interesting to compare this behavior with the usual (weakly coupled) string theory
dual. The Lyapunov spectrum of the DO-brane matrix model in the classical limit (highly
stringy region) converges to the semi-circle distribution with an O(N°) width [65], unlike
the weak coupling region of SYK. Hence the large- N limit of the D0-brane theory does not
by itself make the distribution peaked, unlike in the SYK model. However the analyses on
the dual gravity side including the finite coupling correction at large N (the o/ correction
in gravity side) to the Lyapunov exponents [43] suggest that the Lyapunov exponents peak
at the largest possible value (the MSS bound) at strong coupling (for example, a power-law
correction has not been seen). The same seems to be true for other quantum field theories
which can be analyzed with dual gravity calculations [43].

8This shift can be understood as the ambiguity of the size of the cell in figure 1.
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Assuming this is true, both in the SYK model and quantum field theory with the usual
string theory dual, all exponents saturate the MSS bound at strong coupling and large N.
Therefore, both of them appear to take the largest possible Kolmogorov-Sinai entropy, or
the largest possible entropy production rate.”

For the canonical ensemble, the largest possible value of each exponent is 277T. Ap-
parently, when all exponents saturate this bound, the sum is maximal. Hence, it would be
natural to conjecture that black hole has the largest possible KS entropy. Note that we
have the single black hole configuration (the leftmost figure in figure 2) in mind.

For the microcanonical ensemble, it would be natural to conjecture that the entropy
generation rate increases as the black hole grows, as demonstrated for a simple case in
section 2.1.1. We can also show the same pattern for more generic initial conditions, and
we can also show that the KS entropy decreases as black hole evaporates [54]. Therefore we
conjecture that the KS entropy is maximal when all the degrees of freedom are absorbed
in one black hole and thermalized.

5.2 Lyapunov growth in XXZ

Because the total z-spin S commutes with the Hamiltonian (3.4), we focus on the
Lyapunov growth in the zero-spin sector, <S§t0t31)> = 0. As we have seen in section 4.4, the
multiplication of ¢ can actually be regarded as a small perturbation, and hence it makes
sense to study the temperature dependence, unlike the case of SYK.

t and MOTOC)t as functions of ¢ for Nge = 12 and
)\(OTOC)

In figure 12 we have plotted Ay,

site

ANite
%log (1 + %).10

The N-dependence of A,
W =4.

In figure 14, we plot Ay, .t in order to see the detail of the Lyapunov growth. The
t~1t, AN, ~ 0.3
can be seen at early time. At some intermediate O(Nsoite) time, the power-law growth sets

in. Similar behaviors both in ergodic and MBL phases (W = 4.0) shown in the middle.
However the late-time behaviors are rather different. In the ergodic phase, the power

t for various temperatures. For each Nygite, t converges to the same value,

and A(OTOC) are shown in figure 13 for W = 0.5 and

ite

left figure is the ergodic phase, W = 0.5. The exponential growth An,,. e

growth continues all the way up to the plateau, which scales ~ log N. On the other hand,
in the MBL phase, the power growth stops at O(Ngte) time, and much slower growth sets
in. In the left panel of figure 14, the deviation from the late-time plateau in the MBL

9We repeat that we have used ‘Kolmogorov-Sinai entropy’ to mean the sum of the Lyapunov exponents.
Where this agrees with the entropy production rate even at quantum level is a subtle issue which requires
further study, although qualitative agreement has been observed as shown in section 5.1.2.

YFor each energy eigenstate |E), terms of the form (E|ot ;j(0)o—i(t)oti(t)o-;(0)|E) =
llo+.i(t)o—;0)|E)|* and (Elo—i(t)oy ;(0)o- ;(0)ori(t)|E) = [lo-;(0)ot.i(t)|E)||* give dominant con-
tributions at late time. Because we are taking |E) to be in the total spin zero sector, when o_ ;(0)
is multiplied on |E), half of the terms in the z-spin basis — terms with down spin at j-th sire —
is annihilated. Hence o_ ;(0)|E) is roughly norm 1/4/2, and consists of terms with Ngge/2 + 1 down
spins and Nsite/2 — 1 up spins. Then when we further multiply o4 :(t), (Nsite/2 4+ 1)/Nsite terms sur-
vive. Hence ||o4,i(t)o— ;(0)|E)||> =~ (Nsite/2 4+ 1)/2Nsite. For the same reason, ||o— ;(0)oy i(t)|E)||* ~

2A(OTOC), 1 Naite/2+1 Naite
(Nuite/2 + 1)/Naite. Hence e ~ A 3, e g = M 4

site
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Figure 12. Ap,,.t (with data points and error bars) and A
but data points omitted) plotted against time ¢ for the XXZ model with Ngi. = 12, W = 0.5 and
various temperatures 7. 215 samples have been used for each data point.
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Figure 13. Ay, (with data points and error bars) and A(OTOC) (with the same color as Ay,

but data points omitted) at T' = oo plotted against time ¢ for the XXZ model with N, = 12, [left]
W = 0.5 (215 samples for Ngto = 12, more samples for N < 10) and [right] W = 4 (at least 102
samples for Ngte = 12, more samples for N < 10).

phase is plotted in the log-log scale. We can see a straight line, which means the late-
time behavior is A — Bt™P. This is consistent with the theoretical expectation in ref. [45].
With the range of Ngite available at this moment, it is hard to take the large volume limit,
Nsite — 00.

A possible explanation of this pattern is as follows. In the classical theory, the per-
turbation at £ = 0 can be sent arbitrarily small, and the exponential growth can continue
forever. However when the perturbation is finite, the exponential growth stops at a finite
time; otherwise the causality is broken! (In the nonrelativistic theory the speed is not
limited, but once the initial condition is set, then the energy conservation sets the upper
limit of the speed at later time.)
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Figure 14. [Left] XXZ model, (An,.
ANt ~ 0.22¢ (usual exponential growth), then accelerated to An,,
growth Ay, .t ~ 0.36logt is observed all the way up to the plateau. [Middle] (An,.t), W = 4.0
(MBL phase), T'= 1. The growth starts as An_,.t ~ 0.78¢ (usual exponential growth), then from
t ~ 0.3 the power growth Ay

t ~ 0.35logt sets in, but unlike the case of W = 0.5, it ends at

t), W = 0.5 (ergodic phase), T'= 1. The growth starts as
t ~ 1.1¢t1° and then a power

site

t ~ O(NY,,) before the plateau is reached at exponetially long times. [Right] The late-time behavior
of (An,.t), W =4.0 (MBL phase), T'= 1. The deviations from the late time values are plotted for

several values of Ngjte.

In the quantum theory, the perturbation is necessarily finite and hence the exponential
growth has to stop at some point. In nonlocal systems like the matrix model and SYK
model, the exponential growth stops when the ‘local’ perturbation (say the multiplication
of 11) affects all other degrees of freedom substantially. This is typically O(log Nsite) time.
For local systems like the spin chain, the exponential growth has to stop at O(1) time,
because 0;(t) and 0;(0) commute when ¢ is smaller than |i — j| divided by the butterfly
velocity; when the exponential growth stops, only O(1) number of degrees of freedom talk
to each other. (The system size does not matter, otherwise the causality or the Lieb-
Robinson bound is broken.) Mij(t) is a banded matrix with width w ~ ¢, and if we use a
very rough approximation that all the nonzero entries are of order one, then the singular
values scale as y/w. It leads to a late time behavior A\t ~ 0.5logt, which is in the right
ballpark compared to 0.35logt and 0.32logt in the left panels of figure 14.

As a related example, let us consider planar black p-brane (p > 0), which is described
by U(N) super Yang-Mills on R?. How is a localized perturbation scrambled in this
theory? Firstly the fast scrambling with A ~ 27T mixes the information among the gauge
degrees of freedom; then the information gradually spreads along RP. In terms of gravity,
the horizon has a topology of S®P x RP, and the fast scrambling takes place along S~7
while the growth along RP is slower and dominant at late time. The 1d spin chain is
analogous to p = 1 and very small N.

In the explanation above, only the local physics is important for the early-time expo-
nential growth. Hence the same pattern is expected both in the ergodic and MBL phases.
The time scale of the saturation of the power growth can be different; in the ergodic phase
the saturation time scale should increase with the system size, while in the MBL phase it
is independent of the system size, instead only the volume of the region affected by the
perturbation matters. It is consistent with the numerical results: in the left plot of fig-
ure 14 the saturation time scale increases with the system size, while in the middle plot of
figure 14 it seems to be insensitive to the system size. The results here are averaged over
the eigenstates; see figure 15 for the energy dependence.
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Figure 15. For XXZ model, the dependence on the eigenstate energy of A\oroc, An and hkg are
plotted. For i =1,2,...,924, the sample average of these quantities for the eigenstate with the i-th
smallest energy eigenvalue of the Hamiltonian is plotted against the average of the energy. Upper:
W =0.5. Lower: W = 4.

For local quantum systems, the absence of the exponential Lyapunov growth should be
generic. As we have seen above, it is not easy to distinguish the ergodic and MBL phases
just from the power growth. However, as we will see in section 6.2, the statistical features
of the Lyapunov exponents are clearly different in these two phases.

6 Random matrix statistics of Lyapunov spectrum

In this section we study the statistical properties of the quantum Lyapunov spectrum,
motivated by the universality in the classical Lyapunov exponents explained in section 2.2.

6.1 Lyapunov spectrum vs RMT in SYK

According to refs. [68, 69], the ¢ = 2 deformed SYK model (eq. (3.3)) is integrable at
sufficiently low temperature, when K > 0. Therefore, by carefully choosing the energy
eigenstates, we can study the statistical features of the Lyapunov spectra in the integrable
and chaotic phases, in principle. However, as we have seen already, perturbations by
multiplications of z[) is not really ‘small’ at the system size we can study numerically, and
hence it is hard to study the properties of the integrable phase and chaotic phase separately.
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Figure 16. Nearest neighbor correlation for the unfolded Lyapunov spectrum of the generalized
Majorana SYK model, N = 14, 8 = 0, 0.02 < ¢ < 100 with K = 0.01,10. [Upper| standard
unfolding is conducted by fitting the density of exponents using a polynomial. [Lower] The fixed-i
unfolding has been performed. When K is small, good agreement with GUE is observed, until very
late time. When K is large, small deviation from GUE can be seen at early time, and the deviation
grows quickly at later time.

Below, in addition to the nearest-neighbor level correlation, we study the nearest-
neighbor gap ratio,
min(A; — Xi—1, Aig1 — i)

e max(A; — Ai—1, g1 — Ai) (6.1)

In the upper row of figure 16, we have shown the nearest neighbor level separation esti-
mated after the standard unfolding procedure. Namely, we have estimated the distribution
of the Lyapunov exponents by using energy eigenstates within certain range (between 5%
and 10% in these specific plots), numerical fit it by polynomial of degree 10 and used it for
the unfolding. We can see good agreement with GUE at small K, but there is a small but
visible deviation.

A possible flaw of this method is that, when Nge is small, peaks arising due to the
level repulsion can be visible and the unfolding can eliminate them as well, so that the uni-
versal random matrix behavior is erased. To circumvent such possibility, we tried another
unfolding prescription as well: normalize the gap g; = Aj+1 — A; so the average is 1. Define
gi = gi/(gi;) and look at the distribution of g;. We call it ‘fixed-i unfolding’. The result is
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Figure 17. The r-parameter (r) for the N = 14 SYK model, with fixed-i unfolding, obtained
by [left] using the larger N/2 = 7 exponents, and [right] using all the exponents. The early time
behaviors are almost identical. (Different late time behaviors appear because a large gap sets in
between Ay and Ay/241.) At K = 10 and 100, large deviation from the GUE value is observed
before the Lyapunov growth (with almost constant Lyapunov exponent) sets in. At K =1, a large
deviation is observed before the Lyapunov growth ends. At K = 0.01 and 0.1, the r-parameter
stays close to the GUE value even at ¢t = 100.

shown in the lower row of figure 16. Compared to the standard unfolding (the upper row
of figure 16), the agreement with GUE is improved substantially for K = 0.01. On the
other hand, for K = 10, there is no improvement.

In figure 17, we show the time dependence of r at § = 0. (As discussed around
figure 8 for the case of N = 16, a gap develops between Ay/; and Ayjp4q for larger K
as t is increased. In order to check that this gap does not affect the result, we have
also calculated (r) using only the larger N/2 exponents. We can see that the early time
behaviors are almost identical.) At K = 10 and 100, large deviation from the GUE value is
observed before the Lyapunov growth (with almost constant Lyapunov exponent) sets in.
At K =1, a large deviation is observed before the Lyapunov growth ends. At K = 0.01
and 0.1, the r-parameter stays close to the GUE value even at ¢t = 100. In figure 18,
we show essentially the same plot, but using [Ep), |Er/2) and [Er—1). We don’t see a
significant change as expected; for the value of N we study, the perturbation is too large,
so that we can only see a mixture of almost all states. At sufficiently large N we expect
different behaviors depending on the energy.

As K becomes larger, more energy eigenstates belong to the integrable sector. That
the Poisson statistics sets in with larger K suggests that the spectrum in the integrable
sector follows Poisson. Note that the GUE appears as ¢ — 0 even at large K. We do not
have understanding about this property.

6.2 Lyapunov spectrum vs RMT in XXZ

Because the total z-spin S commutes with the Hamiltonian (3.4), we focus on the

Lyapunov spectra obtained by using eigenstates with (Sét"tal)) = 0.
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Figure 18. The r-parameter (r) with fixed-i unfolding, obtained using all exponents for the
Ngite = 14 SYK model, for the ground state (left), the state at the center of the energy spectrum
(center) and the highest energy state, plotted as a function of ¢ for K = 0.01,0.1,1, 10.

As explained in section 3.2, this theory has ergodic and MBL phases. We will study
W = 0.5 and 1.0, which are mainly in the ergodic phase except for the edges of the energy
spectrum, and W = 4.0, which is dominantly in the MBL phase.

In figure 19 we have plotted P(s) obtained by using eigenstates with the energy within
45%-55% from the lower edge of the spectrum,'! with the fixed-i unfolding introduced in
section 6.1. We can see a good agreement with GUE for W = 0.5 and 1.0 (the ergodic
phase) at sufficiently late time, while the Poisson distribution is favored for W = 4.0 (the
MBL phase). In figure 20, we fixed W = 0.5 and varied the energy band. We can see
the time evolution strongly depends on the choice of the energy. We can also see that the
GUE is not obtained near the ground state, which is close to the MBL phase. Note that
we have shown two results, one obtained by using all exponents and the other obtained
by only the largest three exponents. The reason is as follows. When we plot the sample
averaged values of \; against the eigenstate index, for the XXZ model with smaller values
of W, at short times large gaps between the smaller, nearly twofold degenerate exponents
are observed for lower energy eigenstates. For larger N/2 exponents, the averaged values
are evenly distributed for ¢ = 5. Therefore, in order to make sure the universal behavior
can be seen regardless of the choice of the exponents, we have shown two results. Below,
we will also study the gap ratio r. This is more sensitive to the change of the gap size, and
hence, we will use the largest three exponents for safety.

In order to see the time and energy dependence quantitatively, we have plotted (r)
with the fixed-i unfolding in figure 21, for W = 0.5, for various energy bands. We can see
better agreement with GUE (both the value and time window) at the center of the energy
spectrum. Recalling that the middle of the energy spectrum is in the ergodic phase except
that the small region near the edges remain MBL, this is consistent with the interpretation
that GUE is obtained for the ergodic phase but not for the MBL phase.

1We have used such a narrow energy band because we can actually see the energy dependence unlike
the case of SYK, as explained in section 4.4.
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have been used for each case. The fixed-i unfolding [upper] for the two gaps between the three
largest exponents and [lower] for all gaps have been used for the Lyapunov exponents obtained
using 45%-55% of the spectrum for each sample, in which 0% corresponds to the ground state.
Left: W = 0.5. Middle: W = 1. Right: W = 4.

The Ngite-dependence of (r) is shown in figure 22. The GUE can be seen with good
precision at Ngte > 8. We studied the values of (r) for N = 6,8,10 and 12 until very late
time (¢ < 10%). For these values of N, (r) becomes almost constant, which is different from
the GUE value, at t 2 10. Therefore we expect the importance of the large- N limit before
t — oo for the emergence of the universality.

7 Conclusion and outlook

In this paper we have proposed a generalization of the Lyapunov spectrum to quantum
theories, and studied its properties by using the SYK model and the XXZ model with
random magnetic field as examples. By definition, the Lyapunov spectrum contains more
information than just the largest exponent.

The KS entropy — which we defined by the sum of the positive exponents — is likely
to be a better characterization of the strength of the chaos, because it can describe the
entropy production rate. We conjectured that the black hole maximized the KS entropy.

We also found the numerical evidence for the universality of the Lyapunov spectrum.
(Previously, this universality has been observed in classical chaos as well [55].) It is inter-
esting if we could understand the meaning of the onset of the universal RMT behavior. It
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in the ergodic phase while the edges remain MBL.
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should have something to do with holography, because special theories which are dual to
quantum black holes — the SYK model, and classical DO-brane matrix model, as demon-
strated in ref. [55] — show the universality already at ¢ = 0. We propose that the quantum
systems holographically dual to Einstein gravity satisfy this ‘strong’ universality.

The conjectures above are based mainly on the numerical observations for limited
number of theories. It is important to study more examples, and also, to develop the
understanding on the gravity side. Another important issue is how the universality class
is determined. For the examples studied in this paper we observed only GUE ensemble,
regardless of the system size.

It is also important to apply the method presented in this paper to various physical
systems, especially in the contexts of condensed matter and quantum gravity. It should
be possible to get new insight into scrambling and thermalization by observing the Lya-
punov growth, and with various examples we might be able to understand the meaning of
the characteristic time scales associated with the Lyapunov growth and the onset of the
universal spectral behavior. Toward the study of full string theory, probably the weakly
coupled region of D0-brane matrix model [87, 88] is a good place to start.
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It would also be interesting to develop a measurement protocol for the Lyapunov
spectrum along the lines on ref. [13]. A brute force way to approach the problem is to
consider performing a whole set of many-body interference experiments to measure the
various matrix elements needed to construct the spectrum-defining matrix. A detailed
study of the feasibility of the this approach, and the search for more economical approaches,
is left to future work.
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