

1 For submission in Int Comparative Biol, invited introduction to symposium Behavior and physiological
2 adaptations to urban environments

3

4 **A new framework for urban ecology:**

5 **An integration of proximate and ultimate responses to anthropogenic change**

6

7 Jenny Q Ouyang^{1*}, Caroline Isaksson², Chloé Schmidt³, Pierce Hutton⁴, Frances Bonier⁵, Davide
8 Dominoni^{6,7}

9

10 ¹Department of Biology, University of Nevada, Reno, Reno, NV USA

11 ² Department of Biology, Lund University, Lund, Sweden

12 ³Department of Biological Sciences, University of Manitoba, Manitoba, Canada

13 ⁴School of Life Sciences, Arizona State University, Tempe, AZ USA

14 ⁵ Biology Department, Queen's University, Kingston, ON Canada

15 ⁶Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The
16 Netherlands

17 ⁷ Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK

18

19 * To whom correspondence should be addressed: Department of Biology, University of Nevada, Reno,
20 1664 N Virginia St., Reno, NV 89557. Telephone: 805-703-4135 Email: jouyang@unr.edu

21

22

23 **Keywords:** urbanization, light pollution, air pollution, noise pollution, adaptation, life-history, fitness,
24 physiology, behavior

25

26

27

28

29

30 **Abstract**

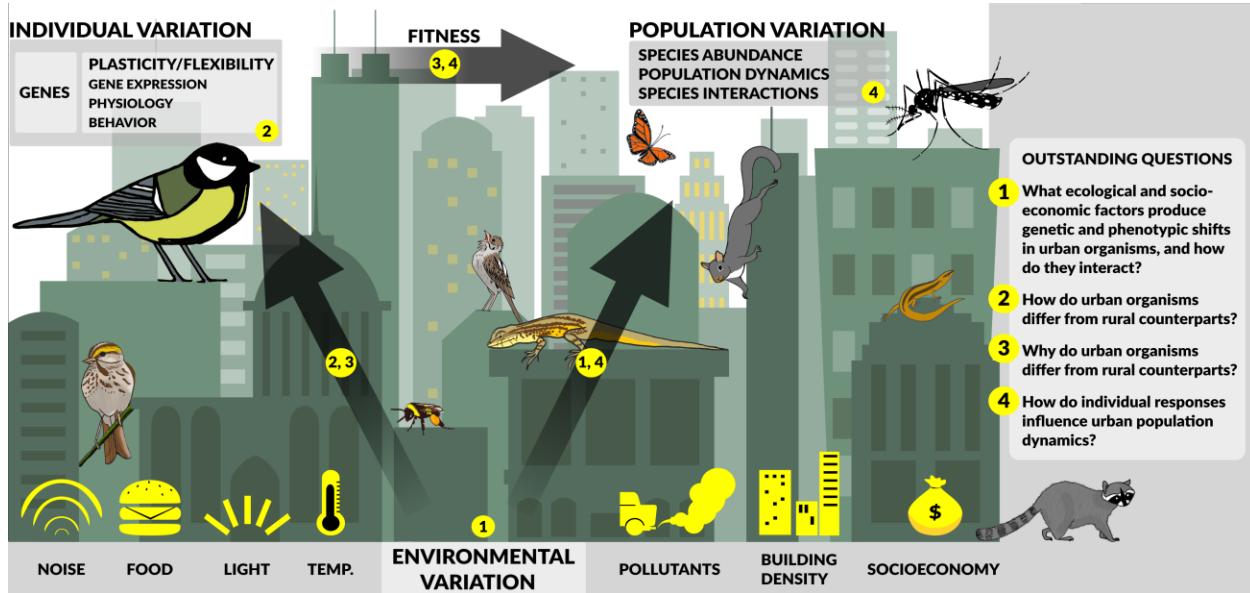
31 As urban areas continue to grow, understanding how species respond and adapt to urban habitats is
32 becoming increasingly important. Knowledge of the mechanisms behind observed phenotypic changes
33 of urban-dwelling animals will enable us to better evaluate the impact of urbanization on current and
34 future generations of wildlife and predict how animals respond to novel environments. Recently, urban
35 ecology has emerged as a means of understanding organismal adaptation but also as a framework for
36 exploring mechanisms mediating evolutionary phenomena. Here, we have identified four important
37 research topics that will advance the field of urban ecology and shed light on the proximate and
38 ultimate causes of the phenotypic differences commonly seen among species and populations that vary
39 in their responses to urbanization. First, we address the ecological and socio-economic factors that
40 characterize cities, how they might interact with each other, and how they affect urban species. Second,
41 we ask which are the proximate mechanisms underlying the emergence over time of novel traits in
42 urban organisms, focusing on developmental effects. Third, we stress the need to understand the
43 ultimate causations that link phenotypic shifts to function. This question highlights the need to quantify
44 the strength and direction of selection that urban individuals are exposed to, and whether the
45 phenotypic shifts associated with life in the city are adaptive. Lastly, we stress the need to translate how
46 individual-level responses scale up to population dynamics. Understanding the mechanistic
47 underpinnings of variation among populations and species in their responses to urbanization will
48 unravel species resilience to environmental perturbation, which will facilitate predictive models for
49 sustainability and development of green cities that maintain or even increase urban biodiversity and
50 wildlife health and wellbeing.

51

52 **Introduction**

53 A prevailing source of environmental change in the 21st century is rapid human population
54 growth in urban areas. Today, 54% of the world's human population lives in urban areas, and by 2050,
55 this number is expected to increase to 66% (United Nations 2014). Urban land cover continually expands
56 to accommodate this growth, leading to the destruction of natural habitat and reduced biodiversity as a
57 result of local extinction processes (Kalnay and Cai 2003; While and Whitehead 2013). Responses to
58 these changes vary considerably between and within species. Indeed, some species are unable to
59 occupy urban habitats (urban avoiders) while others persist (urban adapters) and even thrive (urban
60 exploiters; Blair 1996; Moller 2009; Sepp and others 2017; Sol and others 2014). Similarly, it has been
61 suggested that within species, only individuals possessing certain traits may be able to colonize urban
62 areas (Sol and others 2013; Sprau and Dingemanse 2017). Recently, interest in urban ecology has grown
63 exponentially, as evidenced by a proliferation of empirical studies, meta-analyses and reviews (LaPiedra
64 this issue; Mulholland and others this issue; Audet and others 2016; Goddard and others 2010; Liker and
65 others 2008; Marzluff 2017; McIntyre 2000; Sepp and others 2017; Tucker and others 2018).

66 Present and past research in urban ecology has primarily focused on two questions: 1) do urban
67 and rural populations differ in certain traits? and 2) do urban and rural areas differ in biodiversity and/or
68 species abundance? The evidence accumulated so far points to globally widespread influences of
69 urbanization on phenotypes (Alberti et al 2017). Likewise, urbanization has been linked to profound and
70 complex effects on biodiversity, which is often greatly reduced at intense levels of urban development,
71 but can also flourish in sub-urban and peri-urban areas (Aronson Myla and others 2017). As these two
72 questions have already been widely investigated, we now need a deeper understanding of how and why
73 patterns of phenotypic shift and biodiversity emerge in cities. To do so, we draw on Niko Tinbergen's
74 four questions of 'survival value', 'ontogeny', 'evolution' and 'causation' (Tinbergen 1963). In the
75 context of an integrative framework for urban ecology, we first need mechanistic studies that examine


76 how novel phenotypic traits emerge in urban areas, focusing on ontogeny, developmental plasticity and
77 co-variation between different behavioral and physiological traits. We then need to identify whether
78 phenotypic responses of urban populations are adaptive, what their function is, and to which urban-
79 specific selective pressures they are subjected. The question of whether populations truly adapt to
80 urban life (via genetic change and local adaptation) or only acclimate (via plasticity) is difficult to resolve
81 (Isaksson 2015; Tucker and others 2018). It is thus important to investigate proximate mechanisms,
82 including genetic and epigenetic effects underlying the emergence of novel traits at the individual level
83 (Sol and others 2013), the modification of existing traits (Badyaev and others 2008), or the filtering of
84 individuals and species possessing specific traits from an original, non-urban population (Banaszak-
85 Cibicka and Żmihorski 2012; Moller 2009; Sol and others 2014). Individual responses can then be tied to
86 population dynamics by quantifying how fitness of urban individuals scale up to influence the
87 demography of populations. To date, few studies have successfully integrated all of these components
88 (but see Badyaev and others 2008).

89 Moreover, the field of urban ecology is hindered by the lack of a clear, standardized approach to
90 quantifying urbanization. Cities are extremely complex environments that differ in ecological, structural,
91 and socio-economic characteristics; such variation also exists within cities. This limits our ability to
92 design comparative studies and interpret their results (Aronson and others 2014; Moller 2009; Ramalho
93 and Hobbs 2012; Sepp and others 2017; Sol and others 2014). Further, the majority of urban ecology
94 studies to date have focused on only one or a few urban and rural areas (e.g., Fokidis and others 2009;
95 Foltz and others 2015; Partecke and others 2005). Given the potentially important effects of variation
96 among cities, our ability to generalize from these focused studies is uncertain.

97

98 **Outstanding questions**

99 We have identified four pressing topics that will advance our knowledge of individual and
100 population-level responses to urban environments. In the following sections, we give background to
101 each question, outline gaps in knowledge, and suggest how these gaps can be addressed (Figure 1).
102
103

104 **Figure 1.** Outstanding questions for urban ecology (1-4) in the context of environmental, individual, and
105 population variation. Pictured are some representative common animals found in cities around the
106 globe. Environmental variation can affect individual and population-level variation. Individual variation
107 affects individual fitness which then can lead to changes at the population-level.
108
109

110 **1. What ecological and socio-economic factors produce the observed genotypic and phenotypic
111 shifts in urban animals, and how do they interact with each other?**

112 **1.1 Background**

113 Cities are complex environments. There are large differences both within and between cities in
114 age, climate, habitat structure, human population density, and socio-economic development. All these

115 factors could contribute to the observed phenotypic and genotypic shifts observed in urban populations
116 of wild species, and variation in those patterns. For example, wealthier cities in developed nations may
117 have more urban parks and green spaces whereas poorer cities may have fewer “managed” green
118 spaces. The management of green space, as well as of urban waste, can have important consequences
119 on the availability of food and nest sites for urban fauna. However, it is often unclear which factors are
120 playing major roles. The reason has partly to do with sampling protocols, as few studies are explicitly
121 designed to disentangle the effect of single factors. Nevertheless, global analyses of biodiversity
122 datasets in urban areas have identified key ecological drivers of biodiversity loss due to urbanization,
123 especially land cover (for instance the proportion of impervious surface) and the age of a city (Aronson
124 and others 2014; Goddard and others 2010). In addition, socio-economic factors have also been shown
125 to influence biodiversity (Aronson Myla and others 2017; Hope and others 2003; Kinzig and others
126 2005). Conversely, studies that have thoroughly disentangled the effects of urban-specific factors on
127 individual rather than on how different species respond are lacking, and this knowledge gap limits our
128 understanding of whether specific city traits may influence adaptation to urban areas.

129

130 **1.2 Gaps in knowledge**

131 *a. How do we define and quantify what urban is (and is not)?*

132 Defining what is urban and what is not is anything but trivial and perhaps only useful from a
133 semantic point of view. Likewise, the term rural can also refer to villages, agricultural fields, wind farms,
134 or energy extraction sites in forests. The important distinction for this field is to quantify the factors that
135 are associated with urban or rural environments, and move away from categorical designations of these
136 areas. A vast proportion of urban ecology studies defines urbanization only qualitatively, and refer to
137 study sites as urban, sub-urban, peri-urban, or rural simply based on the researchers’ own knowledge of
138 the study area. Other studies rely on satellite-based images to quantify land-cover types and categorize

139 them as urban, for instance by using the proportion of impervious surface in a given area around a study
140 site. Recent work has incorporated several landscape attributes in multi-variate analyses (for instance
141 Principal Component Analyses) to compute an integrated “urban score” to be used in subsequent
142 models aimed at testing the effect of urbanization on biodiversity or individual-based variables
143 (Giraudeau and others 2014; Sprau and others 2017). While such compound variables can have the
144 benefit of defining the “citiness” of a particular sampling location, specific environmental variables may
145 play a disproportionately stronger role than others in particular conditions. Depending on the research
146 question of interest either method can have its own merit. Moreover, most definitions of urbanization
147 have so far focused on cross-sectional samplings of environmental variables along urban gradients. Such
148 a methodology fails to take into consideration the complex spatio-temporal dynamics of urban sprawl
149 (Ramalho and Hobbs 2012). In a recent study by Salmón and others (2018), they showed that by
150 performing a spatio-temporal modelling on nitrogen oxide (NO_x) pollution, the long- and medium-term
151 pollution models (one-month and one-week) were highly associated with urbanization scores of the
152 habitat. However, short-term variation in NO_x (24-hours) was not associated with the scoring of
153 urbanization, or with various oxidative stress parameters measured in four species of songbirds. This
154 finding may not be surprising given the importance of local weather conditions for daily pollution
155 estimates which do not affect other parameters of urbanization; however, approaches like this might
156 provide a better understanding of whether a behavioral and physiological trait is an acute response to a
157 specific and current stressor or a more long-term response to the urban environment. Although the
158 urbanization score and NO_x modelling revealed similar large-scale patterns on physiology, it also
159 revealed that the fine-grained resolution in the NO_x models gave better power to detect smaller effects
160 on physiology compared to the more general urbanization scores (Salmón and others 2018). Further,
161 urbanization often proceeds non-linearly and at different speeds in different spatial directions. The
162 result of this process is a mosaic of urban patches embedded into a matrix of remnant natural habitats.

163 Each of these urban patches has its own history of urbanization. To recognize such complexity might
164 explain large portions of variation in species abundance and diversity, and individual responses to the
165 urban environment.

166

167 b. *Can we model “city traits” in comparative global analyses?*

168 The need to generalize the effects of urbanization has promoted studies at the global level. We
169 advocate the need for such global studies, but we also think that we need to take into consideration
170 within- and between-city differences in urbanization. Cities differ dramatically in the way they have
171 been built in regard to the speed and pattern of urban sprawl, and this is especially evident when cities
172 from different continents are compared (Ramalho and Hobbs, 2012). Moreover, cities differ also in the
173 matrix habitat they are built in, mostly depending on the geographic area they are located. For instance
174 Phoenix, a global hotspot of urban ecology research, is a relatively isolated urban area surrounded by
175 desert habitat. Conversely, New York City is located in a heavily urbanized metropolitan area surrounded
176 by temperate habitat with mixed deciduous and evergreen vegetation. The variation in the matrix
177 habitat could also generate important variation in findings and thus may at least partially explain why
178 the same species can show different responses in different cities, or in different areas within the same
179 city (Evans and others 2009). If not accounted for, this variation may limit our ability to generalize from
180 studies that focus on only one or a few cities. To take into account such variability and assign traits to
181 different urban areas based on their ecological characteristics is likely to enhance the quality of global
182 comparative analyses. Moreover, including in such analyses not only ecological but also socio-economic
183 variables will likely improve the quality of the outcomes, as it is increasingly recognized that the type
184 and history of urban development is crucial in determining its impact on biodiversity (Aronson Myla and
185 others 2017; Hope and others 2003; Kinzig and others 2005).

186

187 c. *How do different urban-specific ecological factors interact to affect individual and species*
188 *response?*

189 Most studies aimed at testing the effects of urbanization on individual and species response
190 have so far mostly focused on urbanization as a whole (see section 3). In the last couple of decades
191 urban-specific environmental factors such as anthropogenic light (Ouyang and others 2018; Swaddle and
192 others 2015), noise (Halfwerk and Slabbekoorn 2013; Slabbekoorn and Ripmeester 2008), air pollution
193 (Greaver and others 2012; Salmon and others 2018), toxicants (Snell Rood and others this issue; Järup
194 2003), temperature (Arnfield 2003; Brans and others 2017) or human presence (Chace and Walsh 2006;
195 Corsini and others 2017) have also been the focus of field studies and captive experiments. Recent
196 studies have also tried to disentangle the relative contribution of some of these factors (Da Silva and
197 others 2014; Dominoni and others 2014; Sprau and others 2017). However, experiments are usually
198 designed to separate the effects of these urban factors rather than explicitly testing their interactive
199 effects (but see McMahon and others 2017). Future studies should focus on the outcomes of such
200 interactions and whether they produce synergistic (additive, multiplicative, etc.) or antagonistic effects.
201 Recent studies have proposed integrated frameworks to address interactions between different
202 stressors/stimuli that might be useful in the context of urban ecology as well (for instance, see Hale and
203 others 2013).

204

205 **1.3 Significance and future prospects**

206 To comprehensively understand how environmental variation influences individual, population
207 and species responses is a challenge that every ecologist is likely to face. To further add the complexity
208 of the urban environment on this challenge can be daunting. However, it is a challenge that needs to be
209 met to advance urban ecology research. To do so, we need to recognize and understand the complexity
210 of the urban habitat, and specifically: i) measure as many ecologically relevant variables as possible,
211 including characteristics of the matrix around cities ii) measure socio-economic factors, iii) consider the

212 spatial and temporal variation of such variables between and within cities, iv) consider the age and the
213 history of development of a particular urban area, and, finally, v) design studies aimed at testing the
214 interaction between different urban-specific factors. We believe that integrated, precise measurements
215 of urbanization will ensure that each individual analysis will be robust, and will also improve the quality
216 of large-scale comparative analyses.

217

218 **2. How do urban organisms differ from their rural counterparts? A multi-trait, integrative approach.**

219 **2.1 Background**

220 A growing body of evidence describes behavioral and physiological differences between urban
221 and rural populations, and phenotypic shifts associated with urbanization have been globally
222 demonstrated in plants and animals (see Alberti and others 2017 for a review). However, both
223 behavioral and physiological shifts due to urbanization are not always consistent within the same
224 species measured in different cities (Evans and others 2011; Ibáñez-Álamo and others 2017), and even
225 less between closely related species (LeFebvre and others this issue; Alberti 2015; Moller 2009; Sol and
226 others 2013). For instance, endocrine traits of birds show no general pattern of response to urbanization
227 (Bonier 2012). Similarly, while levels of oxidative stress levels correlate overall positively with the degree
228 of pollution, species-specific differences exist (Isaksson 2010; Salmon and others 2018). We stress that
229 while the lack of general patterns often reported might come partly from environmental differences
230 among urban areas, it is also important to recognize the need to shift from the paradigm of investigating
231 one phenotypic trait in one urban area to a more holistic understanding of how populations respond to
232 urbanization by integrated measures of different traits at different levels of biological organization (e.g.,
233 gene, physiology, behavior), their co-variation, and the underlying mechanistic links between them.
234 Moreover, although evidence points to phenotypic differences between urban and rural populations, we
235 still do not understand how these differences arise. Specifically, these may come about via plastic (non-

236 genetic) or evolutionary (genetic) responses. Thus far, evidence documenting either of these two
237 processes is still relatively rare (Johnson and Munshi-South 2017). Furthermore, trait differences can
238 arise as a result of founder effects, and insights from invasion ecology point to phenotype-dependent
239 dispersal (Chapple and others 2012). An additional level of complexity is given by potential non-random
240 distributions of phenotypes in urban settings (Sprau and Dingemanse 2017). In this section, we want to
241 highlight how these different processes can be unraveled through exploring underlying mechanisms for
242 the observed patterns and through robust, integrative experimental designs.

243

244 **2.2 Gaps in knowledge**

245 *a. Are multiple, correlated physiological and behavioral traits similarly affected by urbanization?*

246 Research in urban ecology has typically focused on one or in very rare cases, a few traits
247 (Badyaev and others 2008; Sol and others 2013). However, an organism's interaction with the
248 environment is both perceived at the neuroendocrine level as well as translated into behaviors (Adkins-
249 Regan 2005). In particular, a specific behavior might originate from a single physiological pathway, or
250 might be the result of a suite of physiological changes (Cohen and others 2017; Ouyang and others
251 2016). When studying covariation between physiology and behavior, we should distinguish between
252 correlational and causal effects. For example, cause and effect can be demonstrated as physiological
253 mechanisms that influence behavioral traits whereas feedbacks can also occur in which physiology
254 affects behavior, which then feeds back to affect physiology (Sih and others 2015). Thus, to fully
255 appreciate how behavioral shifts occur in urban populations, the potential physiological pathways
256 underlying such shifts need to be measured in conjunction. Studying how behavior and physiology
257 feedbacks change with urbanization gives insight into ecological processes such as niche expansion,
258 dispersal, and social organization (Réale and others 2007). Individual variation in behavioral and
259 physiological traits affect key ecological and evolutionary processes: the pattern of phenotypic variation

260 determines the outcome of natural selection and affects competition and the structure of ecological
261 networks (Wolf and Weissing 2012; Wong and Candolin 2015).

262 In addition, recent research has highlighted that environmental change can alter the
263 relationship between physiology and behavior. In normal conditions, physiological and behavioral
264 responses might not be correlated with each other, but such relationships can arise when animals are
265 exposed to environmental stressors (Killen and others 2013). The opposite can also occur (Hutton and
266 others this issue; Killen and others 2013; Welbers and others 2017). Thus, to repeatedly measure the co-
267 variation of physiological and behavioral traits in the same individual, for instance during different
268 seasons or times of day, might shed light on specific ways that urbanization affect animals.

269 Another important aspect to consider is how urbanization affects behavioral traits that are
270 normally correlated with each other. Indeed, recent studies suggest that organisms often exhibit
271 behavioral syndromes, that is, suites of correlated behaviors across time and context (Sih and others
272 2004). The existence of these syndromes indicates that there is a limit to the range of behavioral
273 plasticity expressed by an individual, and thus highlights the need to track individuals across space and
274 time to capture such plasticity. In summary, we believe that the study of correlated traits across
275 situations and biological levels (e.g., physiology and behavior) would promote a deeper understanding
276 of how urbanization affects phenotypes. In essence, when traits are correlated, e.g., different behaviors,
277 or behaviors with physiological traits, they should be studied together longitudinally, rather than in
278 isolated packages, as they have mostly been thus far (but see Charmantier et al 2017).

279

280 *b. What role do ontogeny, plasticity and evolution play in generating the phenotypic variation
281 associated with urbanization?*

282 Plasticity is the first line of response when an individual is exposed to novel environments and
283 stimuli, such as those that exist in urban areas, and it defines the potential of an organism to acclimate

284 to these novel environmental conditions. Such plasticity can manifest itself during development or in
285 adulthood. Unfortunately, studies on how ontogenetic (developmental) plasticity in urban organisms
286 may promote phenotypic differences in adulthood are very rare. An exception is the work on house
287 finches by Badyaev and collaborators. Urban house finches in Tucson, AZ, possess larger and stronger
288 beaks compared to their desert conspecifics (Badyaev and others 2008), which confer a fitness
289 advantage, e.g., higher juvenile survival, because they enable them to crack open and eat the larger
290 seeds and nuts provided in garden feeders (Badyaev 2010). The researchers studied the developmental
291 basis of this divergence in beak morphology in adulthood, demonstrating an earlier and accelerated
292 tissue transformation in urban versus desert house finch embryos. Indeed, the mandibular primordia of
293 the large-beaked urban finches express bone morphogenetic proteins (BMP) earlier and at higher levels
294 than those of the desert finches during embryonic development, leading to stronger beaks in adulthood
295 (Badyaev and others 2008). Studies like these can shed light onto the ontogenetic basis of phenotypic
296 differences due to urbanization. Understanding the control system that underlies trait variation can help
297 elucidate the evolution of reaction norms. For example, control systems can impose constraints if they
298 cannot produce the optimal reaction norm, and can create additional pressures if the system is costly
299 (Lessells 2008).

300 Moreover, quantifying the extent of reversible phenotypic plasticity in adulthood is also
301 important, as it might underlie the capacity of individuals to respond to rapid environmental changes
302 taking place during urban development. Such plasticity can be studied via translocation studies or
303 testing how the same individuals respond to repeated, experimental exposures to urban challenges. We
304 can also use laboratory studies to measure plasticity in a controlled setting. It is important to note that
305 not all plasticity is adaptive. Anthropogenic environments may be ecological traps, such as the case of
306 dark beetles that are killed in managed forests when they are attracted to forest fuel piles that are then
307 milled (Hedin and others 2008). Maladaptive behaviors are likely to occur when animals encounter very

308 different conditions, e.g., urban environments, from those that shaped their traits under previous
309 selection (Hale and others 2016). Distinguishing between adaptive and maladaptive plasticity and their
310 degree of flexibility will be important for understanding whether urban environments act as
311 evolutionary traps or promote adaptive evolution (Hale and others 2016; Robertson and others 2013).

312 It is important to recognize that without robust experimental design, plastic, non-genetic
313 responses can be easily confounded with genetic responses. For instance, while common-garden
314 experiments are a common way to disentangle genetic versus environmental effects on behavior and
315 physiology, they often lack to control for the potential effect of parental and early-environmental
316 influences on phenotypes (Dominoni and others 2013; Partecke and others 2005). Recently, Brans and
317 others (2017) used a multi-generational common-garden experiment with *Daphnia* to ask whether
318 urban *Daphnia* have evolved higher heat-tolerance than rural water fleas. By breeding both the parental
319 and F1 generation in a common environment, the authors limited the effect of any potential non-
320 genetic influence on the results. They found higher heat tolerance in animals descended from
321 individuals collected from urban ponds compared to descendants of individuals collected from rural
322 ponds, partly mediated by smaller body size, suggesting adaptive thermal evolution in urban *Daphnia*.
323 Similar studies will be instrumental in disentangling genetic and non-genetic responses to urbanization.

324 Furthermore, we also need to stress that the emergence of specific urban phenotypes might
325 simply be a consequence of non-random distributions of phenotypes in urban settings, pre-selected
326 from existing rural populations during the process of urbanization. In other words, urbanization might
327 filter species, populations, and individuals on the basis of whether or not they possess traits that make
328 them suitable to colonize and thrive in cities. The ideas of urban habitats being “filters” has been
329 examined largely in community ecology (Banaszak-Cibicka and Źmihorski 2012; Croci and others 2008;
330 Maklakov and others 2011), in which species have been identified as “winners or losers.” Much less
331 attention has been devoted to the same process acting at the individual level within a population (but

332 see Charmantier and others 2017; Sprau and Dingemanse 2017), and we consider this as a ripe research
333 field.

334

335 **2.3 Significance and future prospects**

336 To make strides in answering these questions, we need to not only measure phenotypic traits
337 but we also need to measure these traits in conjunction, such that we can have information on
338 (co)variation between and within individuals. To date, there are very few studies that have measured
339 multiple behavioral traits (e.g., song, boldness, exploration) and multiple levels of causation (e.g.,
340 differences in physiology and morphology) within urban and rural populations and the few that have
341 done so have been key in establishing trait covariance. To disentangle the role of parental, early
342 developmental, environmental or genetic effects in producing organisms that avoid or exploit urban
343 environments, we need to design robust experiments, for instance cross-fostering or common-garden
344 experiments (Brans and others 2017; Capilla-Lasheras and others 2017; Partecke and others 2006;
345 Kobiela and Snell-Rood this issue; Salmon et al this issue). Lastly, with the growing amount of individual-
346 based data collected, we should integrate between different levels of organization, e.g., genetic
347 variation, epigenetic variation, gene expression, physiology, and behavior, to form of a holistic
348 understanding of how new behaviors and life-histories emerge in urban environments.

349

350 **3. Why do urban organisms differ from their non-urban counterparts?**

351 **3.1 Background**

352 Urban environments are relatively novel and are characterized by several anthropogenic factors,
353 e.g., increased anthropogenic food, light and noise levels, that make them unique. Hence, cities present
354 wildlife with novel environmental conditions that are dramatically different from those under which
355 they have evolved. Some of these conditions might exert strong selective pressures on urban organisms

356 (Johnson and Munshi-South 2017). Consequently, cities can be seen as hubs of evolution in action. In
357 fact, there has been a recent surge of interest in studying evolution in cities (see Johnson and Munshi-
358 South 2017 for a review). Thus far, population genetic studies have been instrumental in this field. For
359 example, Mueller and others addressed the genetic nature of behavioral adaptation of blackbirds
360 colonizing urban areas (2013). They found evidence for consistent patterns of divergence between
361 paired urban and rural birds at a microsatellite associated with the SERT gene. SERT has a number of
362 hypothesized behavioral effects, including harm avoidance, which may be associated with tolerating the
363 challenges of urban environments (Garroway and Sheldon 2013). Similarly, researchers have found that
364 past history of urbanization of New York City is paralleled with changes in the genome and demographic
365 history of the white-footed mouse (Harris and others 2016). Using RAD sequencing, Perrier and others
366 found a small but significant effect of urbanization on genetic differentiation in European great tits
367 (Perrier and others 2017). However, population genetic studies in urban ecology are still relatively rare
368 and provide a very limited taxonomic sample. With molecular tools becoming cheaper and more
369 accessible, much can be gained from investigating the consistency of the effects of urbanization on the
370 spatial distribution of genetic diversity, the polygenic nature of gene–urbanization association, and
371 potential signatures of selection in the genome of urbanized species (Bosse and others 2017).

372 Despite population genetics being a useful tool to highlight evidence of genetic adaptation to
373 urban life, it does not help us to fully understand why within a species urban organisms differ from their
374 rural counterparts. In order to achieve this, we need to integrate genetic variation data with information
375 on the strength of selection on a particular trait and its fitness value. For instance, several urban-specific
376 environmental factors have been proposed to explain variation in life-histories associated with
377 urbanization: food limitation, predation, anthropogenic pollution, etc. (Sepp and others 2017). However,
378 how these factors translate into selective pressures in urban environments is largely unknown.
379 Moreover, how does individual fitness respond to spatio-temporal variation in such pressures along

380 gradients of urbanization? And what traits are under selection? Quantifying selective pressures and
381 obtaining long-term fitness data (in particular lifetime reproductive success) in urban environments
382 remain daunting tasks, but key to understanding the evolution of urban-specialized traits.

383

384 **3.2 Gaps in knowledge**

385 *a. Are behavioral/physiological changes in urban individuals adaptive?*

386 We still do not have a clear understanding whether behavioral or physiological changes in urban
387 individuals are adaptive or maladaptive. Repeatability, measured as the fraction of phenotypic variation
388 that is due to differences among individuals relative to differences within an individual, can set the
389 upper bound to heritable variation. However, for most traits we have no estimates of heritability or
390 repeatability and no information if they change along urban gradients (Jenkins and others 2014, Salmon
391 and others this issue; Ouyang and others 2011). To fill these gaps, we would first need repeated
392 measures of a trait within the same urban individuals. Then, we would need to measure the relationship
393 between this trait and individual fitness. Last, we would need to assess how such a relationship might be
394 affected by urban-specific environmental factors, to assess the strength of selection acting on the trait
395 (see also next section). As an alternative perspective, top-down approaches using genomic data could be
396 used to assess signatures of selection. For example, a large genomic dataset in European great tits
397 suggests that beak shape and size evolved rapidly as a result of domestic garden feeders (Bosse and
398 others 2017; but see Perrier and Charmantier 2018).

399

400 *b. What are the selective pressures that urban animals respond to?*

401 Very few studies have quantified the selection pressures that urban animals are responding to.
402 Selective pressures in urban environments, such as temporal variation in food, water, and predation, are
403 often relaxed (Jokimäki and others 2002; Marzluff 2017). Urban environments exhibit a range of

404 changed ecological processes, e.g., increased primary productivity. To illustrate, although concrete
405 surfaces in cities represent a net primary productivity of zero, city parks, gardens and golf courses
406 elevate local productivity relative to surrounding rural areas, with these green spaces lying close to the
407 highest end of the productivity continuum (Kaye and others 2005). These ecological processes should
408 alter selective forces in cities, and might lead to the genetic differentiation of urban and wild
409 populations. Alternatively or in conjunction to this, genetic changes associated with isolated wild
410 populations due to habitat fragmentation may on one hand result from increasingly urbanized
411 landscapes (Shochat and others 2006). On the other hand, continuous migration and gene flow, for
412 instance in highly mobile species such as birds, might prevent the genetic differentiation of urban
413 populations and dampen evolutionary responses.

414 As we highlighted above, to understand the evolutionary implications of urbanization it is
415 imperative to obtain fitness data, preferably through experimental work in order to disentangle the
416 fitness responses to different urban-specific environmental factors. In terms of reproductive success,
417 food availability and quantity is often one of the characterized environmental traits, at least in avian
418 systems (Schoech and others 2009). Higher food availability is generally associated with increased
419 reproductive success (Verboven and others 2001) and earlier timing of reproduction (Schoech et al
420 2009) in urban animals. However, urbanization may also be associated with a reduction in the quality of
421 food, for instance via reduced availability of optimal diets, and this component is not always
422 appreciated. Recently, a reduction of food quality was linked to reduced reproductive success in birds
423 (Pollock et al 2017) and higher disease susceptibility in coyotes (Murray et al 2015). In terms of survival,
424 there is no study that we are aware of that has characterized both how urban animals die and what
425 selective pressures affect their survival, so it remains a clear research gap for urban evolutionary
426 biology.

427

428 c. Do phylogenetically related species respond similarly to urbanization?

429 In a review of >800 avian species across five continents, Sol and others found that most of the

430 biodiversity loss can be attributed to a lack of appropriate adaptations for exploiting resources or

431 avoiding risks associated with urbanized environments (2014). Importantly, closely related species

432 tended to respond to urbanization in the same way, e.g., avoider or exploiter, possibly sharing features

433 that affect their tolerance to urban development (La Piedra this issue). Moreover, recent work has also

434 pointed to the reduction of avian phylogenetic uniqueness in urban habitats, which raises conservation

435 concerns (McKinney 2006). These studies are a good start to answering this question and should be

436 expanded to systems other than birds. In conjunction, a global network of researchers that work on the

437 same system, e.g., house sparrows or *Anolis* lizards, may be useful to explore fundamental questions in

438 different cities across the globe.

439

440 **3.3 Significance and future prospects**

441 These evolutionary and ultimate questions need data on life-time fitness that are often missing

442 in field studies. In order to understand the forces of selection, we need basic information on the genetic

443 variation of many of the behavioral or physiological traits that we are measuring. For example, we need

444 to measure heritability and repeatability of key traits to quantify if these may constitute substrates of

445 selection, and then measure selection coefficients. With selection coefficients, we can predict the rate

446 of change in a trait over time and over different environmental conditions, to predict how likely a trait

447 would be able to respond to current and future environmental change. However, it is important to note

448 that phenotype-fitness relationships can be biased and generated by adaptive plastic responses to the

449 environment (Bonier and Martin 2016). Moreover, we can use quantitative genomics to link genotype

450 with phenotype. To measure evolutionary routes, we need to know which selective pressures promote

451 trait divergence. Likely, this will include quantifying environmental factors and testing these factors

452 using common-garden experiments in the lab. We can use phylogenetic relatedness to our advantage by
453 comparing similar and dissimilar species pairs' responses to environmental factors that characterize
454 cities. Lastly, comparative phylogenetic models can predict how species may respond to urbanization
455 especially for non-avian taxa, i.e., comparing phylogenetically similar species. In summary, greater
456 attention should be paid to urban evolutionary aspects because the type and direction of physiological,
457 behavior, and morphological changes can indicate how selective forces in urban environments differ
458 from those in habitats less affected by humans.

459

460 **4. How do individual-level responses influence population dynamics in urban areas?**

461 **4.1 Background**

462 We mentioned in the introduction that research in urban ecology has so far primarily focused on
463 questions related to how urbanization affects i) population-level (urban vs rural) phenotypic responses
464 (Alberti and others 2017) and ii) biodiversity (Aronson Myla and others 2017; Beninde and others 2015).
465 Despite the large number of studies that have investigated these questions, there is comparatively little
466 knowledge about if and how the two aspects are linked. Urbanization is known to affect several
467 demographic parameters, such as reproductive success and fertility, mortality, and longevity (although
468 examples of longevity are rare; Chamberlain and others 2009; Sepp and others 2017). However, how
469 these demographic effects translate into changes in population dynamics and ultimately into the
470 likelihood of a species to increase or decrease in abundance over time is a somewhat neglected aspect
471 of urban ecology. A mechanistic appreciation of the demographic processes that regulate urban
472 populations is imperative if we want to understand how urbanization affects species abundance and
473 biodiversity. Thus, we believe it should be a major focus of urban ecology research in the near future.
474 Moreover, most studies so far have utilized a cross-sectional approach, comparing demographic traits

475 and species abundance levels across gradients of urbanization or in paired urban/rural sites. While this
476 approach is useful to identify *patterns* of changes in demography and biodiversity associated with
477 urbanization, its utility for understanding the *processes* underlying these changes is limited. Alternative
478 approaches, for instance longitudinal demographic analyses during different stages of urban
479 development, or meta-population modelling, might be much more informative of such processes,
480 drawing from the existing tools used in the fields of invasion biology and behavioral ecology.

481

482 **4.2 Gaps in knowledge**

483 *a. What is the impact of urbanization on components of fitness?*

484 The need to obtain accurate demographic data is imperative to assess not only the impact of
485 urbanization on fitness, but also the selective forces acting on urban populations (see section 3), and the
486 consequences of such demographic changes for the persistence of wild species in urban areas. For
487 instance, there is mounting evidence that passerine birds have reduced reproductive success in urban
488 areas. This is partly due to reduced investment in clutch size (Chamberlain and others 2009; Sepp and
489 others 2017), but also to poor diet and health in early life which may reduce both pre- and post-fledging
490 survival (Bailly and others 2016; Capilla-Lasheras and others 2017; Pollock and others 2017; Rodewald
491 and others 2013; Salmón and others 2017; Smith and others 2016). However, most of these studies
492 were limited to one or few years, whereas studies that have measured lifetime reproductive success
493 (the most compelling fitness measure) in urban populations are non-existent. Similarly, there are very
494 few examples of urban populations in which survival and especially longevity are measured accurately
495 for most individuals (but see Sepp and others 2017). A key challenge is therefore to move towards long-
496 term monitoring of urban populations in order to obtain high quality data on individual reproduction
497 and survival.

498

499 b. How are such changes in individual fitness linked to population dynamics in urban areas?

500 Very few studies have assessed population dynamics of species in urban areas (but see Balogh
501 and others 2011; Harveson and others 2007; Riley and others 2003). Such lack of knowledge limits our
502 capacity to understand the drivers of change in population abundance associated with urbanization, as
503 well as whether urban populations are sources or sinks. Likewise, evolutionary traps and range shifts are
504 likely to interact as animals respond to rapid urbanization (Hale and others 2016). If colonizers are more
505 likely to encounter traps as they explore novel urban environments, what happens to these phenotypes
506 and would they be removed from these environments? Perhaps the phenotypic traits that make an
507 urban colonizer successful are not those that would persist in urban environments. Hence, it will be
508 important to measure range shifts and dispersal strategies. In a recent study, Smith and co-authors
509 (2016) have used a three-year dataset on reproductive success and annual survival to build a stochastic
510 demographic model and estimate population growth rate for spotted towhees (*Pipilo maculatus*) in four
511 parks in Portland, OR, USA. Their model revealed that despite high levels of annual reproductive output,
512 post-fledging survival can be very low. This pattern suggests that some urban populations might be sinks
513 and must rely on immigration from source areas to be sustained. However, immigration as well as
514 dispersal rates were not measured in this study. To obtain such estimates in urban areas where
515 populations are likely to be distributed within a mosaic of small to large patches of remnant habitat can
516 be daunting, but nevertheless essential for the understanding of population dynamics and the ecological
517 connectivity of urban landscapes (LaPoint and others 2015). Biotelemetry studies conducted in urban
518 areas are increasing in number and scope (LaPoint and others 2015), and we advocate more use of
519 these tools to assess movements between sub-populations and thus inform metapopulation models
520 with emigration and immigration rates. Alternatively, genetic information can be used to assess the
521 direction and strength of gene flow and demographic history (Andreasen Alyson and others 2012;
522 Gaggiotti and others 2009).

523

524 *c. When are changes in individual fitness reflected in demographic changes during progressive*
525 *urbanization?*

526 An important aspect to consider when assessing the demographic consequences of
527 urbanization, and thus its effects on biodiversity, is not only *how* and *why*, but also *when* during the
528 different stages of urban development a species begins to show changes in demographic parameters
529 that can lead to changes in abundance. It is important to also assess population density and land-use
530 changes in areas surrounding cities as these areas can also develop at different time scales. Longitudinal
531 analyses have been instrumental in elucidating the mechanisms underlying population dynamics in
532 other study systems (Ewald and others 2015; Haddad and others 2015; Potts and others 1980; Reed and
533 others 2013). However, as mentioned earlier, long-term ecological studies are rare in urban habitats. In
534 this context, data obtained through citizen science projects can play a crucial role. Indeed, such data is
535 intrinsically linked to the presence of humans and is therefore often collected within urban areas of
536 different size and age (Bates and others 2015; Bradsworth and others 2017). Such data are increasingly
537 used to assess long-term population trends and their underlying causes, and could be further exploited
538 to understand early warning symptoms of demographic change linked to increasing urbanization.

539

540 **4.3 Significance and future prospects**

541 The widespread species loss associated with urbanization does not only happen during its first
542 stages, but also during the complex process of urban sprawl, which creates a mosaic of different urban
543 sub-habitats, from concrete-heavy business districts to greener suburban areas, that may or may not
544 become unsuitable for certain species. Understanding when during this process species may cease to be
545 able to cope with urban development is a research challenge that, if met, it will provide us with unique
546 knowledge about how urbanization affects biodiversity. We believe that meeting this challenge will

547 require a mechanistic comprehension of this process that relies on long-term data on individual fitness,
548 population growth, and habitat change.

549

550

551 **Conclusions**

552 There is a compelling need to expand and integrate different components of urban ecology to
553 reach an integrative mechanistic understanding of how organisms respond to, cope with, and adapt to
554 urbanization (French and others this issue; Isaksson 2015). Urban sprawl has profound impacts on wild
555 organisms, and the resulting disruption of physiology, behavior, and life history has major conservation
556 implications (Kernbach and others this issue; Kleist and others 2018; Knop and others 2017; Ouyang and
557 others 2017). In this context, there is a need to develop amelioration plans for species affected by
558 urbanization, with the ultimate goal of designing environmentally sustainable cities with minimal
559 ecological footprints. Despite the fact that the field of urban ecology is moving fast and attracting
560 increasing scientific and public attention, we still lack a framework that can help us understand
561 individual and population-level responses to urbanization.

562 The four questions we have raised here provide a framework and a pathway for an integrative
563 understanding of urban ecology through a focus on mechanisms. We stress that we will need a
564 combination of laboratory studies with controlled conditions, field studies that characterize fitness and
565 the environment, and comparative and meta-analyses with global approaches for broad-scale patterns
566 to form a holistic view of urban ecology. First, with clear definitions of the different factors that
567 characterize a city, we can measure the socio-economic and ecological factors that influence the
568 observable traits in animals, and their interactive effects. Second, we need to understand how urban
569 animals differ from their rural counterparts through common garden and genomic studies that
570 disentangle the genetic, epigenetic, and phenotypic contributions from development to adult

571 phenotype. This will require us to not only focus on one trait but also on correlated traits. Next, to
572 explore why individuals differ, we need to understand the evolutionary potential for adaptive change in
573 traits of urban organisms. We will need to measure selection coefficients and use population genomic
574 studies to explore global patterns. Lastly, to facilitate crosstalk between studies of individual-level
575 phenotypic traits and biodiversity, we will need measures of lifetime fitness and links to population
576 dynamics. With the expansion of the urban human population, having a concurrent increase in studies
577 that address these knowledge gaps will help us build greener cities that maintain biodiversity and
578 ecosystem function.

579

580 **Funding**

581 This work was supported by the Society of Integrative and Comparative Biology (SICB), the National
582 Science Foundation (NSF OIA-1738594 to JQO), the National Institutes of Health (NIH- P20 GM103650 to
583 JQO), the Swedish Research Council (VR; C0361301 to CI).

584

585 **Acknowledgments**

586 We wish to acknowledge the intellectual contributions of the participants in the Behavioral and
587 Physiological Adaptations to Urban Environments workshop and symposium during the SICB 2018
588 meeting in San Francisco, CA. Lori Strong, Brett Burk, Ruedi Birenheide, and Richard Blob provided
589 technical and administrative support.

590

591 **References**

592 Adkins-Regan E. 2005. Hormones and animal social behavior. Princeton, NJ, USA: Princeton University
593 Press.

594 Alberti M. 2015. Eco-evolutionary dynamics in an urbanizing planet. *Trends Ecol Evol* 30(2):114-26.

595 Alberti M, Correa C, Marzluff JM, Hendry AP, Palkovacs EP, Gotanda KM, Hunt VM, Apgar TM, Zhou Y.
596 2017. Global urban signatures of phenotypic change in animal and plant populations.
597 *Proceedings of the National Academy of Sciences*.

598 Andreasen Alyson M, Stewart Kelley M, Longland William S, Beckmann Jon P, Forister Matthew L. 2012.
599 Identification of source - sink dynamics in mountain lions of the Great Basin. *Molecular Ecology*
600 21(23):5689-5701.

601 Arnfield AJ. 2003. Two decades of urban climate research: a review of turbulence, exchanges of energy
602 and water, and the urban heat island. *International Journal of Climatology* 23(1):1-26.

603 Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NSG, Cilliers
604 S, Clarkson B et al. . 2014. A global analysis of the impacts of urbanization on bird and plant
605 diversity reveals key anthropogenic drivers. *Proceedings of the Royal Society B: Biological
606 Sciences* 281(1780).

607 Aronson Myla FJ, Lepczyk Christopher A, Evans Karl L, Goddard Mark A, Lerman Susannah B, MacIvor JS,
608 Nilon Charles H, Vargo T. 2017. Biodiversity in the city: key challenges for urban green space
609 management. *Frontiers in Ecology and the Environment* 15(4):189-196.

610 Audet J-N, Ducatez S, Lefebvre L. 2016. The town bird and the country bird: problem solving and
611 immunocompetence vary with urbanization. *Behavioral Ecology* 27(2):637-644.

612 Badyaev AV. 2010. The beak of the other finch: coevolution of genetic covariance structure and
613 developmental modularity during adaptive evolution. *Philosophical Transactions of the Royal
614 Society B: Biological Sciences* 365(1543):1111-1126.

615 Badyaev AV, Young RL, Oh KP, Addison C. 2008. Evolution on a local scale: developmental, functional,
616 and genetic bases of divergence in bill form and associated changes in song structure between
617 adjacent habitats. *Evolution* 62(8):1951-1964.

618 Bailly J, Scheifler R, Berthe S, Clément-Demange V-A, Leblond M, Pasteur B, Faivre B. 2016. From eggs to
619 fledging: negative impact of urban habitat on reproduction in two tit species. *Journal of
620 Ornithology* 157(2):377-392.

621 Balogh AL, Ryder TB, Marra PP. 2011. Population demography of Gray Catbirds in the suburban matrix:
622 sources, sinks and domestic cats. *Journal of Ornithology* 152(3):717-726.

623 Banaszak-Cibicka W, Źmihorski M. 2012. Wild bees along an urban gradient: winners and losers. *Journal
624 of Insect Conservation* 16(3):331-343.

625 Bates AJ, Lakeman Fraser P, Robinson L, Tweddle JC, Sadler JP, West SE, Norman S, Batson M, Davies L.
626 2015. The OPAL bugs count survey: exploring the effects of urbanisation and habitat
627 characteristics using citizen science. *Urban Ecosystems* 18(4):1477-1497.

628 Beninde J, Veith M, Hochkirch A, Haddad N. 2015. Biodiversity in cities needs space: a meta - analysis of
629 factors determining intra - urban biodiversity variation. *Ecology Letters* 18(6):581-592.

630 Blair RB. 1996. Land Use and Avian Species Diversity Along an Urban Gradient. *Ecological Applications*
631 6(2):506-519.

632 Bonier F. 2012. Hormones in the city: Endocrine ecology of urban birds. *Hormones and Behavior*
633 61(5):763-772.

634 Bonier F, Martin PR. 2016. How can we estimate natural selection on endocrine traits? Lessons from
635 evolutionary biology. *Proceedings of the Royal Society B: Biological Sciences* 283(1843).

636 Bosse M, Spurgin LG, Laine VN, Cole EF, Firth JA, Gienapp P, Gosler AG, McMahon K, Poissant J,
637 Verhagen I et al. . 2017. Recent natural selection causes adaptive evolution of an avian polygenic
638 trait. *Science* 358(6361):365-368.

639 Bradsworth N, White JG, Isaac B, Cooke R. 2017. Species distribution models derived from citizen science
640 data predict the fine scale movements of owls in an urbanizing landscape. *Biological
641 Conservation* 213:27-35.

642 Brans KI, Jansen M, Vanoverbeke J, Tüzün N, Stoks R, Meester LD. 2017. The heat is on: Genetic
643 adaptation to urbanization mediated by thermal tolerance and body size. *Global Change Biology*
644 23(12):5218-5227.

645 Capilla-Lasheras P, Dominoni DM, Babayan SA, O'Shaughnessy PJ, Mladenova M, Woodford L, Pollock CJ,
646 Barr T, Baldini F, Helm B. 2017. Elevated Immune Gene Expression Is Associated with Poor
647 Reproductive Success of Urban Blue Tits. *Frontiers in Ecology and Evolution* 5(64).

648 Chace JF, Walsh JJ. 2006. Urban effects on native avifauna: a review. *Landscape and Urban Planning*
649 74(1):46-69.

650 Chamberlain DE, Cannon AR, Toms MP, Leech DI, Hatchwell BJ, Gaston KJ. 2009. Avian productivity in
651 urban landscapes: a review and meta-analysis. *Ibis* 151.

652 Chapple DG, Simmonds SM, Wong BBM. 2012. Can behavioral and personality traits influence the
653 success of unintentional species introductions? *Trends in Ecology & Evolution* 27(1):57-64.

654 Charmantier A, Demeyrier V, Lambrechts M, Perret S, Grégoire A. 2017. Urbanization Is Associated with
655 Divergence in Pace-of-Life in Great Tits. *Frontiers in Ecology and Evolution* 5(53).

656 Cohen AA, Isaksson C, Salguero-Gómez R. 2017. Co-existence of multiple trade-off currencies shapes
657 evolutionary outcomes. *PLOS ONE* 12(12):e0189124.

658 Corsini M, Dubiec A, Marrot P, Szulkin M. 2017. Humans and Tits in the City: Quantifying the Effects of
659 Human Presence on Great Tit and Blue Tit Reproductive Trait Variation. *Frontiers in Ecology and
660 Evolution* 5(82).

661 Croci S, Butet A, Clergeau P. 2008. Does Urbanization Filter Birds on the Basis of Their Biological Traits.
662 *The Condor* 110(2):223-240.

663 Da Silva A, Samplonius JM, Schlicht E, Valcu M, Kempenaers B. 2014. Artificial night lighting rather than
664 traffic noise affects the daily timing of dawn and dusk singing in common European songbirds.
665 *Behavioral Ecology*.

666 Davies S, Haddad N, Ouyang JQ. 2017. Stressful city sounds: glucocorticoid responses to experimental
667 traffic noise are environmentally dependent. *Biology Letters* 13(10).

668 Dominoni DM, Carmona-Wagner EO, Hofmann M, Kranstauber B, Partecke J. 2014. Individual-based
669 measurements of light intensity provide new insights into the effects of artificial light at night on
670 daily rhythms of urban-dwelling songbirds. *J Anim Ecol* 83(3):681-92.

671 Dominoni DM, Greif S, Nemeth E, Brumm H. 2016. Airport noise predicts song timing of European birds.
672 *Ecology and Evolution* 6(17):6151-6159.

673 Dominoni DM, Quetting M, Partecke J. 2013. Artificial light at night advances avian reproductive
674 physiology. *Proc Biol Sci* 280.

675 Evans KL, Chamberlain DE, Hatchwell BJ, Gregory RD, Gaston KJ. 2011. What makes an urban bird?
676 *Global Change Biology* 17(1):32-44.

677 Evans KL, Gaston KJ, Sharp SP, McGowan A, Simeoni M, Hatchwell BJ. 2009. Effects of urbanisation on
678 disease prevalence and age structure in blackbird *Turdus merula* populations. *Oikos* 118(5):774-
679 782.

680 Ewald JA, Wheatley CJ, Aebischer NJ, Moreby SJ, Duffield SJ, Crick HQP, Morecroft MB. 2015. Influences
681 of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years.
682 *Global Change Biology* 21(11):3931-3950.

683 Fokidis HB, Orchinik M, Deviche P. 2009. Corticosterone and corticosteroid binding globulin in birds:
684 relation to urbanization in a desert city. *Gen Comp Endocrinol* 160(3):259-70.

685 Foltz SL, Ross AE, Laing BT, Rock RP, Battle KE, Moore IT. 2015. Get off my lawn: increased aggression in
686 urban song sparrows is related to resource availability. *Behavioral Ecology* 26(6):1548-1557.

687 Gaggiotti OE, Bekkevold D, Jørgensen HBH, Foll M, Carvalho GR, Andre C, Ruzzante DE. 2009.
688 Disentangling the effects of evolutionary, demographic, and environmental factors influencing
689 genetic structure of natural populations: Atlantic herring as a case study. *Evolution* 63(11):2939-
690 2951.

691 Garroway CJ, Sheldon BC. 2013. Urban behavioural adaptation. *Molecular Ecology* 22(13):3430-3432.

692 Giraudeau M, Mousel M, Earl S, McGraw K. 2014. Parasites in the City: Degree of Urbanization Predicts
693 Poxvirus and Coccidian Infections in House Finches (*Haemorhous mexicanus*). *PLOS ONE*
694 9(2):e86747.

695 Goddard MA, Dougill AJ, Benton TG. 2010. Scaling up from gardens: biodiversity conservation in urban
696 environments. *Trends in Ecology & Evolution* 25(2):90-98.

697 Greaver TL, Sullivan TJ, Herrick JD, Barber MC, Baron JS, Cosby BJ, Deerhake ME, Dennis RL, Dubois J-JB,
698 Goodalee CL et al. . 2012. Ecological effects of nitrogen and sulfur air pollution in the US: what
699 do we know? *Frontiers in Ecology and the Environment* 10(7):365-372.

700 Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP,
701 Collins CD et al. . 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems.
702 *Science Advances* 1(2).

703 Hale JD, Davies G, Fairbrass AJ, Matthews TJ, Rogers CDF, Sadler JP. 2013. Mapping Lightscapes: Spatial
704 Patterning of Artificial Lighting in an Urban Landscape. *PLOS ONE* 8(5):e61460.

705 Hale R, Morrongiello JR, Swearer SE. 2016. Evolutionary traps and range shifts in a rapidly changing
706 world. *Biology Letters* 12(6).

707 Halfwerk W, Bot S, Buikx J, van der Velde M, Komdeur J, ten Cate C, Slabbekoorn H. 2011. Low-
708 frequency songs lose their potency in noisy urban conditions. *Proceedings of the National
709 Academy of Sciences* 108(35):14549-14554.

710 Halfwerk W, Slabbekoorn H. 2013. The impact of anthropogenic noise on avian communication and
711 fitness. In: Gil D, Brumm H, editors. *Avian Urban Ecology: Behavioral and Physiological
712 Adaptations*. Oxford, UK: Oxford University Press. p. 84-97.

713 Harris SE, Xue AT, Alvarado-Serrano D, Boehm JT, Joseph T, Hickerson MJ, Munshi-South J. 2016.
714 Urbanization shapes the demographic history of a native rodent (the white-footed mouse,
715 *Peromyscus leucopus*) in New York City. *Biology Letters* 12(4).

716 Harveson PM, Lopez RR, Collier BA, Silvy NJ. 2007. Impacts of urbanization on Florida Key deer behavior
717 and population dynamics. *Biological Conservation* 134(3):321-331.

718 Hedin J, Isaksson G, Jonsell M, Komonen A. 2008. Forest fuel piles as ecological traps for saproxylic
719 beetles in oak. *Scandinavian Journal of Forest Research* 23(4):348-357.

720 Hope D, Gries C, Zhu W, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A. 2003.
721 Socioeconomics drive urban plant diversity. *Proceedings of the National Academy of Sciences*
722 100(15):8788-8792.

723 Ibáñez-Álamo JD, Rubio E, Bitrus Zira K. 2017. The Degree of Urbanization of a Species Affects How
724 Intensively It Is Studied: A Global Perspective. *Frontiers in Ecology and Evolution* 5(41).

725 Isaksson C. 2010. Pollution and Its Impact on Wild Animals: A Meta-Analysis on Oxidative Stress.
726 *EcoHealth* 7(3):342-350.

727 Isaksson C. 2015. Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing
728 or coping with urban environmental stress. *Functional Ecology* 29(7):913-923.

729 Järup L. 2003. Hazards of heavy metal contamination. *British Medical Bulletin* 68(1):167-182.

730 Jenkins BR, Vitousek MN, Hubbard JK, Safran RJ. 2014. An experimental analysis of the heritability of
731 variation in glucocorticoid concentrations in a wild avian population. *Proceedings of the Royal*
732 *Society B: Biological Sciences* 281(1790).

733 Johnson MTJ, Munshi-South J. 2017. Evolution of life in urban environments. *Science* 358(6363).

734 Jokimäki J, Clergeau P, Kaisanlahti-Jokimäki M-L. 2002. Winter bird communities in urban habitats: a
735 comparative study between central and northern Europe. *Journal of Biogeography* 29(1):69-79.

736 Kalnay E, Cai M. 2003. Impact of urbanization and land-use change on climate. *Nature* 423(6939):528-
737 531.

738 Kaye JP, McCulley RL, Burke IC. 2005. Carbon fluxes, nitrogen cycling, and soil microbial communities in
739 adjacent urban, native and agricultural ecosystems. *Global Change Biology* 11(4):575-587.

740 Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P. 2013. Environmental stressors alter
741 relationships between physiology and behaviour. *Trends in Ecology & Evolution* 28(11):651-658.

742 Kinzig AP, Warren P, Martin C, Hope D, Katti M. 2005. The Effects of Human Socioeconomic Status and
743 Cultural Characteristics on Urban Patterns of Biodiversity. *Ecology and Society* 10(1).

744 Kleist NJ, Guralnick RP, Cruz A, Lowry CA, Francis CD. 2018. Chronic anthropogenic noise disrupts
745 glucocorticoid signaling and has multiple effects on fitness in an avian community. *Proceedings*
746 *of the National Academy of Sciences*.

747 Knop E, Zoller L, Ryser R, Gerpe C, Hörler M, Fontaine C. 2017. Artificial light at night as a new threat to
748 pollination. *Nature* 548(7666):206-209.

749 LaPoint S, Balkenhol N, Hale J, Sadler J, Ree R, Evans K. 2015. Ecological connectivity research in urban
750 areas. *Functional Ecology* 29(7):868-878.

751 Lessells CM. 2008. Neuroendocrine control of life histories: what do we need to know to understand the
752 evolution of phenotypic plasticity? *Philosophical Transactions of the Royal Society B-Biological*
753 *Sciences* 363:1589-1598.

754 Liker A, Papp Z, Bókony V, Lendvai ÁZ. 2008. Lean birds in the city: body size and condition of house
755 sparrows along the urbanization gradient. *Journal of Animal Ecology* 77(4):789-795.

756 Maklakov AA, Immler S, Gonzalez-Voyer A, Rönn J, Kolm N. 2011. Brains and the city: big-brained
757 passerine birds succeed in urban environments. *Biology Letters* 7(5):730-732.

758 Marzluff JM. 2017. A decadal review of urban ornithology and a prospectus for the future. *Ibis* 159(1):1-
759 13.

760 McIntyre NE. 2000. Ecology of Urban Arthropods: A Review and a Call to Action. *Annals of the*
761 *Entomological Society of America* 93(4):825-835.

762 McKinney ML. 2006. Urbanization as a major cause of biotic homogenization. *Biological Conservation*
763 127(3):247-260.

764 McMahon TA, Rohr JR, Bernal XE. 2017. Light and noise pollution interact to disrupt interspecific
765 interactions. *Ecology* 98(5):1290-1299.

766 Moller AP. 2009. Successful city dwellers: a comparative study of the ecological characteristics of urban
767 birds in the Western Palearctic. *Oecologia* 159(4):849-58.

768 Mueller JC, Partecke J, Hatchwell BJ, Gaston KJ, Evans KL. 2013. Candidate gene polymorphisms for
769 behavioural adaptations during urbanization in blackbirds. *Molecular Ecology* 22(13):3629-3637.

770 Nations U. 2014. World urbanization prospects. In: Affairs DoEaS, editor.

771 Ouyang JQ, Davies S, Dominoni D. 2018. Hormonally mediated effects of artificial light at night on
772 behavior and fitness: linking endocrine mechanisms with function. *The Journal of Experimental*
773 *Biology* 221(6).

774 Ouyang JQ, de Jong M, van Grunsven RHA, Matson KD, Haussmann MF, Meerlo P, Visser ME, Spoelstra
775 K. 2017. Restless roosts: Light pollution affects behavior, sleep, and physiology in a free-living
776 songbird. *Global Change Biology*.

777 Ouyang JQ, Hau M, Bonier F. 2011. Within seasons and among years: When are corticosterone levels
778 repeatable? *Hormones and Behavior* 60(5):559-564.

779 Ouyang JQ, Lendvai ÁZ, Moore IT, Bonier F, Haussmann MF. 2016. Do Hormones, Telomere Lengths, and
780 Oxidative Stress form an Integrated Phenotype? A Case Study in Free-Living Tree Swallows.
781 *Integrative and Comparative Biology* 56(2):138-145.

782 Partecke J, Gwinner E, Bensch S. 2006. Is urbanisation of European blackbirds (*Turdus merula*)
783 associated with genetic differentiation? *Journal of Ornithology* 147(4):549-552.

784 Partecke J, J. Van't Hof T, Gwinner E. 2005. Underlying physiological control of reproduction in urban
785 and forest-dwelling European blackbirds *Turdus merula*. *Journal of Avian Biology* 36(4):295-305.

786 Perrier C, Charmantier A. 2018. On the timing of bill length evolution in British great tits: A comment on
787 Bosse et al. 2017. *bioRxiv*.

788 Perrier C, Lozano del Campo A, Szulkin M, Demeyrier V, Gregoire A, Charmantier A. 2017. Great tits and
789 the city: Distribution of genomic diversity and gene–environment associations along an
790 urbanization gradient. *Evolutionary Applications* 0:1-21.

791 Pollock CJ, Capilla-Lasheras P, McGill RAR, Helm B, Dominoni DM. 2017. Integrated behavioural and
792 stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits
793 (*Cyanistes caeruleus*). *Scientific Reports* 7(1):5014.

794 Potts GR, Coulson JC, Deans IR. 1980. Population Dynamics and Breeding Success of the Shag,
795 *Phalacrocorax aristotelis*, on the Farne Islands, Northumberland. *Journal of Animal Ecology*
796 49(2):465-484.

797 Ramalho CE, Hobbs RJ. 2012. Time for a change: dynamic urban ecology. *Trends in Ecology & Evolution*
798 27(3):179-188.

799 Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ. 2007. Integrating animal temperament within
800 ecology and evolution. *Biological Reviews* 82(2):291-318.

801 Reed TE, Jenouvrier S, Visser ME. 2013. Phenological mismatch strongly affects individual fitness but not
802 population demography in a woodland passerine. *J Anim Ecol* 82(1):131-44.

803 Riley SPD, Sauvajot RM, Fuller TK, York EC, Kamradt DA, Bromley C, Wayne RK. 2003. Effects of
804 Urbanization and Habitat Fragmentation on Bobcats and Coyotes in Southern California.
805 *Conservation Biology* 17(2):566-576.

806 Robertson BA, Rehage JS, Sih A. 2013. Ecological novelty and the emergence of evolutionary traps.
807 *Trends in Ecology & Evolution* 28(9):552-560.

808 Rodewald AD, Kearns LJ, Shustack DP. 2013. Consequences of urbanizing landscapes to reproductive
809 performance of birds in remnant forests. *Biological Conservation* 160:32-39.

810 Salmón P, Nilsson JF, Watson H, Bensch S, Isaksson C. 2017. Selective disappearance of great tits with
811 short telomeres in urban areas. *Proceedings of the Royal Society B: Biological Sciences*
812 284(1862).

813 Salmon P, Stroh E, Herrera-Duenas A, von Post M, Isaksson C. 2018. Oxidative stress in birds along a NO_x
814 and urbanisation gradient: An interspecific approach. *Sci Total Environ* 622-623:635-643.

815 Schoech SJ, Rensel MA, Bridge ES, Boughton RK, Wilcoxen TE. 2009. Environment, glucocorticoids, and
816 the timing of reproduction. *General and Comparative Endocrinology* 163(1-2):201-207.

817 Sepp T, McGraw KJ, Kaasik A, Giraudeau M. 2017. A review of urban impacts on avian life-history
818 evolution: Does city living lead to slower pace of life? *Global Change Biology*.

819 Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D. 2006. From patterns to emerging processes in
820 mechanistic urban ecology. *Trends in Ecology & Evolution* 21(4):186-191.

821 Sih A, Bell A, Johnson JC. 2004. Behavioral syndromes: an ecological and evolutionary overview. *Trends*
822 in *Ecology & Evolution* 19(7):372-378.

823 Sih A, Mathot KJ, Moirón M, Montiglio P-O, Wolf M, Dingemanse NJ. 2015. Animal personality and state-
824 behaviour feedbacks: a review and guide for empiricists. *Trends in Ecology & Evolution* 30(1):50-
825 60.

826 Slabbekoorn H, Ripmeester EAP. 2008. Birdsong and anthropogenic noise: implications and applications
827 for conservation. *Molecular Ecology* 17(1):72-83.

828 Smith SB, McKay JE, Richardson JK, Shipley AA, Murphy MT. 2016. Demography of a ground nesting bird
829 in an urban system: are populations self-sustaining? *Urban Ecosystems* 19(2):577-598.

830 Sol D, González-Lagos C, Moreira D, Maspons J, Lapiendra O. 2014. Urbanisation tolerance and the loss of
831 avian diversity. *Ecology Letters* 17(8):942-950.

832 Sol D, Lapiendra O, González-Lagos C. 2013. Behavioural adjustments for a life in the city. *Animal
833 Behaviour* 85(5):1101-1112.

834 Spoelstra K, van Grunsven RHA, Ramakers JJC, Ferguson KB, Raap T, Donners M, Veenendaal EM, Visser
835 ME. 2017. Response of bats to light with different spectra: light-shy and agile bat presence is
836 affected by white and green, but not red light. *Proc Biol Sci* 284(1855).

837 Sprau P, Dingemanse NJ. 2017. An Approach to Distinguish between Plasticity and Non-random
838 Distributions of Behavioral Types Along Urban Gradients in a Wild Passerine Bird. *Frontiers in
839 Ecology and Evolution* 5(92).

840 Sprau P, Mouchet A, Dingemanse NJ. 2017. Multidimensional environmental predictors of variation in
841 avian forest and city life histories. *Behavioral Ecology* 28(1):59-68.

842 Swaddle JP, Francis CD, Barber JR, Cooper CB, Kyba CCM, Dominoni DM, Shannon G, Aschehoug E,
843 Goodwin SE, Kawahara AY et al. . 2015. A framework to assess evolutionary responses to
844 anthropogenic light and sound. *Trends in Ecology & Evolution* 30(9):550-560.

845 Tinbergen N. 1963. On aims and methods of Ethology. *Zeitschrift für Tierpsychologie* 20(4):410-433.

846 Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, Ali AH, Allen AM, Attias
847 N, Avgar T et al. . 2018. Moving in the Anthropocene: Global reductions in terrestrial mammalian
848 movements. *Science* 359(6374):466-469.

849 Verboven N, Tinbergen JM, Verhulst S. 2001. Food, reproductive success and multiple breeding in the
850 Great Tit *Parus major*. *Ardea* 89(2):387-406.

851 Welbers AAMH, van Dis NE, Kolvoort AM, Ouyang J, Visser ME, Spoelstra K, Dominoni DM. 2017.
852 Artificial Light at Night Reduces Daily Energy Expenditure in Breeding Great Tits (*Parus major*).
853 *Frontiers in Ecology and Evolution* 5(55).

854 While A, Whitehead M. 2013. Cities, Urbanisation and Climate Change. *Urban Studies* 50(7):1325-1331.

855 Wolf M, Weissing FJ. 2012. Animal personalities: consequences for ecology and evolution. *Trends in
856 Ecology & Evolution* 27(8):452-461.

857 Wong BBM, Candolin U. 2015. Behavioral responses to changing environments. *Behavioral Ecology*
858 26(3):665-673.

859