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Abstract—This paper proposes a self-taught anomaly detection
framework for optical networks. The proposed framework makes
use of a hybrid unsupervised and supervised machine learning
scheme. First, it employs an unsupervised data clustering mod-
ule (DCM) to analyze the patterns of monitoring data. The DCM
enables a self-learning capability that eliminates the requirement
of prior knowledge of abnormal network behaviors and therefore
can potentially detect unforeseen anomalies. Second, we introduce
a self-taught mechanism that transfers the patterns learned by
the DCM to a supervised data regression and classification module
(DRCM). The DRCM, whose complexity is mainly related to the
scale of the applied supervised learning model, can potentially fa-
cilitate more scalable and time-efficient online anomaly detection
by avoiding excessively traversing the original dataset.Wedesigned
the DCM and DRCM based on the density-based clustering algo-
rithm and the deep neural network structure, respectively. Evalu-
ations with experimental data from two use cases (i.e., single-point
detection and end-to-end detection) demonstrate that up to 99%
anomaly detection accuracy can be achieved with a false positive
rate below 1%.

Index Terms—Data clustering module (DCM), data regression
and classification module (DRCM), hybrid unsupervised and su-
pervised machine learning, self-taught anomaly detection.

I. INTRODUCTION

E FFECTIVE fault management is vital for assuring the cor-
rect operations and required quality-of-service of (QoS)

optical networks [1], [2]. Typically, network faults can be cat-
egorized into hard failures (e.g., fiber cuts), and anomalies (or
soft failures), which can be caused by various factors, such as

Manuscript receivedOctober 24, 2018; revised January 26, 2019 and February
27, 2019; accepted February 27, 2019. Date of publication March 1, 2019;
date of current version April 2, 2019. This work was supported in part by the
Department of Energy under grant DE-SC0016700 and in part by the National
Science Foundation ICE-T:RC under Award 1836921. (Corresponding author:
Xiaoliang Chen.)

X.Chen, R. Proietti, and S. J. B. Yoo are with theDepartment of Electrical and
Computer Engineering, University of California, Davis, Davis, CA 95616 USA
(e-mail:,xlichen@ucdavis.edu; rproietti@ucdavis.edu; sbyoo@ucdavis.edu).

B. Li and Z. Zhu are with the School of Information Science and Technology,
University of Science and Technology of China, Hefei 230027, China (e-mail:,
libaojia@mail.ustc.edu.cn; zqzhu@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2019.2902487

component aging and malfunctioning [3], control and manage-
ment plane errors, physical layer attacks [4], etc. While hard
failures can cause immediate service disruptions and can be
easily detected, isolated, and restored [5]–[7], such anomalies
may gradually degrade the performance of optical networks and
are covert before they induce significant deviations of network
parameters. Accurate and efficient anomaly detection and iden-
tification in optical networks are therefore highly desired but
also challenging .
Current network operators mainly rely on preset threshold

systems for anomaly detection while the subsequent identifi-
cation and reasoning procedures are conducted by experienced
technicians. However, owing to the heterogeneity (heterogene-
ity in vendor devices, optical transmission technologies, appli-
cations [8]–[10], etc.), uncertainty (uncertainty in device con-
ditions, alien wavelength configurations [11], etc.) and dynam-
icity of optical networks [12], [13], developing network-wide
threshold systems that are effective over time is difficult. Loose
thresholds may lead to low detection rates or prolonged de-
tection delays, whereas tight thresholds can trigger vast false
alarms, overburdening the control and management systems.
Hence, excessive resource redundancies are usually reserved
to provide guaranteed performance margins against potential
anomalies [14]. In the meantime, manual anomaly identifica-
tion and reasoning operations are laborious and they frustrate
rapid evolutions of optical networks .
Recently, machine learning (ML) has shown appealing

prospect of facilitating enhanced resource efficiency, QoS as-
surances and scalability in optical networks [15]. Specifically,
ML enables network operators to realize knowledge-based
autonomous service provisioning [16] bymodeling complicated
network behaviors (e.g., end-to-end quality-of-transmission
[11], [17], traffic profile [18]–[20], etc.) and learning correct
online provisioning policies from dynamic network operations
[21], which are intractable with conventional theoretical
approaches. The application of ML for fault management in
optical networks has attracted extensive research attention
lately [22]–[26]. In [22], Vela et al. analyzed four types of soft
failures affecting the bit-error-rate (BER) of lightpaths and pro-
posed two finite state machine based algorithms for detecting
significant BER changes and identifying the corresponding
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failures patterns. Taking into account similar failure scenarios,
the same authors also investigated ML-aided algorithms for
soft failure localization [23]. The authors of [24] compared the
performance of different ML algorithms in terms of complexity
and accuracy for anomaly detection and identification in optical
networks. In [25], Rafique et al. proposed a cognitive assurance
architecture on the basis of software-defined networking (SDN)
and developed a neural network based classifier to assist
anomaly detection. Different from previous works that focus
on exploiting the characteristic of BER changes, the authors
of [25] evaluated their proposal with experimental data from
optical power measurement under diverse failure modes. In
[26], an ML-aided framework, together with two classification
algorithms, were proposed for detecting and identifying optical
network jamming signal attacks of varying intensities.
The above ML-based anomaly detection and identification

schemes suffer from a fundamental issue: they employ super-
vised learning models relying on specific knowledge of abnor-
mal network behaviors and large amount of anomaly data which
are difficult to obtain in a real network scenario where anomalies
occur infrequently. On the other hand, it is known that anomalies
typically exhibit unique patterns deviating from normal network
behaviors [22], [27]. UnsupervisedML techniques that can learn
patterns of data by directly analyzing the similarities among data
instances thereby would become promising tools for identifying
anomalies from huge volumes of monitoring data.
In this context, our previous work [28] proposed a self-taught

anomaly detection framework with a hybrid unsupervised and
supervised ML approach. The proposed framework employs
an unsupervised data clustering module (DCM) to analyze the
patterns of optical performance monitoring data. Then, a su-
pervised data regression and classification module (DRCM) is
trained with the learned patterns for online anomaly detection.
Such a self-learning/-taught mechanism potentially enables de-
tecting unforeseen anomaly without requiring prior knowledge
of abnormal network behaviors. This paper extends the confer-
ence paper [28] by providing a more comprehensive description
of the self-taught anomaly detection framework and the designs
of the DCM and DRCM, and presenting a new set of results
considering two use cases. In particular, we detailed the DCM
design with the density-based clustering algorithm and elabo-
rated on the principle of the DRCM enabled by a deep neural
network (DNN) architecture. We evaluated the performance of
the proposed framework with experimental data of both single-
point and end-to-end detections. Results show that below 1%
false positive and false negative rates can be achieved.
The organization of the paper is as follows. Section II

presents the proposed self-taught anomaly detection framework.
Sections III and IV detail the designs of the DCM and DRCM,
respectively. Section V provides the evaluation results and re-
lated discussions. Finally, Section VI summarizes the paper and
discusses potential future research topics.

II. SELF-TAUGHT ANOMALY DETECTION FRAMEWORK

Fig. 1 shows the schematic of the proposed self-taught frame-
work for anomaly detection in optical networks. The framework
requires that network operators deploy optical performance

Fig. 1. Proposed self-taught anomaly detection framework.

monitoring (OPM) modules at certain network locations to per-
form real-time surveillance of data plane operations, e.g., mon-
itoring the spectrum utilization, signal power, noise level and so
forth, on different links. SDN-based network telemetry services
[29] can be utilized to assist remote and on-demand monitoring
data collection. The data preprocessing module (DPM) retrieves
the obtained performancemonitoring data from the database and
tailors the original data (i.e., feature engineering) for different
anomaly detection purposes. For instance, to surveil the behav-
ior of an end-to-end lightpath, DPM would generate a new pro-
prietary dataset by extracting and concatenating the lightpath’s
parameters at different monitoring sites over time.
The learning phase applies a hybrid unsupervised and super-

vised learning approach. Firstly, the processed data are input
to an unsupervised DCM for pattern analysis (a self-learning
mechanism). The DCM exploits the similarities among data
instances and hereby divides the performance data into a num-
ber of clusters and outliers. Following a consensual assumption
that the occurrence of network anomalies are much less fre-
quent than that of normal behaviors, the DCM labels outliers as
anomalies. Since the DCM learns the patterns of the input data
directly without relying on any prior knowledge about abnormal
behaviors, it can potentially detect unknown anomalies in opti-
cal networks. Then, the learned patterns are transferred to train
a supervised DRCM for online anomaly detection (a self-taught
mechanism). Specifically, the DRCM examines each new data
instance by integrating the functions of both a regressor that pre-
dicts key features of the instance, and a classifier that attempts
to classify the instance into one of the classes identified by the
DCM. The rationale of employing a DRCM for online detection
is that once trained, its time complexity is fixed, mainly deter-
mined by the scale of the adopted supervised learning model
(i.e., the number of model parameters). On the contrary, the
complexity of the DCM scales up with the size of the database,
and can become an issue as it has to traverse the whole database
every time a new data instance is received.
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Fig. 2. An example showing the principle of density-based clustering.

During online operations, the DRCM raises an alarm upon
detecting an anomaly and inform the SDN controller, which in
turn can take certain reactions (e.g., service reconfigurations)
to mitigate the risk of potential severe service disruptions. The
DRCM also sends out the abnormal data instance for further
anomaly localization and reasoning. In themeantime, the hybrid
learning process is periodically invoked for attaining the state-
of-art network behaviors.

III. DESIGN OF THE DCM

The distribution of optical performance monitoring data may
present irregular shapes. Fig. 2 shows such an example in a two-
dimensional space. In this context, we designed the DCM with
the density-based clustering algorithm in [30], which is known
to be able to identify any shape of clusters.
Let S denote the input dataset and di,j represent the distance

between data instances si and sj (si, sj ∈ S). In this work,
we measure di,j with the Euclidean distance as it has been
widely applied in the anomaly detection domain thanks to its
capability of showing clear differences between normal and
abnormal instances [31]. In particular, we calculate di,j as,

di,j =
√∑

k
(si,k − sj,k )2 , (1)

where si,k is the k-th dimension of si . The following definitions
are prerequisites for discussing the density-based clustering al-
gorithm. Firstly, the ε-neighborhood of an instance si is defined
as the set of instances whose distances to si are within ε, i.e.,

Ei = {sj |di,j ≤ ε,∀sj} . (2)

The dashed circles in Fig. 2 show the ε-neighborhoods of the
corresponding centric nodes.1 We refer to the size of Ei as the
density of si , denoted as δi . Then, the core node condition for
each si is defined as,

δi ≥ MinPts, (3)

where MinPts is a preset parameter for the algorithm. Lastly,
sj is called directly density-reachable from si if sj ∈ Ei and

1We use “node” and “data instance” interchangeably in the rest of the paper.

Algorithm 1 Procedures of Density-Based Clustering.
Input: Dataset S, ε, MinPts
Output: Set of clusters C, set of outliers U
1: C = ∅;
2: calculate di,j ,∀si, sj ∈ S;
3: for each si ∈ S do
4: if si belongs to any cluster OR δi < MinPtsthen
5: continue;
6: end
7: Ĉ = {si}, Λ = Ei ;
8: remove from Λ the instances belonging to C or Ĉ;
9: while Λ �= ∅ do
10: store Λ in Ĉ;
11: Γ = ∅;
12: for each sj ∈ Λ do
13: if δj ≥ MinPts then
14: Γ̂ = Ej ;
15: remove from Γ̂ the instances belonging to C, Ĉ,

or Γ;
16: store Γ̂ in Γ;
17: end
18: end
19: Λ = Γ;
20: end
21: store Ĉ in C;
22: end
23: store instances that do not belong to any cluster in U ;

δi ≥ MinPts. The basic idea of density-based clustering stems
from the intuition that clusters normally center on instances with
high densities. Algorithm 1 summarizes the principle of density-
based clustering [30]. In each iteration, the algorithm starts from
a core node and iteratively add density-reachable instances from
it to form a cluster. Specifically, in line 2, the distance between
each pair of instances is first calculated. The for-loop covering
lines 3–22 goes through every instance in the dataset and ex-
pands from the instance to form a new cluster if the instance
has not be clustered and satisfies the core node condition. The
inner loop from lines 9–20 accomplishes the recursive expan-
sion. We initiate a new cluster if the ε-neighborhoods of all the
core nodes in the current cluster have been included (line 9).
Finally, all the instances that cannot be clustered into any of the
identified clusters are categorized as outliers/anomalies.
We developed a simple method to facilitate determining

proper values for ε andMinPts. First, based on the assumption
that the number of anomalies ismuch smaller than that of normal
instances, we can set MinPts as a small number, i.e., assum-
ing that there will not be MinPts simultaneous anomalies of
the same types. Typically, we can setMinPts = 4 according to
[30]. For larger-scale datasets with sufficient amounts of normal
data, a larger value of MinPts may be applied for improved
anomaly detection rate. Then, we can determine the value of ε
by gradually increasing ε from a very small value and observ-
ing the variation in the number of detected anomalies, i.e., |U |.
In the beginning, |U | decreases sharply because a larger ε en-
courages forming of clusters. As the true anomalies are located
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farther away from neighboring nodes compared with normal
instances, the decreasing rate of |U | will become very low at
a certain point (say ε∗) when the majority of normal instances
have been clustered. In other words, a much larger increase of
ε is required for the algorithm to further include anomalies in
normal clusters. Therefore, we can set ε as ε∗.

The complexity of Algorithm 1 is O(|S|2). Note that,
when applying the density-based clustering algorithm to on-
line anomaly detection, we need to revisit every instance in the
dataset (in the worst case) for each newly collected instance to
checkwhether it can be included in one of the identified clusters.
Such operations introduce a complexity of O(|S|). Moreover,
there should also be a procedure to readjust (e.g., merge or fur-
ther expand) the identified clusters upon the joining of a new
instance. As the complexity of the DCM scales up with |S|,
it may become a bottleneck to online operations. Restricting
|S| by discarding some non-critical 2 or outdated data instances
can be beneficial but does not resolve the problem essentially.
Therefore, a time-efficient scheme irrelevant of |S| is desired
for realizing online anomaly detection.

IV. DESIGN OF THE DRCM

Recall the example in Fig. 2, one intuitive observation is
that the patterns of data, i.e., the sizes, shapes and locations
of clusters, critically determine the identifications of new data
instances. Further, if we can teach a module to acquire such
knowledge learned by the DCM, we can thereby omit the
traversal of the dataset during each online detection and sig-
nificantly reduce the complexity. To this end, we first encode
the output of the DCM by constructing a new labeled dataset
S ′ = {(si, li) , si ∈ S}, where each original instance si is la-
beled with its cluster ID li (li ∈ {1, ..., |C| + 1}). Here, all the
abnormal instances are assigned cluster ID |C| + 1. Then, we
can train a classifier with S′ and make it predict the cluster
ID of a new instance. However, the amount of abnormal data
is usually small and cannot represent the space of anomalies
very well. Applying the classifier alone would result in low de-
tection accuracy. For instance, an anomaly may be incorrectly
classified into one of the surrounding clusters if it is close to the
cluster boundaries or no similar anomaly has been detected pre-
viously. On the other hand, the discussions in Section III have
suggested that node densities actually provide more compre-
hensive information about the distribution of the data than the
final clustering results. Typically, border nodes of clusters have
lower densities than core nodes while the densities of anomalies
are the lowest, yielding a potential field of densities. This gives
us a hint that we can leverage such an additional dimension of
knowledge and train a density regressor to work cooperatively
with the classifier, i.e., employing the DRCM, for more accurate
anomaly detection. Specifically, the DRCM predicts the density
δ̃i (regression) and cluster ID l̃i (classification) of each new
instance s̃i simultaneously. s̃i is detected as an anomaly when
either l̃i = |C| + 1 or l̃i �= |C| + 1 but δ̃i is smaller than a preset
threshold δ0(l̃i) which should be determined by the minimum
density value of instances in cluster l̃i . Here, we call the latter

2Non-critical instances refer to instances whose removals do not change the
structures of the identified clusters.

Fig. 3. Architecture of the DNN-based DRCM design.

case as weakly positive as by definition, the density of a border
node can be as low as those of anomalies. For such case, we
invoke an additional validation process by comparing s̃i with
instances in cluster l̃i according to the principle of density-based
clustering. Note that, node densities can range from 1 to tens of
thousands, but the DRCM is only sensitive to prediction errors
on densities of small values. For instance, mistakenly predict-
ing δi = 1 as δ̃i = 5 may completely change the judgement of
the DRCM (failed to detect an anomaly), whereas an error of
δi = 1000 to δ̃i = 1100would not affect the performance of the
DRCM. Hence, we make the DRCM predict the logarithms in-
stead of the absolute values of densities, concentrating on espe-
cially optimizing the prediction accuracy regarding low-density
instances.
We designed the DRCM with the DNN architecture due to

its well-recognized capability of representing high-dimensional
data and molding complex functions. Instead of implementing
the regressor and the classifier with two separate DNNs, we
integrated them into one unified DNN structure for lower sys-
tem complexity and better scalability. Fig. 3 shows the detailed
structure of the DRCM. The DRCM takes as input each moni-
toring data instance si . The input is processed by a few shared
fully-connected hidden layers for feature extraction. Each neu-
ron vn,m in hidden layer n calculates its output as,

hn,m = g
((

wn,m
n−1

)T
hn−1 + bn,m

)
, (4)

where g(·) represents the activation function,wn,m
n−1 is the vector

containing the weights of connections from neurons in layer
n − 1 to vn,m , and bn,m is the bias. Two separate blocks are
deployed after the shared hidden layers for the regression and
classification tasks, respectively. Each of the blocks is a neural
network of two layers. The regressor outputs the real-valued pre-
dicted density δ̃i with no activation function for the output layer.
The classifier applies the Softmax function to generate the class
probabilities pc

i (c ∈ {1, ..., |C| + 1}) to assist classification.3

In particular, the Softmax function is given by,

g(x, c) =
exc∑
t ext

. (5)

3Note that, during online operations when |C | can potentially increase with
the growth of S , we may need to extend the scale of the classifier appropriately
upon periodical system retraining. Alternatively, we can obviate changing the
classifier architecture by combining normal classes to fix the number of classes
as 2 (i.e., normal and abnormal).



1746 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 7, APRIL 1, 2019

Fig. 4. Testbed setup for dataset generation.

We define the regression and classification losses as the mean
squared error and the cross-entropy loss, respectively, i.e.,

Lre(θ)=
1
|S|

∑
si ∈S

(
δi − δ̃i

)2
, (6)

Lcl(θ)=− 1
|S|

∑
si ∈S

∑
c

(χc
i log pc

i +(1−χc
i ) log (1−pc

i )), (7)

where θ is the set of parameters of the DNN, χc
i equates to 1

if li = c and 0 otherwise. Finally, the DNN can be trained (i.e.,
tuning θ) by minimizing the overall loss as,

L(θ) = Lre(θ) + γLcl(θ) + ς ||θ||2 , (8)

where γ and ς are weighting coefficients and ||θ||2 is the regu-
larization loss introduced to prevent overfitting.
After detecting an anomaly with the DRCM, we can perform

anomaly localization and reasoning by first examining whether
similar anomalies have been identified. If not, we proceed to
compare the detected anomaly with normal instances surround-
ing it. In particular, we can calculate the distance between two
instances in each dimension and possibly discern from the dis-
tance vector (1) distinct variations in certain dimensions, e.g.,
an abrupt increase of the noise level at an intermediate node of
a lightpath caused by the amplifier malfunction, or (2) a unique
pattern, e.g., a gradual decrease of the channel power gain due to
the amplifier aging. Meanwhile, if multiple concurrent anoma-
lies are detected, correlation schemes [32] can be applied for
localizing the faults.

V. PERFORMANCE EVALUATION

A. Dataset Generation

We evaluated the performance of the proposed self-taught
anomaly detection framework by using experimental data col-
lected from a 7-node optical network testbed (see Fig. 4) with
six different routing paths. In particular, we launched 17 and
four wavelength channels at Nodes A and B, respectively. By
reconfiguring the wavelength selective switches (WSSs) param-
eters (i.e., ports’ bandwidth and attenuation) at each node, we
created diverse network link load scenarios. For each scenario,
we processed the readings from the optical spectrum analyzers
(OSAs) located at six fixed locations to obtain the values of
optical power at each wavelength and out-of-band noise floor,
which constitute the original dataset. For a small portion of these

Fig. 5. Examples of normal and abnormal data instances.

network instances, we purposely increased the attenuations in-
troduced by the WSSs for certain specific wavelength channels,
emulating abnormal power distributions in certain links. Fig. 5
shows an example of normal and abnormal data instances from
the experiment. In this way, we emulated soft-failures such as
the malfunctioning of a tunable filter [22], a power equalizer or
an erbium-doped fiber amplifier (EDFA), or a jamming attack
[4], which can also cause abnormal power distributions.

B. Use Case I: Single-Point Anomaly Detection

We focused on detecting abnormal patterns of data collected
at each monitoring point. Each data instance contains 22 fea-
tures, including the power of 21 wavelength channels (i.e., the
17 and four wavelength channels launched at Nodes A and B)
and the noise floor. In total, we obtained 18,680 normal instances
and 50 anomalies. All the data instances were scaled [33] be-
fore being processed by the DCM and DRCM. We measured
distances among data instances as their Euclidean distances (see
Eq. (1)).
To determine the correct configuration of ε for the DCM,

we first set MinPts = 4 and plot the variation in the number
of detected anomalies as function of ε in Fig. 6. Based on the
parameter selection method presented in Section III, we can
see that ε should be assigned a value of around 0.4. Table I
shows the results of false negative rate (denoted as fn ) and false
positive rate (denoted as fp ) from the DCMwith different setup
of MinPts and ε. The results indicate that a larger ε leads to
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Fig. 6. Variation in the number of detected anomalies as function of ε.

TABLE I
FALSE NEGATIVE AND FALSE POSITIVE RATES OF THE DCM ((fn , fp )%)

TABLE II
FALSE NEGATIVE AND FALSE POSITIVE RATES OF K-MEANS ((fn , fp ) %)

higher fn but lower fp , whereas a larger MinPts results in an
opposite trend. This is because with larger values of ε (when
MinPts is fixed), anomalies are more likely to be included in
the ε-neighborhoods of normal instances, making them more
difficult to be detected. On the contrary, increasing MinPts
discourages the forming of clusters and generates more outliers,
which facilitates anomaly detection but raises more false alarms
as well. WithMinPts and ε being set as 4 and 0.4, respectively,
the DCM can achieve up to 100% anomaly detection and 0.01%
false positive rate for the dataset under evaluation, which clearly
demonstrates the effectiveness of the proposed method.
We compared the performance of the DCM with that of the

K-means clustering algorithm [34]. Table II presents the results
of fn and fp from K-means. Since K-means does not define

Fig. 7. Losses of the DRCM during training.

TABLE III
FALSE NEGATIVE AND FALSE POSITIVE RATES, AND FREQUENCY

OF VALIDATIONS OF THE DRCM (%)

outliers and groups all the instances into clusters, we slightly
modified K-means to make it detect instances that belong to
a certain ratio (η) of the farthest nodes to the core node of
each cluster as anomalies. Meanwhile, K-means requires that
the number of clusters N is provided as an input parameter. We
can see that the lowest false negative rateK-means can achieve is
28.0%, which is inadequate for anomaly detection. The reason
is that the application of K-means is only limited to problems
with spherical clusters other than those with clusters of irregular
shapes (see the example in Fig. 2).
According to the clustering result of the DCM (with

MinPts = 4 and ε = 0.4), we obtained 621 normal classes
and 1 abnormal class, as well as the density of each data in-
stance. We implemented the DRCM with a DNN consisting
of four shared hidden layers ([32, 32, 32, 32]), a classification
block of two layers ([32, 622]) and a regression block of two
layers ([16, 1]). Except for the output layers, we used ELU as
the activation function. For the loss function in Eq. (8), γ and
ς were set as 0.1 and 10−4 , respectively4. We conducted 10 in-
dependent experiments by randomly dividing the dataset into
the training, validation and testing sets with a ratio of 7 : 1 : 2.
Fig. 7 shows the training and validation losses of the DRCM
averaged from 10 experiments, indicating that the training con-
verges without notable overfitting. Evaluations with the testing
set show that the DRCM can achieve a mean square error of
14.4 for density prediction and an average classification accu-
racy of 94.8%. Table III presents the results of the DRCM for
anomaly detection. Recall that we defined a preset threshold to

4We have tested different DNN architectures and parameters for the DRCM
and this paper presents the most appropriate setup.
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TABLE IV
FALSE NEGATIVE AND FALSE POSITIVE RATES OF THE DCM

FOR END-TO-END DETECTION ((fn , fp ) %)

assist triggering validation processes for cases where instances
are classified into normal classes but their predicted densities
are lower than the threshold. For the sake of simplicity, a unified
threshold δ0 was applied for all the classes. By setting δ0 as
0, we made the DRCM only rely on the classification results.
Here, we denote the frequency of validation as fval , which is
a performance metric defined as the ratio of the number of in-
stances triggering the validation process to the total number of
instances under examination. We can observe that the DRCM
fails to detect more than 1/3 of the anomalies without taking
into account the predicted densities. This is because the number
of anomaly samples in the training set is too small to provide
sufficient supervision signals for training a DNN classifier that
can accurately detect anomalies. By introducing δ0 , we remark-
ably improved the anomaly detection rate of the DRCM but at
the cost of increased fval , which shows a trade-off between de-
tection accuracy and system complexity. The false negative rate
could be reduced to below 1% with fval being 29.82%.

C. Use Case II: End-to-End Anomaly Detection

Next, we conducted anomaly detectionwith performance data
of end-to-end lightpaths. In particular, we focused on analyzing
the behavior of a specific lightpath (i.e., lightpath A-B-D-F-E-G
at wavelength 7) and obtained 300 normal and 10 abnormal data
instances by extracting and combining the signal power and out-
of-band noise floor at each monitoring point along the lightpath.
Again, we scaled the data andmeasured the Euclidean distances.
Wedid not apply the parameter selectionmethod for this use case
as the dataset is too small. Table IV summarizes the false positive
and false negative rates of the DCM with different setup of ε
and MinPts. Basically, the results in Table IV show a similar
trend with the ones from Table I. In the best cases, the DCM can
achieve 100% anomaly detection without any false alarm. Note
that, in real network operations where normal and abnormal
scenarios are more diverse and where larger volumes of data
are available, the parameters and performance of the proposed
approach may differ from those in this experiment. Meanwhile,
we do not show the results from the DRCM because the amount
of data is too small to train a DNN.

VI. CONCLUSION

In this paper, we proposed a self-taught anomaly detection
framework based on a hybrid unsupervised and supervised ML
approach. The proposed framework employs an unsupervised
DCM for pattern analysis and a supervised DRCM for online

anomaly detection. We designed the DCM and DRCM based on
the density-based clustering algorithm and the DNN structure,
respectively. Assessments based on experimental data demon-
strated below 1% false positive and false negative rates when
using the proposed framework.
Our future work will aim at improving the performance of

the DRCM by collecting more normal data, taking into account
more comprehensive and diverse failure scenarios, and apply-
ing more effective DNN architectures and training schemes.
Other potential research topics include: (1) extending the cur-
rent framework to incorporate cognitive anomaly localization
and reasoning functions and (2) developing anomaly detection
frameworks for multi-domain multi-layer networks with hierar-
chical monitoring [35] and multi-agent ML approaches [36].
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