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Abstract

A 3D picture of the coronal magnetic field remains an outstanding problem in solar physics, particularly in active
regions. Nonlinear force-free field reconstructions that employ routinely available full-disk photospheric vector
magnetograms represent state-of-the-art coronal magnetic field modeling. Such reconstructions, however, suffer
from an inconsistency between a force-free coronal magnetic field and a non-force-free photospheric boundary
condition, from which the coronal reconstruction is performed. In this study we focus on integrating the additional
chromospheric and/or coronal magnetic field data with the vector photospheric magnetograms with the goal of
improving the reliability of the magnetic field reconstructions. We develop a corresponding modification of the
available optimization codes described in Fleishman et al. and test their performance using a full-fledged
magnetohydrodynamics model obtained from the Bifrost code by performing a “voxel-by-voxel” comparison
between the reconstructed and the model magnetic fields. We demonstrate that adding even an incomplete set of
chromospheric magnetic field data can measurably improve the reconstruction of the coronal magnetic field and
greatly improve reconstructions of the magnetic connectivity and of the coronal electric current.

Key words: magnetohydrodynamics (MHD) – Sun: chromosphere – Sun: corona – Sun: general – Sun: magnetic
fields – Sun: photosphere
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1. Introduction

Quantification of the coronal magnetic field remains a central
problem in solar physics. Nowadays, the most common
approach to the coronal magnetic field reconstruction is based
on a static nonlinear force-free field (NLFFF) model (see
reviews by Sakurai 1989; Amari et al. 1997; Wiegelmann 2008;
Wiegelmann & Sakurai 2012; Wiegelmann et al. 2014).
NLFFF extrapolations are routinely possible thanks to almost
uninterrupted availability of the photospheric full-disk vector
magnetic field data starting from the launch of the Solar
Dynamics Observatory (SDO; Scherrer et al. 2012; Schou et al.
2012) in 2010. A more advanced approach based on the
dynamic “data-driven” modeling with a number of promising
advantages over the static one was also attempted (see, e.g.,
Jiang et al. 2016; Yardley et al. 2018), but it is not yet widely
used, as it requires a lot more resources to reconstruct the field
than the NLFFF approach.

The NLFFF methods represent a significant advance
compared with earlier, more simplistic methods of potential
or linear force-free field extrapolations; however, even the
much improved and more sophisticated NLFFF reconstruction
methods still suffer from a number of known shortcomings
(see, e.g., De Rosa et al. 2009; DeRosa et al. 2015). One of
them, which we focus on in this study, is an inconsistency
between the coronal field force-freeness and the bottom
(photospheric) boundary condition, which can significantly
deviate from the force-free state. In our recent study (Fleishman
et al. 2017, hereafter Paper I), we used a publicly available data
set (en024048_hion; Carlsson et al. 2016,http://sdc.uio.no/
search/simulations) produced with the full-fledged 3D radia-
tion magnetohydrodynamic (RMHD) code Bifrost (Gudiksen
et al. 2011) to cast the coronal magnetic field reconstruction

tools. We found (perhaps not surprisingly) that extrapolations
performed starting from a chromospheric vector boundary
condition yield measurably better results than those starting
from the photospheric boundary. Thus, for the coronal
magnetic field reconstruction it would be highly beneficial to
perform extrapolations starting from a chromospheric layer.
But this has a severe disadvantage that the magnetic field
between the photosphere and corresponding chromospheric
boundary remains unspecified, although a magnetic field model
between these layers is needed for many practical purposes,
e.g., to build magnetothermal models of active regions (ARs)
within the GX Simulator framework (Nita et al. 2018).
In practice, even though the chromospheric vector

magnetograms are becoming available from the full Stokes
spectropolarimetry in the spectral lines formed in the upper
chromosphere (most notably He I 1083nm and Ca II
854.2nm spectral lines; Keller et al. 2003; Balasubramaniam
& Pevtsov 2011), these data cannot yet fully substitute the
photospheric data for a number of reasons: (i) there are large
time gaps in availability of the chromospheric magnetograms,
(ii) obtaining such magnetograms is computationally expen-
sive and less straightforward than in the case of the
photosphere, (iii) the derived magnetic field pertains to
variable heights unlike the photospheric case, and (iv) the
magnetic field is on average weaker in the chromosphere than
in the photosphere, and thus the signal-to-noise ratio is
weaker, which implies larger errors in the derived magnetic
field. This is especially severe for the transverse component
of the magnetic field, which has larger errors than the line-of-
sight (LOS) component.
There are other ways of the magnetic field probing at the

chromospheric or coronal heights, primarily from the radio
measurements (Lee 2007). One method uses radio polarimetric
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measurements of the free–free emission (Bogod & Gelfreikh
1980; Grebinskij et al. 2000; Loukitcheva et al. 2017) to yield
the LOS component of the magnetic field at a height where the
free–free emission at the given frequency is formed. In the long
run such “tomographic” diagnostics could be available (at least
for some cases) from multifrequency observations with the
Atacama Large Millimeter/Submillimeter Array, which will be
capable of providing the B component at various heights with
high accuracy and spatial resolution (Loukitcheva et al. 2017).
So far, this method has been tested on microwave data obtained
with the Nobeyama Radioheliograph (NoRH; Nakajima et al.
1994) at a single frequency, 17GHz, with a modest spatial
resolution, which proved the concept but remains insufficient
for the coronal magnetic field reconstruction.

Another method relies on polarized imaging data of the
gyroresonant emission (White & Kundu 1997), which yields
the absolute value of the magnetic field at the transition region
level from the images directly and can also provide limited
information about the magnetic field direction. This method has
been tested with a number of data sets, including the data
obtained with the Very Large Array (VLA) and the Radio
Astronomical Telescope of the Academy of Sciences 600
(RATAN-600; Akhmedov et al. 1982, 1986; Kaltman et al.
2012), the Owens Valley Solar Array (OVSA; Gary &
Hurford 1994), NoRH (Shibasaki et al. 2011), a combination
of OVSA and VLA (Tun et al. 2011), and a combination of
NoRH, RATAN-600, and the Siberian Solar Radio Telescope
(Nita et al. 2011), as well as in some other studies. Provided
that the microwave images are available, the method itself is
relatively simple (Wang et al. 2015); however, it only provides
the absolute value of the magnetic field rather than the
magnetic field vector. In principle, having a microwave
imaging instrument with a broad spectral coverage could
supply us with both the gyroresonant and free–free diagnostics
from the same location simultaneously, but anyway this yields
only two of three vector components.

Therefore, we conclude that in the foreseeable future there
will not be routine chromospheric vector magnetograms
capable of fully substituting the photospheric vector data in
the NLFFF reconstructions. However, we expect progressively
more and more mature chromospheric magnetic field data to
become available in addition to the photospheric probing. For
example, this can be the vector data from a chromospheric
subarea, where the magnetic field is strong enough to be
reliably measured using the optical spectropolarimetry techni-
que, or radio diagnostics of the LOS component, or the
absolute value, or both. In this paper, we address the question
whether adding a given chromospheric data set in addition to
the full vector photospheric boundary condition can help
improve the coronal magnetic field reconstruction and to what
extent. Following Paper I, we use the same set of testing data
derived from the full-fledged RMHD model (Carlsson et al.
2016) to quantify the potential improvement of the reconstruc-
tion with one or another set of additional chromospheric
magnetic field data.

2. RMHD Model Data Cube

The RMHD simulation that we use for our tests is described
by Carlsson et al. (2016), of which we employ snapshot 385 that
has already been used to perform various kinds of studies
(Leenaarts et al. 2012, 2013a, 2013b, 2015; Štěpán et al. 2012,
2015; de la Cruz Rodríguez et al. 2013; Pereira et al. 2013, 2015;

Lin & Carlsson 2015; Loukitcheva et al. 2015a, 2015b, 2017;
Rathore & Carlsson 2015; Rathore et al. 2015; Fleishman et al.
2017). In Paper I, we interpolated magnetic field components
from the original data cube (Carlsson et al. 2016) to a regular 3D
grid, such as typically used by extrapolation methods, and also
produced a series of rebinned data cubes with progressively
lower resolutions.5 Referring to Paper I for a more detailed
description of the data sets, we give only a very brief overview
of the data set here.
The highest-resolution data cube used in our study was cut

out over the height and regridded from the original snapshot
and is 24×24×12 Mm, with a grid of 504×504×252
cells, extending from a nominal photosphere, which corre-
sponds to Z=0Mm, to 12Mm above the photosphere, with
the equidistant grid spacing of ;48km at all three axes. Other
data cubes are the lower-resolution data with the binning
factors n=2, 3, 4, 6, 7, and 9, which are all multipliers of
both 504 and 252; therefore, the lowest-resolution (bin=9)
data cube is only 56×56×28 cells with a spacing of
432km, comparable to the SDO/HMI spatial resolution, which
is 360 km (Sun et al. 2012). The magnetic field at the nominal
photosphere is very high, e.g., with Bz values from −2225 to
2081 G, but it is a small-scale field, so that it is only within
∼±60 G at the chromospheric level at Z=2.2 Mm.
Following Paper I, in addition to the nominal photosphere

level at the bottom of each data cube, we specify two other
important layers. The first of them is a level where the
distribution of the plasma parameter β=pkin/pB, where pkin is
the gas pressure and pB is the magnetic pressure, is similar to that
in a typical AR at the Sun (we call this layer the β-photosphere
for short), while the other one is a chromospheric level; the
heights of all these layers are specified in Table1 of Paper I. For
our testing, we associate the β-photosphere with the actual AR
photosphere, but we do not consider extrapolations from the
nominal photosphere (see Paper I for details). Although we
performed our tests for all binnings, we only present the results
for three binnings, 3, 6, and 9, which are representative of the
entire data set.

3. Metrics for the Testing

In this paper we use a subset of metrics used in Paper I.
Some of them (Wheatland et al. 2000; Schrijver et al. 2006) are
needed to evaluate the reconstructed magnetic field force-
freeness:
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where BNLFFF is the reconstructed NLFFF; j is the corresp-
onding electric current density, where the summation is

5 All these data cubes with regular spacing and standard deviations are
available at our project website: http://www.ioffe.ru/LEA/SF_AR/files/
Magnetic_data_cubes/Bifrost/index.html.
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performed over N voxels of the computational subdomain or
the entire volume (excluding boundaries), and dx is the grid
spacing; σi is the sine of the angle between the magnetic field
and the current density at the ith node of the computational
grid; θ is the angle averaged over all nodes, which must be
small for a nearly force-free field; and θj is a similar metric but
weighted with the electric current, which means that contribu-
tions from strong currents dominate this metric.

To assess how close the NLFFF extrapolated data cube is to
the corresponding model data cube, we use the “angular”
metrics similar to Equation (1):
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where B is the known model field; j is the electric current
density, computed for the reconstructed field, where the
summation is performed over the voxels of the analyzed
volume subdomain; τi is the cosine of the angle between the
restored and model magnetic field at the ith voxel of the
computational grid; θm is the angle averaged over all N voxels
of the given subdomain, which must be small for a good
reconstruction; and θmj is a similar metric but weighted with the
restored electric current that ensures that the contribution from
voxels with strong electric current dominates this metric.

For a voxel-to-voxel inspection we compute the local error
(residual) Δα[j] and the local relative error δα[j] as
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factor by Equations (1) and (2) from Paper I. Here, to compute
the relative error, we take into account that after the cube
rebinning the magnetic field in each voxel is only known to
the accuracy of da aB B . Thus, in the denominators of δα[j]
in Equation (4) we use á ñaB rather than aB ; otherwise, in
“singular” points, where aB in the denominator is very close
to zero, such a metric would artificially underestimate the
accuracy. However, to compute a similar metric for the
absolute value of the magnetic field vector, we do not add
any δB because the absolute value is never too close to zero in
the analyzed volume.

To characterize the extrapolation performance in a given
subdomain, which can be, for example, a given layer or the
entire data cube, we use the normalized rms residual Δrms,
defined as
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where the summation is performed over the subdomain of the
data cube6 used for the analysis; Nvox is the total number of
voxels in the selected subdomain. The normalized rms residual,
Equation (5), gives more weight to the voxels, where the
magnetic field is strong.
In addition, we quantify the reconstructed magnetic

connectivity by computing the magnetic field lines in the
reconstructed and original data cubes and computing the largest
deviations between the corresponding field lines. Finally, to
assess the picture of the reconstructed electric currents, we
compute LOS-integrated maps of the electric current for visual
inspection.

4. NLFFF Reconstruction with Chromospheric Magnetic
Field Data

Although there exist a number of NLFFF reconstruction
methods (see, e.g., brief overview in Aschwanden 2005,
Section 5.3.3; DeRosa et al. 2015), various versions of the
optimization method (Wheatland et al. 2000) are, perhaps,
the most easily adjustable to adding different constraints in the
modeling volume such as chromospheric magnetic field data,
which can be incomplete, pertain to different chromospheric
heights, etc. Accordingly, in this study we employ corresp-
onding modifications of the two reconstruction codes tested
earlier in Paper I: the AS code, following Wiegelmann (2004),
and the IM code, following Rudenko & Myshyakov (2009).

4.1. Modifications to the AS Code

In both implementations used in this paper, the NLFFF
reconstructions are performed following the optimization
method (Wheatland et al. 2000). The main idea of the
optimization method is to transform some trial configuration
of the magnetic field (usually a potential extrapolation from the
bottom boundary) into a final force-free field configuration.
This is achieved by minimization of the following, positively
defined functional:
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where w(x, y, z) is a “weight” function, the same as in Paper I,
Bobs describes the additional (chromospheric and/or coronal)
constraints available in a volume subdomain V , W describes
weights of each vector component, and ν is the user-defined
Lagrangian multiplier (in this study we adopt ν=1 in all
cases). According to a variety of possible constraints at the
chromosphere and/or corona, we implemented, as independent
options, the vector, the LOS, and the absolute value of the
magnetic field, which can exist simultaneously either in the
same or in different volume subdomains; weights 0�W�1
characterize the uncertainty of the given constraint and, thus,
how strongly it affects the solution. In particular, these
uncertainties can include the uncertainty of the chromo-
spheric/coronal height, to which a given constraint is formally
assigned. Although Equation (6) has a form similar to that in

6 The extrapolated data cubes are the subject of data sharing by request to the
authors.
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Wiegelmann & Inhester (2010), there is an essential difference
between those two cases. Indeed, in Wiegelmann & Inhester
(2010) the second term represents a surface integral over the
photospheric boundary and so allows the solution to deviate
from the bottom boundary condition, which is only known
within a certain accuracy. In our approach, we assume that the
photospheric magnetic field is known with a much higher
accuracy than any additional magnetic constraints; hence, the
bottom boundary of the reconstructed data cube perfectly
matches the boundary condition (no deviation is allowed),
while the second integral pertains to an arbitrary subdomain in
the volume, for example, a chromospheric layer, where the
additional magnetic field data are available.

After numerous tests with this implementation, we found
that adding constraints at the chromospheric level has a positive
impact on the solution just above the chromosphere, but this
positive effect vanishes soon at the higher heights. This
happens for two reasons. First, the functional is effectively
weighted by the bottom part of the data cube, where both the
magnetic field and electric current are strong. Second, the top
and side boundaries are fixed from the potential field
extrapolation based on the initial photospheric boundary. To
get rid of these two problems, we perform the reconstruction in
three steps: (i) apply the optimization code with all available
additional constraints to a subdomain with a height needed to
inscribe all these constraints, then (ii) cut a plane “chromo-
spheric” layer and perform the standard extrapolation starting
from this almost force-free boundary, and finally (iii) glue the
bottom part from step (i) to the data cube such that the final
data cube covers all the heights starting from the bottom
photospheric vector boundary. We note that this approach is
also helpful when the additional constraints pertain to various
chromospheric and coronal heights, rather than to a plane
surface.

4.2. Modifications to the IM Code

In contrast to the AS implementation, the IM implementation
of the optimization method does not include any modification
of the main functional. The functional has its original form as it
was introduced in Wheatland et al. (2000):

ò=  ´ ´ + -[ [[ ] ] ∣ · ∣ ] ( )B B BL B dV . 7
V

2 2 2

Likewise, all equations for evaluating magnetic field in the
volume and on the lateral and top boundaries of the
computational domain remain unchanged, while the additional
constraints are straightforwardly applied at each iteration. In the
present study, we do not consider any uncertainty of the
additional constraints. Thus, any available additional informa-
tion on magnetic field must be preserved during the NLFFF
reconstruction procedure. To ensure that the extrapolated
magnetic field satisfies additional inner constraints, we adjust
its components at every consequent iteration at those voxels
where some additional information is available after recalculat-
ing magnetic field everywhere according to evolutionary
equations.

In particular, when information on the magnetic field
component along a specified LOS direction is provided, the
newly recalculated field vector is decomposed into LOS and
tangential components. Then, the former is set to be equal to

the provided constraints, while the latter remains unchanged. In
the case when the information on the vector magnitude is
provided, the newly recalculated field vector is renormalized
according to the constraints while preserving its direction.
When both types of inner constraints are provided, then first the
LOS constraints are applied, and after this, the tangential
component is changed to match the magnitude constraints.

5. NLFFF Reconstruction Tests

We expect the extrapolations to improve as a result of adding
constraints at the chromospheric level, where the magnetic field
is close to the force-free state. Here we aim to evaluate the
potential algorithmic improvement of the NLFFF reconstruc-
tion due to adding chromospheric constraints. Thus, we do not
explicitly consider the height uncertainties of the chromo-
spheric constraints. The index of the voxel layer where the
chromospheric constraints are applied depends on the model
resolution (bin factor) and is tabulated in Table 1 of Paper I. To
assess the potential improvement of NLFFF reconstructions
due to the additional chromospheric constraints, we produced a
series of the NLFFF extrapolated data cubes by both the AS
and IM codes, for various bin factors as in Paper I, where
various kinds or combinations of the chromospheric constraints
have been employed in addition to the vector photospheric
boundary condition. According to the types of anticipated
chromospheric constraints in the real data, we consider the
cases when the LOS component, the absolute value, or the full
vector of the magnetic field is available. We also consider an
option when both the LOS and the absolute value of the
magnetic field are known. For the cases when the LOS
component is involved, we considered both the “top-view”
geometry and also two cases of oblique viewing angles. In
what follows, we present results of global and layer-by-layer
assessment of the quality of reconstructions, the accuracy of
connectivity reconstruction, and the fidelity of the electric
current restoration.

5.1. Overview and the Global Assessment

Qualitatively, the overall behavior of the reconstructed
magnetic field is similar to that revealed in Paper I, although
quantitative metrics improve in most cases when additional
constraints are used. Figure 1 shows local error (residual) and
normalized local error for the case when the magnetic vector
data are available at both photospheric and chromospheric
layers. The metrics are comparable for both IM and AS codes,
although the AS metrics are marginally better in the inner part
of the data cube. The animated version of the figure shows
these metrics at all layers of the data cube. Interestingly, the
reconstruction yields an appropriate accuracy even at the
lowest layers of the data cube, where the field deviates from
the force-free state.
To globally assess the force-freeness of the reconstructions,

we employ the angular metrics described by Equations (1)
and (3), which are summarized in Table 1 for the top view and
in Table 2 for two side views. It is interesting to note that our
two codes behave differently for different sets of the additional
constraints at the chromospheric layer. For example, when only
the Bz component is available at the chromospheric layer, the
AS code clearly outperforms the IM one, while both codes
show a comparable performance, when ∣ ∣B is available. In
contrast, when two or three components of the magnetic field
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are available at the chromospheric layer, the IM code gives
better results than the AS code. The reason for that is that the
IM code employs equations for the side and top boundaries.

Thus, when at least two chromospheric components are
available, then correct force-free information propagates by
these equations to the higher heights, which helps to improve

Figure 1. Model Bz field distributions (left column) and performance of the IM (next two columns) and AS (two rightmost columns) NLFFF extrapolations
(Bz component) from the photospheric level with inclusion of full vector information at the chromospheric level (bin=9) at three levels (their heights are shown in the
panel titles); second and fourth columns: residual between the extrapolated and the model field; third and fifth columns: relative error. The relative error is bigger along
the “neutral lines,” where the field is close to zero. The results for other components and other binning factors are similar to those shown in this figure. The animated
version of this figure shows the same information but for all layers of the reconstructed Bz data cubes separately for the IM and AS extrapolations. Each frame of the
animations shows four panels at a given layer: (a) the model field, (b) the restored field, (c) the residual, and (d) the relative error.

(An animation of this figure is available.)

Table 1
Performance of the Magnetic Field Reconstruction Methods with Different Types of Inner Constraints

Bin Impl Bz ∣ ∣B Bz and ∣ ∣B B

θ° qj qm qmj θ° qj qm qmj θ° qj qm qmj θ° qj qm qmj

3 IM 20.0 14.9 29.0 16.6 15.6 13.8 24.7 15.8 13.7 14.1 15.8 10.9 12.8 13.6 15.2 10.1
AS 28.4 17.5 25.7 14.1 25.3 17.4 26.2 15.3 25.8 17.3 24.5 13.3 26.5 17.0 23.9 12.2

6 IM 20.5 16.5 34.8 19.2 18.8 16.5 22.8 13.4 16.1 15.7 15.7 9.2 14.9 14.9 14.5 8.0
AS 25.2 15.4 24.4 12.2 23.2 15.0 24.9 14.1 23.9 15.5 23.8 12.3 26.3 16.3 23.2 10.9

9 IM 23.9 19.2 25.2 14.2 20.0 18.3 19.7 10.9 17.6 16.9 13.5 7.6 16.1 16.1 12.9 6.8
AS 26.2 16.6 24.1 11.4 25.1 16.2 24.4 12.8 25.5 16.7 23.5 11.8 30.0 18.0 22.8 10.3

Note. “Bin” is the binning factor. “Impl” is the implementation of the optimization method. Four subsequent large columns contain numerical characteristics of a
reconstructed field with the use of a corresponding type of inner constraints on the chromosphere level.

Table 2
Performance of the Magnetic Field Reconstruction Methods Using a Magnetic Field Component along a Predetermined Line-of-sight Direction as the Inner Constraint

Bin Impl BW00N30 BW N00 30 and ∣ ∣B BW N30 30 BW N30 30 and ∣ ∣B
θ° qj qm qmj θ° qj qm qmj θ° qj qm qmj θ° qj qm qmj

3 IM 19.7 14.5 27.5 16.4 13.9 13.8 18.6 12.6 19.0 14.2 27.0 15.8 14.9 14.2 17.6 11.8
AS 25.8 13.8 25.9 16.6 23.2 13.7 25.0 16.6 27.0 13.9 25.7 15.9 23.4 13.6 25.1 16.2

6 IM 19.3 16.5 32.1 18.3 16.1 15.6 17.7 9.9 19.6 16.2 30.3 16.0 17.7 16.3 18.0 9.7
AS 24.2 14.6 24.4 12.5 23.4 14.7 23.9 12.7 24.8 14.7 24.4 12.6 23.7 14.7 23.9 12.6

9 IM 23.0 19.0 22.8 12.2 17.6 17.0 15.1 8.3 22.2 18.4 24.7 14.0 19.4 17.8 15.1 8.2
AS 25.2 16.2 24.3 12.0 25.2 16.6 23.7 12.0 25.7 16.2 24.1 11.7 25.9 16.7 23.6 11.7

Note. “Bin” is the binning factor. “Impl” is the implementation of the optimization method. Four subsequent large columns contain numerical characteristics of a
reconstructed field with the use of a corresponding type of inner constraints on the chromosphere level.
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the reconstruction. It turns out that having only one chromo-
spheric component is insufficient to do that; thus, the weighted
optimization approach with the buffer zone constituting 10% of
the layers at the top and side boundaries in the AS code (see
Wiegelmann 2004; Fleishman et al. 2017, for the details) is
more appropriate in those cases. This tendency holds also for
the oblique viewing angle, Table 2. We also checked the
solenoidal condition: in all cases it holds, within a factor of 2,
at the same level as in the original model reported in Table 1 in
Paper I; see Table 3 for details. It is interesting that for larger
bin factors the solenoidal condition holds better for the
reconstructed cubes compared with the original binned model.
The reason is that the binned model is obtained from the
original one by a direct averaging without taking care of the
solenoidal condition, while the extrapolations look for the best
solution consistent with (i) the bottom boundary condition,
(ii) the force-free condition, and (iii) the solenoidal condition.

5.2. Layer-by-layer Assessment

Figure 2 shows how one of those angular metrics, the θm
parameter computed for a given layer, changes with height for
various cases. In the case of the IM code, the results are notably
different for various combinations of the additional constraints.
Adding just one Bz chromospheric component does not help to
improve the NLFFF reconstruction too much: this metric is
overall similar to that without any chromospheric data. Even
though it marginally improves the reconstruction at low
heights, the metrics is getting worse at the higher heights.
Both NLFFF reconstructions (without any additional constraint
and with Bz only) are less accurate at the higher heights than the
potential extrapolation. In contrast, adding the absolute value
∣ ∣B improves this metric noticeably; in fact, it makes it
comparable to that for the AS code for the ∣ ∣B case. Having
the full vector at the chromospheric layer further improves the
metrics noticeably. It is remarkable that having just two vector
components, the combination of ∣ ∣B and Bz, has almost the same
positive effect on the reconstruction as having the full vector.
This happens because the vector components are linked to each
other by the equation  =· B 0; thus, having two components
is already sufficient to significantly constrain the third one.

In the case of the AS code the overall improvement follows
the same trend, but it is less pronounced quantitatively. The
reconstruction quality is always better than in the case of the
potential extrapolation; adding even one component improves
the reconstruction noticeably, while adding more components
results in less prominent improvement compared with the IM
code. This is the outcome of the adopted construction of the
solution, when the side and top boundary conditions are fixed
from the potential extrapolation and the buffer zone is
employed at the boundary domains as described in
Section 4.1.

The angular metrics considered above do not tell us how
well the various components of the magnetic field are

reproduced. A straightforward way of testing whether the
reconstructed values are correlated with the model ones
would be to produce the corresponding scatter plots and
compare the so-obtained 2D cloud of the data point with the
ideal correlation y=x. This was checked and confirmed
(Figures9–11 in Paper I) for reconstructions started from both
photospheric and chromospheric boundaries, and this is also
the case for the present study; thus, we do not show those
scatter plots. To further quantify the reconstruction accuracy
(scatter around the y= x line) of the field components (as well
as the absolute value), we employ the residual metrics,
described by Equation (5). The results obtained for a subset
of our modeling data cubes, specifically for bin = 3, 6, and 9,
are shown in Figures 3 and 4.
Figure 3 summarizes the metrics for the case when only one

chromospheric component is available, either Bz or ∣ ∣B . The
errors increase rapidly with the height for the IM code if only
the Bz component is available (first column), while the situation
improves if the absolute value ∣ ∣B is available (third column).
The AS code performs better than the IM one in this plot,
showing only a modest improvement between the Bz (second
column) and ∣ ∣B (fourth column) cases. In particular, the quality
of the ∣ ∣B reconstruction improves if the absolute value ∣ ∣B
is available at the chromospheric level. The Bz component is
typically reconstructed less accurately than the ∣ ∣B one, Bx is
further less accurately reconstructed, and By is the least
accurately reconstructed.
Figure 4 summarizes the metrics for the case when more than

one chromospheric component is available, either Bz and ∣ ∣B or
the full vector. Here the quality of the IM reconstruction is
greatly improved; it works better than the AS code for most
components. The quality of the ∣ ∣B reconstruction is, however,
comparable for both codes. At a given height, either of the
codes can work better than the other; the metrics are tabulated
for the quantitative analysis in a supplemental tar.gz archive.
Figure 5 shows the same metrics for two off-center locations

of the data cube at the solar surface for bin=9 and the
additional constraints, which include B (instead of Bz in the
top-view geometry) and the combination of B and ∣ ∣B at
the chromospheric level. The trends in this figure are similar to
those for the top view, although the metrics slightly change
quantitatively.

5.3. Field Lines and Magnetic Connectivity

The ability of a given NLFFF reconstruction tool to
truthfully reproduce the magnetic field lines is of primary
importance for many reasons. Qualitatively, a subset of the
field lines is often used for validation of the extrapolation cube
via visual comparison of those field lines with bright EUV
loops. It is also essential in modeling magnetic connectivity in
solar flares; for example, in the case of footpoints seen in hard
X-ray emission from flares, these footpoints must be connected
by a valid field line. Thus, the ability of a given model to

Table 3
Divergence-free Criterion f×106 (Equation (2))

Bin Model No Constr. Bz ∣ ∣B Bz and ∣ ∣B B
IM/AS IM/AS IM/AS IM/AS IM/AS

3 704 658/738 769/881 523/782 450/788 448/774
6 1587 1089/1251 1169/1429 889/1362 784/1399 802/1355
9 2440 1432/1611 1921/1857 1533/1828 1263/1893 1323/1825
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closely reproduce this field line is fundamentally needed to
develop a realistic 3D model of the flare (Fleishman et al. 2011;
Nita et al. 2015; Kuroda et al. 2018). In addition, tracing all
available field lines in a data cube is now employed for
“dressing” magnetic skeletons with a realistic thermal structure;
thus, the truthful reproduction of the field lines is critical for
building a realistic thermal model of ARs.

To check how truthfully the magnetic field lines are
reproduced in our reconstructed data cubes (vs. the original
data cube), we developed an algorithm that calculates magnetic
field lines in the reconstructed and the original magnetic cubes
starting from a given point at the base boundary and computes
the largest spatial deviation between those field lines. Magnetic
field lines were constructed using the Runge–Kutta–Fehlberg
method of 4(5) order (Press et al. 2007). For our tests we
produced all field lines that start at all lower boundary voxels
with the magnetic field strength exceeding 30G. This way,
each field line in the original magnetic cube has its
corresponding field line in the reconstructed cube, which are
quantitatively compared between each other as follows. For
every point on the model field line, we select the closest point
on the corresponding reconstructed field line and compute the
distance between them; thus, each point on the original field
line is characterized by some distance from the reconstructed
field line. Then, we pick the largest of the distances, which is,

by construction, the maximum deviation between these two
field lines.
Figure 6 shows the histograms of the maximum deviation

between model magnetic field lines and reconstructed ones for
various reconstruction methods and constraints. Most field
lines show maximum deviations of the order of 1Mm or less,
mostly in the range of 0.1–1Mm. It is interesting that even
though having information about the absolute value resulted in
stronger improvement of the residual metrics than having the
LOS component, the connectivity is somewhat better recovered
for the LOS component case. All algorithms tend to produce a
more “closed” magnetic field than that in the original data
cubes. Thus, we separately tested how well the connectivity of
the closed field lines is reproduced and found that indeed the
connectivity is better reproduced for the closed field lines
compared with all field lines. This is not surprising given that
the cases when the reconstruction returns a closed field line
instead of the open one may result in large deviations between
them. A tendency of improving the quality of the connectivity
reconstruction with adding more chromospheric constraints is
evident from Figure 6. Statistics of maximum deviation
between model and reconstructed lines for various bins (3, 6,
and 9) are shown in Tables 4–5 for all and only closed
field lines, respectively. The median values improve from
0.5–0.7Mm without constraints to 0.3–0.5Mm with most

Figure 2. Distribution of the θm parameter, computed for horizontal layers at given heights with the use of different inner constraints on the chromosphere for three
binnings(3, 6, 9). The first row shows the results obtained with the IM code. The second row shows the results obtained with the AS code. Crosses show the metrics
from the initial potential extrapolation. Thick solid line: no inner constraints (reference case). Dotted line: Bz. Dashed line: ∣ ∣B . Dot-dashed line: Bz and ∣ ∣B . Thin solid
line: B.
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constraints for all field lines, whereas they improve from ∼0.3
to ∼0.2Mm for the closed field lines. The quality of the
connectivity reconstruction improves for higher bin factors; the
IM and AS codes yield comparable results for the closed-
line case.

To scale our results obtained for a given size of the box and
given distances between the strong field areas to an arbitrary
AR, we also computed relative deviations, D/L, where L is the
length of the field line in the extrapolated data cube. In most
cases the relative deviation is of the order of 10% or even less,
which implies that in most cases the connectivity is reproduced
reasonably well. However, there is a noticeable subset of field
lines with a larger deviation, which has to be taken into account
in analysis of real data.

Animated Figure 7 displays a few representative field lines
intended to illustrate, though not in a statistically meaningful
way, those various cases, when the magnetic connectivity is
affected by adding chromospheric constraints. One can see that
in most cases there is a noticeable improvement in the magnetic
connectivity due to adding the chromospheric constraints (lines
1, 2, and 6 in both reconstruction methods, lines 4 and 5 for the
IM method), although in some cases the connectivity in the

data cube obtained with additional constraints can occasionally
become worse (e.g., line 5 in the AS method). Line 7 shows the
tendency to produce a more “closed” magnetic field than that in
the original data cubes.

5.4. Maps of Electric Currents

To investigate how additional internal constraints affect
distribution of the electric current density, we calculated an
electric current map for the rebinned Bifrost model and
compared it with the maps obtained from the extrapolated
data cubes. The electric current maps are computed by
integration of the 3D distribution of the electric current over
the z-axis:

ò µ ´( ) ∣ ( )∣ ( )BI x y x y z dz, , , . 8

The results obtained for IM and AS extrapolations are given
in Figures 8 and 9, respectively, separately—for the layer
between the photospheric and chromospheric levels (six top
panels) and for the coronal volume above the chromospheric
level (six bottom panels). In the bottom layer the results of
extrapolations with different combinations of additional

Figure 3. Relative rms residual in a layer as a function of height for the NLFFF reconstructions obtained for three different resolutions, bin=3 (top row), bin=6
(middle row), and bin=9 (bottom row), using two methods, IM and AS, from the photospheric level with inclusion of either the Bz component (the LOS component
for the top view) or the absolute value ∣ ∣B of the magnetic field at the chromospheric level. The side buffer zones are discarded everywhere, while the height of the top
buffer zone is shown by the dashed vertical line.
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constraints look morphologically similar to each other. This is
likely because the electric currents are becoming weaker at the
higher heights, and so the upper part of this layer, which is
more strongly affected by the chromospheric constraints, gives
a relatively minor contribution to the overall distribution of the
electric current. However, a careful look at the maps reveals
that small details of the electric current distribution are better
reproduced when chromospheric constraints are taken into
account. The electric current maps look surprisingly similar to
the electric current map computed from the original model,
even though the magnetic field is clearly non-force-free in this
layer. The AS code tends to amplify the electric currents close
to the boundary buffer zone, especially when no chromospheric
constraints are employed, which is an artifact of the assumption
that the magnetic field approaches a potential field solution at
the side boundaries.

Overall comparison in the coronal volume reveals that every
additional constraint makes the electric current density
distribution closer to the model one. The best correspondence
is achieved when the full magnetic field vector is constrained at
the chromospheric level. To investigate the improvement
caused by additional constraints in details, we selected four

distinct features visible in the current maps and compared their
appearances in different cases. These features are marked by
colored ovals in Figures 8 and 9 and labeled with letters A–D.
Significant enhancements (A and D) of the electric current

density in the map calculated from the Bifrost model are much
less prominent in both NLFFF extrapolations without any
internal constraint. Fixing the Bz component at the chromo-
spheric level makes these features more prominent and
highlights their fine structure, while constraining the absolute
value of the magnetic field does not improve those features too
much. This behavior is the same for both IM and AS
extrapolations.
Near the front boundary (y= 0) of the box, there is area B

with an artificial electric current enhancement that is not
present in the original model. This artifact is most prominent in
the IM extrapolation without internal constraints and in the AS
extrapolation with the Bz constraint. Thus, the Bz constraint
does not remove this artificial current. Moreover, it can make it
even more prominent (AS extrapolation case). Adding a
constraint to ∣ ∣B allows us to get rid of this artificial
enhancement and to make the electric current distribution in
region B closer to the model one.

Figure 4. Relative rms residual in a layer as a function of height for the NLFFF reconstructions obtained for three different resolutions, bin=3 (top row), bin=6
(middle row), and bin=9 (bottom row), using two methods, IM and AS, from the photospheric level with inclusion of either a combination of the Bz component and
the absolute value ∣ ∣B or the full vector B information at the chromospheric level. The side buffer zones are discarded everywhere, while the height of the top buffer
zone is shown by the dashed vertical line.
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In the upper right corner of the model map, there is an
X-shaped feature. Both methods are incapable of reproducing
this feature without applying additional constraints. IM
extrapolation reveals this feature only after constraining both
Bz and ∣ ∣B . In AS extrapolation, this structure appears only after
fixing the full magnetic field vector. The AS method is less
accurate in this case probably because this structure is close to
the boundary of the box, which is a fixed potential field in AS
implementation, while the IM code varies it. This effect is also
manifested in the form of dark areas at the boundaries
following the buffer zones, where the magnetic field
approaches the current-free potential field at side boundaries
(e.g., see feature D in the electric current maps for AS
extrapolation).

Our analysis of the electric current maps revealed that
additional constraints improve qualitative agreement between
the NLFFF extrapolation and the model. The Bz constraint
improves the appearance of the electric current enhancements,
making them more prominent and revealing their fine structure.
The main benefit of applying internal constraints to the absolute
value of the magnetic field is reducing artificial currents (e.g.,
feature B in the electric current maps). We also note that the
current density in NLFFF extrapolation is noticeably lower
than in the reference model.

5.5. Maps of the Lorentz Force

Note that although the minimization of the Lorentz force
term in the functional described by Equation (6) drives the
solution toward a more force-free configuration, the use of non-
force-free bottom boundary conditions and extra constraints in
the volume is expected to result in a residual Lorentz force in
both the chromospheric layer and the coronal volume. To
assess how well this residual Lorentz matches that in the
original model (recall that the original model deviates from the

force-free state even in the coronal part of the model data cube;
see Table1 in Paper I for more details), we employ the Lorentz
force maps.
Figures 10 and 11 demonstrate chromospheric and coronal

Lorentz force maps for the IM and AS extrapolations,
respectively. Indeed, we see significant reduction of the Lorentz
force in the coronal part of the model due to the additional
chromospheric constraints. It is remarkable that the most
significant improvement is achieved when the absolute value
of the magnetic field is constrained. For the core region of the
model, this behavior is demonstrated by both the IM and AS
methods. However, in the case of the AS data sets, there is no
improvement in the buffer zone near the side boundaries, where
the magnetic field becomes potential.
Somewhat unexpected behavior is observed in the lower

layer between the photosphere and the chromosphere, where
we do not see any significant influence of the additional
boundary conditions on the distribution of the Lorentz force.
The most plausible explanation is that the magnetic field in the
lower layers of the data cube is mainly determined by the
photospheric non-force-free boundary conditions, and addi-
tional chromospheric constraints have only a limited influence
on the underlying layers.

6. Discussion

Here we have extended the earlier tested (Paper I) NLFFF
optimization codes to situations when a subset of chromo-
spheric data on the magnetic field is available in addition to the
photospheric vector boundary condition. These new imple-
mentations of the extrapolation codes have been thoroughly
tested using a series of magnetic data cubes derived in Paper I
from the en024048_hion simulation (Carlsson et al. 2016)
obtained with the Bifrost code (Gudiksen et al. 2011).

Figure 5. Relative rms residual in a layer as a function of height for the bin=9 NLFFF reconstructions obtained using two methods, IM and AS, from the
photospheric level with inclusion of either the ∣∣B component (the LOS component) or the combination of the LOS component and the absolute value ∣ ∣B of the
magnetic field at the chromospheric level for two different locations of the data cube at the solar surface: 30° north at the central meridian (top row) and 30° north and
30° west (bottom row). The side buffer zones are discarded everywhere, while the height of the top buffer zone is shown by the dashed vertical line.
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We have found that, generally, even adding an incomplete set
of the chromospheric data is capable of improving the NLFFF
reconstruction. However, the effect of these additional con-
straints is different for the full optimization (IM code) or
weighted optimization (AS code) algorithms. Specifically, when

only limited information is available, for example, the LOS
component of the magnetic field or its absolute value, the AS
code returns better results than the IM code. In contrast, when
two components of the magnetic field (e.g., the LOS component
and the absolute value) are available, the IM code performs

Figure 6. Histograms of magnetic field line deviations (bin=9). First row: field lines built for all base pixels; second row: a subset of those lines, which are closed in
the original model data cube; third row: relative deviations, D/L, where L is the length of the field line in the extrapolated data cube, for the closed field lines.

Table 4
Statistics of Maximum Deviation

Bin Impl No Constr. ∣ ∣B Bz Bz and ∣ ∣B B

D0.5 *D D0.75 D0.5 *D D0.75 D0.5 *D D0.75 D0.5 *D D0.75 D0.5 *D D0.75

3 IM 0.69 0.46 2.27 0.57 0.37 1.49 0.54 0.37 1.61 0.37 0.26 0.90 0.28 0.21 0.69
AS 0.67 0.43 2.15 0.70 0.44 2.00 0.61 0.41 1.82 0.59 0.39 1.64 0.49 0.34 1.43

6 IM 0.62 0.39 1.80 0.53 0.33 1.25 0.51 0.35 1.54 0.38 0.25 0.90 0.27 0.20 0.66
AS 0.60 0.40 2.13 0.58 0.41 1.97 0.49 0.37 1.88 0.48 0.35 1.65 0.40 0.31 1.43

9 IM 0.50 0.36 1.76 0.46 0.31 1.24 0.46 0.32 1.49 0.37 0.24 0.91 0.29 0.20 0.69
AS 0.53 0.39 2.41 0.49 0.38 2.29 0.43 0.35 2.06 0.42 0.34 1.81 0.36 0.30 1.62

Note. “Bin” is the binning factor. “Impl” is the implementation of the optimization method. D0.5 is the median; * = ( )D 10 Dlog , where ( )Dlog is the mean value of the
decimal logarithm; and D0.75 is the upper quartile of the distribution of maximum deviation in Mm.
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better than the AS code. The reasons for that behavior are well
understood: the IM code propagates the boundary conditions to
the side and top boundary from the bottom of the data cubes.
Thus, when reliable data at the almost force-free chromospheric
level are available, then a more correct information is being
propagated upward, which helps to improve the reconstruction.
In contrast, when these data are unavailable or incomplete, the
weighted optimization approach with its buffer zone at the side
and top boundaries turns out to be more appropriate.

The overall improvement in the magnetic field reconstruc-
tions with added chromospheric magnetic data is remarkable. It
is especially significant in reconstructing the absolute value of
the magnetic field, which is highly important for estimating the
total and free magnetic energy in the data cube. An important
finding is that adding only two components of the magnetic
field at the chromospheric level, B and ∣ ∣B , has almost the same
positive effect as adding the full vector data. We believe that
this happens because having the two components along with
equation  =· B 0 is almost as complete as having the full
vector data. This finding is particularly important because it
reveals that the microwave diagnostics of two magnetic field
components at the TR from the GR and free–free emissions are,
in fact, almost as complete as the full vector diagnostics. The
latter might be available from infrared spectropolarimetry but
can suffer from errors in π-disambiguation of the transverse
component of the magnetic field. The combination of B and ∣ ∣B
is available from the infrared spectropolarimetry without any
disambiguation, so the use of the B and ∣ ∣B combination rather
than the full vector removes one source of errors.

Adding the chromospheric constraints improves reconstruc-
tion of magnetic connectivity in the data cubes. The correctly

reproduced connectivity in the coronal volume is of primary
importance for all sorts of modeling performed using the
NLFFF reconstructions, in particular, modeling of ARs (Nita
et al. 2018) and solar flares (Nita et al. 2015; Kuroda et al.
2018). Finally, the reconstruction of electric currents in the
modeling volume is also noticeably improved as a result of
adding the chromospheric probing of the magnetic field.
We note that we have not considered all possible cases when

a subset of chromospheric magnetic data might be available.
For example, there can be cases when data on some component
of the magnetic field (or the full vector) are only available at a
portion of the chromospheric level, or at different chromo-
spheric heights, or only within a certain range of the field
amplitudes, etc. There can be countless situations, which
cannot all be considered at a systematic level. Instead, the
modeling data cubes used in this study can be used to emulate
those different situations as required by the actual data
availability. For example, if the chromospheric data are
available over a limited subarea of the AR of interest, one
can produce a mask reproducing that subarea and apply this
mask to the Bifrost modeling cubes to quantify the expected
improvement of the reconstruction with the given subset of the
available chromospheric constraints. A similar approach can be
employed to account for the magnetic measurement errors.
We also propose that other methods of reconstruction, which

require a force-free bottom boundary to perform properly, are
to be tested. Indeed, some other method might outperform the
optimization methods employed here, provided that the force-
free chromospheric boundary condition has been obtained by
the optimization method.

Table 5
Statistics of Maximum Deviation (Closed Lines)

Bin Impl No Constr. ∣ ∣B Bz Bz and ∣ ∣B B

D0.5 *D D0.75 D0.5 *D D0.75 D0.5 *D D0.75 D0.5 *D D0.75 D0.5 *D D0.75

3 IM 0.30 0.46 0.87 0.31 0.37 0.85 0.26 0.37 0.71 0.23 0.26 0.56 0.19 0.21 0.45
AS 0.31 0.43 1.06 0.39 0.44 1.07 0.36 0.41 1.00 0.33 0.39 0.89 0.26 0.34 0.71

6 IM 0.31 0.39 0.74 0.32 0.33 0.68 0.28 0.35 0.76 0.24 0.25 0.53 0.21 0.20 0.43
AS 0.28 0.40 0.80 0.30 0.41 0.78 0.26 0.37 0.69 0.25 0.35 0.66 0.21 0.31 0.52

9 IM 0.33 0.36 0.71 0.31 0.31 0.64 0.26 0.32 0.64 0.23 0.24 0.50 0.20 0.20 0.41
AS 0.29 0.39 0.83 0.30 0.38 0.71 0.23 0.35 0.64 0.24 0.34 0.56 0.19 0.30 0.48

Note. “Bin” is the binning factor. “Impl” is the implementation of the optimization method. D0.5 is the median; * = ( )D 10 Dlog , where ( )Dlog is the mean value of the
decimal logarithm; and D0.75 is the upper quartile of the distribution of maximum deviation in Mm.

Figure 7. Examples of some magnetic field lines. Left: IM reconstruction; right: AS reconstruction. The model lines are shown in black, the lines reconstructed
without constraints are in green, and the lines reconstructed with Bz and ∣ ∣B constraints are in magenta. The animated version of these plots, showing the field lines
from various perspectives, is available online.

(An animation of this figure is available.)
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Figure 8. Electric current maps calculated for IM extrapolations, bin=3, for the bottom layer between the photospheric boundary and the level from which the
chromospheric constraints are taken (six top panels) and for the coronal volume above the chromospheric level (six bottom panels). Colored ovals indicate features in
the electric current distribution that have been improved after applying additional inner constraints: enhanced current in the core region of the box (A), false current
near one of the boundaries (B), X-shaped geometrical feature (C), and the electric current enhancement near the left boundary (D). The same brightness scale is applied
to all panels. The animated version of this figure shows how the electric current changes with height layer by layer. The brightness scale is kept fixed at all layers.
However, to make the spatial structure visible at all layers, we show the brightness to the power of 0.2.

(An animation of this figure is available.)
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Figure 9. Electric current maps calculated for AS extrapolations, bin=3, for the bottom layer between the photospheric boundary and the level from which the
chromospheric constraints are taken (six top panels) and for the coronal volume above the chromospheric level (six bottom panels). Colored ovals indicate features in
the current distribution that have been improved after applying additional inner constraints: enhanced current in the core region of the box (A), false current near one
of the boundaries (B), X-shaped geometrical feature (C), and electric current enhancement near the left boundary (D). The same brightness scale is applied to all
panels. The animated version of this figure shows how the electric current changes with height layer by layer. The brightness scale is kept fixed at all layers. However,
to make the spatial structure visible at all layers, we show the brightness to the power of 0.2.

(An animation of this figure is available.)
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Figure 10. Lorentz force maps calculated for IM extrapolations, bin=3, for the bottom layer between the photospheric boundary and the level from which the
chromospheric constraints are taken (six top panels) and for the coronal volume above the chromospheric level (six bottom panels). The same brightness scale is
applied to all panels corresponding to the same atmospheric layer, although the brightness scales for the chromosphere and the corona are different from each other.
The animated version of this figure shows how the Lorentz force changes with height layer by layer. The brightness scale is kept fixed at all layers. However, to make
the spatial structure visible at all layers, we show the brightness to the power of 0.2.

(An animation of this figure is available.)
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Figure 11. Lorentz force maps calculated for AS extrapolations, bin=3, for the bottom layer between the photospheric boundary and the level from which the
chromospheric constraints are taken (six top panels) and for the coronal volume above the chromospheric level (six bottom panels). The same brightness scale is
applied to all panels corresponding to the same atmospheric layer, although the brightness scales for the chromosphere and the corona are different from each other.
The animated version of this figure shows how the Lorentz force changes with height layer by layer. The brightness scale is kept fixed at all layers. However, to make
the spatial structure visible at all layers, we show the brightness to the power of 0.2.

(An animation of this figure is available.)
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7. Conclusions

Based on the tests performed here with the new NLFFF
reconstruction codes that take into account additional chromo-
spheric and coronal constraints along with the routinely
available vector measurements at the photosphere, we conclude
that the full use of all magnetic field measurements at force-free
regions above ARs is very helpful in improving the magnetic
field modeling of ARs. We emphasize that even adding an
incomplete set of data, which can include only one or two
components of the magnetic field at the chromospheric level, is
already highly beneficial. This validates the effort of the
research community to obtain such diagnostics from infrared,
millimeter, and microwave measurements. We expect to see a
dramatic increase of combining all such diagnostics in
producing the magnetic models of ARs in the near future.
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