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Abstract

In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-

absolute-value sequenceD, we obtain a sharp criterion such that for almost every α the inequality

|n|D|nα − p| ≤ ψ(n)

has infinitely many coprime solutions (n, p) ∈ N × Z for a certain one-parameter family of ψ. Also, under

a minor condition on pseudo-absolute-value sequences D1,D2, . . . ,Dk, we obtain a sharp criterion on a

general sequence ψ(n) such that for almost every α the inequality

|n|D1
|n|D2

· · · |n|Dk
|nα − p| ≤ ψ(n)

has infinitely many coprime solutions (n, p) ∈ N × Z.
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1. Introduction

The Littlewood conjecture states that for every pair (α, β) of real numbers,

lim inf
n→∞

n‖nα‖ ‖nβ‖ = 0, (1.1)

where ||x|| = dist(x, Z). We refer the reader to [4, 6] for recent progress. By a

fundamental result of Einsiedler et al. [9], the set of pairs (α, β) for which (1.1) does

not hold is a zero Hausdorff dimension set.

From the metrical point of view, (1.1) can be strengthened. Gallagher [13]

established that if ψ : N→ R is a nonnegative decreasing function, then for almost

every (α, β) the inequality

‖nα‖ ‖nβ‖ ≤ ψ(n)
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has infinitely many solutions for n ∈ N if and only if
∑

n∈N ψ(n) log n =∞. In particular,

lim inf
n→∞

n (log n)2‖nα‖ ‖nβ‖ = 0

for almost every pair (α, β) of real numbers. By a method of [18], Bugeaud and

Moshchevitin [6] showed that there exist pairs (α, β) such that

lim inf
n→∞

n (log n)2‖nα‖ ‖nβ‖ > 0.

This result has been improved by Badziahin [1] and states that the set of pairs (α, β)

satisfying

lim inf
n→∞

n log n log log n‖nα‖ ‖nβ‖ > 0

has full Hausdorff dimension in R2. It is conjectured that the Littlewood conjecture

can be strengthened to

lim inf
n→∞

n log n‖nα‖ ‖nβ‖ = 0

for all (α, β) ∈ R2.

In [7], de Mathan and Teulié formulated another conjecture – known as the mixed

Littlewood conjecture. Let D = {nk}k≥0 be an increasing sequence of positive integers

with n0 = 1 and nk|nk+1 for all k. We refer to such a sequence as a pseudo-absolute-

value sequence and we define theD-adic pseudo-norm | · |D : N→ {n−1
k

: k ≥ 0} by

|n|D = min{n−1
k : n ∈ nkZ}.

In the case D = {pk}∞
k=0

for some integer p ≥ 2, we also write | · |D = | · |p. de Mathan

and Teulié [7] conjectured that for any real number α and any pseudo-absolute-value

sequenceD,

lim inf
n→∞

n|n|D‖nα‖ = 0.

In particular, the statement that lim infn→∞ n|n|p‖nα‖ = 0 for every real number α and

prime number p is referred to as the p-adic Littlewood conjecture.

Einsiedler and Kleinbock have shown that any exceptional set to the de Mathan–

Teulié conjecture has to be of zero Hausdorff dimension [10]. By a theorem of

Furstenberg [11], one has that for any two prime numbers p,q and every real number α,

lim inf
n→∞

n|n|p|n|q‖nα‖ = 0. (1.2)

This result can be made quantitative [3], that is,

lim inf
n→∞

n(log log log n)κ|n|p|n|q‖nα‖ = 0

for some κ > 0. The statement (1.2) can be strengthened from a metrical point of

view [5], that is, suppose that p1, . . . , pk are distinct prime numbers and ψ : N→ R is a

nonnegative decreasing function; then, for almost every real number α, the inequality

|n|p1
· · · |n|pk

|nα − p| ≤ ψ(n)
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[3] Some refined results on the mixed Littlewood conjecture for pseudo-absolute values 93

has infinitely many coprime solutions (n, p) ∈ N × Z if and only if
∑

n∈N

(log n)kψ(n) =∞. (1.3)

As a corollary, it is true that

lim inf
n→∞

n (log n)k+1|n|p1
· · · |n|pk

‖nα‖ = 0 (1.4)

for almost every α ∈ R.

In [14], Harrap and Haynes considered theD-adic pseudo-absolute value. Given a

pseudo-absolute-value sequence D with some minor restriction, letM : N→ N ∪ {0}

be

M(N) = max{k : nk ≤ N}.

Suppose that ψ : N→ R is nonnegative and decreasing and that D = {nk} is a

pseudo-absolute-value sequence satisfying

m
∑

k=1

ϕ(nk)

nk

≥ cm for all m ∈ N and for some c > 0, (1.5)

where ϕ is the Euler phi function. Then, for almost every α ∈ R, the inequality

|n|D|nα − p| ≤ ψ(n)

has infinitely many coprime solutions (n, p) ∈ N × Z if and only if

∞
∑

n=1

M(n)ψ(n) =∞. (1.6)

Note that when D = {pk} for some positive integer p, we have thatM(N) � log N.

Thus, Harrap–Haynes’ result implies (1.3) for k = 1. The first goal of this paper is to

extend (1.3) to the class of finitely many pseudo-absolute-value sequences.

As pointed out in [14], such generalization depends on the overlap among pseudo-

absolute-value sequences. For example1, if D1 = {2
k} and D2 = {3

k}, (1.4) yields that

inequality

|n|D1
|n|D2
‖nα‖ ≤ ψ(n)

has infinitely many solutions for almost every α if and only if
∑

n∈N

(log n)2ψ(n) =∞.

However, if D1 = D2 = {2
k}, by [5, Theorem 2], the inequality has infinitely many

solutions for almost every α if and only if
∑

n∈N

nψ(n) =∞.

1The present example and the following one are from [14].
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Basically, the proof of (1.3) and (1.6) follows from the Duffin–Schaeffer theorem [8]

(see Theorem 2.3), which is a weaker version of the Duffin–Schaeffer conjecture.

Duffin–Schaeffer conjecture. Let ψ : N→ R be a nonnegative function and define

En = En(ψ) =

n
⋃

p=1
(p,n)=1

(

p − ψ(n)

n
,

p + ψ(n)

n

)

,

where (p, n) is the largest common divisor between p and n. Then λ(lim supEn) = 1 if

and only if
∑

n λ(En) =∞, where λ denotes the Lebesgue measure on R/Z.

One side of the Duffin–Schaeffer conjecture is trivial. If
∑

n λ(En) < ∞, by the

Borel–Cantelli lemma, λ(lim sup En) = 0. Since it has been posted, the Duffin–

Schaeffer conjecture was heavily investigated in [2, 15–17, 19, 20]. We should mention

that the Duffin–Schaeffer conjecture is equivalent to the following statement: suppose

that ψ : N→ R is a nonnegative function and satisfies
∑

n

ϕ(n)ψ(n)

n
=∞,

where ϕ is the Euler phi function. Then, for almost every α ∈ R, the inequality

|nα − p| ≤ ψ(n)

has infinitely many coprime solutions (n, p) ∈ N × Z.

We will also employ the Duffin–Schaeffer theorem to study the mixed Littlewood

conjecture in the present paper and find a nice divergence condition for finite pseudo-

absolute values.

Theorem 1.1. Let ψ : N → R be nonnegative and decreasing and let D1 =

{n1
k
},D2 = {n

2
k
}, . . . ,Dm = {n

m
k
} be m pseudo-absolute-value sequences. Suppose that

D1,D2, . . . ,Dm satisfies the following condition: there exists some constant c1 > 0

such that
ϕ(n1

k1
n2

k2
· · · nm

km
)

n1
k1

n2
k2
· · · nm

km

≥ c1, (1.7)

where ϕ is the Euler phi function. Then, for almost every α ∈ R, the inequality

|n|D1
|n|D2

· · · |n|Dm
|nα − p| ≤ ψ(n)

has infinitely many coprime solutions (n, p) ∈ N × Z if and only if
∞
∑

n=1

ψ(n)

|n|D1
|n|D2

· · · |n|Dm

=∞. (1.8)

Remark 1.2. Let p1, . . . , pm be distinct prime numbers and Di = {p
k
i
}, i = 1, 2, . . . ,m.

For such pseudo-absolute-value sequencesDi, i = 1, 2, . . . ,m, one has that (1.7) holds.

By the fact that (see [5])
∑

n∈N

(log n)mψ(n) =∞ ⇐⇒
∑

n∈N

ψ(n)

|n|p1
· · · |n|pm

=∞,

Theorem 1.1 implies (1.3).
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[5] Some refined results on the mixed Littlewood conjecture for pseudo-absolute values 95

We say that a pseudo-absolute-value sequence D = {nk} is generated by finite

integers if there exist prime numbers p1, p2, . . . , pN such that every nk can be written

as p
k1

1
p

k2

2
· · · p

kN

N
for some proper positive integers k1, k2, . . . , kN . We call p1, p2, . . . , pN

the generators ofD.

Corollary 1.3. Let ψ : N→ R be nonnegative and decreasing and letD1 = {n
1
k
},D2 =

{n2
k
}, . . . ,Dm = {n

m
k
} be m pseudo-absolute-value sequences. Suppose that each

D1,D2, . . . ,Dm is generated by finite integers. Then, for almost every α ∈ R, the

inequality

|n|D1
|n|D2

· · · |n|Dm
|nα − p| ≤ ψ(n)

has infinitely many coprime solutions (n, p) ∈ N × Z if and only if

∞
∑

n=1

ψ(n)

|n|D1
|n|D2

· · · |n|Dm

=∞.

Proof. If D j is generated by finite integers for each j = 1, 2, . . . ,m, one has that (1.7)

holds. Thus, Corollary 1.3 directly follows from Theorem 1.1. �

Suppose that there is no intersection between the pseudo-absolute-value sequences.

Then we can get better results. We say that two pseudo-absolute-value sequences

D1 = {n
1
k
} andD2 = {n

2
k
} are coprime if n1

i
and n2

j
are coprime for any i, j ∈ N.

Theorem 1.4. Let ψ : N→ R be nonnegative and decreasing. Suppose that the pseudo-

absolute-value sequences D1 = {n
1
k
},D2 = {n

2
k
}, . . . ,Dm = {n

m
k
} are mutually coprime

and

∑

n1
k1

n2
k2
···nm

km
≤N

ϕ(n1
k1

n2
k2
· · · nm

km
)

n1
k1

n2
k2
· · · nm

km

≥ c2#{(k1, k2, . . . , km) : n1
k1

n2
k2
· · · nm

km
≤ N} (1.9)

for some constant c2 > 0. Suppose that there exists some c3 with 0 < c3 < 1 such that
∑

n1
k1

n2
k2
···nm

km
≤N

n1
k1

n2
k2
· · · nm

km
≤ c3N#{(k1, k2, . . . , km) : n1

k1
n2

k2
· · · nm

km
≤ N} (1.10)

for all large N.

Then, for almost every α ∈ R, the inequality

|n|D1
|n|D2

· · · |n|Dm
|nα − p| ≤ ψ(n)

has infinitely many coprime solutions (n, p) ∈ N × Z if and only if

∞
∑

n=1

ψ(n)#{(k1, k2, . . . , km) : n1
k1

n2
k2
· · · nm

km
≤ n} =∞.

The Duffin–Schaeffer theorem is crucial to the proof of Theorems 1.1 and 1.4.

However, the Duffin–Schaeffer theorem requires a good match between the sequence

ψ(n) and the Euler function ϕ(n), so that hypotheses (1.5), (1.7) and (1.9) are
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very important. For some nice functions ψ(n), the Duffin–Schaeffer theorem can be

improved [2, 15–17]. We will use [17, Theorem 1.17] to study the mixed Littlewood

conjecture and find that the restriction (1.5) is not necessary in some sense.

Given n ∈ N and x ∈ R, define

||nx||′ = min{|nx − p| : p ∈ Z, (n, p) = 1}.

Theorem 1.5. LetD = {nk} be a pseudo-absolute-value sequence and define

M(n) =
∑

nk≤n

ϕ(nk)

nk

. (1.11)

Suppose that ε ≥ 0. Then, for almost every α ∈ R,

lim inf
n→∞

nM(n)(log n)1+ε |n|D||nα||
′ = 0

if and only if ε = 0.

2. Proof of Theorem 1.1

In this paper, we always assume that C (c) is a large (small) constant, which is

different even in the same equation. We should mention that the constant C (c) also

depends on c1, c2 and c3 in the theorems.

Before we give the proof of Theorem 1.1, some preparations are necessary.

Lemma 2.1 [5, Lemma 2]. Let p1, . . . , pk be distinct prime numbers and N ∈ N. Then

∑

n≤N
p1,...,pk-n

ϕ(n)

n
=

6N

π2

k
∏

i=1

pi

pi + 1
+ O(log N).

Obviously, Lemma 2.1 implies the following lemma.

Lemma 2.2. Suppose that d1, d2, . . . , dm ≥ 2. Then there exists some d > 0 depending

only on m such that

N
∑

n=1
d1-n,d2-n,...,dm-n

ϕ(n)

n
≥ dN for any N ∈ N.

Theorem 2.3 (Duffin–Schaeffer [8]). Suppose that
∑∞

n=1 ψ(n) =∞ and

lim sup
N→∞

( N
∑

n=1

ϕ(n)

n
ψ(n)

)( N
∑

n=1

ψ(n)

)−1

> 0.

Then, for almost every α, the inequality

|nα − p| ≤ ψ(n)

has infinitely many coprime solutions (n, p) ∈ N × Z.
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[7] Some refined results on the mixed Littlewood conjecture for pseudo-absolute values 97

Suppose that D1 = {n
1
k
},D2 = {n

2
k
}, . . . ,Dm = {n

m
k
} are m pseudo-absolute-value

sequences. Denote d
j

k+1
= n

j

k+1
/n

j

k
for j = 1, 2, . . . ,m. Define a subset S (n) of Nm

as follows:

S (n) = {(k1, k2, . . . , km) : (k1, k2, . . . , km) ∈ Nm and lcm(n1
k1
, n2

k2
, . . . , nm

km
) ≤ n},

where lcm(k1, k2, . . . , km) means the least common multiple of k1, k2, . . . , km. For any

(k1, k2, . . . , km) ∈ S (n), we define f (n; k1, k2, . . . , km) ∈ N as the largest positive integer

such that

lcm(n1
k1
, n2

k1
, . . . , nm

km
) f (n; k1, k2, . . . , km) ≤ n.

Proof of Theorem 1.1. Without of loss of generality, assume that α ∈ [0, 1). Define

En = En(ψ0) =

n
⋃

p=1
(p,n)=1

(

p − ψ0(n)

n
,

p + ψ0(n)

n

)

,

where

ψ0(n) =
ψ(n)

|n|D1
|n|D2

· · · |n|Dm

.

The Lebesgue measure of En is obviously bounded above by (2ψ0(n)/n)ϕ(n).

Obviously, the coprime pair (n, p) ∈ N × Z is a solution of |nα − p| ≤ ψ0(n) if and

only if α ∈ En.

If
∞
∑

n=1

ψ(n)

|n|D1
|n|D2

· · · |n|Dm

<∞,

∑

n

λ(En) <∞.

By the Borel–Cantelli lemma, the inequality

|n|D1
|n|D2

· · · |n|Dm
|nα − p| ≤ ψ(n)

has infinitely many solutions (n, p) ∈ N × Z only for a zero Lebesgue measure set of α.

Now we start to prove the other side. First,

N
∑

n=1

ϕ(n)ψ(n)

n|n|D1
|n|D2

· · · |n|Dm

=

N
∑

n=1

(ψ(n) − ψ(n + 1))

n
∑

j=1

ϕ( j)

j| j|D1
| j|D2
· · · | j|Dm

+ψ(N + 1)

N
∑

j=1

ϕ( j)

j| j|D1
| j|D2
· · · | j|Dm

. (2.1)
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Now we are in the position to estimate the inner sums. Direct computation implies that

n
∑

j=1

ϕ( j)

j| j|D1
| j|D2
· · · | j|Dm

=
∑

(k1,k2,...,km)∈S (n)

n
∑

j=1

n1
k1
| j,n2

k2
| j,...,nm

km
| j

n1
k1+1
- j,n2

k2+1
- j,...,nm

km+1
- j

ϕ( j)

j| j|D1
| j|D2
· · · | j|Dm

=
∑

(k1,k2,...,km)∈S (n)

n1
k1

n2
k2
· · · nm

km

lcm(n1
k1
, n2

k2
, . . . , nm

km
)

×
∑

1≤ j≤ f (n;k1,k2,...,km)

d1
k1+1
- j,d2

k2+1
- j,...,dm

km+1
- j

ϕ(lcm(n1
k1
, n2

k2
, . . . , nm

km
) j)

j

≥
∑

(k1,k2,...,km)∈S (n)

n1
k1

n2
k2
· · · nm

km

ϕ(lcm(n1
k1
, n2

k2
, . . . , nm

km
))

lcm(n1
k1
, n2

k2
, . . . , nm

km
)

∑

1≤ j≤ f (n;k1,k2,...,km)

d1
k1+1
- j,d2

k2+1
- j,...,dm

km+1
- j

ϕ( j)

j

≥ c
∑

(k1,k2,...,km)∈S (n)

f (n; k1, k2, . . . , km)ϕ(n1
k1

n2
k2
· · · nm

km
), (2.2)

where the first inequality holds by the fact that ϕ(mn) ≥ ϕ(m)ϕ(n) and the second

inequality holds by Lemma 2.2 and the fact that

ϕ(lcm(n1
k1
, n2

k2
, . . . , nm

km
))

lcm(n1
k1
, n2

k2
, . . . , nm

km
)
=
ϕ(n1

k1
n2

k2
· · · nm

km
)

n1
k1

n2
k2
· · · nm

km

.

By (1.7) and (2.2),

n
∑

j=1

ϕ( j)

j| j|D1
| j|D2
· · · | j|Dm

≥ c
∑

(k1,k2,...,km)∈S (n)

n1
k1

n2
k2
· · · nm

km
f (n; k1, k2, . . . , km). (2.3)

One the other hand,

n
∑

j=1

1

| j|D1
| j|D2
· · · | j|Dm

=
∑

(k1,k2,...,km)∈S (n)

n1
k1

n2
k2
· · · nm

km

×

n
∑

j=1

n1
k1
| j,n2

k2
| j,...,nm

km
| j

n1
k1+1
- j,n2

k2+1
- j,...,nm

km+1
- j

1 (2.4)

≤
∑

(k1,k2,...,km)∈S (n)

n1
k1

n2
k2
· · · nm

km
f (n; k1, k2, . . . , km). (2.5)
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[9] Some refined results on the mixed Littlewood conjecture for pseudo-absolute values 99

Finally, putting (2.3) and (2.5) together,
n
∑

j=1

ϕ( j)

j| j|D1
| j|D2
· · · | j|Dm

≥ c

n
∑

j=1

1

| j|D1
| j|D2
· · · | j|Dm

.

Combining with (2.1),

N
∑

n=1

ϕ(n)ψ(n)

n|n|D1
|n|D2

· · · |n|Dm

≥

N
∑

n=1

(ψ(n) − ψ(n + 1))

n
∑

j=1

c

| j|D1
| j|D2
· · · | j|Dm

+ψ(N + 1)

N
∑

j=1

c

| j|D1
| j|D2
· · · | j|Dm

≥ c

N
∑

n=1

ψ(n)

|n|D1
|n|D2

· · · |n|Dm

.

Now Theorem 1.1 follows from (1.8) and Theorem 2.3. �

3. Proof of Theorem 1.4

The proof of Theorem 1.4 is similar to the proof of Theorem 1.1 or (1.6). We need

one lemma first. Denote

M(n) = #{(k1, k2, . . . , km) : n1
k1

n2
k2
· · · nm

km
≤ n} − 1.

Lemma 3.1. Under the conditions of Theorem 1.4, the following estimate holds:

NM(N) �

N
∑

n=1

M(n). (3.1)

Proof. It suffices to show that

NM(N) ≤ O(1)

N
∑

n=1

M(n).

We rearrange n1
k1

n2
k2
· · · nm

km
as a monotone sequence t0 = 1, t1, t2, . . . , tk . . . . Then

N
∑

n=1

M(n) =

M(N)−1
∑

k=0

k(tk+1 − tk) +M(N)(N − tM(N) + 1)

= (N + 1)M(N) −

M(N)
∑

k=0

tk. (3.2)

By the assumption (1.10),
M(N)
∑

k=0

tk ≤ c3NM(N) (3.3)

for some 0 < c3 < 1.

Now the lemma follows from (3.2) and (3.3). �
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100 W. Liu [10]

Proof of Theorem 1.4. We employ the same notation as in the proof of Theorem 1.1.

By the fact that the pseudo-absolute-value sequences are mutually coprime,

M(n) + 1 = #S (n).

Moreover,
n

2
≤ n1

k1
n2

k2
· · · nm

km
f (n; k1, k2, . . . , km) ≤ n.

By (2.2) and assumption (1.9),

n
∑

j=1

ϕ( j)

j| j|D1
| j|D2
· · · | j|Dm

≥ c
∑

(k1,k2,...,km)∈S (n)

f (n; k1, k2, . . . , km)ϕ(n1
k1

n2
k2
· · · nm

km
)

≥ cn
∑

(k1,k2,...,km)∈S (n)

ϕ(n1
k1

n2
k2
· · · nm

km
)

n1
k1

n2
k2
· · · nm

km

≥ cnM(n). (3.4)

By (3.4) and (2.4),

cnM(n) ≤

n
∑

j=1

1

| j|D1
| j|D2
· · · | j|Dm

≤ nM(n). (3.5)

Suppose that
∑

n

ψ(n)M(n) <∞.

In this case, by (3.1),

N
∑

n=1

ψ(n)

|n|D1
|n|D2

· · · |n|Dm

=

N
∑

n=1

(ψ(n) − ψ(n + 1))

n
∑

j=1

1

| j|D1
| j|D2
· · · | j|Dm

+ψ(N + 1)

N
∑

j=1

1

| j|D1
| j|D2
· · · | j|Dm

≤

N
∑

n=1

(ψ(n) − ψ(n + 1))nM(n) + ψ(N + 1)NM(N)

≤ C

N
∑

n=1

(ψ(n) − ψ(n + 1))

n
∑

j=0

M( j) + ψ(N + 1)NM(N)

≤ C

N
∑

n=1

ψ(n)M(n) <∞, (3.6)
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[11] Some refined results on the mixed Littlewood conjecture for pseudo-absolute values 101

where the first inequality holds by (3.5). By the Borel–Cantelli lemma, the inequality

|n|D1
|n|D2

· · · |n|Dm
|nα − p| ≤ ψ(n)

has infinitely many coprime solutions (n, p) ∈ N × Z only for a zero Lebesgue measure

set of α.

Now we are in the position to prove the other side.

Suppose that
∑

n

ψ(n)M(n) =∞.

By (2.1) and (3.4),

N
∑

n=1

ϕ(n)ψ(n)

n|n|D1
|n|D2

· · · |n|Dm

≥ c

N
∑

n=1

(ψ(n) − ψ(n + 1))nM(n) + cψ(N + 1)NM(N)

≥ c

N
∑

n=1

ψ(n)M(n). (3.7)

Thus,
∞
∑

n=1

ψ(n)

|n|D1
|n|D2

· · · |n|Dm

=∞. (3.8)

By (3.6) and (3.7),

N
∑

n=1

ϕ(n)ψ(n)

n|n|D1
|n|D2

· · · |n|Dm

≥ c

N
∑

n=1

ψ(n)

|n|D1
|n|D2

· · · |n|Dm

. (3.9)

Applying (3.8) and (3.9) to Theorem 2.3, we finish the proof. �

4. Proof of Theorem 1.5

Before we give the proof, one lemma is necessary.

Lemma 4.1. Let D = {nk} be a pseudo-absolute-value sequence and M(n) be given

by (1.11). We have the following estimate:

NM(N) �

N
∑

n=1

M(n). (4.1)

Proof. It is easy to see that (4.1) holds if the sequence M(n) is bounded. Thus, we

assume thatM(n)→∞ as n→∞.

It suffices to show that

NM(N) ≤ O(1)

N
∑

n=1

M(n).

As usual, letM(N) be the largest k such that nk ≤ N.
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102 W. Liu [12]

By the definition ofM(n),

N
∑

n=1

M(n) =

M(N)
∑

k=0

( k
∑

j=0

ϕ(n j)

n j

)

(nk+1 − nk) +

(
M(N)
∑

j=0

ϕ(n j)

n j

)

(N − nM(N) + 1)

= (N + 1)

(
M(N)
∑

j=0

ϕ(n j)

n j

)

−

M(N)
∑

k=0

nk

ϕ(nk)

nk

= (N + 1)M(N) −

M(N)
∑

k=0

ϕ(nk). (4.2)

By the fact that nk+1 ≥ 2nk,

M(N)
∑

k=0

nk ≤ N

M(N)
∑

k=0

1

2k
≤ 2N.

This implies that
M(N)
∑

k=0

ϕ(nk) ≤ 2N. (4.3)

By (4.2) and (4.3),

NM(N) ≤ O(1)

N
∑

n=1

M(n).

We have finished the proof. �

We will split the proof of Theorem 1.5 into two parts.

Theorem 4.2. Let D = {nk} be a pseudo-absolute-value sequence and M(n) be given

by (1.11). Suppose that ψ : N→ R+ is nonincreasing and

∑

n

ψ(n)M(n) <∞. (4.4)

Then, for almost every α, the inequality

|n|D|nα − p| ≤ ψ(n)

has finitely many coprime solutions (n, p) ∈ N × Z. In particular, for any ε > 0,

lim inf
n→∞

nM(n)(log n)1+ε |n|D||nα||
′ = 0

holds for a zero Lebesgue measure set α ∈ R.

Proof. The proof of Theorem 4.2 is based on the Borel–Cantelli lemma. Without loss

of generality, assume that α ∈ [0, 1). Define

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788718000198
Downloaded from https://www.cambridge.org/core. Access paid by the UC Irvine Libraries, on 18 Jul 2019 at 20:33:12, subject to the Cambridge Core terms of use,



[13] Some refined results on the mixed Littlewood conjecture for pseudo-absolute values 103

En = En(ψ0) =

n
⋃

p=1
(p,n)=1

(

p − ψ0(n)

n
,

p + ψ0(n)

n

)

,

where

ψ0(n) =
ψ(n)

|n|D
.

By the proof of Theorem 1.1, in order to prove Theorem 4.2, we only need to show

that
∑

n

λ(En) <∞.

Like (2.1),

N
∑

n=1

ϕ(n)ψ(n)

n|n|D
=

N
∑

n=1

(ψ(n) − ψ(n + 1))

n
∑

m=1

ϕ(m)

m|m|D
+ ψ(N + 1)

N
∑

m=1

ϕ(m)

m|m|D
. (4.5)

We estimate the inner sums here (denote dk+1 = nk+1/nk) by

n
∑

m=1

ϕ(m)

m|m|D
=
∑

nk≤n

n
∑

m=1
nk |m, nk+1-m

ϕ(m)

m|m|D

=
∑

nk≤n

∑

1≤m≤n/nk

dk+1-m

ϕ(nkm)

m

≤
∑

nk≤n

ϕ(nk)
∑

1≤m≤n/nk

dk+1-m

1

≤ n
∑

nk≤n

ϕ(nk)

nk

,

= nM(n),

where the first inequality holds by the fact that

ϕ(nm) ≤ mϕ(n).

Therefore, by (4.5) and (4.1),

N
∑

n=1

λ(En) ≤

N
∑

n=1

2ψ0(n)

n
ϕ(n)

= 2

N
∑

n=1

ϕ(n)ψ(n)

n|n|D

≤ C

N
∑

n=1

(ψ(n) − ψ(n + 1))nM(n) +Cψ(N + 1)NM(N)
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≤ C

N
∑

n=1

(ψ(n) − ψ(n + 1))

n
∑

j=1

M( j) +Cψ(N + 1)NM(N)

≤

N+1
∑

n=1

Cψ(n)M(n).

Combining with assumption (4.4),
∑

n λ(En) <∞ follows. �

The remaining part of Theorem 1.5 needs more energy to prove. In the previous

two sections, we used the Duffin–Schaeffer theorem to complete the proof. Now, we

will apply the following lemma to finish the proof.

Lemma 4.3 [17, Theorem 1.17]. Let ψ : N→ R be a nonnegative function. Suppose

that
∑

n∈N:Gn≥3

log Gn

n · log log Gn

=∞,

where

Gn =

22n+1

∑

k=22n
+1

ψ(k)ϕ(k)

k
.

Then, for almost every α, the inequality

|nα − p| ≤ ψ(n)

has infinitely many coprime solutions (n, p) ∈ N × Z.

The next lemma is easy to prove by a Möbius function or follows from Lemma 2.1

(k = 1) directly.

Lemma 4.4. For any d ∈ N,

N2
∑

n=N1

d-n

ϕ(n)

n
≥ max

{

0,
4

π2
(N2 − N1) − O(log N2)

}

for all 0 < N1 < N2.

Remark 4.5. The sharp bound 4/π2 can be achieved when d = 2.

Theorem 4.6. Let ψ : N→ R be a nonnegative function and limn→∞ ψ(n) = 0. Define

En(ψ) =

n
⋃

p=1
(p,n)=1

(

p − ψ(n)

n
,

p + ψ(n)

n

)

.

Then the following claims are true.

Zero–one law λ(lim supEn(ψ)) ∈ {0, 1} [12].

Subhomogeneity For any t ≥ 1, λ(lim supEn(tψ)) ≤ tλ(lim supEn(ψ)) [17].
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[15] Some refined results on the mixed Littlewood conjecture for pseudo-absolute values 105

We need another lemma.

Lemma 4.7. LetD = {nk} be a pseudo-absolute-value sequence. Then

∑

nk≤n

nk log
n

nk

≤ Cn (4.6)

and
∑

22N
≤nk≤22N+1

1

log nk

= O(1). (4.7)

Proof. Since {nk} is a pseudo-absolute-value sequence, there exists at most one nk such

that 2 j ≤ nk < 2 j+1. Thus,

∑

nk≤n

nk log
n

nk

≤

log2 n
∑

j=0

∑

2 j≤nk<2 j+1

nk log
n

nk

≤

log2 n
∑

j=0

2 j+1 log
n

2 j

≤ Cn.

This proves (4.6).

Similarly,

22N+1

∑

n=22N
+1

1

log nk

≤

2N+1
∑

j=2N

∑

2 j≤nk<2 j+1

1

log nk

≤ O(1)

2N+1
∑

j=2N

1

j

= O(1).

We have finished the proof. �

After the preparations, we can prove the case ε = 0 of Theorem 1.5.

Theorem 4.8. Let D = {nk} be a pseudo-absolute-value sequence and M(n) be given

by (1.11). Then, for almost every α ∈ R,

lim inf
n→∞

nM(n)(log n)|n|D||nα||
′ = 0.

Proof. Without loss of generality, assume that α ∈ [0, 1). Let

ψ0(n) =
1

|n|DnM(n)(log n)
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and

ψ(n) =
1

nM(n)(log n)
.

It suffices to show that there exists some c > 0 such that

GN =

22N+1

∑

n=22N
+1

ψ0(n)ϕ(n)

n
> c (4.8)

for N ∈ N. Indeed, if (4.8) holds, then, for any ε > 0, there exists some C > 0 such that

22N+1

∑

n=22N
+1

Cεψ0(n)ϕ(n)

n
≥ 3 for all N.

Applying Lemma 4.3 (letting ψ = Cεψ0),

λ(lim supEn(Cεψ0)) = 1. (4.9)

Applying Theorem 4.6 (subhomogeneity) to (4.9),

λ(lim supEn(εψ0)) ≥
1

C
.

By the zero–one law of Theorem 4.6,

λ(lim supEn(εψ0)) = 1.

Thus, for any ε > 0, we have that, for almost every α, the inequality

|nα − p| ≤ εψ0(n)

has infinitely many coprime solutions (n, p) ∈ N × Z. This implies that for almost every

α ∈ R,

lim inf
n→∞

nM(n)(log n)|n|D||nα||
′ = 0.

Now we focus on the proof of (4.8).

As usual,

22N+1

∑

n=22N
+1

ϕ(n)ψ(n)

n|n|D

=

22N+1

∑

n=22N
+1

(ψ(n) − ψ(n + 1))

n
∑

j=22N
+1

ϕ( j)

j| j|D
+ ψ(22N+1

+ 1)

22N+1

∑

j=22N
+1

ϕ( j)

j| j|D
. (4.10)

Direct computation yields
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[17] Some refined results on the mixed Littlewood conjecture for pseudo-absolute values 107

n
∑

j=22N
+1

ϕ( j)

j| j|D
=
∑

k:1≤nk≤n

n
∑

j=22N
+1

nk | j, nk+1- j

ϕ( j)

j| j|D

=
∑

nk≤n

∑

(22N
+1/nk)≤ j≤(n/nk)

dk+1- j

ϕ(nk j)

j

≥
∑

nk≤n

ϕ(nk)
∑

(22N
+1/nk)≤ j≤(n/nk)

dk+1- j

ϕ( j)

j

≥
4

π2

∑

nk≤n

ϕ(nk) max

{

0,
n − 22N

nk

− O

(

log

(

n

nk

))}

≥
4

π2

∑

nk≤n

ϕ(nk)

nk

(

(n − 22N

) − O

(

nk log
n

nk

))

≥
4

π2
M(n)(n − 22N

) −
∑

nk≤n

O

(

nk log
n

nk

)

, (4.11)

where the second inequality holds by Lemma 4.4.

By the definition of ψ(n), for n , nk,

ψ(n) − ψ(n + 1) =
O(1)

n2M(n) log n
(4.12)

and

ψ(nk) − ψ(nk + 1) =
O(1)

nkM
2(nk) log nk

. (4.13)

By (4.6), (4.12) and (4.13),

22N+1

∑

n=22N
+1

(ψ(n) − ψ(n + 1))
∑

nk≤n

nk log
n

nk

+ ψ(22N+1

+ 1)
∑

nk≤22N+1

nk log
22N+1

nk

≤

22N+1

∑

n=22N
+1

O(1)

nM(n) log n
+

∑

22N
≤nk≤22N+1

O(1)

M2(nk) log nk

+
O(1)

M(22N+1
)

≤
O(1)

M2(22N
)
+

O(1)

M(22N+1
)
+

O(1)

M(22N
)

22N+1

∑

n=22N
+1

1

n log n

=
O(1)

M(22N
)
, (4.14)
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where the second inequality holds by (4.7) and the third inequality holds because of

(a = 22N

and b = 22N+1

)

b
∑

a

1

n log n
�

∫ b

a

dx

x log x
= log log b − log log a for any b > a > 1. (4.15)

Putting (4.11) and (4.14) into (4.10),

22N+1

∑

n=22N
+1

ϕ(n)ψ(n)

n|n|D

≥

22N+1

∑

n=22N
+1

c

(

1

n log nM(n)
−

1

(n + 1) log(n + 1)M(n + 1)

)

M(n)(n − 22N

)

−
O(1)

M(22N
)

≥

22N+1

∑

n=2(2N+4)

c

2

(

1

n log nM(n)
−

1

(n + 1) log(n + 1)M(n + 1)

)

nM(n) −
O(1)

M(22N
)

≥ c

22N+1

∑

n=2(2N+4)

1

n log n
−

O(1)

M(22N
)
.

Using (4.15) again,

22N+1

∑

n=2(2N+4)

1

n log n
� 1.

This yields that, for some c > 0,

GN ≥ c.

We have finished the proof. �
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