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Abstract—This paper demonstrates, for the first time to our
knowledge, hierarchical learning framework for inter-domain ser-
vice provisioning in software-defined elastic optical networking
(EON). By using a broker-based hierarchical architecture, the
broker collaborates with the domain managers to realize efficient
global service provisioningwithout violating the privacy constrains
of each domain. In the proposed hierarchical learning scheme, ma-
chine learning-based cognition agents exist in the domainmanagers
as well as in the broker. The proposed system is experimentally
demonstrated on a two-domain seven-node EON testbed for with
real-time optical performance monitors (OPMs). By using over
42000 datasets collected from OPM units, the cognition agents can
be trained to accurately infer the Q-factor of an unestablished or
established lightpath, enabling an impairment-aware end-to-end
service provisioning with an predictionQ-factor deviation less than
0.6 dB.

Index Terms—Multi-domain networking, modulations, optical
networks.

I. INTRODUCTION

THE Internet traffic has been growing exponentially driven
by explosive expansions of cloud-based multimedia appli-

cations, which now demand a high-throughput an agile cyberin-
frastructure that can support such dynamic and high-capacity
traffic [1]. While software-define elastic optical networking
(SD-EON) can facilitate flexible optical-layer spectrum man-
agement in single-domain networks [2]–[4], effective end-to-
end service provisioning across multiple autonomous systems
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(ASes) still remains challenging. Specifically, subjecting to ad-
ministrative constraints, AS managers may keep the detailed
traffic engineering information (e.g., network topology, spec-
trum utilization etc.) confidential, while disclosing only very
limited amount of intra-domain information. Hence, performing
the routing, modulation and spectrum assignment (RMSA) for
inter-domain lightpaths in optically transparent multi-AS sys-
tems with guaranteed quality-of-transmission (QoT) is a non-
trivial task [5], [6].
Current optical network operators usually guarantee the QoT

of lightpaths by considering the worst link conditions and allo-
cating large margins to account for the potential performance
degradations during the lifetime of lightpaths. Thus, accurate
QoT estimation models for unestablished lightpaths are essen-
tial for enhancing the efficiency of operating optical networks.
Previous works have reported a number of theoretical models
[7]–[11] for QoT estimation. For instance, in [10], [11], the
authors monitored and predicted the optical signal-to-noise ra-
tio (OSNR) across the optical networks as an indicator of the
QoT. The downside of this approach is that it ignored other QoT
degradation factors, such as dispersions and crosstalk. In fact,
most theoretical models generally assume that there is only a
single kind of impairment presented in the transmission system.
However, many transmission impairments are non-orthogonal
and are coupled to each other. That is to say, due to the highly
complex nature of optical transmission systems and the implicit
characteristics of practical networks (e.g., device conditions,
crosstalk etc.), it is difficult to obtain a universal close-form ana-
lytical solution that correlates the QoTwith various impairment,
and as a result, the prediction accuracy of the theoretical models
will be reduced. In that case, during the network planning stage,
the network designer has to assign higher power/OSNR margin
to combat the QoT uncertainty, which would ultimately lower
the network capacity. On the other hand, recent breakthroughs
in artificial intelligence have made it possible to represent high-
dimensional data and approximate complex functions with ma-
chine learning tools, such as deep neural networks (DNNs). Mo
et al. proposed an artificial neural network (ANN) based transfer
learning system to predict the QoT by monitoring the channel
power [12]. In [13], a cognitive tool with random forest (RF),
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support vector machine (SVM), and K-Nearest neighbor (KNN)
is demonstrated for accurate QoT estimation. Other researchers
have investigated cognitive QoT estimation using case-based
reasoning (CBR), where the impairment parameters of an op-
tical network are learned with training datasets to derive the
QoT of a lightpath [14]. Nevertheless, these models cannot be
directly applied to the multi-AS scenarios as they require access
to the state of every optical component, which definitely violates
the autonomy of ASes.
In [15]–[17], we proposed a broker-based multi-domain SD-

EON framework for hierarchical multi-AS management, where
a broker plane was introduced to coordinate the operations of
AS or domain managers through market-driven and incentive-
driven interactions rather than superior-subordinate relation-
ships. Compared with the previous distributed management
mechanisms (i.e., peer-to-peer AS networking [18], [19]), the
broker-based architecture can improve the efficiency of inter-
domain service schemes with a semi-centralized provisioning
scheme while also respecting the autonomy of ASes by work-
ing with them according the mutual service level agreements
(SLAs). This architecture is especially beneficial for QoT esti-
mation in multi-AS systems as it enables the design of unified
multi-domain monitoring and learning frameworks with opti-
mized inter-AS networking flows.
This paper extends our work in [20] by providing detailed

descriptions and implementations of the proposed hierarchical
learning framework and, more importantly, by presenting an
entirely new set of improved results with QoT prediction accu-
racy< 0.6 dB (Q-factor deviation) to support impairment-aware
inter-domain service provisioning in multi-domain SD-EONs.
The organization of the paper is as follows. Section II introduces
the details of the proposed hierarchical architecture and frame-
work. Section III covers the experiment demonstration, which
includes testbed implementation, dataset generation, training of
the neural networks, and the impairment aware service provi-
sioning. Section IV concludes this work.

II. ARCHITECTURE AND FRAMEWORK

A. Broker-Based Multi-Domain Architecture

Fig. 1(a) shows the block diagram of the proposed broker-
based multi-domain SD-EON with hierarchical cognitions in
both the broker plane and the domain manager plane. In the
proposed architecture, each domain manager is responsible for
managing a subset of the global optical networks, providing ser-
vices such as intra-domain service provisioning, performance
monitoring, and traffic engineering. A broker plane lies above
the domain manager plane to handle inter-domain service re-
quests and global optimizations. Through different service level
agreements (SLAs), each domain manager can provide the bro-
ker with an abstracted representation of its network as well as
monitoring data, allowing the broker to realize global coordina-
tion and provisioning.
The operation principle of the proposed framework is sum-

marized in Fig. 1(b). When a lightpath setup request arrives,
the corresponding domain manager will first determine whether
the destination node belongs to its own domain or another do-
main. For an intra-domain request, the domainmanager first lists

Fig. 1. (a) Broker-based multi-domain provisioning with Hierarchical Cogni-
tion. IXP: internet-exchange point; DM: domain managers; (b) Workflow of the
proposed system.

all available path segments between the source and destination
nodes from its database. Then the domain manager inquires its
cognition agent using the performance monitoring data to get a
QoT prediction for each possible path available. Based on the
prediction results, the domainmanager then sets up the lightpath
that yields the highest resource efficiency while satisfying the
QoT. As for inter-domain requests, the domain managers will
list all available path segments between the source/destination
node and the border nodes at the Internet-exchange point (IXP)
for the source/destination domain or among the border nodes
for intermediate domains [11], [21], [22]. In the next step, each
domain manager obtains the QoT predictions associated with
the paths from the cognitive unit. Subsequently, the domain
managers report the information of the path segments, includ-
ing the spectrum utilization and QoT prediction values, to the
broker. The broker can make use of the reported information as
well as the monitoring data from the border nodes to realize the
impairment-aware inter-domain service provisioning. Once the
lightpath is established, the domain managers and the broker
can continuously inquire their cognition unit to track the status
of the lightpaths. In case of a link failure, the corresponding do-
main manager can re-initiate the process of service provisioning
to recover lightpaths affected by the link failure.
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Fig. 2. Design of Hierarchical QoT predictor. The local Q-factor predictions from the DM plane are sent to the broker plane as the inputs of the Broker-level
QoT predictor.

Comparing with the conventional orchestrator-based ap-
proach, the proposed scheme shown in Fig. 1 does not require
the detailed knowledge from the network, such as the network
topology or the OPM data at each node, to realize the service
provisioning. Instead, the broker requires only the abstracted
information from the domain managers (i.e., the source/sink
node, the local Q-factor estimation, and available frequency
slots). That is to say, each domain manager is seen as a black
box that may provide certain requests and resources from the
broker’s point-of-view. Based on the provided resources, the
broker can inquire its cognition unit to come up with the best
provisioning plan for a new request. By using this approach,
the broker does not need to know how the provided resources
are implemented inside each domain manager and the privacy
constraints are successfully satisfied.

B. Hierarchical Learning Framework for QoT Prediction

Conventional ML-based QoT estimators generally require
complete visibility on the OPM information, which is impracti-
cal to be implemented due to its violation of the privacy of each
domain [12], [23]. Nevertheless, a good inter-domain QoT can
always be guaranteed if two premises, which include a good
local QoT for each domain and a good QoT at the IXP, were
satisfied. Following this unique characteristic, we can divide
the task of inter-domain QoT prediction into multiple hierar-
chical subtasks with the broker-based architecture. Considering
the task of the cognitive unit (QoT predictions), we can use any
supervised learning regressive model (or a multi-class classifier
with logistic regression) as our learning model. Selection of ML
models should base on various practical factors, such as the
scale of the provisioned optical network, the number of acces-
sible datasets, and the computational capability of the network
controllers. For instance, if we are designing a QoT predictor
for a complex optical network with abundant datasets available,
it would be wise to choose a more powerful regressor (such
as an deep neural networks) to obtain a better approximation.
On the other hand, when the scale of the target optical network
is relatively small, simpler ML methods such as artificial neu-
ral network (ANN) or support vector machine (SVM) should

be given higher priorities to avoid overfitting. In this work, we
used artificial neural network (ANN) as our ML block due to its
strong capability to approximate complex nonlinear functions.
As depicted in Fig. 2, the domain manager-level ANNs elab-
orate on the information provided by the optical performance
monitors (OPMs) to obtain a list of local Q-factor prediction
values. The input features are parameters that can precisely re-
flect the status of an optical link and impairments while still
accessible through affordable OPMs, such as the modulation
formats, the channel utilizations, power level, fiber span length,
or the noise figure (NF) of the node’s pump EDFA. The domain
manager-level ANN then uploads the local Q-factor prediction
list to the broker-level ANNs to calculate the inter-domain Q-
factor predictions. To combat overfitting, we trained a distinct
ANN for each lightpath configuration between a source and a
destination node, forming an ANN-banks as our QoT predic-
tor. By using this approach, we can significantly reduce the
dimensions of input features and weighting parameters, which
generally lower the probability of having overfitting according
to Vapnik-Chervonenkis theory [24]. Note that it is also possi-
ble to use a single ANN to predict all the lightpath as shown
in [20] because one can derive the routing paths from the OPM
readings. The downside of using this approach is that the neural
network would require too many samples to be trained properly
in real-time.

III. EXPERIMENT

A. Experimental Setup

Fig. 3 shows the two-domain seven-node SD-EON network
testbed used to demonstrate the proposed hierarchical learning
method. The first domain has a star-ring architecture that con-
sists of four nodes, while the second domain has a three-node
ring architecture. Each node is connected to other nodes by
spools of single-mode fiber (SMF) or dispersion shifted fiber
(DSF) of different lengths (15, 20, and 25 km). A 10 GBd 16-
QAM coherent transmitter generates the testing signal used for
data training and prediction. This signal is multiplexed with
20 50 GHz spacing 10 Gb/s dense wavelength division mul-
tiplexing (DWDM) on-off keying (OOK) signals, serving as
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Fig. 3. Multi-domain testbed implementation. DSP: digital signal processing; DAC: digital-to-analog converter; IQM: I/Q modulator; OPM: optical performance
monitor; OF-Agents: openflow agent; WSS: wavelength selective switch; Co-Rx: Coherent receiver; SFP: small-form factor pluggable.

the background traffic. The signal at the output of the multi-
plexer is injected into the testbed. The optical spectrum ana-
lyzer (OSA)-based OPMs are placed at the inputs of each node
to monitor the optical power and the spectrum occupancy of
background traffics. For measuring the QoT of the testing sig-
nal, we deployed a digital coherent receiver containing a lo-
cal oscillator with 100-kHz linewidth, an optical hybrid, two
balanced photodetectors, and one real-time oscilloscope oper-
ating at 50 GS/s. We adopted offline digital signal processing
(DSP) algorithms, including timing recovery, chromatic disper-
sion compensation, adaptive equalization, carrier frequency and
phase recovery, to demodulate the captured signal and calculate
the Q-factor. A 0.2 nm bandwidth optical bandpass filter (BPF)
rejects the power of background traffics before the digital coher-
ent receiver. Four wavelength selective switches (WSSs) route,
bypass, drop, and attenuate any DWDM signals with 50 GHz
granularity at node A, C, E, and F. The fiber span losses between
each node are compensated using erbium-doped fiber amplifiers
(EDFAs) with constant output power. For the network control
and management, we implemented the broker and the domain
managers with the open network operating system (ONOS) plat-
form [25] running on independent Linux Servers. The domain
managers control theWSSs and the coherent transceiver in their
territory throughOpenFlow agents (OF-AGs, implemented with
OpenvSwitches) that are co-located with the devices. The com-
munications among the broker, domain managers and OF-AGs
are realized with the RESTful API [26].

B. Dataset Collection and Training

The collection of training and evaluation datasets can be
achieved by enumerating each of the possible routing paths
for the testing signal from node A to node G. We applied ran-
dom routing for the background traffic and random attenuations
(0 dB–7 dB for each WSS) for all the signals to purposely in-
troduce perturbations to the network and allowing to sample the
entire input space of the unknown target function that correlates
the QoT and OPM readings. The launch power of each fiber

span varies from −7 dBm to 12 dBm depending on the random
applied attenuation and routing at each WSS node. At each run,
we measured the actual Q-factor of the testing signal at Node G
and record this value as the label of the current dataset. Then,
we filtered out the testing signal using WSSs and recorded the
outputs of the OPMs as the feature of the dataset. The OPM’s
reading contains a vector of 1024× 1 data points from the OSA.
It is of great importance to compress the dimensions of the in-
put feature space to avoid overfitting [24]. We processed the
OPM’s raw data to obtain the number of background traffic
channels and related optical power, the power level of the noise
floor, and the power level of the testing signal (although it has
been filtered out). This feature-engineering method reduces the
size of the input feature space from 1024× 1 to 4× 1 for each
OPM. Therefore, the input of the DM-level estimators consists
ofN × 4× 1 samples, whereN represents the number of OPMs
reside in the inquired optical path. The broker-level estimators
require (4+ 2)× 1 input samples, which includes the two DM-
level QoT estimation results as well as the processed OPM
readings at the IXP. In the next step, we reinserted the testing
signal and recorded a second set of OPM data that contains the
testing signal. These data were used along with the first set of
OPMdata to train the neural network. The reason for using these
two sets of OPM data is to make the learning model suitable for
both prediction (of an unestablished lightpath) and monitoring
(of an established lightpath) applications.
We implemented the domain manager-level ANNs and

broker-level ANNs using PyTorch [27]. For benchmarking pur-
pose, we also implemented an omniscient ANN that can access
all the OPM data of the two domains. Obviously, the omniscient
ANN bank violates the privacy and autonomy of each domain
and its performance represents the upper bound of the proposed
hierarchical estimator. Each neural network contains only a sin-
gle fully-connected hidden layer with 25 nodes to reduce its
complexities. The nonlinearities for the second layer is the tanh
function [28].
We first collected 3,000 datasets (with and without the testing

signal, 1500 for each) for each intra-domain provisioning path
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Fig. 4. Intra-domain learning performance. (a) MSE vs. training iterations for
path A-C-B; (b) QoT prediction accuracy for path A-C-B; (c) MSE vs. training
iterations for path E-F-G; (d) QoT prediction accuracy for path E-F-G.

of domain #1 and domain #2. This collection was achieved by
moving the coherent transmitter (for training domain #2) or the
coherent receiver (for training domain #1) to the location of IXP.
Due to the fact that the random attenuation applied on eachWSS
followed an exponential distribution, more samples have a Q-
factor biased toward the forward error correction (FEC) thresh-
old (8.5 dB, 7%HD-FEC). To overcome this dataset biasing, we
applied higher weight on the less frequent samples and lower
weight on the more frequent samples during the optimization
process. 2400 samples have been used for training and the rest
samples are used for evaluation purpose. During each training
iteration, we randomly shuffled the entire dataset to select a new
combination of training and evaluation datasets. Fig. 4(a) shows
the in-sample error and out-of-sample error versus the number
of training iterations for path A-C-B. The in-sample error is
defined as the average squared deviations between the predicted
and actual Q-factors within the training set, while out-of-sample
error represents the average squared Q-factor deviations within
the evaluation set. Note that as training iteration increases, the
in-sample error and out-of-sample error closely align with each
other, which indicates the absence of overfitting. Once the train-
ing is complete, we used the evaluation set to verify the Q-factor
prediction performance for each estimator. Fig. 4(b) depicts the
comparison between the predicted and measured Q-factors for
path A-C-B. An averaged Q-factor deviation around 0.38 dB
is obtained for the estimator. In this study we choose to use
averaged Q-factor deviation as our evaluation metric as it is
equivalent to the commonly used mean absolute error (MAE)
for estimator evaluation [29]. Fig. 4(c) and (d) show the training
and evaluation results for one of domain #2’s estimators (path
E-F-G), where an averaged Q-factor deviation around 0.29 dB
is achieved. After the training and verification for intra-domain
QoT estimators, we started training the broker-level hierarchi-
cal and omniscient ANNs with 2400 samples per path. The
input features of the broker-level hierarchical ANNs contain the
two prediction values from the domain manager-level ANNs,
as well as the OPM information from the IXP, forming a 6× 1

Fig. 5. Inter-domain learning performance for path A-C-D-E-F-G. (a) MSE
vs. training interations for omniscient estimator; (b) QoT prediction accuracy for
omniscient estimator; (c) MSE vs. training iterations for hierarchical estimator;
(d) QoT prediction accuracy for hierarchical estimator.

Fig. 6. Q-factor deviations of the evaluation sets for (a) domain manager-level
ANN bank and (b) broker-level ANN bank. The blue and red bars correspond
to hierarchical and omniscient QoT estimators.

vector. Fig. 5 shows the training and Q-factor prediction perfor-
mance of the omniscient and hierarchical estimators for one of
the routing path (A-C-D-E-F-G). Both ANNs converge properly
without overfitting. The Q-factor deviations for the omniscient
and hierarchical estimators are 0.5 and 0.52 dB, respectively.



LIU et al.: HIERARCHICAL LEARNING FOR COGNITIVE END-TO-END SERVICE PROVISIONING INMULTI-DOMAIN AUTONOMOUS OPTICAL 223

Fig. 7. (a) Wireshark captures of control signaling at Domain Manager #1 during the initial lightpath setup; (b) Detail of the selected message; (c) Evolution of
Q-factor over time with time-varying attenuation on link A-B.

From Fig. 5(a) and (b), the hierarchical estimator seems to have
a slower convergence speed and slightly higher out-of-sample
error against the omniscient ANN. These results indicate that the
proposed hierarchical estimator can achieve nearly ideal QoT
prediction performance (with a small penalty) while supporting
the autonomy and privacy of each autonomous domain. Fig. 6
summarizes the performance of the intra- and inter-domain
ANN banks in terms of absolute Q-factor deviations as well
as their standard deviation. The blue and red bars in Fig. 6(b)
correspond to the Q-factor deviations of the hierarchical and
omniscient QoT estimators, respectively. It shows that the hier-
archical learning based QoT predictor achieves less than 0.6 dB
Q-factor deviation in the worst case scenario.

C. Impairment-Aware Inter-Domain Service Provisioning

Once the performance of the hierarchical learning based QoT
estimators has been verified, we integrated the proposed hier-
archical ANN banks into the SDN controllers on the broker
plane and the domain manager plane. Based on the acquired
knowledge, we demonstrate a use case of impairment-aware
inter-domain service provisioning where a network client lo-
cated in domain #1 wants to establish a lightpath from node
A to node G (located in domain #2). First, the client submits
its request to the local domain manager. The domain manager
then asks the broker to initiate the inter-domain RMSA process
shown in Fig. 2(a) and set up a lightpath over node A-B-F-G.
The launch power for the testing signal across the A-B link
was set to −5 dBm by controlling the pump power of node A’s

input EDFA. Fig. 7(a) shows the Wireshark messages captured
from domain manager #1 for the whole procedures of the provi-
sioning process. The entire inter-domain RMSA process takes
27 ms to set up a new end-to-end lightpath (excluding the time
taken to physically reconfigure the WSS). Fig. 7(b) presents the
message of Status_Reply that are captured at domain manager
#1. In this message, domain manager #1 is telling the broker
that it has two routing candidates for the inter-domain lightpath
request. The information about DWDM channel utilization, the
domain-level Q-factor prediction, and the name of the sink node
at IXP for each routing candidate is included in the message.
To show the impairment awareness of the proposed provision-
ing scheme, we purposely introduced a time-varying attenuation
from 0 dB to 20 dB with a rate of 1 dB per 60 seconds between
node A and node B using the WSS, and recorded the measured
Q-factor at node G. This attenuation ultimately results in an
intra-domain link failure, which ultimately leads to an inter-
domain link failure between node A and node G. During this
process, the domain manager and broker-level ANN constantly
monitor the intra- and inter-domain Q-factor prediction values
and notice the Q-factor degradation. We plot the evolution of
the measured and predicted Q-factors on Fig. 7(c). It should be
noted that the measured Q-factor only serves as the ground truth
results to benchmark the proposed QoT estimator. As we in-
crease the attenuation on link A-B, the measured and predicted
Q-factors are reduced due to the presence of more amplified
spontaneous emission (ASE) noise. After six consecutive low-
value Q-factor predictions, the domain manager #1 triggers an
intra-domain rerouting (node A-C-B-F-G) shown in Fig. 7(d)
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to re-provision the signal. After re-provisioning, the Q-factor
of the lightpath resumes to 12–13 dB because the faulty link
has been bypassed. The mean absolute error between the es-
timated Q-factors as well as measured Q-factors was found to
be 0.6 dB, which further confirms the performance of the pro-
posed hierarchical learning-based QoT estimator. In conclusion,
efficient impairment-aware multi-domain service provisioning
with low prediction error (<0.6 dB) is demonstrated by using
the proposed hierarchical scheme.

IV. CONCLUSION

This paper investigates a hierarchical learning framework
for impairment-aware service provisioning across multiple au-
tonomous optical domains while respecting the autonomy and
privacy of each domain. The proposed framework taking vari-
ous transmission impairments, such as noise, crosstalk, and dis-
tortions into considerations during the provisioning process to
ensure accurate QoT prediction. We implemented the proposed
system on a multi-domain testbed, quantitatively verified the
performance of the hierarchical learning based QoT estimator
and demonstrated its application in a use case of impairment-
aware inter-domain service provisioning.
While the proposed framework offers an efficient provision-

ing scheme, its scalability remains to be fully assessed. Since
the broker-level ANN relies on the predictions from the do-
main manager-level ANNs as inputs, the prediction error from
domain manager-level ANNs might accumulate at the broker-
level ANN, potentially reducing the prediction accuracy of the
inter-domain QoT. As the number of autonomous optical do-
mains under single broker’s coverage increases, the effect of
error propagation might become more significant. Accuracy of
predictions at each layer and each plane (physical layermeasure-
ments from OPM, predictions by agents in domain manager and
broker plane) as well as efficient and accurate abstractions go-
ing from intra-domain information to inter-domain big-pictures
are important for scalable and effective multi-domain network
operation enhanced by machine learning. Fault-tolerant and
error-tolerant hierarchical learning methods by spatio-temporal
abstraction may play an important role [30]. Future research
will include effective abstractions and hierarchical learning that
mitigate error propagation effects, multi-broker multi-domain
networking, and applications of game-theories to multi-agent
networking.
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