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A BLOCK PRECONDITIONED HARMONIC PROJECTION
METHOD FOR LARGE-SCALE NONLINEAR

EIGENVALUE PROBLEMS∗

FEI XUE†

Abstract. We propose a block preconditioned harmonic projection (BPHP) method for solv-
ing large-scale nonlinear eigenproblems of the form T (λ)v = 0. Similar to classical preconditioned
eigensolvers such as the locally optimal block preconditioned conjugate gradient method and pre-
conditioned Lanczos, BPHP aims at computing a few eigenvalues of the nonlinear problem close to
a specified shift, using preconditioners that enhance the local spectrum, without the need for exact
solution of large shifted linear systems. We explore the development of search subspaces, stabilized
preconditioning, nonlinear harmonic Rayleigh–Ritz projections, thick restart, and soft deflation ca-
pable of resolving linearly dependent eigenvectors. Numerical experiments show that BPHP with a
good preconditioner is storage efficient, and it exhibits robust convergence. A moving-window-style
partial deflation enables BPHP to reliably compute a large number of eigenvalues.
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1. Introduction. Nonlinear algebraic eigenproblems of the form T (λ)v = 0
arise in a great variety of scientific and engineering applications [5, 27, 55]. Their
theoretical properties and numerical solutions have been a major area of study in
numerical linear algebra in recent years; see [16] for a recent survey. Roughly speaking,
existing algorithms can be classified as Newton-type methods [7, 12, 23, 32, 37, 50,
52, 53, 57], contour integral methods [8, 9], methods based on polynomial or rational
approximations to T (λ) [3, 13] and corresponding linearizations [25, 26, 48], and the
infinite Arnoldi/Lanczos method [2, 15, 17, 18, 19]. To compute eigenvalues near
a specified shift σ to high accuracy, these algorithms typically require direct (exact)
solution of the linear systems of the form T (σ)x = b, with the exception of the Jacobi–
Davidson (JD) methods [7, 12, 50, 57]. They in general perform well for small and
medium size problems, as the direct linear solves can be done efficiently.

This paper concerns numerical solution of the nonlinear eigenproblems that are
large in scale, and T (σ) may have certain challenging sparsity patterns and values of el-
ements, for which factorization-based direct linear solvers are prohibitive or infeasible.
In this case, it is mandatory to use an iterative linear solver, most well-known exam-
ples of which include the preconditioned Krylov subspace methods and the multigrid
methods. For difficult large linear systems, it could take quite some computational
cost to solve the linear systems to a low or modest accuracy (e.g., to a relative toler-
ance of 10−2–10−6). The application of iterative linear solvers with a relatively low
solution accuracy for eigensolvers such as the infinite Arnoldi method or the compact
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rational Krylov (CORK) method may lead to considerable loss of accuracy in the
computed eigenpairs of interest.

To tackle this challenge, we study a block preconditioned harmonic projection
(BPHP) method for computing a few eigenvalues of large eigenproblems T (λ)v = 0
near a specified shift σ, using a proper preconditioner M ≈ T (σ). The new method
is similar in spirit to classical preconditioned eigensolvers such as the locally optimal
block preconditioned conjugate gradient (LOBPCG) method [21] and preconditioned
Lanczos [39] for computing eigenvalues of linear symmetric problems Av = λBv and is
inspired by recent extensions of these methods to linear nonsymmetric problems [56]
and nonlinear Hermitian problems with a variational principle [49, 54]. In each BPHP
iteration, a preconditioned Krylov search subspace is developed and used for a non-
linear harmonic Rayleigh–Ritz (NLHRR) projection, where a weighted eigenresidual-
based criterion is applied to extract new eigenpair approximations. The rate and
robustness of convergence are enhanced by the stabilization of preconditioners with
JD-style projectors in the search subspace development and a thick restart that aug-
ments the subspace with additional eigenpairs near the desired ones. In short, most
existing techniques well known for classical preconditioned eigensolvers can be ex-
tended to the new nonlinear setting.

The BPHP method has close connections to JD, which does not require exact
solution of linear systems involving T (σ). In the single-vector version of BPHP, the
search subspace developed is identical to the current eigenvector approximation plus
the space of candidate solutions constructed by a Krylov subspace method for solving
a corresponding JD correction equation. The use of projectors in BPHP for stabilizing
preconditioners is also motivated by JD, which effectively avoids stagnation of con-
vergence toward desired eigenvalues, especially if the desired eigenvalues are clustered
around the shift. Moreover, the close relation leads to a local convergence analysis of
BPHP based on that of JD. The main difference, however, is that JD computes eigen-
pairs sequentially, whereas BPHP updates eigenpair approximations simultaneously
as other block preconditioned eigensolvers. Consequently, we expect that BPHP is
more efficient than JD for computing several eigenvalues around a given shift.

BPHP computes eigenpair approximations to a minimal invariant pair (V,L) with
V = [v1, . . . , vq] ∈ Cn×q and L = diag(λ1, . . . , λq) ∈ Cq×q in a decoupled form, instead
of a simple invariant pair [6, 23, 51]. The decoupled form {(λi, vi)}qi=1 is easier for the

algorithm implementation than an invariant pair (V̂ , L̂) with a triangular or general

L̂, since the latter requires solutions of nonlinear matrix equations and computation of
functions of matrices. Based on the decoupled form, we propose a simple yet effective
soft deflation (locking) [22] for computing multiple eigenpairs. This approach includes
converged eigenvectors into the search subspace for the NLHRR projection, and it
can easily differentiate updated unconverged eigenvector approximations from the
converged ones. Moreover, it can deflate and compute linearly dependent eigenvectors
associated with different eigenvalues.

The BPHP method can be used with a moving-window-style partial deflation
strategy for computing a large number of eigenvalues at a fixed storage cost. We
may choose a sequence of shifts {σi}mi=1 distributed one after another along a line
on the complex plane and apply BPHP to compute eigenvalues near these shifts
sequentially. The converged eigenpairs near σi−1 can be locked by our soft deflation
when computing the eigenpairs near σi; in addition, converged eigenpairs around the
shifts far from σi do not need to (and should not) be locked, because the preconditioner
M ≈ T (σi) only enhances convergence of eigenvalues near σi. This partial deflation
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has been explored recently in [49], and it is essential to achieve the approximate linear
arithmetic complexity for the computation of many eigenvalues.

The rest of the paper is organized as follows. In section 2, we briefly review the
preliminaries regarding the nonlinear eigenvalue problem (NLEVP). We propose and
study the new method for computing one eigenpair of T (λ)v = 0 near a shift σ in
section 3. The connections to single-vector JD are studied in section 4, where we
give a local convergence analysis of the algorithm based on the established analysis of
JD. In section 5, the algorithm is extended to block form (hence called BPHP), with
discussions about soft deflation, thick restart, and the processing of linearly dependent
eigenvectors. Numerical experiments are given in section 6, showing the efficiency and
robustness of the full-featured BPHP method, compared with the infinite Arnoldi
method and the CORK method; the computation of hundreds of eigenvalues using
the moving-window partial deflation is also demonstrated. Finally, we summarize the
paper in section 7.

2. Preliminaries. Consider the nonlinear algebraic eigenvalue problem

(2.1) T (λ)v =
(∑m

i=1Aifi(λ)
)
v = 0,

where Ai ∈ Cn×n and fi(·) : C→ C are analytic functions in a domain Ω ⊂ C where
the desired eigenvalues are located. Note that this problem is nonlinear in eigenvalues
but linear in eigenvectors. We are interested in computing q eigenvalues {λi}qi=1 near
a specified finite scalar σ ∈ Ω, and the corresponding eigenvectors {vi}qi=1, such that
T (λi)vi = 0 (1 ≤ i ≤ q). This goal is further explained in the following definition and
subsequent discussion.

Definition 2.1. A pair (V,L) ∈ Cn×q × Cq×q is invariant for eigenproblem
(2.1) if

T(V,L) :=

m∑
i=1

AiV fi(L) = 0n×q,

where fi : Cq×q → Cq×q is the matrix function corresponding to fi. An invariant
pair is minimal if there is an integer ` such that [V ∗, (V L)∗, . . . , (V L`)∗]∗ has full
column rank. The smallest such ` is the minimality index of (V,L). A minimal
invariant pair (V,L) is simple1 if the algebraic multiplicities of the eigenvalues of L
are identical to the algebraic multiplicities of the corresponding eigenvalues of (2.1).
If (V,L) is invariant (and minimal, simple), then (V Z−1, ZLZ−1) is also invariant
(and minimal, simple) with any nonsingular Z ∈ Cq×q.

Simple invariant pairs are of particular importance because the Fréchet derivative
of the nonlinear equations T(V,L) = 0 combined with a normalization condition
of (V,L) is nonsingular at a simple invariant pair [6, 23], and this leads to several
important algebraic and analytic properties of simple invariant pairs derived in [51].

In this paper, we compute a minimal (not necessarily simple) invariant pair
in decoupled form. That is, we approximate (V,Λ), where V = [v1, . . . , vq] and
Λ = diag(λ1, . . . , λq), where the multiplicity of each λi in Λ is no greater than its cor-
responding multiplicity of (2.1), and all eigenvectors in V associated with a distinct
λi are linearly independent (the cardinality of this set of eigenvectors is no greater
than the geometric multiplicity of λi of (2.1)). In other words, we look for distinct
eigenvalues around σ but will obtain a subset (proper or not) of the basis vectors

1It is referred to as a “complete” invariant pair in [16].
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spanning the eigenspace of each distinct eigenvalue. Using the decoupled form simpli-
fies the algorithm implementation, because computing an invariant pair (V,L) with a
triangular or general L by our algorithm needs solution of nonlinear matrix equations
and invocation to functions of matrices, and the deflation of converged eigenvalues
would also be much more complicated. For computing ill-conditioned eigenvectors
associated with tightly clustered eigenvalues (or perturbed Jordan blocks), however,
it may be necessary to compute such a (V,L) for numerical stability.

For linear eigenvalue problems Av = λBv, an eigenvalue approximation ρ can be
derived from an eigenvector approximation x; namely, ρ(x) = x∗Ax

x∗Bx is the Rayleigh
quotient associated with x. Similarly, in our nonlinear setting, we can extend the
definition as follows.

Definition 2.2. Let (λ, v) be an eigenpair of T (·), and assume that T (·) : C →
Cn×n is holomorphic in a neighborhood Sδ,λ = {µ ∈ C : |µ − λ| ≤ δ}. Define
Gω,v = {u ∈ Cn \ {0} : ∠(u, v) ≤ ω} with 0 < ω < π

2 . The nonlinear Rayleigh
functional is ρ(·) : Gω,v → Sδ,λ, satisfying ρ(cx) = ρ(x) for all c 6= 0, x∗T (ρ(x))x = 0,
and x∗T ′(ρ(x))x 6= 0.

Lemma 2.3 ([38, Theorem 21]). Under the assumptions of Definition 2.2, as-
sume further that v∗T ′(λ)v 6= 0. Then there exist small ω0 and δ0, such that for all
x ∈ Gω0,v, there is a unique ρ(x) ∈ Sδ0,λ with x∗T (ρ(x))x = 0 and |ρ(x) − λ| ≤
10
3
‖T (λ)‖‖v‖2
|v∗T ′(λ)v| tan∠(x, v).

In particular, we have ρ(v) = λ. However, since the scalar nonlinear equation
x∗T (ρ)x = 0 may have multiple solutions, we need to choose the one closest to the
specified shift σ to approximate the interested eigenvalue. Definition 2.2 can also be
extended to the block case.

Definition 2.4. Let (V,L) be a simple invariant pair such that
∑m
i=1AiV fi(L) =

0n×q. Let (X,F ) ∈ Cn×q × Cq×q approximate (V,L), and Y ∈ Cn×q such that∑m
i=1 Y

∗AiXfi(F ) = 0q×q. Then F is called a block Rayleigh functional associated
with X and Y .

The existence and uniqueness of the block Rayleigh functional, however, are tech-
nical [51, Theorem 4.10]. In this paper, it is most relevant to understand how to
compute it, under the assumption of the existence. Let X = [x1, . . . , xq] approx-
imate the desired eigenvectors V = [v1, . . . , vq], and assume that X is sufficiently
close to V columnwise in direction. Then there exist q Ritz pairs {(µj , yj)}qj=1 of

the projected eigenproblem
∑m
i=1X

∗AiXyfi(µ) = 0, such that F = diag(µ1, . . . , µq)
and Y = [y1, . . . , yq] satisfy

∑m
i=1X

∗AiXY fi(F ) = 0q×q. We perform the update
X ← XY , so that X∗T(X,F ) =

∑m
i=1X

∗AiXfi(F ) = 0q×q; that is, xTi T (µj)xj = 0
for all 1 ≤ i, j ≤ q. Such a diagonal block Rayleigh functional is most convenient for
our computation of minimal invariant pairs in the decoupled form. By Definition 2.2,
under relevant assumptions, |µj − λj | ≤ O (tan∠(xj , vj)).

3. Preconditioned harmonic projection (PHP) method. Preconditioned
eigensolvers have been developed and used with significant success for solving linear
symmetric eigenproblems Av = λBv; see, e.g., [20, 21, 29, 30, 33, 34, 35, 43, 44, 45, 46]
and references therein. The primary message we hope to establish in this study is
that essentially all the major ideas and techniques developed for classical precondi-
tioned eigensolvers can be extended to tackle our nonlinear eigenproblems, as they
have been done for linear nonsymmetric eigenproblems [56] and nonlinear Hermitian
eigenproblems with a standard variational characterization of eigenvalues [49, 54].
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Preconditioned eigensolvers are of importance whenever state-of-the-art factorization-
based direct methods are not feasible for solving the relevant linear systems (equiv-
alently, applying exact shift-invert matrix-vector products) to enhance the desired
spectrum. In this section, we present the framework of the single-vector precondi-
tioned harmonic projection (PHP(`)) method for computing one eigenpair near σ.

3.1. Preliminary search subspace and harmonic projection. Our choice
of the search subspace is motivated by an early development in preconditioned eigen-
solvers, namely, the preconditioned projection method for linear symmetric eigenprob-
lems Av = λBv, suggested by Knyazev; see [1, section 11.3.5] by Knyazev and refer-
ences therein. This algorithm develops a block Qk ∈ Cn×(`+1) containing a basis of
the preconditioned Krylov subspace

(3.1)

K`+1

(
M−1(A− ρkB), xk

)
= span

{
xk,M

−1(A− ρkB)xk, . . . , [M
−1(A− ρkB)]`xk

}
.

Then it solves the projected problem Q∗kAQky = µQ∗kBQky = µy for the lowest Ritz
pairs (µ, y) and updates the eigenvector approximation xk+1 = Qky.

The above framework can be used directly to solve our nonlinear eigenproblems.
Let xk be the current approximation to the eigenvector v associated with λ near σ,
ρk = ρ(xk) the corresponding Rayleigh functional value such that x∗kT (ρk)xk = 0, and
rk = T (ρk)xk the eigenresidual vector. With a preconditioner M ≈ T (σ), a search
space of PHP(`) with a structure similar to (3.1) can be formed as

K`+1

(
M−1T (ρk), xk

)
= span

{
xk,M

−1T (ρk)xk, . . . , [M
−1T (ρk)]`xk

}
(3.2)

= span{xk}+M−1K`
(
T (ρk)M−1, rk

)
,

where M−1K`
(
T (ρk)M−1, rk

)
is the correction space from which an update (correc-

tion) to xk will be extracted. Let Qk ∈ Cn×(`+1) contain basis vectors of (3.2), and
Zk ∈ Cn×(`+1) contain basis vectors of range{T (σ)Qk}. We perform a nonlinear har-
monic Rayleigh–Ritz (NLHRR) projection by imposing a Petrov–Galerkin condition,
and solve the projected eigenproblem

Z∗kT (µ)Qky = 0(3.3)

for a proper harmonic Ritz pair (µ, y). The new iterate is set as xk+1 = Qky.
The NLHRR projection is motivated by the harmonic Rayleigh–Ritz projection

for linear eigenproblems Av = λBv, which is an instance of the nonlinear problem
T (λ)v = 0 with T (λ) = λB − A. Given a search subspace Q = range(Q), interior
eigenvalues of the matrix pencil (A,B) near the shift σ can be found by using the
harmonic Rayleigh–Ritz projection with the test space (A− σB)Q, i.e., by imposing
the Petrov–Galerkin condition (A−µB)Qy ⊥ (A−σB)Q. This leads to the projected
problem Z∗AQy = µZ∗BQy, where the columns of Z span (A − σB)Q; see, e.g.,
[1, Chapter 8.4] by Sleijpen and van der Vorst. Note that the regular (symmetric)
nonlinear Rayleigh–Ritz (NLRR) projection has been proposed in [24, 49] for nonlinear
eigenproblems of our interest. The procedure of both projections is straightforward,
but their approximation properties have not been explored yet, to the best of our
knowledge. Nevertheless, we will show by experiments that NLHRR does exhibit
faster and more robust convergence than NLRR for computing interior eigenvalues
near the shift σ.
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3.2. Stabilized preconditioners. Preconditioned eigensolvers may encounter
difficulties in convergence if M−1, the action of preconditioning, cancels that of the
shifted matrix A−ρkB or T (ρk). This may cause stagnation of convergence, a primary
issue of the Davidson method [10]. The JD method [14, 40, 41] fixed this problem by
applying appropriate projectors in the solution of correction equations. We will also
adopt this idea for stabilizing preconditioners for the PHP(`) method.

Specifically, single-vector JD (without subspace projection and extraction) for the
nonlinear eigenproblem can be formed as

(3.4)
(
I − T ′(ρk)xkp

∗
k

p∗kT
′(ρk)xk

)
T (ρk)

(
I − xku

∗
k

u∗kxk

)
∆xk = −T (ρk)xk with ∆xk ⊥ uk,

xk+1 = xk + ∆xk,

which is mathematically equivalent to the Rayleigh functional iteration (RFI) [37,
Chapter 4]. If the correction equation in (3.4) is solved exactly, single-vector JD
exhibits local quadratic or cubic convergence toward a simple or semisimple eigenvalue,
depending on whether the local symmetry of T (λ) exists and whether a corresponding
two-sided Rayleigh functional ρk is used [37, 38]. The same order of convergence can
be maintained, if the correction equation is solved approximately with an appropriate
decreasing sequence of tolerances [50].

The projectors we use for PHP(`) are those adopted by JD to solve (3.4). To keep
them consistent with those applied in our preconditioned locally minimal residual
(PLMR(`)) method for nonlinear Hermitian eigenproblems [49], we let pk = xk and
uk = T ′(ρk)xk in (3.4), such that the projectors are

Π = I − T ′(ρk)xkx
∗
k

x∗kT
′(ρk)xk

and Π∗ = I − xkx
∗
kT
′(ρk)∗

x∗kT
′(ρk)∗xk

,(3.5)

satisfying null(Π) = span{T ′(ρk)xk}, range(Π) = span{xk}⊥, null(Π∗) = span{xk},
and range(Π∗) = span{T ′(ρk)xk}⊥. Following the usual development of precondi-
tioned Krylov subspace method for (3.4), we define the stabilized preconditioner as

MΠ = ΠMΠ∗,(3.6)

whose action M−1
Π on a vector u can be analyzed as follows. Consider u = MΠy =

ΠMΠ∗y, where u ∈ range(Π), and y ∈ range(Π∗) such that Π∗y = y; note that
choosing such a y or an alternative ỹ = y + αxk with any scalar α generates the

same u. Let z = MΠ∗y = My, which leads to u = Πz = z − x∗kz
x∗kT

′(ρk)xk
T ′(ρk)xk =

z− βkT ′(ρk)xk. It follows that z = u+ βkT
′(ρk)xk, and hence y = M−1z = M−1u+

βkM
−1T ′(ρk)xk. By the assumption that y ∈ range(Π∗), i.e., y ⊥ T ′(ρk)xk, we get

βk = − x∗kT
′(ρk)∗M−1u

x∗kT
′(ρk)∗M−1T ′(ρk)xk

. Therefore,

(3.7)

y = M†Πu = M−1u+ βkM
−1T ′(ρk)xk =

(
I −

(
M−1T ′(ρk)xk

)
(x∗kT

′(ρk)∗)

(x∗kT
′(ρk)∗) (M−1T ′(ρk)xk)

)
M−1u,

which is obtained by applying a projector to M−1u. The projector in (3.7) involves
an extra preconditioned vector M−1T ′(ρk)xk, computed only once and used for any

u ∈ range(Π). Evaluating M†Πu incurs marginally higher cost than computing M−1u.
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With the projected preconditioner, the search subspace for PHP(`) is

K`+1

(
M†ΠT (ρk), xk

)
= span{xk}+ M†ΠK`

(
T (ρk)M†Π, rk

)
.(3.8)

The virtue of the projected preconditioner can be intuitively explained as follows.
Consider an extreme case when the preconditioner M = T (ρk). Then the search
subspace (3.2) is simply span{xk}, because M−1T (ρk) = I, and hence any algorithm
using this space will suffer from complete stagnation. The new search subspace (3.8)
developed with the projected preconditioner, however, for any ` ≥ 2, contains

K2

(
M†ΠT (ρk), xk

)
= span{xk}+ span{MΠrk}

= span{xk}+ span

{(
I −

(
T (ρk)−1T ′(ρk)xk

)
(x∗kT

′(ρk)∗)

(x∗kT
′(ρk)∗) (T (ρk)−1T ′(ρk)xk)

)
xk

}
= span{xk}+ span{T (ρk)−1T ′(ρk)xk}.

In particular, the new RFI iterate T (ρk)−1T ′(ρk)xk lies in this new search subspace.
Thanks to the local quadratic or cubic convergence of RFI, the search subspace (3.8)
contains significant improvement of the current approximation xk. In practice, M is
rarely identical to T (ρk), but a delay in convergence is still possible if M is very close
to T (µ) with µ ≈ ρk. This effect will be demonstrated by experiments in section 6.3.

As usual, Qk ∈ Cn×(`+1) containing an orthonormal (with respect to certain
inner product) basis for space (3.8) is recommended. Then NLHRR projection (3.3)
is performed, and a new eigenvector approximation is extracted, as explained in the
following section.

3.3. Extraction of new eigenvector approximations. The computation of
interior eigenvalues by iterative projection methods has to tackle the challenge of
choosing the “correct” Ritz pair as new eigenpair approximations. This is mainly
because of the existence of spurious Ritz values that are close to the shift σ but
have no corresponding accurate eigenvector approximations. Choosing a spurious
Ritz pair as the new approximation would significantly delay or disrupt convergence.
This difficulty is particularly pronounced if the regular (symmetric) Rayleigh–Ritz
projection is used for interior eigenvalue computations. With harmonic projection, the
problem tends to be less serious, but may still persist if new eigenpair approximations
are chosen solely based on the distance between the Ritz values and σ.

In order to target the harmonic Ritz pair that truly approximates the desired
eigenpair closest to σ, we adopt a strategy proposed in [49] that has been shown effec-
tive for filtering spurious (harmonic) Ritz values. We first choose a few harmonic Ritz
values {µi}ri=1 closest to σ as candidates, then compute the relative eigenresidual norm

associated with these Ritz pairs {µi, Qkyi}ri=1, namely, resi := { ‖T (µi)Qkyi‖2
‖T (σ)‖F ‖yi‖2 }

r
i=1. The

new eigenpair approximation is set as xk+1 = Qkyi, where the index i satisfies

i = argmin{|µi − σ| × respi }
r
i=1,(3.9)

with a small positive integer p. This criterion selects the new eigenpair approximation
based on weighted eigenresidual norms of the candidate harmonic Ritz pairs together
with their distance to σ. The user can choose different values for p to assign an appro-
priate weight to the eigenresidual norms for this criterion to choose new eigenvector
approximations. We have no recommendation for a particular value, but our exper-
iments in section 6 show that p = 1 leads to considerably more robust convergence
than p = 0 (choosing the Ritz pair closest to σ as the new eigenpair approximation).
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4. Local convergence of PHP. In this section, we show a close connection
between PHP and the single-vector JD method, which leads to a local convergence
result of the former. In particular, with the same current eigenvector approximation,
the new iterate of single-vector JD lies in the search subspace developed by PHP.

Let (ρk, xk) be the current eigenpair approximation of both algorithms. Recall
from the basic JD correction equation ΠT (ρk)Π∗∆xk = −T (ρk)xk (3.4), and assume
that a right-preconditioned Krylov subspace method with the projected precondi-
tioner (3.6) is used to solve this equation. In iteration `− 1 (` ≥ 2), the Krylov sub-

space developed for the preconditioned linear system is K`(ΠT (ρk)Π∗M†Π, T (ρk)xk),
and therefore the approximate solution ∆xk of the original equation (3.4) lies in
M†pK`

(
ΠT (ρk)Π∗M†p, T (ρk)xk

)
. To understand the effect of the projectors, we recall

the explicit expression of M†Π from (3.7) and see that

M†ΠΠ = Π∗M†Π = M†Π.

It follows that the new JD iterate xk+1 = xk + ∆xk lies in

span{xk}+ M†ΠK`
(

ΠT (ρk)Π∗M†Π, T (ρk)xk

)
(4.1)

= span

{
xk,M†ΠT (ρk)xk,M†ΠΠT (ρk)Π∗M†ΠT (ρk)xk, . . . ,

M†Π
(

ΠT (ρk)Π∗M†Π
)`−1

T (ρk)xk

}
= span

{
xk,M†ΠT (ρk)xk,

(
M†ΠT (ρk)

)2

xk . . . ,
(
M†ΠT (ρk)

)`
xk

}
= K`+1

(
M†ΠT (ρk), xk

)
,

which is exactly the search subspace (3.8) developed by PHP(`).
The above observation is summarized in the following lemma.

Lemma 4.1. Given the same current eigenvector approximation xk and the sta-
bilized preconditioner (3.6), single-vector JD with (3.4) solved approximately by an
(`−1)-step right-preconditioned Krylov subspace method delivers a new eigenvector
approximation xJD

k+1 that lies in the search subspace developed by PHP(`), from which

it extracts the new iterate xPHP
k+1 .

As a result, if xPHP
k+1 is of the same quality as xJD

k+1 for approximating v, the
local convergence of PHP(`) can be established as a corollary of the local convergence
of single-vector JD, which has been shown for our problem [50, Theorems 7, 11].
Whether the new iterates of the two methods are comparable in quality depends on the
approximation properties of the harmonic Rayleigh–Ritz projection. These properties
have been established for standard linear eigenproblems Av = λBv; see, e.g., [47,
Chapter 4.4] and references therein. Specifically, let v be the desired eigenvector and
Q contain basis vectors for the search subspace. Under certain assumptions (typically
not stringent), ∠(v,Qy), the angle between v and the corresponding harmonic Ritz
vector Qy, is proportional to ∠(v,Q), where Q = range(Q).

For nonlinear eigenproblems T (λ)v = 0, similar approximation properties of the
NLHRR projection have not been studied, and a thorough investigation is beyond
the scope of this paper. Nevertheless, to our extensive numerical experience with
multiple problems, ∠(v,Qy) is also proportional to ∠(v,Q), as long as the eigenvalue
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λ associated with v is sufficiently close to the shift σ. We would make the assumption
as follows.

Assumption 4.2. Let (λ, v) be a simple eigenpair of T (λ)v = 0, where λ is suffi-
ciently close to σ, and Qk be the search subspace (3.8) developed in the kth iteration
of PHP(`). Assume that the NLHRR projection extracts a new iterate xk+1, such
that sin∠(v, xk+1) ≤ C sin∠(v,Qk) with a constant C independent of k.

To study the local convergence of PHP, we first need the following assumption to
establish the local convergence of single-vector JD.

Assumption 4.3. Let (λ, v) be a simple eigenpair of T (λ)v = 0, where v is nor-
malized such that v∗T ′(λ)v = 1. Assume that there exists a δ > 0 and a corresponding
ξδ > 0, such that for any (µ, x) sufficiently close to (λ, v) with ‖[x; µ] − [v; λ]‖ ≤ δ,
we have ‖T ′(µ)x‖ ≤ ξδ.

With the above assumptions, we provide a main local convergence result of PHP.

Theorem 4.4. Let (λ, v) be a simple eigenpair of T (λ)v = 0 satisfying Assump-
tion 4.3, and xk be the eigenvector approximation after the kth iteration of PHP(`k).
Assume that ∠(x0, v) is sufficiently small, such that ‖[x0; ρ(x0)]−[v; λ]‖ ≤ δ, and
assume that Assumption 4.2 holds for each xk. Suppose that the JD correction equa-
tion (3.4) is solved by right-preconditioned GMRES(`k) with preconditioner (3.6),
where `k is either a properly large constant or an increasing sequence, such that the
single-vector JD converges toward (λ, v) linearly or quadratically with k. Then asymp-
totically, PHP(`k) with the same preconditioner (3.6) converges towards (λ, v) at least
linearly or quadratically.

Proof. Note from Lemma 4.1 that single-vector JD generates the new approxima-
tion xJD

k+1 ∈ QPHP
k , and hence sin∠(v, xJD

k+1) ≥ sin∠(v,QPHP
k ). By Assumption 4.2,

the NLHRR projection delivers the new eigenvector approximation xPHP
k+1 comparable

to xJD
k+1, satisfying sin∠(v, xPHP

k+1 ) ≤ C sin∠(v,QPHP
k ) for some constant C > 0. It

follows that sin∠(v, xPHP
k+1 ) ≤ C sin∠(v, xJD

k+1), which establishes the locally linear or
quadratic convergence of PHP(`k).

In section 6, we will provide numerical evidence to support Theorem 4.4.

5. BPHP method. We now generalize single-vector PHP to the block version
for the computation of several eigenvalues near σ simultaneously. The algorithm is
referred to as the BPHP method. Most of the framework developed for PHP can be ex-
tended directly to the block case. In addition, we will discuss thick restart, soft defla-
tion (locking), and the computation of linearly dependent
eigenvectors.

5.1. Search subspace and stabilized preconditioners. Suppose that we
want to compute q eigenvalues {λi}qi=1 near σ, counting multiplicities, together with
their eigenvectors {vi}qi=1. For now, we assume for the the sake of simplicity that
{vi}qi=1 are linearly independent and so are {T ′(λi)vi}qi=1, and we will discuss the
case of linearly dependent eigenvectors later. In iteration k of BPHP, let Xk =

[x
(1)
k , . . . , x

(q)
k ] be the approximation to V = [v1, . . . , vq], and Φk = diag(ρ

(1)
k , . . . , ρ

(q)
k )

be the associated block Rayleigh functional value, such that

X∗kT(Xk,Φk) =

m∑
i=1

X∗kAiXkfi(Φk) = 0q×q.
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As we explained, this is done by solving the projected eigenproblem

m∑
i=1

(X∗kAiXk)Ykfi(Φk) = 0q×q

for Yk ∈ Cq×q and diagonal Φk, and then updating Xk ← XkYk.
Similar to the single-vector algorithm, with a regular preconditioner M ≈ T (σ),

the preliminary search subspace of BPHP(`) can be defined as

Qk = K`+1

(
M−1T( · ,Φk), Xk

)
,(5.1)

where the generating operator is

M−1T( · ,Φk) : X →M−1T(X,Φk) = M−1
m∑
i=1

AiXfi(Φk).

The stabilized preconditioner, analogous to that defined in (3.6), can be con-
structed as

MΠ = ΠMΠ∗,(5.2)

where the projector is

Π = I − Zk(X∗kZk)−1X∗k with Zk ≡ T′(Xk,Φk) =
[
T ′(ρ

(1)
k )x

(1)
k , . . . , T ′(ρ

(q)
k )x

(q)
k

]
,

(5.3)

a direct extension of the projector Π (3.5), satisfying null(Π) = range(Zk) and
range(Π) = range(Xk)⊥. Note that X∗kZk is nonsingular by our current assumption
of linear independence, as Xk → [v1, . . . , vq] and Φk → diag(λ1, . . . , λq). Following

the derivation of (3.7), the action of M†Π on a block of vectors U ∈ range(Π) can be
written as

M†ΠU =
(
I −M−1Zk(Z∗kM

−1Zk)−1Z∗k
)
M−1U,(5.4)

which is obtained at a one-time cost of computing M−1Zk for any U ∈ range(Π).
With (5.2), the search subspace of BPHP(`) is formulated as

(5.5)

Qk = K`+1

(
M†ΠT( · ,Φk), Xk

)
= span{Xk}+ M†ΠK`

(
T(·,Φk)M†Π,T(Xk,Φk)

)
.

Here, M†ΠK`
(
T(·,Φk)M†Π,T(Xk,Φk)

)
is the correction space, for which we maintain

an orthonormal basis. We keep Xk nonorthogonal since we will use rank-revealing
QR to detect potential linear dependence among desired eigenvector approximations;
see section 5.4.

5.2. Thick restart and subspace extraction. The basic version of BPHP(`)
uses the new eigenvector approximations Xk+1 to restart the (k + 1)st iteration. To
enhance the convergence, we may augment the search space with additional vectors.
One possible option is adopted in LOBPCG [21], which essentially keeps Xk in the
search space in iteration k+ 1. This strategy is highly effective for solving linear and
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nonlinear symmetric or Hermitian eigenproblems with min-max principle of eigenval-
ues, but becomes much less attractive in the nonsymmetric case [56]; experimentally,
it sometimes does not improve convergence at all or could even be counterproductive.
In this study, we take an alternative option and incorporate thick restart (widely used
for solving symmetric and nonsymmetric linear eigenproblems) into our new problem
setting. Thick restart extracts a few additional (harmonic) Ritz vectors associated
with Ritz values near σ and augments the search subspace (5.5) with these Ritz
vectors. The augmented search subspace hence contains an enhanced component of
desired eigenvectors, which leads to faster and more robust convergence.

Assume that in iteration k, BPHP(`) develops a search subspace Qk with proper
basis vectors contained in Qk. The NLHRR projection constructs and solves the
projected problem Z∗kT (µ)Qky = 0 (range(Zk) = T (σ)Qk ) for r ≥ q + s harmonic

Ritz pairs (µi, yi) with µi closest to σ. We compute resi = ‖T (µi)Qkyi‖2
‖T (µi)‖F ‖yi‖2 (1 ≤ i ≤ r)

and the weighted eigenresidual norm {|µi − σ| × respi } for each candidate pair and
reorder them in the ascending order in the weighted norm; see section 3.3 for the
motivation of this criterion. Then we update Xk+1 ∈ Cn×q and Xtr

k+1 ∈ Cn×s,
respectively, to be the first q and the next s reordered harmonic Ritz vectors. In
iteration k + 1, the augmented search subspace is

Qk+1 = K`+1

(
M†ΠT( · ,Φk+1), Xk+1

)
+ range(Xtr

k+1).(5.6)

Thick restart incurs minor extra cost to the original BPHP(`) method. The search
space is enlarged from dimension (`+1)q to (`+1)q+s (linear independence assumed),
and Xtr

k+1 is not involved in the construction of the block Krylov subspace. As we will
see in section 6, thick restart does improve the rate and robustness of convergence.

5.3. Soft deflation. Deflation (locking) is crucial for computing multiple eigen-
values. It excludes the converged eigenpairs from being further processed, so that the
algorithm need only work on the unconverged eigenpair approximations, and it makes
sure that no repeated convergence occurs. For linear eigenvalue problems Av = λBv,
the so-called “hard deflation” is done by orthogonalizing the search space against the
converged eigenspace with respect to certain inner product (B-orthogonalization for
the symmetric case and standard orthogonalization based on parital QZ decomposi-
tions for the nonsymmetric case). Deflation for nonlinear eigenproblems T (λ)v = 0
has been done by expanding minimal invariant pairs with the JD method [12] or by
applying standard deflation techniques with explicit or implicit restart for Krylov-
subspace-type methods, e.g., infinite Arnoldi [2, 18] and compact rational Kyrlov [4].
The infinite Arnoldi methods compute the eigenvalues of T (·) around σ by transform-
ing T (λ)v = 0 into a linear eigenproblem of an integral operator on a function space,
whereas rational Krylov methods tackle the problem by applying polynomial or ratio-
nal approximations to T (·) and then using certain general (non-structure-preserving)
linearizations with a Kronecker structure to solve the approximate problem.

We propose a simple effective “soft deflation” strategy, originally discussed in [22].
The converged eigenvectors are included in the search space Qk for NLHRR, and sub-
space extraction is performed only for active (unconverged) eigenpairs. Specifically,
we assume without loss of generality that in iteration k, eigenvector approximations

{x(i)
k }di=1 have converged. Let Xcvg

k = [x
(1)
k , . . . , x

(d)
k ] and Xact

k = [x
(d+1)
k , . . . , x

(q)
k ] de-

note the converged and unconverged approximations. The search subspace of BPHP is

Qk = range(Xcvg
k ) +K`+1

(
M†ΠT(·,Φactk ), Xact

k

)
+ range

(
Xtr
k

)
,(5.7)
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where Φactk = diag
(
ρ

(d+1)
k , . . . , ρ

(q)
k

)
is the corresponding block Rayleigh functional

value such that (Xact
k )

∗ T(Xact
k ,Φactk ) =

∑m
i=1

[(
Xact
k

)∗
AiX

act
k

]
fi(Φ

act
k ) = 0(q−d)×(q−d).

Here, the projector (5.3) used for stabilizing preconditioners remains the same, but

due to deflation, the first d columns of Zk = [T ′(ρ
(1)
k )x

(1)
k , . . . , T ′(ρ

(q)
k )x

(q)
k ] in (5.3)

are locked; therefore we only need to update the active columns of M−1Zk in subse-
quent iterations to implement the action of M†Π. The search subspace with deflation
decreases in dimension as more eigenvectors converge. From (5.7), it is clear that
dim(Qk) ≤ d+ (q − d)(`+ 1) + s.

In our algorithm, all columns of Xk (including Xcvg
k , Xact

k , and Xtr
k ) are normal-

ized, and the block Krylov subspace contained in (5.7) for the NLHRR projection,

(5.8)

K`+1

(
M†ΠT(·,Φactk ), Xact

k

)
= span{Xact

k }+ M†ΠK`
(
T(·,Φactk )M†Π,T(Xact

k ,Φactk )
)
,

is formed by Xact
k representing the desired eigenvector approximations and an or-

thonormal basis for the correction space M†ΠK`
(
T(·,Φactk )M†Π,T(Xact

k ,Φactk )
)
. The

original desired eigenvector approximations are kept so that rank-revealing QR may
detect possible linear dependence among the eigenvectors, whereas an orthonormal
basis for the correction space improves numerical stability. We construct the block
Qk consisting of the basis of range(Xcvg

k ), range(Xact
k ), the correction space, and

range(Xtr
k ) to be the search space for projection.

Soft deflation is done by performing the NLHRR projection and solving the pro-
jected problem Z∗kT (µ)Qky = 0 for unconverged harmonic Ritz pairs. Let p =
d + (q − d)(` + 1) + s be the number of columns in Qk. We order the normal-
ized primitive harmonic Ritz vectors {yi} such that ‖yi(1 : d)‖ ≥ ‖yj(1 : d)‖ (i.e.,
‖yi(d + 1 : p)‖ ≤ ‖yj(d + 1 : p)‖) for all i < j and discard {yi}di=1 because {Qkyi}di=1

correspond to the converged eigenvectors. To see this, we note that Xcvg
k = Qk(:, 1:d),

and the remaining p−d = (q−d)(`+1)+s columns of Qk are normalized but generally
not orthogonal to X cvgk := range(Xcvg

k ). By geometry,

sinϕi : = sin∠(Qkyi,X cvgk )

≤ ‖Qk(:, d+ 1:p)yi(d+ 1:p)‖
‖Qk(:, 1:d)yi(1 :d)‖

≤ ‖Qk(:, d+ 1:p)‖
σmin(Xcvg

k )

‖yi(d+ 1:p)‖
‖yi(1 :d)‖

,

where ‖yi(d+1:p)‖
‖yi(1:d)‖ suggests it is most likely that sinϕi ≤ sinϕj for i < j (σmin(Xcvg

k ) >

0, since we have assumed for now that all desired eigenvectors are linearly indepen-
dent). Therefore, the harmonic Ritz vectors {Qkyi}di=1 should not be computed,
because they are closer to the deflated eigenspace X cvgk than any other harmonic
Ritz vectors (in fact, they essentially retrieve X cvgk ). Then we compute other har-
monic Ritz vectors and apply the criterion discussed in section 5.2 to choose the
most promising q − d and additional s harmonic Ritz vectors to update Xact

k+1 and
Xtr
k+1, respectively. Finally, we compute the block Rayleigh functional value Φactk+1 =

diag(ρ
(d+1)
k+1 , . . . , ρ

(q)
k+1) such that

(
Xact
k+1

)∗ T(Xact
k+1,Φ

act
k+1) = 0(p−d)×(p−d) (see the be-

ginning of section 5.1) and restart the next iteration.

5.4. Eigenpairs involving linearly dependent eigenvectors. Nonlinear
eigenproblems T (λ)v = 0 may have linearly dependent eigenvectors associated with
distinct eigenvalues. Though this is not often observed for large-scale problems if
a small number of eigenpairs are sought, reliable treatment still deserves our atten-
tion. Existing techniques include the transformation of the eigenpair (λ, v) of T (·)
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into an eigenfunction eλtv of a linear integral operator by infinite Arnoldi [19] and the
Newton-like/JD methods based on expansion of minimal invariant pairs [12]. The two
approaches share a similar spirit: eigenvectors need to be associated with eigenvalues
to form a whole entity to differentiate eigenpairs.

Our strategy for computing linearly dependent eigenvectors is as follows. First,
note that a linearly independent set of vectors in Qk should be used to represent the
search subspace. A linearly dependent set could lead to a nonunique representation
of a harmonic Ritz vector and hence possible overestimate of the multiplicity of an
eigenvalue. Following the exposition in section 5.3, assume that in iteration k, we have
developed the block Qk ∈ Cn×p containing the basis vectors of the search subspace
(5.7). Specifically, we let

Qk(:, 1:d)← Xcvg
k , Qk(:, p−s+ 1:p)← Xtr

k ,

range(Qk(:, d+ 1:p−s)) = K`+1

(
M†ΠT(·,Φactk ), Xact

k

)
.

Then we perform a rank-revealing QR factorization onQk (achieved by the qr function
in MATLAB with three output parameters and a proper tolerance), choose the p̂
columns from Qk that are closest to linearly independent, and form the compressed
block Q̂k ∈ Cn×p̂. Suppose that the columns of Q̂k consist of d̂ columns from Qk(:, 1:

d), ŝ columns from Qk(:, p−s+ 1:p), and p̂−ŝ−d̂ columns from Qk(:, d+ 1:p−s). We
then compute Ẑk = T (σ)Q̂k, perform the NLHRR projection, and solve the projected
problem ẐkT (µ̂)Q̂kŷ = 0 for unconverged harmonic Ritz vectors. To this end, we

order all primitive harmonic Ritz vectors such that ‖ŷi(1 : d̂)‖ ≥ ‖ŷj(1 : d̂)‖ for all
i < j (see the end of section 5.3). We discard {ŷi}di=1 because the harmonic Ritz

vectors {Q̂kŷi}di=1 retrieve the deflated eigenspace.

With a linearly independent set of vectors in Q̂k, harmonic Ritz pairs {Q̂kŷi}q+si=d+1

approximating potentially linearly dependent eigenvectors can be computed easily, as
long as the eigensolver for the projected problem can find all desired and correspond-
ingly linearly dependent primitive harmonic Ritz vectors {ŷi}q+si=d+1. However, to up-
date Φactk+1, Xact

k+1, and Xtr
k+1, care must be taken to prevent active eigenvector approx-

imations linearly dependent to the converged ones from retrieving converged eigenval-
ues. To achieve this, we use a temporary block X̂k+1 = [Q̂kŷd+1, . . . , Q̂kŷq+s] ∈ Cn×q̂
(q̂ = q − d + s) to hold all active harmonic Ritz vectors and compute the as-
sociated block Rayleigh functional value Φactk+1 by solving the small eigenproblem

X̂∗k+1T(X̂k+1,Φ
act
k+1) =

∑m
i=1

(
X̂∗k+1AiX̂k+1

)
Yk+1fi(Φ

act
k+1) = 0q̂×q̂. To avoid repeated

convergence, we compute sufficiently many Ritz pairs of this small problem, then

choose q̂ Ritz pairs with Ritz values {ρ(d+i)
k+1 }

q̂
i=1 closest to σ but not numerically equal

to any converged eigenvalues, and let Φactk+1 ← diag
(
ρ

(d+1)
k+1 , . . . , ρ

(d+q̂)
k+1

)
. Then we set

X̂k+1 ← X̂k+1Yk+1 and reorder the updated pairs
{

(ρ
(d+i)
k+1 , X̂k+1(:, i))

}q̂
i=1

in the as-
cending order in their weighted eigenresidual norms. We update Xact

k+1 and Xtr
k+1,

respectively, to be the first q − d and the next s reordered harmonic Ritz vectors.
This can avoid repeated convergence caused by linearly dependent eigenvectors, but
it may get a proper subspace of the eigenspace of an eigenvalue of geometric multi-
plicity greater than 1, due to the choice of Φactk+1 different from converged eigenvalues.
We expect BPHP to find minimal but not necessarily simple invariant pairs.

The BPHP(`) method with soft deflation, thick restart, and the treatment of
potential linearly dependent eigenvectors is summarized in Algorithm 1.
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Algorithm 1. BPHP(`) method for computing q eigenvalues of T (λ)v= 0 around σ.

Input: Initial eigenvector approximations X0 ∈ Cn×q, a shift σ ∈ C, a preconditioner
M ≈ T (σ), integers `, kmax > 0, and a tolerance δ > 0

Output: Eigenpairs {(λi, vi)}qi=1, where {λi} are the eigenvalues of T (·) near σ, such
that (V,L) with V = [v1, . . . , vq] and L = diag(λ1, . . . , λq) is a minimal (not
necessarily simple) invariant pair of T (·)

1: Xcvg
0 ← [ ], Xtr

0 ← [ ], Xact
0 ← X0, d← 0, s← 0, k ← 0; find Φact0 = diag(ρ

(1)
0 , . . . , ρ

(q)
0 )

and Y0 ∈ Cq×q such that (s.t.)
∑m
i=1

[(
Xact

0

)∗
AiX

act
0

]
Y0fi(Φ

act
0 ) = 0q×q, and set

Xact
0 ← Xact

0 Y0

2: while d < q and k ≤ kmax do
3: p ← d + (q − d)(` + 1) + s; form Qk ∈ Cn×p by Qk(:, 1 : d) ← Xcvg

k , Qk(:, p−s + 1 :
p)← Xtr

k , Qk(:, d+ 1:q)← Xact
k (:, 1:q−d), and Qk(:, q + 1:p−s)← an orthonormal

basis of M†ΠK`
(
T (·,Φactk )M†Π, X

act
k (:, 1:q−d)

)
, with M†Π defined in (5.3) and (5.4)

4: Form Q̂k ∈ Cn×p̂ by choosing the p̂ columns of Qk closest to linearly independent,
by rank-revealing QR (assume that these include d̂ columns of Q(:, 1 : d), p̂ − d̂ − ŝ
columns of Q(:, d+ 1:p−s), and ŝ columns of Q(:, p−s+ 1:p))

5: s← desired number of thick restart vectors (s← q by default)
6: Form Ẑk = T (σ)Q̂k, normalize each column of Ẑk, and perform the NLHRR proje-

ction
7: Solve the projected problem Ẑ∗kT (µ̂)Q̂kŷ = 0 for q + s harmonic Ritz pairs {(µ̂i, ŷi)}

with µ̂i closest to σ; reorder them s.t. ‖ŷi(1 : d̂)‖ ≥ ‖ŷj(1 : d̂)‖ for any 1 ≤ i < j
≤ q + s

8: X̂k+1 ← Q̂k[ŷd+1, . . . , ŷd+q̂]; compute Φactk+1 = diag(ρ
(d+1)
k+1 , . . . , ρ

(d+q̂)
k+1 ) and Yk+1 ∈

Cq̂×q̂, q̂ = q − d + s, s.t.
∑m
i=1

(
X̂∗k+1AiX̂k+1

)
Yk+1fi(Φ

act
k+1) = 0q̂×q̂, where Φactk+1

contains the q̂ Ritz values closest to σ but not numerically equal to the converged
eigenvalues

9: X̂k+1 ← X̂k+1Yk+1; reorder the updated harmonic Ritz pairs
{(
ρ
(d+i)
k+1 , X̂k+1(:, i)

)}q̂
i=1

in the ascending order in the weighted eigenresidual norms (3.9); let Xact
k+1 and Xtr

k+1

be the first q − d and the rest s reordered harmonic Ritz vectors
10: Find the largest integer ∆d such that (s.t.) the first ∆d pairs of

{(
ρ
(d+i)
k+1 , Xact

k+1

(:, i)
)}q−d
i=1

satisfy

∥∥T(ρ(d+i)
k+1

)
Xact

k+1(:,i)

∥∥
2∥∥T(σ)∥∥

F

∥∥Xact
k+1

(:,i)

∥∥
2

≤ δ; let Xcvg
k+1 ←

[
Xcvg
k+1 X

act
k+1(:, 1:∆d)

]
,

Xact
k+1 ← Xact

k+1(:,∆d+ 1:q−d), d← d+ ∆d; break the loop if d ≥ q
11: k ← k + 1
12: end while
13: λi ← ρ

(i)
k , vi ← Xcvg

k (:, i) (1 ≤ i ≤ d) or Xact
k (:, i−d) (d+1 ≤ i ≤ q); return {(λi, vi)}qi=1

5.5. Computing eigenvalues around multiple shifts. The BPHP method
can be used to compute eigenvalues around multiple shifts {σj}rj=1 in a straight-
forward manner, thanks to the soft deflation and treatment of potentially linearly
dependent eigenvectors. Assume without loss of generality that BPHP already found
q1 eigenpairs {(λi, vi)}q1i=1 around σ1 and now aims to find q2 eigenpairs around σ2.
To this end, a preconditioner M ≈ T (σ2) should be constructed, and BPHP sim-
ply includes the converged eigenvectors {vi}q1i=1 into the search subspace and keeps a
record of {λi}q1i=1 as well. Let W = [v1, . . . , vq1 ], and we develop the BPHP(`) search
subspace as

Qk = range(W ) + range(Xcvg
k ) +K`+1

(
M†ΠT(·,Φactk ), Xact

k

)
+ range(Xtr

k ).(5.9)

BPHP handles the previously deflated eigenvectors W the same way as it pro-
cesses the newly converged eigenvectors Xcvg

k associated with eigenvalues around σ2.
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Specifically, a rank-revealing QR is used to find a numerically linearly independent set
of p̂ vectors spanning Qk, which consists of q̂1 vectors from W , d̂ columns from Xcvg

k ,

p̂− q̂1 − d̂− ŝ columns from the original vectors spanning K`+1

(
M†ΠT(·,Φactk ), Xact

k

)
,

and ŝ columns from Xtr
k . These p̂ vectors are normalized and assembled into Q̂k, and

Ẑk = T (σ2)Q̂k is formed and columnwise normalized. Then we solve the NLHRR
projected problem ẐkT (µ̂)Q̂kŷ = 0 for q1 + q2 + s primitive harmonic Ritz pairs
{(µ̂i, ŷi)}, q1 of which are closest to σ1, and q2 + s of which are closest to σ2 (the lat-
ter set needs to be chosen carefully so that it does not overlap with the former). These
pairs are ordered such that ‖ŷi(1 :q1 + d)‖ ≥ ‖ŷj(1 :q1 + d)‖ for all valid i < j. Here,

{Qkyi}q1+d
i=1 should not be computed as they retrieve the converged eigenvectors. Let

X̂k+1 = Qk[yq1+d+1, . . . , yq1+q2+s]. An associated Yk+1 and block Rayleigh functional

value Φactk+1 are computed such that
∑m
i=1(X̂∗k+1AiX̂k+1)Yk+1fi(Φ

act
k+1) = 0q̂×q̂, with

q̂ = q2 − d + s. Note that Φactk+1 is constructed by choosing the eigenvalues of this
small problem that are numerically not equal to the q1 converged eigenvalues near σ1

and the d converged ones near σ2. We set X̂k+1 ← X̂k+1Yk+1 and choose the q2 − d
updated harmonic Ritz pairs with minimal weighted eigenresiduals to update Xact

k+1,
and the next s pairs to update Xtr

k+1.
Soft deflation of converged eigenpairs near multiple shifts can be done similarly,

but the cost for deflating a large number of eigenpairs is quite expensive. Fortunately,
this goal can be fulfilled much more efficiently if the current shift is close to only a
small number of shifts already processed and is relatively far from other shifts. In
this case, it is sufficient to deflate the converged eigenpairs around the shifts close to
the current one. This is because BPHP converges toward eigenvalues around the shift
σi associated with the preconditioner M ≈ T (σi) but not toward those around the
shifts far from σi. This locality property has been used to enable a moving-window-
like partial deflation technique for solving many successive eigenvalues of nonlinear
Hermitian eigenproblems that satisfy a standard min-max principle [49]. We will
illustrate the effectiveness of this approach for computing many eigenvalues of the
general problem T (λ)v = 0 in the next section.

6. Numerical experiments. We provide numerical results demonstrating the
local convergence of PHP and the behavior of BPHP with different features enabled.
Compared to the infinite Arnoldi method [2, 18, 19] and the CORK method [4], BPHP
is storage-efficient, and it exhibits robust convergence with preconditioners of different
type and quality, without the need for exact solution of large linear systems. Such
advantages are favorable to tackle large-scale problems for which storage efficiency is
crucial and the use of approximate linear solvers is mandatory.

We choose six test problems from the collection of NLEVPs toolbox [5], summa-
rized in Table 6.1. For each problem, we show the problem type, size, the shift σ,
and the eigenvalue closest to σ. For example, foundation is a quadratic eigenvalue
problem of order 3627; we are computing eigenvalues near σ = −2500 − 100i, and
the eigenvalue closest to σ is λ1 = −2042.2 − 73.038i. gen hyper2 is constructed by
specifying all its eigenvalues and associated eigenvectors and is used only to demon-
strate BPHP computing linearly dependent eigenvectors. The last three problems
are constructed by specifying the problem size parameter n0 = 32768, 131072, and
524288, respectively, and using default values for other inputs.

The NLHRR projected problem ẐkT (µ̂)Q̂kŷ = 0 and the block Rayleigh func-
tional are both solved by polyeig in MATLAB for problems gen hyper2, foundation,
butterfly and pdde stability and by the unrestarted infinite Arnoldi method [19] for
gun and loaded string. Infinite Arnoldi takes min(10 + 6r, 128) steps to compute
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Table 6.1
Description of test problems.

Problem Type Order σ λ1
gen hyper2 quadratic 1024 −2.109 −2.1066
foundation quadratic 3627 −2500− 100i −2042.2− 73.038i

gun nonlinear 9956 52000 54550 + 459.52i
butterfly quartic 32761 0.8 + 0.8i 0.80327 + 0.80022i

pdde stability quadratic 131044 −0.1 −0.10255− 6.2741×10−5i
loaded string rational 524288 1400 1307.3

r (harmonic) Ritz pairs. To speed up the convergence of infinite Arnoldi, we let
λ = κµ + σ and transform the original problem to T̃ (µ)v = T (κµ + σ)v = 0, so
that the eigenvalues µ of T̃ (·) around the origin correspond to those of T (·) near σ;
the transformed eigenvalues are more closely clustered than the original ones with a
κ > 1. We let κ = 10000 and 70 for gun and loaded string, respectively.

All experiments are done on an Apple MacBookPro, running OS X 10.11.6 and
MATLAB R2016b, with a 2.9 GHz Intel Core i5 CPU and 16 GB 1867 MHz DDR 3
memory.

6.1. Local convergence. First, we show that the (single-vector) PHP(`) method
exhibits linear or quadratic local convergence, as summarized in Theorem 4.4. For
each of the last five problems in Table 6.1, we seed the MATLAB random number
generator by calling rng(‘shuffle’), then initialize the starting vector x0 by the
function randn.

To show the linear convergence, we let ` = 2 for PHP(`); for the quadratic
convergence, we let `0 = 1 and `k+1 = 2`k in each new iteration. In both cases,

PHP is terminated once the eigenresidual norm resk= ‖T (µk)xk‖2
‖T (σ)‖F ‖xk‖2 falls below 10−12

and stops decreasing for two successive iterations. We choose the eigenresidual norms
from s successive iterations, after the local convergence behavior has been established
and before the residual norms become sufficiently small and begin to decrease twice
slower ( resk

resk−1
> 2 resk−1

resk−2
) due to the limit of computer arithmetic. Then we perform

a least-squares fitting of the form y = α + βx for the data points (ln resk, ln resk+1)
to get an estimated order of convergence β. The average value of β is reported from
the experiment repeated 20 times.

To construct the preconditioner M ≈ T (σ), we perform a sparse LU factorization
of T (σ) by lu in MATLAB with five output parameters, update the upper triangular
factor as U ← diag(U)−1U (which becomes a unit upper triangular), and drop all
entries from the two triangular factors below a threshold. This drop tolerance is 10−4

for pdde stability and 10−3 for other problems. This approach is not practical for
very large problems, yet we use it here for illustration, due to its greater simplicity
for tuning than the incomplete factorization function ilu. These preconditioners will
be used in this section through section 6.5.

Table 6.2 summarizes the average estimated order of local convergence of PHP(`)
with ` = 2 and `k+1 = 2`k. For example, for butterfly, we sample s = 16 successive
iterations of PHP(2) and obtain the estimated order of local convergence β = 1.007;
similarly, residual norms from 6 successive iterations of PHP(`k) with `k+1 = 2`k lead
to an estimated order of convergence β = 1.918. These estimates support Theorem 4.4
on the linear and quadratic convergence of PHP. For loaded string, PHP(`k) with
`k+1 = 2`k converges in only 3 iterations, and it is hard to see quadratic convergence
clearly.
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Table 6.2
Average estimated order of local convergence.

Problem ` = 2 `k+1 = 2`k
s β s β

foundation 9 0.997 4 1.851
gun 9 1.027 4 2.050

butterfly 16 1.007 6 1.918
pdde stability 18 0.958 4 2.051
loaded string 10 0.836 3 1.337

10-15 10-10 10-510-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

 foundation
 gun
 butterfly
 pdde_stability
 loaded_string

e
_
k 

e(k)

e(k+1)

10-10 10-510-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

 foundation
 gun
 butterfly
 pdde_stabilitye(k)

e(k+1)

Fig. 6.1. Typical local convergence history of PHP(`). Left: PHP(2). Right: PHP(`k) with
`k+1 = 2`k.

In Figure 6.1, we give a typical history of convergence of PHP(2) and PHP(`k)
with `k+1 = 2`k, showing the relation between ln resk+1 and ln resk. We see that the
curves on the left have a slope of 1 and those on the right roughly have a slope of 2
(marked by the green dashed curves), showing linear and quadratic convergence.

6.2. Weighted eigenresidual criterion for subspace extraction. In this
and the next few sections, we give numerical results demonstrating several strate-
gies for enhancing the convergence, all important for BPHP to achieve competitive
performance.

As explained in section 3.3, when we extract updated eigenpair approximations
from the search subspace through NLHRR, choosing harmonic Ritz values closest to
the target shift σ and associated harmonic Ritz vectors as the new desired approxima-
tions may delay the convergence, due to the presence of potential spurious harmonic
Ritz values.

We use BPHP(2) to compute 10 eigenvalues near the shift σ specified in Table 6.1.

The tolerance of the relative eigenresidual ‖T (µk)xk‖2
‖T (σ)‖F ‖xk‖2 is 10−15 for loaded string and

10−12 for other problems. ILU preconditioners remain the same as in the previous
section. In MATLAB, rng is set to its default state to generate the initial block
X0. All other features of BPHP discussed before, including stabilized preconditioners,
NLHRR projection, thick restart, and soft deflation, are enabled. Such a configuration
will be used from now on, unless otherwise specified.

Table 6.3 shows the BPHP iteration counts, with block size 13 (the default
block size is d1.25qe, where q is the number of desired eigenpairs) and the weighted
eigenresidual norm (3.9) with different values of p used for subspace extraction.
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Table 6.3
BPHP iteration counts with block size 13 and subspace extraction (3.9) for finding 10 eigenvalues.

Problem p = 0 p = 1 p = 2 p =∞
foundation 18 16 16 16

gun 100+ (7) 23 23 23
butterfly 29 31 30 100+ (6)

pdde stability 12 12 13 13
loaded string 7 4 5 4

Table 6.4
BPHP(2) iteration counts with nonstabilized and stabilized preconditioning.

Problem Without stabilization With stabilization
foundation 18 16

gun 26 23
butterfly 100+ (0) 31

pdde stability 18 12
loaded string 9 4

For example, all desired eigenvalues of loaded string are found in at most 5 itera-
tions if p ≥ 1. Interestingly, the criteria based solely on the distance (p = 0) and
solely on the eigenresidual norm (p = ∞) both lead to failure of convergence for
certain problems. By default, we let p = 1.

6.3. The effect of stabilized preconditioning. We give numerical results to
show the importance of using appropriate projectors for stabilizing the preconditioners
to achieve robust convergence. Table 6.4 shows the BPHP(2) iteration counts with
nonstabilized and stabilized preconditioning in (5.2) and (5.4). For foundation and
gun, the difference is small, but the stabilization makes a considerable improvement
for other problems. In particular, no convergence is achieved at all for butterfly
without stabilization of preconditioning. Though stabilization requires two additional
blocks of storage (Zk and M−1Zk in (5.4)), it is clear that this strategy should be
enabled by default.

6.4. Regular and harmonic Rayleigh–Ritz. The Rayleigh–Ritz projection
and the harmonic variant have been widely used for solving large-scale linear eigen-
problems by iterative projection methods. It has been observed that harmonic
Rayleigh–Ritz is more favorable for the convergence toward interior eigenvalues than
Rayleigh–Ritz [28, 36, 41]. We now show by experiments that such an observation is
also true for nonlinear eigenproblems.

Table 6.5 shows the BPHP(2) iteration counts with NLRR and NLHRR pro-
jections, respectively. For foundation, BPHP(2) with NLRR takes 19 iterations to

Table 6.5
BPHP(2) iteration counts with Rayleigh–Ritz and harmonic Rayleigh–Ritz projection for finding

10 eigenvalues near σ.

Harmonic
Problem Rayleigh–Ritz Rayleigh–Ritz

foundation 19 16
gun 28 23

butterfly 100+ (0) 31
pdde stability 13 12
loaded string 5 4
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Table 6.6
BPHP iteration counts without and with thick restart for finding 10 eigenvalues near σ.

Problem No thick restart Thick restart
foundation 21 16

gun 34 23
butterfly 37 31

pdde stability 17 12
loaded string 5 4

converge, but only 16 iterations with NLHRR. Similar observation applies to gun,
pdde stability, and loaded string. For butterfly, BPHP with NLRR did not find any
eigenvalues near σ in 100 iterations. Overall, the convergence is clearly more robust
and faster with NLHRR projection.

One difference between NLRR and NLHRR is that the former may need less
storage, as the later uses different search and test subspaces. In fact, the storage
cost is the same if we can perform matrix-vector multiplications involving T (σ)∗.
Note from (2.1) and Algorithm 1 that NLRR and NLHRR construct the projected
problems (

∑m
i=1 Q̂

∗
kAiQ̂kfi(µ̂))ŷ = 0 and (

∑m
i=1 Q̂

∗
kT (σ)∗AiQ̂kfi(µ̂))ŷ = 0, respec-

tively. Both projections need a temporary storage for AiQ̂k, but NLHRR overwrites
it with T (σ)∗AiQ̂k (which is done in our MATLAB code). Nevertheless, more stor-
age is needed for NLHRR if matrix-vector multiplications involving T (σ)∗ cannot be
performed, and we have to form Ẑk = T (σ)Q̂k explicitly.

6.5. Thick restart. We provide numerical evidence to show the effectiveness of
thick restart. This approach augments the original search subspace with additional
eigenvector approximations selected by our criterion of extraction (3.9).

The iteration counts of BPHP in Table 6.6 illustrate the improvement achieved
by thick restart. It leads to a considerable reduction in iteration counts for several
problems. Thick restart requires an additional block of storage and a mild increase
in arithmetic cost per iteration (solve a larger projected eigenproblem), but the im-
provement in convergence shows the cost is justified. We recommend this strategy to
be enabled by default.

6.6. Preconditioning by alternative techniques. Note that the action of
preconditioning for BPHP may be any strategy approximating T (σ)−1, e.g., a generic
iterative solver for linear systems of the form T (σ)y = b or an ILU preconditioner with
different drop tolerances. We implemented the action of M−1 on a block of vectors
B by applying a right-preconditioned block induced dimension reduction (IDR(s))
method [11] to the block linear systems T (σ)Y = B. To precondition block IDR(s),
we use sparse lu in MATLAB with five output parameters, update the upper trian-
gular factor as U ← D−1U , and drop entries below 2 × 10−3 in magnitude from the
triangular factors for pdde stability and below 2×10−2 for other problems. We choose
block IDR(2) and terminate the iterative linear solver once the relative residual norm
of each linear system falls below 10−2. Such an accuracy for the approximate linear
solve is fairly low in general but seems sufficient to help achieve full convergence speed
of BPHP in our experiments. We compare this preconditioning action with the exact
preconditioning M = T (σ) (done by lu factorization) and the ILU preconditioner
with drop tolerance 10−5 for pdde stability and 10−4 for others. All the three pre-
conditioners are stronger than the ILU preconditioners used in previous sections, and
hence the iteration counts are lower.
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Table 6.7 shows the BPHP iteration counts using the exact preconditioning M =
T (σ), action of ILU with smaller drop tolerances, block IDR(2) solve with relative
tolerance 10−2, and action of ILU with larger drop tolerances. The counts show
that our stronger ILU preconditioning and block IDR(2) solves are as effective as
exact preconditioning for the test problems. This highlights the potential of BPHP
to tackle large-scale problems, where iterative solution of linear systems T (σ)Y = B
of multiple right-hand side to a low accuracy is typical and much more efficient than
exact solutions.

Meanwhile, the results obtained by using ILU with larger drop tolerances show the
robustness of our BPHP method. With such weak preconditioners, one can improve
the convergence by using a larger block size, a larger value ` for BPHP(`), and a
larger value κ for the infinite Arnoldi method solving the NLHRR projected problems.
Also, stronger preconditioners (closer to T (σ)) are needed if the desired eigenvalues
are relatively far from σ.

Details of the eigenresidual history of the 10 eigenvalues of gun computed by
BPHP with different preconditioners are illustrated in Figure 6.2, showing that ILU

Table 6.7
BPHP iteration counts with several preconditioning strategies for finding 10 eigenvalues.

BPHP(2) (block size 10) BPHP(4) (block size 13)
M−1 = ILU solve M−1 = block IDR(2) M−1 = ILU solve

ProblemM−1 =T (σ)−1 (droptol 10−4 or 10−5) solve (rel. tol 10−2) (droptol 10−2 or 10−3)
foundation 12 12 13 22

gun 17 17 18 61
butterfly 28 26 26 51

pdde stability 8 7 7 17

0 2 4 6 8 10 12 14 16 18
BPHP iteration (restart)

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e 
Ei

ge
n 

R
es

id
ua

l

0 2 4 6 8 10 12 14 16 18
BPHP iteration (restart)

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e 
Ei

ge
n 

R
es

id
ua

l

0 2 4 6 8 10 12 14 16 18
BPHP iteration (restart)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e 
Ei

ge
n 

R
es

id
ua

l

0 10 20 30 40 50 60
BPHP iteration (restart)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e 
Ei

ge
n 

R
es

id
ua

l

Fig. 6.2. Eigenresidual history of 10 eigenvalues of problem gun computed by BPHP. Top left:
M−1 = T (σ)−1. Top right: M−1 = action of ILU with drop tolerance 10−4. Bottom left: M−1 =
block IDR(2) solve with relative linear tolerance 10−2. (All these three are computed by BPHP(2)
with block size 10.) Bottom right: M−1 = action of ILU with drop tolerance 10−2 (computed by
BPHP(4) with block size 13).
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preconditioner with drop tolerance 10−4 and preconditioning with block IDR(2) solve
with relative linear tolerance 10−2 are essentially as good as exact preconditioning.

6.7. Computing linearly dependent eigenvectors. We discussed in sec-
tion 5.4 the computation of eigenpairs involving linearly dependent eigenvectors.
This is achieved by removing numerically linearly dependent vectors from the origi-
nal search subspace, computing updated eigenpairs through NLHRR projection and
eigenresidual-based extraction, and finding the Rayleigh functional values of the active
eigenvector approximations different from the converged eigenvalues. We show the
effectiveness of BPHP for solving several artificially constructed problems involving
linearly dependent eigenvectors.

Three test problems of order n = 1024 are constructed from the quadratic eigen-
problem gen hyper2 in NLEVP, as it allows users to specify the eigenvalues and eigen-
vectors. We choose 2n = 2048 real eigenvalues by random, ranging from λ1 = 361.7868
to λ2n = −317.5928 in a decreasing order. We consider the set of 10 eigenvalues of
interest, namely, λn−4, λn−3, . . . , λn+5, centered around σ = −2.109. The first prob-
lem gen hyper2 A has distinct desired eigenvalues; the eigenvectors are vn−j = en−j
for 0 ≤ j ≤ 4 and randomly formed vn+j lying in span{en−4, en−3, en−2, en−1, en} for
1 ≤ j ≤ 5. The second problem gen hyper2 B is similar to gen hyper2 A, but it has
vn+j = en+1−j for 1 ≤ j ≤ 5; that is, λn−j and λn+j+1 have the identical eigenvector
en−j for 0 ≤ j ≤ 4. The last problem gen hyper2 C has identical eigenvectors as
gen hyper2 B, but they belong to two semisimple eigenvalues λn−4 = . . . = λn and
λn+1 = . . . = λn+4 of multiplicity 5. In terms of the level of linear dependence among
eigenvectors, gen hyper2 A is the lowest (hence easiest), gen hyper2 B is medium,
and gen hyper2 C is the highest (most difficult).

BPHP(2) with exact preconditioning is used to find the eigenpairs to the rela-
tive tolerance 10−10. The initial iterate is formed by calling rng(‘shuffle’) fol-
lowed by invoking randn. We count the converged eigenvalues that belong to the
sets {λn−4, . . . , λn} and {λn+1, . . . , λn+5}, respectively, and report the average num-
ber of eigenvalues found in 100 repeated experiments. For problem gen hyper2 A,
Table 6.8 shows that BPHP(2) finds all 10 eigenvalues {λn−4, . . . , λn+5} every time.
For gen hyper2 B, the average numbers decreased slightly, probably due to a stronger
linear dependence relation among the eigenvectors of interest. For the last problem,
on average, BPHP is able to compute nearly 4.6 (out of 5) linearly independent vec-
tors lying in the eigenspaces for each of the semisimple eigenvalues. In addition, we
noticed that the BPHP iteration counts needed for solving the last problem are higher
than those needed for solving the first two problems.

As explained in section 1, BPHP aims to compute a minimal invariant pair in
decoupled form, which is not necessarily simple. For the first two problems with 10
distinct eigenvalues, BPHP has never converged to any eigenvalue repeatedly; simi-
larly for the last problem, BPHP always found no more than 5 linearly independent
eigenvectors associated with each of the semisimple eigenvalues. This method seems
reasonably reliable in avoiding repeated convergence (overestimate of the multiplicity)
caused by linearly dependent eigenvectors.

6.8. Computing many eigenvalues. It is shown in section 5.5 that a large
number of eigenvalues can be computed by a moving-window-style partial deflation
technique. The computation of eigenvalues of the current shift only requires the
deflation of converged eigenvalues around nearby shifts. Appropriate use of such a
“local” effect is essential to achieve an overall arithmetic cost roughly proportional to
the number of desired eigenvalues [49].
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Table 6.8
Average number of linearly dependent eigenvectors found by BPHP(2).

{λn−4, . . . , λn} {λn+1, . . . , λn+5}
Problem Avg. found Repeated Avg. found Repeated

gen hyper2 A 5 0 5 0
gen hyper2 B 4.80 0 4.78 0
gen hyper2 C 4.56 0 4.56 0

Table 6.9
BPHP with moving-window-style partial deflation for computing many eigenvalues.

Problem σ1 Direction # Shifts ` Tolerance # EV found Repeated

foundation 5500 + 275i −20− 1i 64 3 10−12 540 0
gun 51000 1 + 0i 64 3 10−12 568 0

butterfly 0.77 + 0.6i 0.44 + 1i 33 5 10−10 246 0
pdde stability −600 1 + 0i 134 3 10−12 1224 5

Our experiments showing the effectiveness of this approach are as follows. We
choose an initial shift σ1 ∈ C, and determine a moving direction γ = α + βi in the
complex plane going from σ1, whose equation is α (y − imag(σ1)) = β (x− real(σ1)).
After q eigenvalues near σ1 have been found, we project them orthogonally onto this
line and let σ2 be the midpoint between the two projected points on the line that are
the second and the third farthest into the moving direction. If BPHP fails to find
f ≤ b q2c eigenvalues near σ1, we start from those two farthest projected points and

walk back from the moving direction by d f2 e projected points; if BPHP fails to find
f > b q2c eigenvalues, we walk back by f projected points. Then, σ2 is set to be the
midpoint between the two projected points currently focused.

To achieve more robust convergence, we invoke BPHP(5) for butterfly and
BPHP(3) for other problems and use the exact preconditioning M = T (σ) so that
eigenvalues not very close to σ can also be found. For each shift σi, we compute q = 8
eigenvalues nearby, deflating 3q = 24 most recently converged eigenpairs. All features
of BPHP previously shown effective for improving convergence are enabled.

Table 6.9 summarizes the results. For instance, for problem foundation, BPHP(3)
starting with the initial shift σ1 = 5500 + 275i and subsequent shifts moving toward
direction −20− 1i found 540 eigenvalues to relative tolerance 10−12 around 64 shifts,
and no repeated convergence occurred. Note that the total number of eigenvalues
found for foundation and gun are greater than 8× 64 = 512, because around quite a
few shifts, more than 8 eigenvalues were found once the 8th eigenvalue converged. For
butterfly, BPHP(5) found 246 eigenvalues around 33 shifts, about 7.5 per shift on
average; also, BPHP(5) terminated at the final shift 0.8890+0.8705i, because no more
eigenvalues are sufficiently close to the shift. In Figure 6.3, we plot the eigenvalues by
circles and mark the 5 eigenvalues found repeatedly by diamonds for pdde stability.
These repeated eigenvalues arise in the early stage of computation and may be avoided
by using a larger window size for deflation.

These results illustrate the potential of BPHP with the moving-window-style par-
tial deflation for computing many eigenvalues at economic arithmetic and reasonable
storage cost. The arithmetic cost is roughly proportional to the total number of eigen-
values found, and storage cost is fixed and about ` + 4 + 3 × windowsize blocks of
vectors (` + 2 blocks for the search subspace and 2 blocks for the preconditioning
stabilization for the active block, plus the window-sized blocks of eigenvectors in soft
deflation and twice more for their preconditioning stabilization). For BPHP(3) with
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Fig. 6.3. Eigenvalues around a sequence of shifts found by BPHP with moving-window-style
deflation. Top left: foundation. Top right: gun. Bottom left: butterfly. Bottom right:
pdde stability.

block size 8 and soft deflation of 3 blocks of previously converged eigenvectors, we
need about (3 + 4 + 3 × 3) × 8 = 128 vectors. This estimate does not include the
storage for the original preconditioners and solving the projected eigenproblems.

6.9. Comparison with other solvers. We provide numerical results for com-
paring BPHP with two state-of-the-art nonlinear eigensolvers, namely, the infinite
Arnoldi method [2, 18, 19] and the CORK method [4]. We are interested in compar-
ing the storage cost, running time, and robustness of convergence to relatively high
accuracy. We use the same test problems as summarized in Table 6.1. For each prob-
lem, we compute 12 eigenvalues around the specified shift σ, to the relative tolerance
‖T (µk)xk‖2
‖T (σ)‖F ‖xk‖2 ≤ 10−10 for foundation, gun, butterfly and pdde stability, and 10−15

for loaded string.
We use BPHP(3) with block size 12, which needs a storage of (3 + 4) × 12 = 84

vectors (1 block for the eigenvectors, 3 blocks for the preconditioned Krylov space,
1 block for thick restart, and 2 blocks for Zk and M−1Zk used for preconditioning
stabilization (5.4)).

To assess the infinite Arnoldi method, as the code of the implicitly restarted
variant [18] is not publicly available, we run the unrestarted variant to get the number
of Arnoldi steps needed for convergence, then compute a lower bound of the time for
the implicitly restarted variant. For example, assume that the implicitly restarted
variant restarts at Krylov subspace dimension 12 × 2 + 1 = 25, takes 10 seconds
from dimension 1 through 12 and 20 seconds from dimension 13 through 25, and the
unrestarted variant needs 50 steps to converge. Then a lower bound on time for the
restarted variant is 10+20× 50−12

25−12 = 68.46 seconds. Such an estimate is conservative,
as we assume that the restarted variant needs the same number of Arnoldi steps as
the unrestarted variant, and no cost of restart is calculated.

For CORK, we use the first companion form to linearize polynomial eigenprob-
lems, and the rational monomial basis [31] to linearize loaded string; CORK has a
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built-in linearization for gun. To make the comparison fair, we let CORK use only one
pole at σ, and the restart dimension is set as 42 or 84, either half or the same number
of vectors used for BPHP(3). This is because the current CORK implementation
needs the same amount of storage for the compact Krylov subspace and the desired
eigenvectors, and it is not clear if such a storage cost can be reduced. As a result,
CORK will use either the same amount of storage or twice as much as BPHP(3).
Note that the storage cost is not considered for the preconditioners and iterative lin-
ear solvers; also, CORK may need considerable storage for the linearization of fully
nonlinear problems such as gun. The number of restarted Ritz values is set to 20.

For all problems except loaded string, the preconditioner for BPHP(3) is the
block IDR(2), with linear solve relative tolerance 10−2, preconditioned by the ILU
preconditioner with drop tolerance 2× 10−2 for foundation, gun and butterfly, and
2×10−3 for pdde stability; the linear solver for infinite Arnoldi and CORK is IDR(4)
[42], preconditioned by the same ILU preconditioner, to relative tolerance 10−10. For
loaded string, the preconditioner for BPHP(3) and linear solves for infinite Arnoldi
and CORK are performed by direct method based on lu in MATLAB with five output
parameters, since T (σ) is symmetric tridiagonal.

The results are summarized in Tables 6.10 and 6.11. For gun, e.g., BPHP(3)
found all 12 eigenvalues in 11 iterations (restarts) and 66.90 seconds, restarted infinite
Arnoldi needs at least 63 steps and 58.26 seconds, and CORK is finished in 82 steps
with a Kyrlov subspace of dimension 42 (84 vectors used), or 72 steps (144 vectors
used) and 70.87 seconds with the space of dimension 84. For the three polynomial
problems, CORK fails to find any eigenvalue to relative tolerance 10−10, no matter
how large the subspace is and whether direct linear solvers with iterative refinement
are used. It is not clear, however, whether CORK would exhibit improved stability
with different linearization and system parameters.

These results lead to our general conclusions as follows.
1. Infinite Arnoldi is the most robust for computing eigenvalues to machine

precision but is also the most storage-consuming algorithm. Also, primarily
due to the orthogonalization cost for such a space of long vectors, the running
time for this algorithm is also the longest for relatively large problems such as

Table 6.10
Comparison of BPHP, infinite Arnoldi, and CORK for computing 12 eigenvalues.

BPHP(3) Infinite Arnoldi CORK
Problem Vec. Iter Time Vec. κ Step Time Vec. Step Time

foundation 84 8 14.83 625 100 ≥ 40 > 11.45 84 or 168 ∞ ∞
gun 84 11 66.90 625 104 ≥ 63 > 58.26 84 82 81.83

144 72 70.87
butterfly 84 19 106.16 625 1 ≥ 43 > 42.32 84 or 168 ∞ ∞

pdde stability 84 6 216.34 625 1 ≥ 38 > 261.26 84 or 168 ∞ ∞
loaded string 84 5 94.28 625 400 ≥ 48 > 272.53 62 31 26.29

Table 6.11
Comment on CORK for solving several polynomial eigenvalue problems.

foundation subspace dim 42: 9 eigenvalues converged to tol. 10−6 in 78 steps, 34.88 secs
subspace dim 84: 9 eigenvalues converged to tol. 10−6 in 84 steps, 31.39 secs
any space dim ≥ 20: 2 converged to tol. 10−7; no convergence to 10−8

butterfly any space dim ≥ 20: 2 converged to tol. 10−4; no convergence to 10−5

pdde stability subspace dim 42: 12 eigenvalues converged to tol. 10−7 in 27 steps, 135.41 secs
any space dim ≥ 20: 2 converged to tol. 10−8; no convergence to 10−9
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pdde stability and loaded string. Another issue is that the method needs an
appropriate scaling factor κ to keep a balance between the rate of convergence
and numerical stability.

2. If the linear systems of the form T (σ)x = b can be solved efficiently by
factorization, such as for loaded string, CORK can be the most efficient,
outperforming BPHP and infinite Arnoldi by a big margin. If the linear
systems are solved iteratively, BPHP and CORK might be comparable (see the
result for gun), but comprehensive comparison on additional larger problems
is needed to draw a conclusion, which most likely depends on the efficiency
for solving the linear systems iteratively.

3. The disadvantage of the current CORK code seems to be its lack of robustness
of convergence to relatively high accuracy, at least with the first companion
linearization of polynomial eigenproblems and the parameters used above.
Table 6.11 suggests that the highest relative eigenpair tolerance achievable for
foundation and pdde stability is only about 10−6 to 10−7, and the problem
is most severe for butterfly. The code applies reorthogonalization of Krylov
subspace vectors and iterative refinement for solving T (σ)x = b, not cheap
for large problems. More experiments are needed to see if the robustness can
be improved with structure-preserving linearizations.

4. Considering the overall storage cost, running time, the robust of convergence
with preconditioners of different type and quality, and flexibility in the use of
approximate linear solves, BPHP would be a competitive method for solving
large nonlinear eigenproblems around a specified shift σ, if the linear systems
of the form T (σ)x = b are difficult to solve by direct methods and necessitate
the use of iterative solvers.

7. Conclusion. We proposed a BPHP method for computing several eigenval-
ues of large-scale nonlinear eigenproblems T (λ)v = 0 around a specified shift. This
algorithm is motivated by recent development of new preconditioned eigensolvers for
large nonsymmetric and nonlinear eigenproblems. We discussed the construction
of the search subspace, stabilization of preconditioners, local convergence analysis,
harmonic projection, weighted eigenresidual criterion of subspace extraction, thick
restart, soft deflation, computation of linearly dependent eigenvectors, and the com-
putation of many eigenvalues. Experiments show that BPHP does not need exact
solution of relevant linear systems, works effectively with preconditioning techniques,
and is storage-efficient; in addition, it exhibits robust convergence and can find linearly
dependent eigenvectors.
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