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Abstract

Relying only on the standard model of elementary particles and gravity, we
study the details of a new source of gravitational waves whose origin is in
quantum physics. Namely, it is well known that massless fields in curved
backgrounds suffer from the so-called ‘trace anomaly’. This anomaly can
be cast in terms of new scalar degrees of freedom which take account of
macroscopic effects of quantum matter in gravitational fields. The linearized
effective action for these fields describes scalar (as opposed to transverse)
gravitational waves, which are absent in Einstein’s theory. Since these new
degrees of freedom couple directly to the gauge field scalars in QCD, the
epoch of the QCD phase transition in early universe is a possible source of
primordial cosmological gravitational radiation. While the anomaly is most
likely fully unsuppressed at the QCD densities (temperature is much higher
than the u and d quark masses), just to be careful we introduced the window
function which cuts-off very low frequencies where the anomaly effect might
be suppressed. We then calculated the characteristic strain of the properly
adjusted gravitational waves signal today. The region of the parameter space
with no window function gives a stronger signal, and both the strain and the
frequencies fall within the sensitivity of the near future gravitational wave
experiments (e.g. LISA and The Big Bang Observer). The possibility that
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one can study quantum physics with gravitational wave astronomy even in
principle is exciting, and will be of value for future endeavors in this field.

Keywords: gravitational waves, trace anomaly, QCD phase transition

1. Introduction

Recent detection of gravitational waves opened a new window for exploration of our universe
[1]. For the first time we can directly study violent events like black holes (and other compact
objects) mergers [2—4], or collapse of massive stars [S]. What is perhaps even more important,
primordial gravitational waves can give us information about the early universe that is impos-
sible to obtain from photons even in theory. For example, gravitons emitted during Hawking
evaporation of primordial black holes should be observed as (appropriately redshifted) gravi-
tational waves today [6, 7]. This is perhaps our best bet to ever observe effects of Hawking
radiation from astrophysical black holes. We can also learn about the high energy fundamental
physics above the electroweak phase transition. Namely, if the dimensionality of the space-
time changes at high temperatures, then the physics of the propagation of gravitational waves
might change. In the context of the so-called ‘vanishing dimensions’ models, the solution
to the standard model hierarchy problem requires the reduction of number of dimensions
just above the electroweak scale [8]. Since there are no propagating degrees of freedom in
Einstein’s gravity in less than three spatial dimensions, that would imply a cut-off at some
frequency in the spectrum of primordial gravitational waves [9, 10]. Alternative theories of
gravity have been analyzed in [16]. For other applications, see review in [11].

The goal of this paper is to study some unique predictions of the standard model of elemen-
tary particles coupled to gravity. It is well known that massless fields in curved backgrounds
suffer from the so-called ‘trace anomaly’. This anomaly induces the non-local effective action
which however can be cast into local form with the help of some additional scalar degrees of
freedom [12, 13]. These fields take account of macroscopic effects of quantum matter in gravi-
tational fields, which are not contained in the local metric description of Einstein’s theory.
Despite the fact that the existence of these fields follow straight from the standard model and
general relativity (with no exotic physics), their consequences and phenomenology have not
been extensively studied so far. The linearized effective action for these fields describes scalar
gravitational waves, which are absent in Einstein’s theory. Since they couple directly to the
gauge field scalars, such as G}, G** in the quantum chromodynamics (QCD), mergers of
dense sources like neutron stars can give rise to these scalar gravitational waves. Some rough
estimates for dense sources were given in [15]. In this paper we study an alternative source of
the scalar gravitational waves. Namely, in early universe at temperatures higher than 150 MeV,
the QCD anomaly becomes unsuppressed, at least in some frequency range. This epoch of the
QCD phase transition is a possible source of primordial cosmological (scalar) gravitational
radiation, in addition to the standard tensor gravitational waves [14].

2. Homogeneous QCD phase transition

We first give a brief overview of the the QCD phase transition with the relevant numbers,
which will be relevant for calculating the characteristics of the gravitational waves signal.
At temperatures above the QCD phase transition temperature (7. ~ 150 MeV), the universe
is full of free quarks, gluons and photons. At these temperatures the first two generations of
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quarks (u and d) are highly relativistic, and can be treated as massless since the temperature
of the environment is much higher than their masses. The Hubble time at the QCD phase
transition (fgcp ~ 1073 s) is much longer than the relaxation time scale for particle interac-
tions, so the these particles are in thermal and chemical equilibrium. As the temperature of the
universe decreases, some quarks and gluons condense to create hadronic matter. It takes about
0.1qcp ~ 107 s for this phase transition to be completed.

If the QCD phase transition is a first order transition, it proceeds via bubble nuclea-
tion [17-19]. If there is no impure matter in the universe to create an early nucleation
core, the QCD phase transition will not happen immediately when the temperature drops
to T = Tgcp. Instead, the hadronic bubbles nucleate after a short period of supercooling,
tee & 10_3tQCD.Oncesmallhadronicbubblesarefonned,theirbubblewallsexpandbyweakdeﬂagration
[18, 20-23]. The deflagration fronts move at the speed v4.s. The bubble volume grows very
quickly with time

4 3
Voubble = 3 (UdefAt) , (D

where At is time elapsed since the bubble formation. The period of bubble deflagrating growth
is finished after Aty ~ 10*61‘QCD. The phase transition releases latent heat and reheats the
nearby region. The heat is transferred with the speed vpe,. The latent heat prevents any addi-
tional nucleation in these regions. Therefore, the average distance between the bubbles is
dpue = 20hea Atnye =~ 1 cm (this period is labeled as f, in figure 1). However, d, is about 1 m
in [23], so we will use both values to explore the whole parameter space. The bubble radius
is about Ryupple & UgetAlnue. The supercooled regions cover about 1% of the volume of the
universe, so their volume is about 1072 4% (4 )3,

The bubble growth rate after deflagration slows down and is dominated by the universe
expansion until the bubble grows to the size of dyy/2 (this period is labeled as #5 in figure 1).
At time 14, the bubbles merge and leave very few free quark-gluon drops. After the deflagration
phase, the hadron bubble grows because the universe is cooling down. If the supercooling is
neglected, the volume fraction of matter in the hadron phase can be written as [23]

f(t)—1—4(r1_1)<tan2(arctan\/m+ 3;(2\/;?)—3>, (2)

based on the bag model. #; is the initial time when the QCD phase transition started,

X = V8nGB = ﬁ(wOTm)z, and r is set to be 3 in [23]. Here, B is the bag energy. In this

period, the single bubble’s volume increases with time

Voubble = Vaf (£) 3)

where, V) ~ 4{(%)3. In this formula, we neglect the contribution to the volume from the

deflagration period because it is much smaller.

This is a basic picture of the QCD phase transition. One may also consider temperature
fluctuations which can cause inhomogeneous nucleation [24]. However, this will not change
the formation process of the hadronic bubbles.

3. Scalar gravitational waves from the trace anomaly

Any cosmological first order phase transition can produce gravitational waves in three dif-
ferent ways—through the bubble collisions [25-27], production of sound waves [28], and
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Figure 1. Early universe is dominated by radiation. Before the QCD phase transition,
the universe is full of free quark-gluon matter (labeled by Q in the figure), while
hadrons are absent. During the first order phase transition, at some early time, 7,, some
hadronic bubbles (labeled by H in the figure) appear after a brief period of supercooling.
These bubbles appear suddenly and release their latent heat to reheat the space outside
of the bubbles. These small bubbles cover about 1% of volume of the universe and
then quench. The average distance between the bubbles is dy. After that, they grow
following adiabatic expansion of the universe. At time #3, the bubbles grow to a radius
of about dp,.. At that time, hadronic bubbles (H) occupy most of the space. At #,, the
hadronic bubbles merge, and only very few free quark droplets are found in the hot
spots.

magnetohydrodynamic turbulence [29]. These production mechanisms have been previously
studied in [30-32]. In some cases, gravitational waves are strong enough to be detected by
the future gravitational wave detectors [33, 34]. In addition, the International Pulsar Timing
Array can detect the gravitational wave generated by QCD bubble collisions [35]. Apart from
gravitational wave created by the isotropic mass distribution, the QCD phase transition can
also change the primordial gravitational waves power spectrum [36, 37]. If primordial gravita-
tional waves are detected, they could provide an evidence for inflation and/or phase transitions
in the early universe.

So far, tensor mode (or transverse) gravitational waves have been very well studied in the
literature, unlike the scalar mode gravitational waves. One of the reasons is that it is not easy
to generate scalar mode gravitational waves. Two possible sources are high energy/density
QCD or QED states which at the quantum level suffer from the so-called ‘trace anomaly’.
These can be naturally achieved in cores of dense (neutron) stars or in the very early universe.
Here we study the possibility of the scalar mode gravitational wave production during the
QCD phase transition in the early universe.

It is well known that quantum massless fields propagating in classical curved backgrounds
suffer from the ‘gravitational trace anomaly’. Simply, the trace of the stress energy tensor for
the massless field, which vanishes in Minkowski space, acquires additional terms due to the
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curvature of the background and it does not vanish. The general form of this gravitational trace
anomaly in four space-time dimensions, is given by [15]

2
_ 2 / 1
T = bC +b'(E ~ SOR) +b DR+Zﬁ,-L,-, 4)
where,
E = Rop R — RypRP + R? 5)
1
C? = RapyoR*" = 2RapR*" + 2R, (6)

Here, L; is the Lagrangian of a massless gauge field, while E and C are given in terms of cur-
vature invariants. In the context of the standard model that we are concerned about here, L; is
either the quantum electrodynamics (QED) or QCD Lagrangian. Parameters b, b, b” and f3;
are some dimensionless constants. In particular,

h
= ————(N, 412
b= 1300y Ns 0N + 12N) 7
b’——L(N + 11Ny + 62N,) 8
T 360(4m)2 f o) ®)

where N;, Ny and N, represent the number of free conformal scalars, four-component Dirac
fermions, and vectors respectively. The coefficients b and b’ cannot be removed by any
local counterterms and represent a true anomaly. The coefficient 5" can be adjusted or set
to zero. The coefficients 3; are the S-functions of the corresponding gauge couplings in the
Lagrangians L;.

The anomalous terms on the right hand side of equation (4) can be described by a non-
local effective action. However the non-local action can be cast into local form with the help
of an additional scalar degree of freedom, ¢. This field take account of macroscopic effects of
quantum matter in gravitational fields, which are not contained in the local metric description
of Einstein’s theory. The complete local semi-classical effective action for the gravity plus the
anomaly is [15]

Seff = SEH (g) + Sanom(gs ¢)» (9)
where Sgy(g) is the Einstein—Hilbert term

1
Sen(g) = 16G d*xy/=g(R—2A). (10)

Here, the speed of light is taken to be ¢ = 1. Syom (g, @) is a local effective action

b 1
Sanom(gs ¢) = _E /d4X\/jg |:(D¢)2 - 2(RHV - gRguu)vu(va(/j) (l 1)

1 L2
+5 /d“x\/?g[b (E — 50R) +5C + ZB,L,} &, (12)

In general, one should add the contribution from the scalar field to the total energy density
of the universe. The energy momentum tensor for the auxiliary scalar field in early universe
is (see e.g. [39])
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wem = 6b'H* g3, (13)

where H is the early time Hubble parameter. This form is similar to the energy momentum in
de Sitter spacetime. During the QCD phase transition period, H ~ 1/fqcp, the energy density
is

P = —6b'H* ~ 107% (MeV)*. (14)

This values is far below the energy density of the ordinary radiation, ~T?, so we can safely
neglect the scalar field’s thermal energy density. In addition, it was argued that coupling to
the extra scalar field may cause infrared divergencies due to state dependent variations on the
horizon scale [39]. However, the effect that we study here is well inside the causal distance,
so this divergence at the horizon scales may be neglected too. Finally, during the QCD phase
transition, the universe is radiation dominated, so the cosmological constant (dark energy)
effects can be neglected at that time. We therefore set A = 0 in equation (10).

The exact form of the field ¢ depends on both the geometry and gauge fields that the scalar
field couples to during the QCD phase transition. However, the process of bubble nucleation
lasts for a very short period compared to the cosmological expansion rate. Thus, the geometric
effect can be neglected, and we will focus on the effects of the QCD nucleation only. Since
QCD phase transition happens after inflation, the spacetime is approximately flat. Small per-
turbations around flat spacetime can be written as

8uv = Nuv + . (15)
The perturbation, /,,,,, can be written in the standard Hodge decomposition as
hy = —2A (16)
hi = B+ + v,B (17)
1
hyj =Hii + V& + ViES + 2n;C + 2(V,;V; — gvz)D. (18)

The gauge invariant components are [15]

Y4=A+B-D (19)
1,
Ye=C-— gv D (20)
Uit =B - & 21
1L 1L
HE = HE. (22)
The first two scalar variables satisfy [15]
87rGb’
074 = OTe = 7% g g, (23)

which describes two kinds of the scalar gravitational waves in the flat space. Around the flat
space, the equation of motion of ¢ is [15]

qus:f( 3DR+ bery b,Zﬂ, ,):87#- (24)
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Therefore, T, and Y are

167Gb’ 1 .
Yi="Ye=— 3 /d3x|rix|l(t,x) (25)

where 7 accounts for the time delay in propagation of the signal. The far field approximation
gives
G

Ya="Ye =~ -3 d*xAn0m. (26)

In the effective QCD bag model with pyae = —ppag = 750 MeV fm 3, N, = 3 and Ny=2,
the value of the anomaly is [15]

Qg

247

Qs

Aanom = (11N, — 2Ny) i

(Prag — 3Pbag) = —4.8 X 10% erg cm™3.
27)
The cause of the anomaly is that both the vector and axial currents are classically conserved
for massless fermions, but the axial is not conserved at the quantum level. If fermions are
massive, then axial current is not conserved even at the classical level. For massive fermions,
one loop calculations indicate that the anomaly is suppressed by the fermion mass squared.
Since the quarks are not massless after the electroweak phase transition, we might have to take
this suppression into account. Most likely, the anomaly is still fully unsuppressed at the QCD
phase transition, since the relevant quark masses are much smaller than the temperature at the
QCD phase transition. However, just to be on the safe side, we will introduce an optional cut-
off in frequencies which preserves only the energy w of the gravitational waves which is high
enough so that the fermion mass can be neglected, i.e.

G, G = (1IN, — 2Ny)

My g < w, (28)

where m,, 4 are u and d quarks masses (i.e. in the standard model they are 2 MeV and 5 MeV
respectively). At gravitational waves frequencies lower than m,, 4, the effect of anomaly might
be suppressed by a factor of (w/2m,.4)>.

In addition, we note that there are models in which quarks are still massless during the QCD
phase transition [40]. In that case the suppression given by equation (28) will not be present.

4. Scalar gravitational waves from the QCD phase transition

We are finally ready to estimate the parameters for the scalar gravitational waves produced dur-
ing the QCD phase transition. The QCD phase transition happens at the temperature 7, ~ 150
MeV. This temperature is within the region of validity of the effective field theory that we
used. The temperature today is 0.235 meV. Therefore the QCD phase transition happens at the
redshift of z~ 6.3 x 10", From equation (26), the scalar gravitational wave amplitude from
a single bubble is

G

G
@Aanom Vbubble = @Aanom VQ]C([) (29)

where the time parameter, ¢, starts at the moment ¢ = #; when the temperature of the universe
is equal to the QCD phase transition temperature 7 = Tocp. Viubble 1S given by equations (1)
and (3), depending on the period in question. The deflagration period will contribute more in

the high frequency regime (smaller bubbles), but it turns out that the magnitude of the signal

by

Tp=Yc=x

is too small to be observed, so we will proceed with equation (3). Therefore, V =~ %’T(
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is a single bubble’s final volume before it collides with another hadron bubble and merges
with it. The anomaly A,,om 1s given by equation (27) with an overall negative sign because the
process of bubble nucleation removes free gluons from the space instead of creating them. To
introduce an optional cut-off in frequencies, we first perform a Fourier transform of the time
domain function f(z),

f = [ T F() exp(—iwi). (30)

For more accurate results, one should consider the bubble’s spatial distribution. But for a
slowly expanding bubble, the spatial structure will not significantly affect the result. At = 1,
the phase transition ends, and the space does not have free quarks and gluons, so f(#y) = 1.
Therefore, we take only the time interval £; < t < fy.

As we explained at the end of section 3, we might need to cut-off the frequencies lower
than quark masses, so the window function is

2
W) = (s8i9) ol <2Mev
1, 2 MeV < |w|.

€1y

This function should be applied to f to remove the low energy modes as in equation (28).
However, this is not necessary if we believe that the anomaly is unsuppressed at QCD temper-
atures (which are much higher than the quark masses), and also in the models in which quarks
are still massless during the QCD phase transition, so we will work both with and without it,
ie.

_ = 7 W exp(iwt)dw, if a window function is applied
(1) = {Zlﬂ / fooo fexp(iwr)dw,  if a window function is not applied. (32)
The scalar gravitational wave amplitude is now rewritten as
Ta=YTc~ iAan()mVQ}?(t). (33)
3rct

This is the gravitational amplitude from one single bubble. We will now include contrib-
ution from all of the bubbles, and the effect from the redshift. For stochastic gravitational
waves, the characteristic strain /. can be obtain from the power spectral density, S, [38], as

he = \/Shv (34)

where v is the gravitational wave frequency. Since Sy, is closely related to the energy density of
gravitational waves, we will derive the energy density first and then find out the characteristic
strain at the present time.
The energy momentum tensor for gravitational waves is
A
327G

where the angle brackets denote averaging over several wavelengths. The energy radiated by
a single bubble can be estimated from energy flux, Ty, as

T = (8,10, h™P) (35)

2

~ 321G

G oL
S TrecshnVd [ HO @)W ) .
8

E, /TATAkwd[dS
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Figure 2. The characteristic strain of the gravitational waves signal today, A, as a
function of frequency, v. We set the value dy,, = 1 cm, which gives the smallest bubble
volume and thus the weakest signal. The solid line is /. with the window function from
equation (32), while the dashed line is /. without this window function. The doted
curves are the sensitivity regions of the detectors—from low to high frequencies are
SKA, LISA and BBO respectively.

where k is the wavenumber. For the integrated signal, we have to take into account all the
bubbles, and also an appropriate energy redshift from the time of the signal creation till today.
The scalar gravitational waves energy density at the time of the QCD phase transition was

p = nE,, (37)

where n = d.3 is the bubble number density. Since the gravitons are massless particles, their
energy density decreases as the universe expanding. At the present time the energy density in
gravitational waves, po, is

nE;,

o= (38)

The power spectral density is

4G (Spo

Sn(f) = 73 P2of

(39)
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Figure 3. The characteristic strain of the gravitational waves signal today, k., as
a function of frequency, v. We set the value dp,c = 1 m, which gives larger bubble
volumes and thus stronger signal. The solid line is /. with the window function from
equation (32), while the dashed line is /. without this window function. The doted
curves are the sensitivity regions of the detectors—from low to high frequencies are
SKA, LISA and BBO respectively. Part of the signal is detectable by BBO. However,
since the detector sensitivities are shown for the tensor modes, while it is known that
LISA has an order of magnitude higher sensitivity to the scalar than to the tensor modes,
the signal most likely falls within the LISA sensitivity region as well.

where we used v = m To obtain numerical values, we set z ~ 6.3 x 10'!, which is the
redshift at the QCD phase transition, as explained below equation (1). As we noted before, to
cover all the cases in the literature, we use two possible dp, values, 1 cm and 1 m. The value
for Aanom 18 given in equation (27).

We plot the characteristic strain of the gravitational waves signal today, %, as a function
of frequency, v, of scalar gravitational waves in figures 2 and 3. We give plots for two val-
ues of dy, i.e. lcm and 1 m. The larger value of d,, gives larger bubble volumes which in
turn amplifies the anomaly effect, but reduces the bubble density. It turns out that the first
effect is more important, so the the larger value of dy,. gives a stronger signal (figure 3).
It is notable that our signal is weaker than than the signal from the standard tensor modes
[30-32]. This is because the tensor mode gravitational waves are created by very sudden
change in bubbles energies and momenta during the collision. In contrast, the strength of the
scalar mode depends on the phase transition rate rather than the rate of change of the matter
energy and momentum. During the bubble’s motion energy and momentum accumulate and
get released at the moment of collision, however, one cannot accumulate the ‘amount’ of the
QCD phase transition in a similar way. Eventually, motion of the bubble could increase the
signal frequency via Doppler shift, but here we neglected this effect. One may also notice that

10
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the spectrum of the scalar mode decreases more slowly than for the usual transverse-tensor
modes. This is because the QCD phase transition last longer than the bubble collision time
scale, so it produces more low frequency modes.

We also show the case with the window function from equation (32) which cuts off the
frequencies lower than the quark masses, and also the case which includes all the frequen-
cies (i.e. no window function). The region of the parameter space with no window function is
much more likely to be observed, especially if dy,. is large enough, since both the strain and
the frequencies fall within the sensitivity of the near future gravitational wave experiments
(e.g. the big bang observer) (see e.g. figure Al in [38]). In addition, the detector sensitivities
in figures 2 and 3 are shown for the tensor modes. It is known that LISA has 10 times higher
sensitivity to the scalar mode than to the tensor modes [41]. Thus, the signal most likely falls
within the LISA sensitivity region as well.

5. Conclusions

In this paper we tried to connect the gravitational wave astronomy with fundamental particle
physics. The standard model of particle physics in the presence of gravity suffers from the
well known trace anomaly. The origin of anomaly is purely quantum. In the QCD sector,
the anomaly gives rise to the new kind of (scalar) gravitational waves which are not pres-
ent in the pure gravitational regime. Quantum anomaly was originally derived for massless
fermions, while the standard model quarks are massive. During the QCD phase transition, at
temperatures higher than 150 MeV, one can effectively neglect the u- and d-quark masses, and
anomaly effects should become fully unsuppressed. Using the details of the first order phase
transition, in particular the mechanism of the homogenous bubble nucleation, we were able to
calculate the parameters relevant for the produced gravitational waves. As the final result, we
found the characteristic strain of the gravitational waves signal as it should look like today. To
remain on the safe side, we introduced the window function which cuts-off very low frequen-
cies of the produced gravitational waves, where the anomaly calculations might not be com-
pletely trusted. For comparison, in figures 2 and 3 we show the characteristic strain both with
and without the window function. The region with no window function (i.e. no suppression in
frequencies) is much more likely to be observed in near future gravitational wave experiments
(e.g. LISA and the big bang observer). The interesting bottom line is that we could in principle
learn something about the obscure quantum aspects of the standard model of particle physics
using gravitational wave astronomy.
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