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Abstract

Relying only on the standard model of elementary particles and gravity, we 

study the details of a new source of gravitational waves whose origin is in 

quantum physics. Namely, it is well known that massless fields in curved 

backgrounds suffer from the so-called ‘trace anomaly’. This anomaly can 

be cast in terms of new scalar degrees of freedom which take account of 

macroscopic effects of quantum matter in gravitational fields. The linearized 

effective action for these fields describes scalar (as opposed to transverse) 

gravitational waves, which are absent in Einstein’s theory. Since these new 

degrees of freedom couple directly to the gauge field scalars in QCD, the 

epoch of the QCD phase transition in early universe is a possible source of 

primordial cosmological gravitational radiation. While the anomaly is most 

likely fully unsuppressed at the QCD densities (temperature is much higher 

than the u and d quark masses), just to be careful we introduced the window 

function which cuts-off very low frequencies where the anomaly effect might 

be suppressed. We then calculated the characteristic strain of the properly 

adjusted gravitational waves signal today. The region of the parameter space 

with no window function gives a stronger signal, and both the strain and the 

frequencies fall within the sensitivity of the near future gravitational wave 

experiments (e.g. LISA and The Big Bang Observer). The possibility that 
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one can study quantum physics with gravitational wave astronomy even in 

principle is exciting, and will be of value for future endeavors in this field.

Keywords: gravitational waves, trace anomaly, QCD phase transition

1. Introduction

Recent detection of gravitational waves opened a new window for exploration of our universe 

[1]. For the first time we can directly study violent events like black holes (and other compact 

objects) mergers [2–4], or collapse of massive stars [5]. What is perhaps even more important, 

primordial gravitational waves can give us information about the early universe that is impos-

sible to obtain from photons even in theory. For example, gravitons emitted during Hawking 

evaporation of primordial black holes should be observed as (appropriately redshifted) gravi-

tational waves today [6, 7]. This is perhaps our best bet to ever observe effects of Hawking 

radiation from astrophysical black holes. We can also learn about the high energy fundamental 

physics above the electroweak phase transition. Namely, if the dimensionality of the space-

time changes at high temperatures, then the physics of the propagation of gravitational waves 

might change. In the context of the so-called ‘vanishing dimensions’ models, the solution 

to the standard model hierarchy problem requires the reduction of number of dimensions 

just above the electroweak scale [8]. Since there are no propagating degrees of freedom in 

Einstein’s gravity in less than three spatial dimensions, that would imply a cut-off at some 

frequency in the spectrum of primordial gravitational waves [9, 10]. Alternative theories of 

gravity have been analyzed in [16]. For other applications, see review in [11].

The goal of this paper is to study some unique predictions of the standard model of elemen-

tary particles coupled to gravity. It is well known that massless fields in curved backgrounds 

suffer from the so-called ‘trace anomaly’. This anomaly induces the non-local effective action 

which however can be cast into local form with the help of some additional scalar degrees of 

freedom [12, 13]. These fields take account of macroscopic effects of quantum matter in gravi-

tational fields, which are not contained in the local metric description of Einstein’s theory. 

Despite the fact that the existence of these fields follow straight from the standard model and 

general relativity (with no exotic physics), their consequences and phenomenology have not 

been extensively studied so far. The linearized effective action for these fields describes scalar 

gravitational waves, which are absent in Einstein’s theory. Since they couple directly to the 

gauge field scalars, such as Ga
µνGaµν in the quantum chromodynamics (QCD), mergers of 

dense sources like neutron stars can give rise to these scalar gravitational waves. Some rough 

estimates for dense sources were given in [15]. In this paper we study an alternative source of 

the scalar gravitational waves. Namely, in early universe at temperatures higher than 150 MeV,  

the QCD anomaly becomes unsuppressed, at least in some frequency range. This epoch of the 

QCD phase transition is a possible source of primordial cosmological (scalar) gravitational 

radiation, in addition to the standard tensor gravitational waves [14].

2. Homogeneous QCD phase transition

We first give a brief overview of the the QCD phase transition with the relevant numbers, 

which will be relevant for calculating the characteristics of the gravitational waves signal. 

At temperatures above the QCD phase transition temperature (Tc ≈ 150 MeV), the universe 

is full of free quarks, gluons and photons. At these temperatures the first two generations of 

D-C Dai and D Stojkovic Class. Quantum Grav. 36 (2019) 145004
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quarks (u and d) are highly relativistic, and can be treated as massless since the temperature 

of the environment is much higher than their masses. The Hubble time at the QCD phase 

trans ition (tQCD ≈ 10−5 s) is much longer than the relaxation time scale for particle interac-

tions, so the these particles are in thermal and chemical equilibrium. As the temperature of the 

universe decreases, some quarks and gluons condense to create hadronic matter. It takes about 

0.1 tQCD ≈ 10−6 s for this phase transition to be completed.

If the QCD phase transition is a first order transition, it proceeds via bubble nuclea-

tion [17–19]. If there is no impure matter in the universe to create an early nucleation 

core, the QCD phase transition will not happen immediately when the temperature drops 

to T = TQCD. Instead, the hadronic bubbles nucleate after a short period of supercooling, 

tsc ≈ 10−3tQCD. Once small hadronic bubbles are formed, their bubble walls expand by weak deflagration  

[18, 20–23]. The deflagration fronts move at the speed vdef . The bubble volume grows very 

quickly with time

Vbubble =
4π

3

(

vdef∆t
)3

, (1)

where ∆t  is time elapsed since the bubble formation. The period of bubble deflagrating growth 

is finished after ∆tnuc ≈ 10−6tQCD. The phase transition releases latent heat and reheats the 

nearby region. The heat is transferred with the speed vheat. The latent heat prevents any addi-

tional nucleation in these regions. Therefore, the average distance between the bubbles is 

dnuc ≈ 2vheat∆tnuc ≈ 1 cm (this period is labeled as t2 in figure 1). However, dnuc is about 1 m 

in [23], so we will use both values to explore the whole parameter space. The bubble radius 

is about Rbubble ≈ vdef∆tnuc. The supercooled regions cover about 1% of the volume of the 

universe, so their volume is about 10−2 4π
3
( dnuc

2
)3.

The bubble growth rate after deflagration slows down and is dominated by the universe 

expansion until the bubble grows to the size of dnuc/2 (this period is labeled as t3 in figure 1). 

At time t4, the bubbles merge and leave very few free quark-gluon drops. After the deflagration 

phase, the hadron bubble grows because the universe is cooling down. If the supercooling is 

neglected, the volume fraction of matter in the hadron phase can be written as [23]

f (t) = 1 −

1

4(r − 1)

(

tan2
(

arctan
√

4r − 1 +
3χ(ti − t)

2
√

r − 1

)

− 3

)

, (2)

based on the bag model. ti is the initial time when the QCD phase transition started, 

χ =
√

8πGB =
1

36 µs
( Tc

200 MeV
)2, and r is set to be 3 in [23]. Here, B is the bag energy. In this 

period, the single bubble’s volume increases with time

Vbubble = V0f (t) (3)

where, V0 ≈
4π
3
( dnuc

2
)3. In this formula, we neglect the contribution to the volume from the 

deflagration period because it is much smaller.

This is a basic picture of the QCD phase transition. One may also consider temperature 

fluctuations which can cause inhomogeneous nucleation [24]. However, this will not change 

the formation process of the hadronic bubbles.

3. Scalar gravitational waves from the trace anomaly

Any cosmological first order phase transition can produce gravitational waves in three dif-

ferent ways—through the bubble collisions [25–27], production of sound waves [28], and 
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magnetohydrodynamic turbulence [29]. These production mechanisms have been previously 

studied in [30–32]. In some cases, gravitational waves are strong enough to be detected by 

the future gravitational wave detectors [33, 34]. In addition, the International Pulsar Timing 

Array can detect the gravitational wave generated by QCD bubble collisions [35]. Apart from 

gravitational wave created by the isotropic mass distribution, the QCD phase transition can 

also change the primordial gravitational waves power spectrum [36, 37]. If primordial gravita-

tional waves are detected, they could provide an evidence for inflation and/or phase transitions 

in the early universe.

So far, tensor mode (or transverse) gravitational waves have been very well studied in the 

literature, unlike the scalar mode gravitational waves. One of the reasons is that it is not easy 

to generate scalar mode gravitational waves. Two possible sources are high energy/density 

QCD or QED states which at the quantum level suffer from the so-called ‘trace anomaly’. 

These can be naturally achieved in cores of dense (neutron) stars or in the very early universe. 

Here we study the possibility of the scalar mode gravitational wave production during the 

QCD phase transition in the early universe.

It is well known that quantum massless fields propagating in classical curved backgrounds 

suffer from the ‘gravitational trace anomaly’. Simply, the trace of the stress energy tensor for 

the massless field, which vanishes in Minkowski space, acquires additional terms due to the 

Figure 1. Early universe is dominated by radiation. Before the QCD phase transition, 
the universe is full of free quark-gluon matter (labeled by Q in the figure), while 
hadrons are absent. During the first order phase transition, at some early time, t2, some 
hadronic bubbles (labeled by H in the figure) appear after a brief period of supercooling. 
These bubbles appear suddenly and release their latent heat to reheat the space outside 
of the bubbles. These small bubbles cover about 1% of volume of the universe and 
then quench. The average distance between the bubbles is dnuc. After that, they grow 
following adiabatic expansion of the universe. At time t3, the bubbles grow to a radius 
of about dnuc. At that time, hadronic bubbles (H) occupy most of the space. At t4, the 
hadronic bubbles merge, and only very few free quark droplets are found in the hot 
spots.

D-C Dai and D Stojkovic Class. Quantum Grav. 36 (2019) 145004
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curvature of the background and it does not vanish. The general form of this gravitational trace 

anomaly in four space-time dimensions, is given by [15]

Tµ
µ = bC2 + b′(E −

2

3
�R) + b′′�R +

∑

i

βiLi, (4)

where,

E = RαβγδRαβγδ
− RαβRαβ + R2 (5)

C2 = RαβγδRαβγδ
− 2RαβRαβ +

1

3
R2. (6)

Here, Li is the Lagrangian of a massless gauge field, while E and C are given in terms of cur-

vature invariants. In the context of the standard model that we are concerned about here, Li is 

either the quantum electrodynamics (QED) or QCD Lagrangian. Parameters b, b′, b′′ and βi 

are some dimensionless constants. In particular,

b =
�

120(4π)2
(Ns + 6Nf + 12Nv) (7)

b′ = −

�

360(4π)2
(Ns + 11Nf + 62Nv), (8)

where Ns, Nf  and Nv represent the number of free conformal scalars, four-component Dirac 

fermions, and vectors respectively. The coefficients b and b′ cannot be removed by any 

local counterterms and represent a true anomaly. The coefficient b′′ can be adjusted or set 

to zero. The coefficients βi are the β-functions of the corresponding gauge couplings in the 

Lagrangians Li.

The anomalous terms on the right hand side of equation (4) can be described by a non-

local effective action. However the non-local action can be cast into local form with the help 

of an additional scalar degree of freedom, φ. This field take account of macroscopic effects of 

quantum matter in gravitational fields, which are not contained in the local metric description 

of Einstein’s theory. The complete local semi-classical effective action for the gravity plus the 

anomaly is [15]

Seff = SEH(g) + Sanom(g,φ), (9)

where SEH(g) is the Einstein–Hilbert term

SEH(g) =
1

16G

∫

d4x
√

−g(R − 2Λ). (10)

Here, the speed of light is taken to be c  =  1. Sanom(g,φ) is a local effective action

Sanom(g,φ) = −

b′

2

∫

d4x
√

−g
[

(�φ)2
− 2(Rµν

−

1

3
Rgµν)▽µφ▽νφ

]

 (11)

+
1

2

∫

d4x
√

−g
[

b′(E −

2

3
�R) + bC2 +

∑

i

βiLi

]

φ. (12)

In general, one should add the contribution from the scalar field to the total energy density 

of the universe. The energy momentum tensor for the auxiliary scalar field in early universe 

is (see e.g. [39])

D-C Dai and D Stojkovic Class. Quantum Grav. 36 (2019) 145004
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Tanom
αβ = 6b′H4gαβ , (13)

where H is the early time Hubble parameter. This form is similar to the energy momentum in 

de Sitter spacetime. During the QCD phase transition period, H ≈ 1/tQCD, the energy density 

is

ρanom = −6b′H4
∼ 10−68 (MeV)4. (14)

This values is far below the energy density of the ordinary radiation, ∼T4
c , so we can safely 

neglect the scalar field’s thermal energy density. In addition, it was argued that coupling to 

the extra scalar field may cause infrared divergencies due to state dependent variations on the 

horizon scale [39]. However, the effect that we study here is well inside the causal distance, 

so this divergence at the horizon scales may be neglected too. Finally, during the QCD phase 

transition, the universe is radiation dominated, so the cosmological constant (dark energy) 

effects can be neglected at that time. We therefore set Λ = 0 in equation (10).

The exact form of the field φ depends on both the geometry and gauge fields that the scalar 

field couples to during the QCD phase transition. However, the process of bubble nucleation 

lasts for a very short period compared to the cosmological expansion rate. Thus, the geometric 

effect can be neglected, and we will focus on the effects of the QCD nucleation only. Since 

QCD phase transition happens after inflation, the spacetime is approximately flat. Small per-

turbations around flat spacetime can be written as

gµν = ηµν + hµν . (15)

The perturbation, hµν, can be written in the standard Hodge decomposition as

htt = −2A (16)

hti = B
⊥

i + ▽iB (17)

hij = H
⊥

ij + ▽iE
⊥

j + ▽jE
⊥

i + 2ηijC + 2(▽i▽j −
1

3
▽

2)D. (18)

The gauge invariant components are [15]

ΥA = A+ Ḃ − D̈ (19)

ΥC = C −
1

3
▽

2
D (20)

ψ⊥

i = B
⊥

i − Ė
⊥

i (21)

H⊥

ij → H⊥

ij . (22)

The first two scalar variables satisfy [15]

�ΥA = �ΥC =
8πGb′

3
�

2φ = 0, (23)

which describes two kinds of the scalar gravitational waves in the flat space. Around the flat 

space, the equation of motion of φ is [15]

�
2φ =

1

2

(

E −

2

3
�R +

b

b′
C2 +

1

b′

∑

i

βiLi

)

= 8πJ. (24)

D-C Dai and D Stojkovic Class. Quantum Grav. 36 (2019) 145004
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Therefore, ΥA and ΥC are

ΥA = ΥC = −

16πGb′

3

∫
d3

x

1

|r − x|
J(̃t, x) (25)

where t̃  accounts for the time delay in propagation of the signal. The far field approximation 

gives

ΥA = ΥC ≈ −

G

3r

∫
d3

xAanom. (26)

In the effective QCD bag model with ρbag = −pbag = 750 MeV fm−3, Nc  =  3 and Nf   =  2, 

the value of the anomaly is [15]

Aanom = (11Nc − 2Nf )
αs

24π
Ga

µνGaµν = (11Nc − 2Nf )
αs

24π
(ρbag − 3pbag) ≈ −4.8 × 1036 erg cm−3.

 (27)

The cause of the anomaly is that both the vector and axial currents are classically conserved 

for massless fermions, but the axial is not conserved at the quantum level. If fermions are 

massive, then axial current is not conserved even at the classical level. For massive fermions, 

one loop calculations indicate that the anomaly is suppressed by the fermion mass squared. 

Since the quarks are not massless after the electroweak phase transition, we might have to take 

this suppression into account. Most likely, the anomaly is still fully unsuppressed at the QCD 

phase transition, since the relevant quark masses are much smaller than the temperature at the 

QCD phase transition. However, just to be on the safe side, we will introduce an optional cut-

off in frequencies which preserves only the energy ω  of the gravitational waves which is high 

enough so that the fermion mass can be neglected, i.e.

mu,d ≪ ω, (28)

where mu,d are u and d quarks masses (i.e. in the standard model they are 2 MeV and 5 MeV 

respectively). At gravitational waves frequencies lower than mu,d, the effect of anomaly might 

be suppressed by a factor of (ω/2mu,d)
2.

In addition, we note that there are models in which quarks are still massless during the QCD 

phase transition [40]. In that case the suppression given by equation (28) will not be present.

4. Scalar gravitational waves from the QCD phase transition

We are finally ready to estimate the parameters for the scalar gravitational waves produced dur-

ing the QCD phase transition. The QCD phase transition happens at the temperature Tc ≈ 150 

MeV. This temperature is within the region of validity of the effective field theory that we 

used. The temperature today is 0.235 meV. Therefore the QCD phase transition happens at the 

redshift of z ≈ 6.3 × 1011. From equation (26), the scalar gravitational wave amplitude from 

a single bubble is

ΥA = ΥC ≈

G

3rc4
AanomVbubble =

G

3rc4
AanomV0f (t) (29)

where the time parameter, t, starts at the moment t  =  ti when the temperature of the universe 

is equal to the QCD phase transition temperature T = TQCD. Vbubble is given by equations (1) 

and (3), depending on the period in question. The deflagration period will contribute more in 

the high frequency regime (smaller bubbles), but it turns out that the magnitude of the signal 

is too small to be observed, so we will proceed with equation (3). Therefore, V0 ≈
4π
3
( dnuc

2
)3 

D-C Dai and D Stojkovic Class. Quantum Grav. 36 (2019) 145004
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is a single bubble’s final volume before it collides with another hadron bubble and merges 

with it. The anomaly Aanom is given by equation (27) with an overall negative sign because the 

process of bubble nucleation removes free gluons from the space instead of creating them. To 

introduce an optional cut-off in frequencies, we first perform a Fourier transform of the time 

domain function f (t),

f̂ (ω) =

∫
−∞

∞

f (t) exp(−iωt)dt. (30)

For more accurate results, one should consider the bubble’s spatial distribution. But for a 

slowly expanding bubble, the spatial structure will not significantly affect the result. At t  =  tf , 

the phase transition ends, and the space does not have free quarks and gluons, so f (tf )  =  1. 

Therefore, we take only the time interval ti < t < tf .

As we explained at the end of section 3, we might need to cut-off the frequencies lower 

than quark masses, so the window function is

W(ω) =







(

ω

2 MeV

)2

, |ω| < 2 MeV

1, 2 MeV < |ω|.
 (31)

This function should be applied to f̂  to remove the low energy modes as in equation (28). 

However, this is not necessary if we believe that the anomaly is unsuppressed at QCD temper-

atures (which are much higher than the quark masses), and also in the models in which quarks 

are still massless during the QCD phase transition, so we will work both with and without it, 

i.e.

f̄ (t) =

{

1
2π

∫

∞

−∞
f̂ W exp(iωt)dω, if a window function is applied

1
2π

∫

∞

−∞
f̂ exp(iωt)dω, if a window function is not applied.

 (32)

The scalar gravitational wave amplitude is now rewritten as

ΥA = ΥC ≈

G

3rc4
AanomV0 f̄ (t). (33)

This is the gravitational amplitude from one single bubble. We will now include contrib-

ution from all of the bubbles, and the effect from the redshift. For stochastic gravitational 

waves, the characteristic strain hc can be obtain from the power spectral density, Sh [38], as

hc =
√

Sh ν (34)

where ν  is the gravitational wave frequency. Since Sh is closely related to the energy density of 

gravitational waves, we will derive the energy density first and then find out the characteristic 

strain at the present time.

The energy momentum tensor for gravitational waves is

Tµν =
c4

32πG
〈∂µhαβ∂νhαβ〉 (35)

where the angle brackets denote averaging over several wavelengths. The energy radiated by 

a single bubble can be estimated from energy flux, Ttr, as

Eb =
c2

32πG

∫
ΥAΥAkωdtdS

≈

G

72πc5
A2

anomV2
0

∫
∞

0

f̂ (ω)f̂ ∗(ω)W2(ω)ω2dω,

 

(36)

D-C Dai and D Stojkovic Class. Quantum Grav. 36 (2019) 145004
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where k is the wavenumber. For the integrated signal, we have to take into account all the 

bubbles, and also an appropriate energy redshift from the time of the signal creation till today. 

The scalar gravitational waves energy density at the time of the QCD phase transition was

ρ = nEb, (37)

where n = d−3
nuc is the bubble number density. Since the gravitons are massless particles, their 

energy density decreases as the universe expanding. At the present time the energy density in 

gravitational waves, ρ0, is

ρ0 =
nEb

(1 + z)4
. (38)

The power spectral density is

Sh( f ) =
4G

πc2

δρ0

f 2δf

=
4πnG2

9c7
A2

anomV2
0

f̂ (ω)f̂ ∗(ω)W2(ω)

1 + z

 (39)

Figure 2. The characteristic strain of the gravitational waves signal today, hc, as a 
function of frequency, ν . We set the value dnuc = 1 cm, which gives the smallest bubble 
volume and thus the weakest signal. The solid line is hc with the window function from 
equation  (32), while the dashed line is hc without this window function. The doted 
curves are the sensitivity regions of the detectors—from low to high frequencies are 
SKA, LISA and BBO respectively.

D-C Dai and D Stojkovic Class. Quantum Grav. 36 (2019) 145004
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where we used ν = ω

2π(1+z) . To obtain numerical values, we set z ≈ 6.3 × 1011, which is the 

redshift at the QCD phase transition, as explained below equation (1). As we noted before, to 

cover all the cases in the literature, we use two possible dnuc values, 1 cm and 1 m. The value 

for Aanom is given in equation (27).

We plot the characteristic strain of the gravitational waves signal today, hc, as a function 

of frequency, ν , of scalar gravitational waves in figures 2 and 3. We give plots for two val-

ues of dnuc, i.e. 1 cm and 1 m. The larger value of dnuc gives larger bubble volumes which in 

turn amplifies the anomaly effect, but reduces the bubble density. It turns out that the first 

effect is more important, so the the larger value of dnuc gives a stronger signal (figure 3). 

It is notable that our signal is weaker than than the signal from the standard tensor modes 

[30–32]. This is because the tensor mode gravitational waves are created by very sudden 

change in bubbles energies and momenta during the collision. In contrast, the strength of the 

scalar mode depends on the phase transition rate rather than the rate of change of the matter 

energy and momentum. During the bubble’s motion energy and momentum accumulate and 

get released at the moment of collision, however, one cannot accumulate the ‘amount’ of the 

QCD phase transition in a similar way. Eventually, motion of the bubble could increase the 

signal frequency via Doppler shift, but here we neglected this effect. One may also notice that 

Figure 3. The characteristic strain of the gravitational waves signal today, hc, as 
a function of frequency, ν . We set the value dnuc = 1 m, which gives larger bubble 
volumes and thus stronger signal. The solid line is hc with the window function from 
equation  (32), while the dashed line is hc without this window function. The doted 
curves are the sensitivity regions of the detectors—from low to high frequencies are 
SKA, LISA and BBO respectively. Part of the signal is detectable by BBO. However, 
since the detector sensitivities are shown for the tensor modes, while it is known that 
LISA has an order of magnitude higher sensitivity to the scalar than to the tensor modes, 
the signal most likely falls within the LISA sensitivity region as well.

D-C Dai and D Stojkovic Class. Quantum Grav. 36 (2019) 145004
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the spectrum of the scalar mode decreases more slowly than for the usual transverse-tensor 

modes. This is because the QCD phase transition last longer than the bubble collision time 

scale, so it produces more low frequency modes.

We also show the case with the window function from equation (32) which cuts off the 

frequencies lower than the quark masses, and also the case which includes all the frequen-

cies (i.e. no window function). The region of the parameter space with no window function is 

much more likely to be observed, especially if dnuc is large enough, since both the strain and 

the frequencies fall within the sensitivity of the near future gravitational wave experiments 

(e.g. the big bang observer) (see e.g. figure A1 in [38]). In addition, the detector sensitivities 

in figures 2 and 3 are shown for the tensor modes. It is known that LISA has 10 times higher 

sensitivity to the scalar mode than to the tensor modes [41]. Thus, the signal most likely falls 

within the LISA sensitivity region as well.

5. Conclusions

In this paper we tried to connect the gravitational wave astronomy with fundamental particle 

physics. The standard model of particle physics in the presence of gravity suffers from the 

well known trace anomaly. The origin of anomaly is purely quantum. In the QCD sector, 

the anomaly gives rise to the new kind of (scalar) gravitational waves which are not pres-

ent in the pure gravitational regime. Quantum anomaly was originally derived for massless 

fermions, while the standard model quarks are massive. During the QCD phase transition, at 

temperatures higher than 150 MeV, one can effectively neglect the u- and d-quark masses, and 

anomaly effects should become fully unsuppressed. Using the details of the first order phase 

transition, in particular the mechanism of the homogenous bubble nucleation, we were able to 

calculate the parameters relevant for the produced gravitational waves. As the final result, we 

found the characteristic strain of the gravitational waves signal as it should look like today. To 

remain on the safe side, we introduced the window function which cuts-off very low frequen-

cies of the produced gravitational waves, where the anomaly calculations might not be com-

pletely trusted. For comparison, in figures 2 and 3 we show the characteristic strain both with 

and without the window function. The region with no window function (i.e. no suppression in 

frequencies) is much more likely to be observed in near future gravitational wave experiments 

(e.g. LISA and the big bang observer). The interesting bottom line is that we could in principle 

learn something about the obscure quantum aspects of the standard model of particle physics 

using gravitational wave astronomy.
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