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Abstract: Metal additive manufacturing (AM) as an emerging manufacturing technique has been gradually
accepted to manufacture end-use components. However, one of the most critical issues preventing its broad
applications is build failure resulting from residual stress accumulation in manufacturing process. The goal
of this work is to investigate the feasibility of using topology optimization to design support structure to
mitigate residual stress induced build failure. To make topology optimization computationally tractable, the
inherent strain method is employed to perform fast prediction of residual stress in an AM build. Graded
lattice structure optimization is utilized to design the support structure due to the open-celled and self-
supporting nature of periodic lattice structure. The objective for the optimization is to minimize the mass
of sacrificial support structure under stress constraint. By limiting the maximum stress under the yield
strength, cracking resulting from residual stress can be prevented. To show the feasibility of the proposed
method, the support structure of a double-cantilever beam and a hip implant is designed, respectively. The
support structure after optimization can achieve a weight reduction of approximately 60%. The components
with optimized support structures no longer suffer from stress-induced cracking after the designs are
realized by AM, which proves the effectiveness of the proposed method.
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1. Introduction

After several decades, powder bed metal additive manufacturing (AM) has been among the most popular
AM techniques to fabricate functional end-use component for various applications, such as aerospace,
biomedical implant, mold manufacturing, etc. However, a serious weakness that prevents it from broad
application is the residual stress inherent in the melting and solidification process [1-3]. In powder bed AM,
the material in the build is melted and cooled several times, and stress is accumulated due to inconsistent
level of heating [4]. This residual stress leads to severe problem because it can cause warpage, cracks, and
delamination during processing, which may block the recoater blade and result in a build failure. Figure
1(a) illustrates such example of a failed build. The powder spreading is stopped as the built part delaminates
from the building tray and deforms so significantly that it stops the powder recoater blade from moving.
Such a build failure is very common in practice, which leads to a waste of manufacturing time and material
consumption.

Another challenge of the residual stress is the large deformation after the part is removed from the build
tray. Sometimes the part may not exhibit deformation during the printing processes, however, once it is cut
from the substrate, residual stress is relaxed and deforms the component. This results in limited load
resistance, dimensional inaccuracy, and reduction of the fatigue performance compared with the
conventional bulk material [5, 6]. As illustrated in Fig. 1(b), an implant manufactured using Direct Metal
Laser Sintering (DMLS) in Ti6Al4V shows undesirable deformation after removal from the build tray. For
component with overhang or protruding features, refer to Fig. 1(c), the problem is even more challenging
since residual stress tends to cause distortion and leads to severe warpage and damage at those areas.
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Fig. 1. Residual stress and large deformation of metal AM: (a) Bulk block with support structure before
cutting from the building chamber; (b) implant with support structure after removal from the chamber; (¢)
component with protruding feature deformed during the manufacturing.

On the other hand, temporary support structures (e.g. block shell support highlighted by white dash line in
Fig. 1) are generally added beneath the overhangs and simultaneously manufactured with the component.
The support structure is used to provide mechanical fixture and heat dissipation channels to ensure
manufacturability. Since the support structure is temporary and post-removed, it normally consists of
uniform shell or scaffold structures [7] with lots of pores to reduce manufacturing time and costs. AM
practitioners are typically designing support structures based on experiences to prevent



distortion/delamination caused by residual stresses, e.g., to adjust orientation or configuration of the support
structure. It may be easy to design support for simple components, but for complex components, the
empirical approach may not work, and many design iterations need to be taken to obtain a support structure
that can ensure the entire build is manufacturable. This not only lengths the development of the product,
but also leads to a waste of time and materials. Thus, an efficient physics-based design method needs to be
developed to automatically optimize the design of support structure to ensure manufacturability of the
component and minimize the mass of sacrificial support structure simultaneously.

There is a number of researches existing in the literature on support structure design for AM techniques.
Allen et al. [8] proposed a methodology to optimize orientation of an object to minimize the support
structure. Frank et al. [9] introduced an expert system-based selection strategy to find the preferred direction
for rapid prototyping processes. Mumtaz et al. [10] depicted limitations of metal AM for the use of support
structure and proposed some ways to eliminate support structure. Strano et al. [11] proposed a method to
design support structure through the optimization of built orientation and cellular structure. Hussein et al.
[7] applied the lattice structure with very low volume fraction for the design of support structure for DMLS
technique. Calignano [12] gave an overview about the production of overhanging structures and applied
Taguchi method to find the optimized orientation to minimize the amount of support surfaces. Recently,
Vaidya et al. [13] presented an approach for minimizing support structures with space cellular infill in
conjunction with Dijkstra’s shortest path method to generate optimized support structure. Paul et al.[14]
presented a voxel-based approach to minimize the support volume while minimizing the cylindricity and
flatness errors of the part features. Das et al. [15, 16] proposed a method to minimize part errors in AM
through the selection of build orientation for optimal support structures. However, most of these previous
researches focus on geometric perspective for support structure design. Few works have been developed to
treat residual stress of components manufactured by metal AM to guarantee the manufacturability through
the optimization of support structure.

The aim of this work is to experimentally explore the feasibility of a support structure optimization
framework for part-scale applications, in order to address the residual stress introduced build failure and
guarantee the manufacturability. Instead of conducting detailed thermomechanical analysis, a modified
inherent strain method [17, 18] is employed to calculate residual stress and simplify the computationally
expensive process into a single-step structural analysis. This significantly reduces the computational cost
from hours to minutes or seconds and makes it possible to use physics-based optimization for support
structure design to reduce the maximum residual stress. The simulation is based on the hypothesis that the
component is completely manufactured without residual stress release due to cracking or delamination. As
the layer-by-layer manufacturing process progresses, larger amount of residual stress is accumulated in the
component [19-21], and thus the maximum residual stress obtained from the as-built part is larger than any
intermediate states. This ensures that the proposed optimization method is effective in preventing build
failures illustrated in Fig. 1. On the other hand, delamination may also emerge in the new build layer due
to the undesirably higher stress generated by transient heating and cooling [19, 20] cycle. The build failure
due to this transient peak stress can be addressed by adjusting dwell time [19] and is left for the future work.
To circumvent the error-prone mesh generation process, voxel-based mesh generation [14-16]is employed
to discretize the domain of built part and support structure while a fictitious domain method (i.e. finite cell
method) is employed to implement inherent strain method for residual stress calculation. In addition, lattice
structure topology optimization method (LSTO) [22-25]is used to minimize volume of support structure
under maximum stress constraint. By restricting the maximum stress under the yield strength, the
introduced build failure is eliminated and deformation due to the residual stress is deceased. This not only
reduces weight of sacrificial support structure but ensure the manufacturability of the component as well.
The self-supporting and open-cell nature makes lattice structure a natural choice for support structure design,



since it can be printed out without support structure and also allows the trapped powder to be easily removed.
To the best knowledge of the authors, this is the first work to apply topology optimization to design support
structure for addressing build failure in powder-bed metal AM and experimentally study the performance.

The remaining content of this work is organized as follows. In Section 2, we describe the proposed support
structure optimization framework for metal AM, which includes implementation of modified inherent strain
method and LSTO method for support structure. Section 3 depicts the experimental study for two examples:
one is the classic double cantilever beam while the other is a practical implant. Section 4 makes a conclusion
for the examination of LSTO method for support structure design.

2. Design Optimization Methodology
2.1 Problem Formulation

The mathematical problem of optimizing the design of support structure for metal AM is described below.
As shown in Fig. 2, suppose an AM part were to be built on a build tray with support structure underneath
the long overhang. The entire domain can be divided into three sub domains: Build tray ,, support
structure ()¢, and bulk component ().. The bulk component is anchored onto the build tray by support
structure. The goal of the optimization is to design the material distribution in support structure domain (1
to prevent residual stress induced build failure. Support structure has been widely used in metal AM
techniques to provide mechanical fixture and heat dissipation to ensure manufacturability and is removed
as sacrificial materials once AM builds are completed. Hence a reasonable objective for support design
optimization is to minimize the overall mass of sacrificial support structure while constraining the
maximum stress in domain (5 and (). under the allowable stress. Note that the mass of the support domain
will not completely vanish after optimization using the proposed objective. This is because the support
domain connects the bulk component a build tray, and the bulk component is subjected to body loading of
inherent strains, which remain unchanged during optimization. Hence the material distribution would tend
to decrease from very high density near the bulk component toward lower density away from it. To reduce
computation time in this optimization problem, we only consider the residual stress distribution after the
entire part is done printing. The optimization is performed to iteratively update the density distribution in
the support domain (4 until the stress constraint in domain (; + €. is satisfied.

M Bulk component Q.
[] Support structure Qg
[ Building tray 0,

Printing direction

Fig. 2. Domain of an AM build

Based on the above discussion, the optimization problem for support structure design can be expressed
mathematically as:

minimize m(p) = No=1 Peve (1
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where m(p) is the objective function of the optimization problem and represents the total mass of the
support structure. K, U and F™ in the equilibrium equation denote the stiffness matrix, global displacement
and prescribed loading, respectively. p, is the relative density of element e, and v, is the corresponding
elemental volume. The design variable p, is limited by the upper bound p and lower bound p. C = C(p)

represents elastic model of the support structure. o, denotes the maximum stress of the entire domain,
and N is the number of elements in the support domain. Note that the stress measure in this work is given
by the modified Hill criterion [26]. Without losing generality, the stress illustrated below is normalized by
material’s yield strength, which means that when the value of stress is larger than 1, plastic deformation
occurs in the material, while when the stress is smaller than 1, the stress state is elastic. To solve the
optimization problem in Eq. (1-2), the P-norm stress [27-30] is applied for the maximum residual stress
constraint, the sensitivity analysis is performed for both objective function, and its constraints, and the
Method of Moving Asymptotes (MMA) [31, 32] is employed to obtain the optimal design. Appendix please
find the detailed derivation for P-norm stress measure and sensitivity analysis.

2.2 Inherent Strain Method for Residual Stress Estimation

The numerical solution of the optimization problem described in Eq. (1-2) usually needs hundreds of
iterations to reach convergence and part-scale residual stress analysis is required in each iteration. The most
accurate way for residual stress calculation is to employ a high-fidelity numerical model where the real
powder melting, and solidification is simulated in detail according to the printing strategy. The accuracy of
such detailed simulation method has been verified for prediction of temperature and deformation fields, as
well as grain growth [33-37]. However, for part-scale problem, it is impractical to simulate residual stress
by performing detailed process simulation (i.e. transient coupled thermomechanical simulation), which may
take tens of hours for a simple geometry and make iterative optimization impossible. To circumvent the
very high computational cost, the inherent strain method [38, 39] will be employed to efficiently compute
residual stress/distortion for powder bed metal AM. The inherent strain method is originally proposed to
efficiently simulate residual stress inherent in welding process. Due to the similarity of welding process
with AM, the extension of the inherent strain method to rapidly simulate the residual stress distribution in
AM part has drawn remarkable interest [40-45]. Keller et al. [42] proposed a multi-scale approach to extract
inherent strain tensor components and implemented the inherent strain method by pure mechanical
simulation. Good agreement was observed between computed distortion and experimental measure in
Keller’s [42] work. Li et al. [46] developed a multi-scale finite element model for fast prediction of
distortion of parts manufactured by selective laser melting (SLM) process; however, no details were given
on how to extract the inherent strain tensor in this work. Recently, Bugatti et al. [47] developed a finite
element AM simulation based on the inherent strain method and discussed the limitations and strengths of
inherent strain method for prediction of residual deformation in metal AM through experiments. Liang et
al. [17, 43] proposed a modified inherent strain method for laser engineered net shaping (LENS) and
conducted experiments to validate the predicted residual distortion. Setien et al. [48] presented an empirical
methodology to determine inherent strains and validated it using the twin-cantilever beam made in Ti6Al4V
alloy.



The prominent characterization of inherent strain method is that the computationally expensive thermo-
mechanical simulation is replaced by a single static mechanical analysis. This makes it possible to conduct
physics-based iterative optimization to systematically eliminate residual stress induced build failure. In this
work, the method developed in Ref. [17, 42, 43, 48] is employed to extract the inherent strain vectors for
powder-bed metal AM. With regard the implementation, the inherent strains are applied to both the support
structure and bulk component as an equivalent body loading and a static analysis is performed to simulate
residual stress in the AM build. Once the stress distribution is obtained, the optimization problem described
in Eq. (1-2) is solved iteratively to reduce volume of support structure until the maximum residual stress
constrain is satisfied.

2.3 Lattice Structure Topology Optimization for Support Structure Design

Another barrier concerning the support design optimization problem stated in Eq. (1-2) is that designs
obtained by conventional topology optimization (TO) may include a large number of long overhangs and
closed-void structures [49], which lead to manufacturability issues and trapped powders. To address these
issues, graded lattice structure topology optimization (LSTO) is employed to design the support structure
instead of conventional TO. The key feature of lattice structure is its self-supporting and open-celled nature
when the bridge span and strut size are chosen appropriately for the AM process and material of interest.
This makes lattice structure ideal for support structure design, since it can be printed out without support
structure while the trapped powder can be easily removed. The LSTO method utilizes homogenized model
to gain efficiency and has been applied to determine the layout of graded lattice structure for various
problems, such as minimum compliance [25, 50], natural frequency [51], and heat conduction [23, 52]. As
shown in Fig. 3, for a given component (illustrated in Fig. 3(a)), an overhang detection method [14, 15] is
first applied to obtain support structure domain ()¢ for optimization. Instead of infilling the support structure
domain with block shell support, variable-density lattice structure (see Fig. 3(b)) obtained from LSTO is
used to provide mechanical fixture, dissipate heat, as well as ensure manufacturability. The details of the
constrained stress optimization algorithm under the LSTO framework can be found in Ref. [53, 54] for
interested readers. With regard overhang detection, this work categorizes overhang features into three
groups: facet overhang, edge overhang, and point overhang, in order to determine the critical support
structure domain accurately. For instance, in Fig. 3(d), the overhang edges on the bottom surface of the
oriented component are automatically detected, and the corresponding lattice structure supports are
generated after optimization.
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Fig. 3. Support structure design by the LSTO method: (a) Component, (b) component with bulk support,
and (c) component with optimized variable-density lattice structure support, (d) bottom view of the
optimized support structure for the component.

2.4 Finite Cell method for Implementation of Modified Inherent Strain Method

The unique feature of AM technology is its ability to manufacture geometrically complex components
naturally with no additional tooling required. Nevertheless, mesh generation for such complex component
and its support structure and build tray is computationally expensive and often error-prone. To simplify the
mesh generation for complex geometry, the finite cell method (FCM) is employed to perform inherent
strain-based analysis to obtain residual stress distribution for an AM build. The FCM, as a type of fictitious
domain method, was first proposed by Parvizian et al [55] in 2007. The underlying principle of FCM [55-
57] is to immerse the material domain of interest into a larger one, and a favorable Cartesian grid can thus
be generated to avoid time-consuming and error-prone mesh generation. It has been successfully applied to
solve a wide-range of problems, such as non-linear analysis [58], transport problem in porous media [59],
biomechanical analysis [56, 60], etc.
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Fig. 4. The domain Q in powder bed AM is embedded in a voxel-based domain Q,: (a) Domain of printed
component, which is the combination by three subdomains: bulk component domain )., support structure
domain (), and build tray domain (};; (b) fictitious domain, and (c) embedding domain (1.

In the context of inherent strain analysis of an AM build, the domain of the build shown in Fig. 2 is
embedded into a larger domain based on FCM, and its boundary conditions are depicted in Fig. 4. The
domain of computation £ is the combination of three subdomains: Bulk component domain €., support
structure domain ), and build tray domain Q,, and Q = Q. + Qg + Q.. The physical domain Q is
embedded in a fictitious domain ), with the boundary of Q.. The embedded boundary of Q within Q,
can be described as ' = 9Q (3Q N 3Q,). For metal AM process, the bottom of build tray is fixed in place,
and hence, the Dirichlet boundary u# = 0 in domain () is directly extended to the embedded domain (.. In
the implementation, elements in the fictitious domain .\ is treated as a virtual material, whose elastic
constants are set to small values to ensure robustness of the calculation, while for elements within the
component domain (. and support structure domain (), inherent strain vector is assigned as a body force
in the analysis. It is noted that voxelization method proposed in Ref. [14] is employed to discretize the
domains and generate the desired Cartesian mesh for FCM analysis.

Once the optimization based on FCM method is finished and the relative density is obtained, lattice
reconstruction is performed to convert the density profile obtained from optimization into graded lattice
structures. Figure 5 illustrates the reconstruction process for the support structure design. As can be seen in
Fig. 5(b), for a given component, the voxel-based mesh is used to discretize the part and its support structure.
The optimization problem proposed in Eq. (1-2) is solved by the method of moving asymptotes (MMA)
[32] in order to optimize the relative density distribution in the support domain, refer to Fig. 5(c). After
optimization, the relative density of the support structure is converted into variable-density lattice structure
and combined with the solid component, which is then realized by AM.
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Fig. 5. Reconstruction process for a practical component. (a) Component for AM (b) voxel-based mesh
for FCM analysis (c) optimal density profile of support domain (d) CAD model of component and
optimal lattice support.

3. Numerical Example and Experimental Validation

The material of interest in this work is Ti6Al4V, which has Young’s modulus of 110 GPa, Poisson’s ratio
of 0.3, and yield strength of 1140 MPa. As mentioned in Section 2, residual stresses described in the
following discussions are normalized by yield strength in order to make it general for different materials.
The inherent strain vector of Ti6Al4V used in this work is (-0.012, -0.012, 0.01), which is obtained using
an in-house multiscale modeling code for laser powder bed metal AM based on the works in Refs. [17, 42,
43, 48]. Cubic lattice structure, as shown in Fig. 5, is used as the support material to anchor the solid
component to the build tray. The homogenized elastic and yield models for the cubic lattice structure
obtained in [61] are used to effectively describe its properties as a function of relative density in the support
domain (). The relative density range of the support structure is set to be p = 0.2 and p = 0.95. The

optimization is stopped when the change of volume fraction of the support structure within three successive
iterations is smaller than 1073, while the stress constraint is satisfied. The voxel-based finite element
analysis is implemented using Matlab R2016a.

3.1 Double Cantilever Beam Example

The first example is a classical double cantilever beam widely used as a benchmark to examine the accuracy
of metal AM process simulation. Here, the model is applied to investigate the performance of the proposed
support structure optimization method to prevent residual stress induced failure. The CAD model and voxel-
based mesh for the double cantilever beam are illustrated in Fig. 6. The design domain for the support
structure is the volume immediately under the overhanging beams. As illustrated in the figure, the
dimension of the double cantilever beam is 80 X 20 x 24 mm3. The support domain on each side of the
double cantilever beam is 36 X 20 X 15 mm?3. The optimization aims to minimize support volume and at
the same time restrict the maximum residual stress in the domain Q¢ 4+ Q. under the allowable stress. A
mesh of 49,600 eight-node hexahedral elements of size 1 mm is applied to discretize the entire domain and
solve the optimization problem. As illustrated in Fig. 6(b), the voxels of yellow color are for the support
domain (), blue ones for the solid component ()., and red ones for the substrate ;. The thickness of the
substrate is set to be 8 mm in the simulation. Note that in the simulation for residual stresses, a fixed
boundary condition is subjected to the bottom of the substrate, while inherent strains are assigned to both
the solid component and its support structure. For clarity, only the results in the domains of support structure



Q, and the domain of component (). are plotted and shown in the discussion. The relative density of each
element in the support domain is initially set to 0.9, while the elements in the component domain and
substrate domain remain solid (p = 1) during the optimization.

Double cantilever beam

Double cantilever beam

Fix boundary

(a) (b)

Fig. 6. CAD model and mesh model of double cantilever beam used for validation. (a) CAD model of the
beam (b) voxel-based mesh model.

The optimization results are presented in Fig. 7 including the optimal density distribution, normalized stress
distribution, and also the convergence history of the objective function and the normalized maximum
residual stress. As can be seen in Fig. 7(c), the volume fraction of the support domain changes from 0.9 to
0.412 after 53 iterations (a 54.2% decrease), while the normalized maximum residual stress is decreased
from 1.1 to 0.99, where unity indicates yielding. For the optimization results, the higher densities are mainly
distributed around the upper corners of the beam, while lower densities are found far away from the center
pillar. A number of intermediate densities (i.e. the yellow color area) exist in support domain between the
high-density region and low-density region. The corresponding normalized stress after the optimization is
given in Fig. 7(b). It can be observed that most of the normalized stresses within the support domain are
smaller than 0.8. The larger stresses are distributed at the bottom surface of the center pillar, where the
relative densities remain solid during optimization. The normalized maximum stress of the domain Qg +
Q. are smaller than yield strength, which theoretically ensures manufacturability of the build.
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Fig. 7. Optimization results of the double cantilever beam: (a) Optimal density distribution (b) normalized
residual stress distribution (c) convergence history.

For comparison purpose, the simulation is performed on uniform lattice structure of the same volume
fraction or 0.412. The results are presented in Fig. 8. Compared with the optimal design, the normalized
maximum stress of the uniform design is 1.09, which is larger than yield strength. The largest stresses are
observed at the four bottom corners of the beam and the bottom surface of the center pillar.
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Fig. 8. Simulation result of the design with uniform lattice structure: (a) Density distribution (b)
normalized residual stress distribution.
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To quantify performance of the optimal design, the double cantilever beams with four different support
structures are designed and printed out for deformation measurement and comparison. Figure 9 illustrates
the four different designs: 1) Block shell support from Materialize Magics software (widely used in metal
AM), ii) optimal variable-density lattice structure support, iii) uniform lattice structure support, and iv)
teeth support. The volume fraction of the block shell support is 0.45, while the volume fraction of teeth
support is 0.5.
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Fig. 9. Four different support structure designs for double cantilever beam for comparison purpose: (a)
Shell support from Magic software (b) optimally variable-density lattice structure support (c¢) uniform
lattice structure support, and (d) tooth support.

The four designs were printed out in Ti6AI4V on the same substrate and the photos are shown in Fig. 10.
Due to cracking between support structure and build tray of the block shell style support, the beam is warped
upward, which stops the powder recoater blade and results in a failed build. This demonstrates that the
accumulation of residual stress inherent in the manufacturing process can lead to severe issue. One failed
component can ruin the whole build and cause significant loss in time and costs. The failure not only lengths
production of the component (i.e. designer needs to redesign the part), but also leads to a waste of material
and time.
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Fig. 10. Failed samples of the double cantilever beams printed out for validation: (a) Failed
manufacturing due to large deformation formed by cracks between shell supports from Magic software
and build tray. (b) and (c) Side view of the cracks for the first design.

To avoid build failure, the block shell support design was removed from the build and the remaining three
beams were printed together in Ti6Al4V by the EOS DMLS. As shown in Fig. 11, although cracks are
observed for the teeth support design, the build for the three beams were successful. Compared to the block
shell support and teeth support, both the uniform lattice structure design and optimal lattice structure design
were manufactured without observed cracking. This implies that the open-cell lattice structure can relieve
residual stress effectively and can be used for support structure design for metal AM.
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Fig. 11. Second build for samples of the double cantilever beam printed out by EOS DMLA in Ti6Al4V:
(a) Photos of the three printed out beams for validation; (b) photo of the beam with teeth support (¢) photo
of the beam with optimal lattice structure support (d) photo of the beam with uniform lattice structure
support.

In order to validate the effectiveness of the proposed method, one cantilever beam on either side was created
by separating each from the support structure using a wire-cut EDM machine. The beams deflected upward
as a result of stress relief from the cutting. A 3D scanning device Faro Laser ScanArm V3 (FARO
Technologies) with an accuracy of 0.065 mm was employed to experimentally measure the deformation.
Following scanning, the Geomagic software was used to process the data from the scan. The experimental
apparatus, machined beams, and experimental results are shown in Fig. 12, respectively. The optimized
beam exhibits the smallest deformation compared to the other two designs. The maximum deformation of
the beam with the optimized support is 0.45 mm, while the other two structures have deflections larger than
1 mm. This demonstrates that the proposed method can significantly reduce the residual stresses inherent
in the AM process. The method not only ensures manufacturability of the design (i.e. comparing with the
block style support in Fig. 9), but also considerably enhances the quality of the bulk component (i.e. smaller
deformation).
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Fig. 12. Experimental measurement for the distortion of the beams after cut by electronic beam
machining (EBM): (a) 3D laser scanning device Faro Laser ScanArm V3 made by FARO Technologies
(b) photos of three beams after cut by EBM (c¢) deformation obtained by 3D scanning.

To further examine the performance of the optimized design, full-scale process simulations are performed
on the three models in Fig. 11. The commercial software Simufact Additive v4.0 from MSC Inc. is
employed to simulate residual distortion distribution and residual stress distribution. As shown in Fig. 13,
the three beams are placed on a substrate of dimension 250 X 250 x 30 mm?3. A fixed boundary condition
is subjected to the bottom of the substrate. A voxel-based mesh of element size of 0.4 mm is used to
discretize the design domain for simulation, refer to Fig. 13(b). The material of interest for both the beams
and substrate is Ti6Al4V, which has a Young’s modulus of 110 GPa, yield strength of 1140 MPa, tensile
strength of 1340 MPa, and Poisson’s ratio of 0.3.




Fig. 13. CAD model and mesh for the full-scale simulation: (a) Setup of the beams on the substrate for
simulation (b) voxel mesh for the full-scale simulation.

Figure 14 presents the simulation results containing both the total displacement and residual stress
distribution for the three as-fabricated beams (i.e. before cutting). As illustrated in Fig. 14(a), larger
distortions concentrate at the bottom outer edges of the beams near the support structure. Specifically, the
optimal support design exhibits the smallest deformation (i.e., the maximum distortion is U, 4, = 0.23 mm)
compared to uniform lattice support design, U4, = 0.39 mm, and teeth support design U4, = 0.54 mm.
This is consistent with the observation in Fig. 11 and Fig. 12, in which shrinkage is found at the bottom
side edges of the teeth support design. Figure 14(b) illustrates the residual stress distributions in the as-
fabricated beams. As can be seen, the optimal lattice support design shows significantly smaller residual
stresses than both uniform lattice support design and the teeth support design. Higher stresses are observed
at the bottom areas of the teeth support. These higher stress regions cause delamination in the printed beam
from the substrate, refer to Fig. 11(b). Among the three designs, the optimal lattice support shows the best
overall control of residual stresses. This agrees well with the observation from the experimental
measurement and proves that the proposed methodology is efficient in constraining residual stresses in
components manufactured by powder-bed metal AM.
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Fig. 14. Full-scale simulation results of the beams before cutting: (a) displacement distribution of the
beams and (b) residual stress distribution of the beams.

3.2 Hip Implant Example

The second case is a typical hip implant used for bone replacement. The CAD model and dimension of the
hip implant is shown in Fig. 15(a). The design envelope for the implant is 120 X 35 X 16 mm?3. There are
several bolt holes along the length of the implant used to fix the implant to human bone. The hip implant
with the block style support structure was printed using the EOS M290 DMLS system in Ti6Al4V. However,
as shown in Fig. 15(c) and (d), cracks and delamination from the build tray occurred during the AM process
due to residual stress within the support structure and solid component. The cracking and delamination
occurred certainly caused larger deformation of the build than otherwise, but they were not severe enough
to cause a build failure. Another issue observed from this build is that the block shell style support structure
trapped most of the powders since it is a closed-cell lattice structure. The trapped powders are difficult to
remove post-build and lead to almost 100% waste of material in the support domain. On the other hand,



for open-celled lattice structure, the trapped powder can be easily removed and recycled for the next build,
which results in much material and cost savings.

T

shell support

-

(c) (d)

Fig. 15. CAD model of implant and its manufacturing in Ti6Al4V by EOS DMLS with shell support: (a)
CAD model and dimension, (b) printed implant after cutting off from build tray, (c) left view of implant
before cutting from the substrate, and (d) front view of implant before cutting from build tray.

In this case, the proposed methodology is employed to optimize the support structure for the hip implant to
ensure a successful build. In particular, we use the optimization algorithm for the implant built in three
different orientations, since different build orientations may lead to less support region and thus less effort
for post-machining. As shown in Fig. 16, the implant is rotated about the y-axis by angles of 0°, 45°, and
90°, respectively, and is voxelized for both the part and its relevant support generated by the overhang
detection proposed in Section 2. A uniform voxel-based mesh consisting of element size of 1 mm is
employed to discretize the entire domain including the solid component, the support structure and the build
tray. The thickness of the build tray here is identical to the former case, and the value is 8 mm, while the
width and length of the base plate are determined by the bounding box of the part. The numbers of eight-
node hexahedral elements used for the simulations are 97,329 for the orientation of 0°, 93,778 for 45°, and
75,607 for 90°, respectively; refer to Fig. 16(c), (f) and (i). In the simulation, the bottom surface of the base
plate is fixed while the inherent strains are assigned to both the support structure domain (s and bulk
component domain ). The highlighted region in Fig. 16(a), (d) and (g) are the detected overhang features,
while the yellow voxels in Fig. 16(b), (e) and (h) are the corresponding detected overhang voxels. The
support volumes of these three orientations are computed by summing the number of support voxel to be:
1.602 x 10* mm3, 1.064 x 10* mm3and 2.523 x 10* mm3, respectively. It can be seen when the
implant is rotated by an angle of 45°, the support volume is decreased by 5.38 X 103 mm? or 33.6% of the
0° angle case and by 1.459 X 10* mm?3 or 57.62% of the 90° case. This is because for angle 45°, the major
detected overhangs are edge overhangs, and most of the facets at that angle satisfy the critical overhang
requirement (i.e. the included angle by building direction is larger than 45°). This implies that the build
orientation plays an important role in the design of support structure. For simplicity, only the results contain
the distribution in domains of g + (). are plotted in the following discussion.
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Fig. 16. Hip implant of different orientations: (a-c) STL file, voxelized part and Cartesian mesh for implant
rotated by angle of 0°; (d-f) STL file, voxelized part and Cartesian mesh for implant rotated by angle of
45°; (g-1) STL file, voxelized part and Cartesian mesh for implant rotated by angle of 90°.

Table 1 Initial state of the optimization

Orientation 0° Orientation 45° Orientation 90°
Support volume ( mm?) 1.602 x 10* 1.064 x 10* 2.523 x 10*
Normalllzed maximum 31 242 212
residual stress

The orientation of the component can also influence the stress distribution, especially the location of the
stress concentration and maximum residual stress. As shown in Fig. 17, when the volume fraction of the
support structure is set to 0.9, the large stresses mainly distribute at the interface between support structure
and substrate, e.g., at the lower left and right corners of the three designs. These are the areas where cracking
initiate and grow. Table 1 tabulates the support volume and the normalized maximum residual stress for
the three cases. It can be seen that the part with no rotation (angle of 0°) has the largest normalized
maximum stress, while the case with rotation angle of 90° case has the smallest value. This indicates that
the orientation also has great influence on the stress distribution and magnitude of the maximum stress. The
aim of this example is to explore the performance of the proposed methodology for the implant with
different orientations.

(@) (b



Fig. 17. Normalized residual stress distribution of hip implant with volume fraction of 0.9: (a) Oriented
by angle of 0°, (b) oriented by angle of 45° and (¢) oriented by angle of 90°.

The optimization results including the normalized stress profile, and relative density profile are given in
Fig. 18. Table 2 tabulates the corresponding optimization results. For the 0° angle case, the volume fraction
of the support structure converges from 0.9 to 0.41 after 60 iterations, and the normalized maximum residual
stress is decreased to 0.82 from 3.1. For the 45° angle case, the volume fraction of the support structure is
reduced to 0.36, and the normalized maximum residual stress is decreased to 0.91 after 73 iterations. In 64
iterations, the volume fraction for the final case of 90° angle converges to 0.46, and the normalized
maximum stress is decreased to 0.81. The normalized maximum residual stresses in these three cases are
optimized to below the yield strength and thus satisfy the imposed constraints after optimization.

(b)

(d) (e) (f) e

Fig. 18. Optimization results of the three orientations for hip implant: (a-c) Normalized residual stress
distribution of the implant rotated by angle of 0°, 45° and 90°; (d-f) optimal density distribution of the
implant rotated by angle of 0°, 45° and 90°.

Table 2 Optimization results of hip implant oriented by different degrees

Orientation 0° Orientation 45° Orientation 90°
Volume fraction 0.41 0.36 0.46
Normal.lzed maximum 082 0.91 0.81
residual stress

The optimized densities shown in Fig. 18(d-f) are used to reconstruct the corresponding variable-density
lattice structures, as illustrated in Fig. 19 in two different views. The contact areas between the component
surface and support structure vary significantly as the implant is rotated at various angles. The angle of 45°
exhibits the smallest contact area, which is consistent with the support volume calculated given in Table 1.
The contact areas influence the cost of post-machining. Thus, among these three support designs, the
orientation of 45° may require lower cost for post-machining.
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Fig. 19. Reconstruction of the optimal support structure design using variable-density lattice structure (a-
¢) Home-view of the implant rotated by angle of 0°, 45°and 90°; (d-f) bottom views of the three support
structure designs.

For validation purpose, the three support structure designs for hip implant are printed out in Ti6Al4V and
the photos are shown in Fig. 20. Compared with the un-optimized design shown in Fig. 15, the designs are
successfully printed without obvious cracks. This demonstrates the effectiveness of the proposed
methodology in constraining the residual stresses in an AM build. It also implies that the optimization
framework can be efficiently employed for components with predefined orientations.

(b)

Fig. 20. Photos of the (a) printed implants at three different orientations with optimized graded lattice
supports, (b) implant rotated by angle of 0° with its optimized support, (¢) implant rotated by angle of 45°
with its optimized support, and (d) implant rotated by angle of 90° with its optimized support. Note that
there is no obvious cracking in all the designs.



4. Conclusion

The aim of this work is to experimentally examine the feasibility of part-scale optimization framework for
support structure design, in order to address residual stress accumulation induced build failure in metal AM.
The inherent strain method is employed to efficiently predict residual stress introduced by the powder
melting and solidification process. The complex thermomechanical process, which normally requires very
high computational cost, is simplified into a single-step static equilibrium analysis. This makes it possible
to conduct optimization to iteratively solve the design problem involving residual stress. For the support
structure, lattice structure is used as the support material due to its self-supporting and open-celled nature.
The graded lattice structure topology optimization framework is proposed to iteratively minimize the
sacrificial support structure under the maximum residual stress constraint. Several numerical examples are
investigated to examine the performance of the optimization method. In the first example, the classical
double cantilever beam structure is used to experimentally investigate the optimal design by comparing
with a typical support design, teeth support design, and uniform lattice support design (same volume
fraction as optimal design). By measuring the deformation after the beams are created by cutting, it is found
that the optimal design can ensure the manufacturability of the design and also significantly reduce the
residual stress (i.e. maximum deformation is reduced from 1.5 mm and 1.1 mm to 0.45 mm). The second
example presents is a hip implant which also suffers from residual stress induced cracking. In that case,
three different orientations are studied using the proposed optimization method and are printed out for
validation. Although it is found that the orientation of the component has a significant influence on both
the stress and support volume, the proposed methodology can optimize the design of support structure.
Though visual inspection, the three designs for the implants are manufactured successfully without
observed cracking. This further demonstrates the methodology can be effectively used to design industrial
components for practical applications.

The optimization method assumes that the part is completely manufactured without cracking and
delamination. This hypothesis ignores potential delamination caused by intermediate higher stress due to
the transient steep thermal gradient. A rigorous study to understand the underlying principle of such build
failure and develop a suitable optimization method to reduce the intermediate higher stress will be
conducted in the future, in order to comprehensively overcome the build failure issue for additive
manufacturing.

Although the proposed methodology can constrain the maximum residual stress and guarantee the
manufacturability of the AM parts, the proposed method has not considered the post-removability of lattice
structured supports by machining. The study for post-removability of the support lies in our future works.
To address this issue, studies could be performed to minimize the support surfaces that are not accessible
by post-machining through build orientation optimization or conduct optimization for support-free design.
Alternatively, another method to remove the support structure is by using dissolvable support technique
[62, 63], which utilizes a self-terminating chemical process to clean the support structure without destroying
the original design. These topics should be explored in the future to take advantage of the simulation-based
optimization to completely solve the issue of manufacturability and support post-removal for current
powder-bed AM techniques.

Acknowledgements

The authors would like to acknowledge the financial support provided by the National Science Foundation
(CMMI-1634261) and free trial license for Additive v4.0 software from Simufact MSC Inc.



[1]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Reference

P. Mercelis and J.-P. Kruth, "Residual stresses in selective laser sintering and selective laser
melting," Rapid Prototyping Journal, vol. 12, pp. 254-265, 2006.

J.-P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers,
"Selective laser melting of iron-based powder," Journal of Materials Processing Technology, vol.
149, pp. 616-622, 2004.

L. Papadakis, A. Loizou, J. Risse, and J. Schrage, "Numerical computation of component shape
distortion manufactured by selective laser melting," Procedia CIRP, vol. 18, pp. 90-95, 2014.

A. E. Patterson, S. L. Messimer, and P. A. Farrington, "Overhanging Features and the
SLM/DMLS Residual Stresses Problem: Review and Future Research Need," Technologies, vol.
5,p- 15,2017.

S. Leuders, M. Thone, A. Riemer, T. Niendorf, T. Troster, H. Richard, et al., "On the mechanical
behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance
and crack growth performance," International Journal of Fatigue, vol. 48, pp. 300-307, 2013.

E. O. t. Olakanmi, R. Cochrane, and K. Dalgarno, "A review on selective laser sintering/melting
(SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties," Progress in
Materials Science, vol. 74, pp. 401-477, 2015.

A. Hussein, L. Hao, C. Yan, R. Everson, and P. Young, "Advanced lattice support structures for
metal additive manufacturing,” Journal of Materials Processing Technology, vol. 213, pp. 1019-
1026, 2013/07// 2013.

S. Allen and D. Dutta, "On the computation of part orientation using support structures in layered
manufacturing," in Proceedings of Solid Freeform Fabrication Symposium, University of Texas at
Austin, Austin, TX, June, 1994, pp. 259-269.

D. Frank and G. Fadel, "Expert system-based selection of the preferred direction of build for
rapid prototyping processes," Journal of Intelligent Manufacturing, vol. 6, pp. 339-345, 1995.

K. Mumtaz, P. Vora, and N. Hopkinson, "A method to eliminate anchors/supports from directly
laser melted metal powder bed processes," in Proc. Solid Freeform Fabrication Symposium,
2011, pp. 55-64.

G. Strano, L. Hao, R. Everson, and K. Evans, "A new approach to the design and optimisation of
support structures in additive manufacturing," The International Journal of Advanced
Manufacturing Technology, vol. 66, pp. 1247-1254, 2013.

F. Calignano, "Design optimization of supports for overhanging structures in aluminum and
titanium alloys by selective laser melting," Materials & Design, vol. 64, pp. 203-213, 2014.

R. Vaidya and S. Anand, "Optimum Support Structure Generation for Additive Manufacturing
Using Unit Cell Structures and Support Removal Constraint," Procedia Manufacturing, vol. 5,
pp- 1043-1059, 2016.

R. Paul and S. Anand, "Optimization of layered manufacturing process for reducing form errors
with minimal support structures," Journal of Manufacturing Systems, vol. 36, pp. 231-243, 2015.
P. Das, K. Mhapsekar, S. Chowdhury, R. Samant, and S. Anand, "Selection of build orientation
for optimal support structures and minimum part errors in additive manufacturing," Computer-
Aided Design and Applications, pp. 1-13, 2017.

P. Das, R. Chandran, R. Samant, and S. Anand, "Optimum part build orientation in additive
manufacturing for minimizing part errors and support structures," Procedia Manufacturing, vol.
1, pp. 343-354, 2015.

X. Liang, L. Cheng, Q. Chen, Q. Yang, and A. C. To, "A modified method for estimating
inherent strains from detailed process simulation for fast residual distortion prediction of single-
walled structures fabricated by directed energy deposition," Additive Manufacturing, vol. 23, pp.
471-486,2018/10/01/ 2018.

Y.-h. R. Tsai, "Rapid and accurate computation of the distance function using grids," Journal of
Computational Physics, vol. 178, pp. 175-195, 2002.



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[36]

E. R. Denlinger, J. C. Heigel, P. Michaleris, and T. A. Palmer, "Effect of inter-layer dwell time
on distortion and residual stress in additive manufacturing of titanium and nickel alloys," Journal
of Materials Processing Technology, vol. 215, pp. 123-131, 2015/01/01/ 2015.

T. Mukherjee, W. Zhang, and T. DebRoy, "An improved prediction of residual stresses and
distortion in additive manufacturing," Computational Materials Science, vol. 126, pp. 360-372,
2017/01/01/ 2017.

T. Mukherjee, J. Zuback, W. Zhang, and T. DebRoy, "Residual stresses and distortion in
additively manufactured compositionally graded and dissimilar joints," Computational Materials
Science, vol. 143, pp. 325-337, 2018.

L. Cheng, J. Liu, X. Liang, and A. C. To, "Coupling lattice structure topology optimization with
design-dependent feature evolution for additive manufactured heat conduction design," Computer
Methods in Applied Mechanics and Engineering, vol. 332, pp. 408-439, 2018/04/15/ 2018.

L. Cheng, J. Liu, and A. C. To, "Concurrent lattice infill with feature evolution optimization for
additive manufactured heat conduction design," Structural and Multidisciplinary Optimization,
January 30 2018.

X. Duan, F. Li, and X. Qin, "Topology optimization of incompressible Navier—Stokes problem by
level set based adaptive mesh method," Computers & Mathematics with Applications, vol. 72, pp.
1131-1141, 2016.

L. Cheng, P. Zhang, E. Biyikli, J. Bai, J. Robbins, and A. To, "Efficient design optimization of
variable-density cellular structures for additive manufacturing: theory and experimental
validation," Rapid Prototyping Journal, vol. 23, 2017.

L. Cheng, J. Bai, and A. C. To, "Functionally graded lattice structure topology optimization for
the design of additive manufactured components with stress constraints," Computer Methods in
Applied Mechanics and Engineering, 2018.

M. W. Jones, J. A. Baerentzen, and M. Sramek, "3D distance fields: A survey of techniques and
applications," IEEE Transactions on visualization and Computer Graphics, vol. 12, pp. 581-599,
2006.

E. Holmberg, B. Torstenfelt, and A. Klarbring, "Stress constrained topology optimization,"
Structural and Multidisciplinary Optimization, vol. 48, pp. 33-47, 2013.

J. Paris, F. Navarrina, I. Colominas, and M. Casteleiro, "Block aggregation of stress constraints in
topology optimization of structures," Advances in Engineering Software, vol. 41, pp. 433-441,
2010.

A. Sharma and K. Maute, "Stress-based topology optimization using spatial gradient stabilized
XFEM," Structural and Multidisciplinary Optimization, October 24 2017.

K. Svanberg, "MMA and GCMMA, versions September 2007," Optimization and Systems
Theory, 2007.

K. Svanberg, "The method of moving asymptotes—a new method for structural optimization,"
International journal for numerical methods in engineering, vol. 24, pp. 359-373, 1987.

Q. Yang, P. Zhang, L. Cheng, Z. Min, M. Chyu, and A. C. To, "Finite element modeling and
validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive
manufacturing," Additive Manufacturing, vol. 12, pp. 169-177, 2016.

W. Yan, S. Lin, O. L. Kafka, Y. Lian, C. Yu, Z. Liu, et al., "Data-driven multi-scale multi-
physics models to derive process—structure—property relationships for additive manufacturing,”
Computational Mechanics, pp. 1-21, 2018.

B. Schoinochoritis, D. Chantzis, and K. Salonitis, "Simulation of metallic powder bed additive
manufacturing processes with the finite element method: A critical review," Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 231, pp.
96-117,2017.

M. Masoomi, S. M. Thompson, and N. Shamsaei, "Laser powder bed fusion of Ti-6Al-4V parts:
Thermal modeling and mechanical implications," International Journal of Machine Tools and
Manufacture, vol. 118-119, pp. 73-90, 2017/08/01/ 2017.



[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[49]

[50]

[51]

[52]

[53]

[54]

S. Shrestha and K. Chou, "A build surface study of Powder-Bed Electron Beam Additive
Manufacturing by 3D thermo-fluid simulation and white-light interferometry," International
Journal of Machine Tools and Manufacture, vol. 121, pp. 37-49, 2017/10/01/ 2017.

H. Murakawa, D. Deng, N. Ma, and J. Wang, "Applications of inherent strain and interface
element to simulation of welding deformation in thin plate structures," Computational Materials
Science, vol. 51, pp. 43-52, 2012.

M. Yuan and Y. Ueda, "Prediction of residual stresses in welded T-and I-joints using inherent
strains," Journal of engineering materials and technology, vol. 118, pp. 229-234, 1996.

S. Afazov, W. A. Denmark, B. L. Toralles, A. Holloway, and A. Yaghi, "Distortion prediction
and compensation in selective laser melting," Additive Manufacturing, vol. 17, pp. 15-22,2017.
N. Ma, K. Nakacho, T. Ohta, N. Ogawa, A. Mackawa, H. Huang, et al., "Inherent Strain Method
for Residual Stress Measurement and Welding Distortion Prediction,”" in ASME 2016 35th
International Conference on Ocean, Offshore and Arctic Engineering, 2016, pp. VO09T13A001-
V009T13A001.

N. Keller and V. Ploshikhin, "New method for fast predictions of residual stress and distortion of
AM parts."

J. Luo, Z. Luo, L. Chen, L. Tong, and M. Y. Wang, "A semi-implicit level set method for
structural shape and topology optimization," Journal of Computational Physics, vol. 227, pp.
5561-5581, 2008/05/10/ 2008.

E. Salvati, A. Lunt, S. Ying, T. Sui, H. Zhang, C. Heason, ef al., "Eigenstrain reconstruction of
residual strains in an additively manufactured and shot peened nickel superalloy compressor
blade," Computer Methods in Applied Mechanics and Engineering, vol. 320, pp. 335-351, 2017.
M. Fransen, "Eigenstrain reconstruction of residual stresses induced by selective laser melting,"
2016.

L. Cheng, X. Liang, E. Belski, X. Wang, J. M. Sietins, S. Ludwick, et al., "Natural Frequency
Optimization of Variable-Density Additive Manufactured Lattice Structure: Theory and
Experimental Validation," Journal of Manufacturing Science and Engineering, vol. 140, p.
105002, 2018.

C. Li, C. Fu, Y. Guo, and F. Fang, "Fast prediction and validation of part distortion in selective
laser melting," Procedia Manufacturing, vol. 1, pp. 355-365, 2015.

I. Setien, M. Chiumenti, S. van der Veen, M. San Sebastian, F. Garciandia, and A. Echeverria,
"Empirical methodology to determine inherent strains in additive manufacturing," Computers &
Mathematics with Applications, 2018.

T. E. Johnson and A. T. Gaynor, "Three-dimensional Projection-based Topology Optimization
for Prescribed-angle Self-Supporting Additively Manufactured Structures," Additive
Manufacturing, 2018.

L. Cheng, P. Zhang, E. Biyikli, J. Bai, S. Pilz, and A. C. To, "Integration of Topology
Optimization with Efficient Design of Additive Manufactured Cellular Structures," 2015.

L. Cheng, X. Liang, E. Belski, X. Wang, J. M. Sietins, S. Ludwick, ef al., "Natural Frequency
Optimization of Variable-Density Additively Manufactured Lattice Structure: Theory and
Experimental Validation," Journal of Manufacturing Science and Engineering, vol. In process,
2017.

L. Cheng, J. Liu, X. Liang, and A. C. To, "Coupling Lattice Structure Topology Optimization
with Design-Dependent Feature Evolution for Additive Manufactured Heat Conduction Design "
Computer Methods in Applied Mechanics and Engineering, 2018.

G. Barozzi and G. Pagliarini, "A method to solve conjugate heat transfer problems: the case of
fully developed laminar flow in a pipe," Journal of heat transfer, vol. 107, pp. 77-83, 1985.

M. Strantza, B. Vrancken, M. B. Prime, C. Truman, M. Rombouts, D. W. Brown, et al.,
"Directional and oscillating residual stress on the mesoscale in additively manufactured Ti-6Al-
4V," Acta Materialia, 2019/01/30/ 2019.



[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

J. Parvizian, A. Diister, and E. Rank, "Finite cell method," Computational Mechanics, vol. 41, pp.
121-133, 2007.

M. Ruess, D. Tal, N. Trabelsi, Z. Yosibash, and E. Rank, "The finite cell method for bone
simulations: verification and validation," Biomechanics and modeling in mechanobiology, vol.
11, pp. 425-437, 2012.

A. Diister, J. Parvizian, Z. Yang, and E. Rank, "The finite cell method for three-dimensional
problems of solid mechanics," Computer methods in applied mechanics and engineering, vol.
197, pp. 3768-3782, 2008.

D. Schillinger, A. Diister, and E. Rank, "The hp - d - adaptive finite cell method for
geometrically nonlinear problems of solid mechanics," International Journal for Numerical
Methods in Engineering, vol. 89, pp. 1171-1202, 2012.

Q. Cai, S. Kollmannsberger, R.-P. Mundani, and E. Rank, "The finite cell method for solute
transport problems in porous media," in Proceedings of the international conference on finite
elements in flow problems, 2011.

Z. Yang, M. Ruess, S. Kollmannsberger, A. Dister, and E. Rank, "An efficient integration

technique for the voxel - based finite cell method," International Journal for Numerical Methods
in Engineering, vol. 91, pp. 457-471, 2012.

M. Langelaar, "Combined optimization of part topology, support structure layout and build
orientation for additive manufacturing," Structural and Multidisciplinary Optimization, pp. 1-20,
2018.

H. Zhao, "A fast sweeping method for eikonal equations," Mathematics of computation, vol. 74,
pp- 603-627, 2005.

R. Luciano and J. Willis, "Boundary-layer corrections for stress and strain fields in randomly
heterogeneous materials," Journal of the Mechanics and Physics of Solids, vol. 51, pp. 1075-
1088, 2003.

J. D. Deaton and R. V. Grandhi, "Stress-based design of thermal structures via topology
optimization," Structural and Multidisciplinary Optimization, vol. 53, pp. 253-270, 2016.

C. Le, J. Norato, T. Bruns, C. Ha, and D. Tortorelli, "Stress-based topology optimization for
continua," Structural and Multidisciplinary Optimization, vol. 41, pp. 605-620, 2010.

E. Lee, K. A. James, and J. R. Martins, "Stress-constrained topology optimization with design-
dependent loading," Structural and Multidisciplinary Optimization, vol. 46, pp. 647-661, 2012.
J. D. Deaton and R. V. Grandhi, "Topology optimization of thermal structures with stress
constraints," 2013.

F.J. Ramirez-Gil, M. d. S. G. Tsuzuki, and W. Montealegre-Rubio, "Global finite element matrix
construction based on a CPU-GPU implementation," arXiv preprint arXiv:1501.04784, 2015.

S. Zhang, A. L. Gain, and J. A. Norato, "Stress-based topology optimization with discrete
geometric components," Computer Methods in Applied Mechanics and Engineering, vol. 325, pp.
1-21,2017/10/01/ 2017.

K. Svanberg, "The method of moving a asymptotes--A new method for structural optimization,"
International journal for numberical methods in engineering, 1987.

L. Cheng, J. Bai, and A. C. To, "Functionally graded lattice structure topology optimization for
the design of additive manufactured components with stress constraints," Computer Methods in
Applied Mechanics and Engineering, vol. 344, pp. 334-359, 2019/02/01/ 2019.



Appendix
1. P-norm stress measure
Following the work of [28, 64-67], P-norm stress is applied to approximate the maximum stress measure
of the design domain
Gl = _max (0 )<1 (A1)

using the form of

V= (B, EPF < 1 (A2)
where ¥ denotes the normalized stress of element e, G, is the normalized maximum residual stress, N
represents the total number of elements in finite element analysis (FEA), P is the coefficient factor of P-
norm and applied to control the smoothness of the approximation. When P — oo, formulation in Eq. (A2)
approaches to the maximum stress, while when P = 1, the P-norm value is the average stress. In practical
implementation, since P is a limited value and the control on the actual maximum stress is lacking. Hence,
the adaptive scheme proposed in [65, 68, 69] is applied to Eq. (A2) as

oV < 9! (A3)
where 9 is calculated iteratively, and I (I = 1) represents the iteration number.
(O'PN )I

where ¢/ € (0,1]. When ¢/ = 1, Eq. (A3) is equal to Eq. (A1), the optimization converges to the optimal

solution. In the optimization, ¢/ = 0.5, when 9/ oscillates between two successive iterations, otherwise
I —

¢ =1.

2. Sensitivity Analysis

The optimization problem for designing support structure proposed in Eq. (1-2) is solved by the Method of
Moving Asymptotes (MMA) proposed by Svanberg [70], in which the first order derivative of the objective
function and constraints are required. The following gives the sensitivity analysis of objective function and
stress constraints. The first derivative of the objective function is

a’;’;f) =, (AS)
The first order derivative of stress constraint to relative density in Eq. (2) is
9PN _ oy 90N o5l (A6)
dpe e=1 95l ap,
The first term in the right-hand side of Eq. (A6) can be calculated based on the P-norm proposed in [27] as:
= @@ EF ) @) e-D (A7)

The second derivative in the right-hand s1de of Eq. (A2) can be calculated as:

1
_ a{[(z—eein)TR(z—eein)]f} . in in
o - o =2 [(F-es) ' R(E-e2™)] softeer )pﬂj(g ")
—%(2(2 e A 4 (5 o)’ 2 (s—ee‘")) (A8)

where R is the tensor used to formulate yield strength of lattice structure by using the constitutive model
and the yield strength tensor, which can be formulated as R = €T MC and M represents the plastic constants
matrix, and € denotes the constitutive model. More details about these two matrixes refer to [71]. Since the
macroscopic strain € can be expressed as € = BU, where B denotes the strain-displacement matrix while
U is the displacement vector. Thus, the first term in Eq. (A8) can be expressed as:

. d(z — eg™ d(BU) 0de
Z(E—ES”L)TR%z 2(e - ee) (% (BO) - )
e e
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=2(z—es") R(B -~ —e™) (A9)
While the second term can be expressed as:
(- esm) (s —ee) = (- esm) (ZCTM +CT al;ﬂ ) (z—ee™)  (Al0)
Substituting Eq. (A9) and Eq. (AlO) into Eq. (A8) yields
ack 1 au  ode . aC oM _ .
= _—(2(z-es) ]R( - —sm) +(z—esn)’ ( 2CTM — +C" c) (z — esm)
0pe 20, 0pe  0pe 0pe 0pe
(A11)
Substituting Eq. (A7) and Eq. (A11) into Eq. (A6), the sensitivity of the P-norm stress can be computed
as:

a;:eN - i (Zj_l(ﬁf)P)(%_l) (GH)P-D

e=1 -

au dJde .
_ szn)
0pe  0pe

267 (2(s — egm) R(

g cem\ [ 2€T E a_M T _ ooin
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1—1

S| ) et cern (o e

e=1
N 1_1 —
1 N . ac oM
+—2 (Z )P) G PD(z - egin)’ 2CTM—— + cT—c (s — eg")
2 4 o= dp, 0pe
e:
(A12)
Based on the equilibrium equation, the derivative of ;TU can be calculated using the equilibrium equation
as:
OV _ g-19F" g 9K
0pe B 0pe K Ope (A13)
Substituting Eq (A13) into the first term of Eq. (A12), one can obtain
acPN H\P\(3~1) (=H\(P-2) in\T 1 (OF™ 9K L\ Be _ipn
o L@@ F @ e (e - o) R (Br (2 - Ky) - 2 gin)

[(2 _ (6" E ) gy - 2(g - egin)’ (cTMg+ET§%“E) (E—esi")] (A14)

An adj oint variable 4 is introduced to solve the sensitivity of the first term, and its definition is

1L EAL @)@ D) (e - ee) RBK? (A1)
The adjoint variable /1 can thus be computed by solving the following adjoint equation
KA = S, (00 )N ) ) D RB(e — ectn) (A16)

Once the adjoint variable is obtained, the sensitivity of the P-norm stress constraint in Eq. (A14) yields

aoPN AT (aFi" 9K )
0pe 0pe

0pe

[(Z —1(ad )P)(__l)(aH)(P 2(g - egin)’ [R ]

+§2’gzl [(z NG )P)(__l)(aH)(P (g - esm) (chM +cT )(s—esm)] (A17)

The sensitivities in Eqs. (A5) and (A17) are implemented in the MMA method and are used for the lattice
structure topology optimization for support structure design.



