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Abstract: Metal additive manufacturing (AM) as an emerging manufacturing technique has been gradually 

accepted to manufacture end-use components. However, one of the most critical issues preventing its broad 

applications is build failure resulting from residual stress accumulation in manufacturing process. The goal 

of this work is to investigate the feasibility of using topology optimization to design support structure to 

mitigate residual stress induced build failure. To make topology optimization computationally tractable, the 

inherent strain method is employed to perform fast prediction of residual stress in an AM build.  Graded 

lattice structure optimization is utilized to design the support structure due to the open-celled and self-

supporting nature of periodic lattice structure.  The objective for the optimization is to minimize the mass 

of sacrificial support structure under stress constraint.  By limiting the maximum stress under the yield 

strength, cracking resulting from residual stress can be prevented.  To show the feasibility of the proposed 

method, the support structure of a double-cantilever beam and a hip implant is designed, respectively.  The 

support structure after optimization can achieve a weight reduction of approximately 60%.  The components 

with optimized support structures no longer suffer from stress-induced cracking after the designs are 

realized by AM, which proves the effectiveness of the proposed method.  
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1. Introduction 

After several decades, powder bed metal additive manufacturing (AM) has been among the most popular 

AM techniques to fabricate functional end-use component for various applications, such as aerospace, 

biomedical implant, mold manufacturing, etc. However, a serious weakness that prevents it from broad 

application is the residual stress inherent in the melting and solidification process [1-3]. In powder bed AM, 

the material in the build is melted and cooled several times, and stress is accumulated due to inconsistent 

level of heating [4]. This residual stress leads to severe problem because it can cause warpage, cracks, and 

delamination during processing, which may block the recoater blade and result in a build failure. Figure 

1(a) illustrates such example of a failed build.  The powder spreading is stopped as the built part delaminates 

from the building tray and deforms so significantly that it stops the powder recoater blade from moving.  

Such a build failure is very common in practice, which leads to a waste of manufacturing time and material 

consumption.  

Another challenge of the residual stress is the large deformation after the part is removed from the build 

tray. Sometimes the part may not exhibit deformation during the printing processes, however, once it is cut 

from the substrate, residual stress is relaxed and deforms the component. This results in limited load 

resistance, dimensional inaccuracy, and reduction of the fatigue performance compared with the 

conventional bulk material [5, 6]. As illustrated in Fig. 1(b), an implant manufactured using Direct Metal 

Laser Sintering (DMLS) in Ti6Al4V shows undesirable deformation after removal from the build tray. For 

component with overhang or protruding features, refer to Fig. 1(c), the problem is even more challenging 

since residual stress tends to cause distortion and leads to severe warpage and damage at those areas.  

 

Fig. 1. Residual stress and large deformation of metal AM: (a) Bulk block with support structure before 

cutting from the building chamber; (b) implant with support structure after removal from the chamber; (c) 

component with protruding feature deformed during the manufacturing. 

On the other hand, temporary support structures (e.g. block shell support highlighted by white dash line in 

Fig. 1) are generally added beneath the overhangs and simultaneously manufactured with the component. 

The support structure is used to provide mechanical fixture and heat dissipation channels to ensure 

manufacturability. Since the support structure is temporary and post-removed, it normally consists of 

uniform shell or scaffold structures [7] with lots of pores to reduce manufacturing time and costs. AM 

practitioners are typically designing support structures based on experiences to prevent 



distortion/delamination caused by residual stresses, e.g., to adjust orientation or configuration of the support 

structure. It may be easy to design support for simple components, but for complex components, the 

empirical approach may not work, and many design iterations need to be taken to obtain a support structure 

that can ensure the entire build is manufacturable. This not only lengths the development of the product, 

but also leads to a waste of time and materials. Thus, an efficient physics-based design method needs to be 

developed to automatically optimize the design of support structure to ensure manufacturability of the 

component and minimize the mass of sacrificial support structure simultaneously. 

There is a number of researches existing in the literature on support structure design for AM techniques. 

Allen et al. [8] proposed a methodology to optimize orientation of an object to minimize the support 

structure. Frank et al. [9] introduced an expert system-based selection strategy to find the preferred direction 

for rapid prototyping processes. Mumtaz et al. [10] depicted limitations of metal AM for the use of support 

structure and proposed some ways to eliminate support structure. Strano et al. [11] proposed a method to 

design support structure through the optimization of built orientation and cellular structure. Hussein et al. 

[7] applied the lattice structure with very low volume fraction for the design of support structure for DMLS 

technique. Calignano [12] gave an overview about the production of overhanging structures and applied 

Taguchi method to find the optimized orientation to minimize the amount of support surfaces. Recently, 

Vaidya et al. [13] presented an approach for minimizing support structures with space cellular infill in 

conjunction with Dijkstra’s shortest path method to generate optimized support structure. Paul et al.[14] 

presented a voxel-based approach to minimize the support volume while minimizing the cylindricity and 

flatness errors of the part features. Das et al. [15, 16] proposed a method to minimize part errors in AM 

through the selection of build orientation for optimal support structures. However, most of these previous 

researches focus on geometric perspective for support structure design. Few works have been developed to 

treat residual stress of components manufactured by metal AM to guarantee the manufacturability through 

the optimization of support structure.  

The aim of this work is to experimentally explore the feasibility of a support structure optimization 

framework for part-scale applications, in order to address the residual stress introduced build failure and 

guarantee the manufacturability. Instead of conducting detailed thermomechanical analysis, a modified 

inherent strain method [17, 18] is employed to calculate residual stress and simplify the computationally 

expensive process into a single-step structural analysis. This significantly reduces the computational cost 

from hours to minutes or seconds and makes it possible to use physics-based optimization for support 

structure design to reduce the maximum residual stress. The simulation is based on the hypothesis that the 

component is completely manufactured without residual stress release due to cracking or delamination. As 

the layer-by-layer manufacturing process progresses, larger amount of residual stress is accumulated in the 

component [19-21], and thus the maximum residual stress obtained from the as-built part is larger than any 

intermediate states. This ensures that the proposed optimization method is effective in preventing build 

failures illustrated in Fig. 1. On the other hand, delamination may also emerge in the new build layer due 

to the undesirably higher stress generated by transient heating and cooling [19, 20] cycle. The build failure 

due to this transient peak stress can be addressed by adjusting dwell time [19] and is left for the future work. 

To circumvent the error-prone mesh generation process, voxel-based mesh generation [14-16]is employed 

to discretize the domain of built part and support structure while a fictitious domain method (i.e. finite cell 

method) is employed to implement inherent strain method for residual stress calculation. In addition, lattice 

structure topology optimization method (LSTO) [22-25]is used to minimize volume of support structure 

under maximum stress constraint. By restricting the maximum stress under the yield strength, the 

introduced build failure is eliminated and deformation due to the residual stress is deceased. This not only 

reduces weight of sacrificial support structure but ensure the manufacturability of the component as well. 

The self-supporting and open-cell nature makes lattice structure a natural choice for support structure design, 



since it can be printed out without support structure and also allows the trapped powder to be easily removed. 

To the best knowledge of the authors, this is the first work to apply topology optimization to design support 

structure for addressing build failure in powder-bed metal AM and experimentally study the performance. 

The remaining content of this work is organized as follows. In Section 2, we describe the proposed support 

structure optimization framework for metal AM, which includes implementation of modified inherent strain 

method and LSTO method for support structure. Section 3 depicts the experimental study for two examples: 

one is the classic double cantilever beam while the other is a practical implant. Section 4 makes a conclusion 

for the examination of LSTO method for support structure design.  

2. Design Optimization Methodology 

2.1 Problem Formulation  

The mathematical problem of optimizing the design of support structure for metal AM is described below. 

As shown in Fig. 2, suppose an AM part were to be built on a build tray with support structure underneath 

the long overhang. The entire domain can be divided into three sub domains: Build tray  Ω𝑡 , support 

structure Ω𝑠 , and bulk component Ω𝑐 . The bulk component is anchored onto the build tray by support 

structure. The goal of the optimization is to design the material distribution in support structure domain Ω𝑠 
to prevent residual stress induced build failure. Support structure has been widely used in metal AM 

techniques to provide mechanical fixture and heat dissipation to ensure manufacturability and is removed 

as sacrificial materials once AM builds are completed.  Hence a reasonable objective for support design 

optimization is to minimize the overall mass of sacrificial support structure while constraining the 

maximum stress in domain Ω𝑠 and  Ω𝑐 under the allowable stress.  Note that the mass of the support domain 

will not completely vanish after optimization using the proposed objective. This is because the support 

domain connects the bulk component a build tray, and the bulk component is subjected to body loading of 

inherent strains, which remain unchanged during optimization.  Hence the material distribution would tend 

to decrease from very high density near the bulk component toward lower density away from it.  To reduce 

computation time in this optimization problem, we only consider the residual stress distribution after the 

entire part is done printing.  The optimization is performed to iteratively update the density distribution in 

the support domain Ω𝑠 until the stress constraint in domain Ω𝑠 + Ω𝑐  is satisfied.  

 

Fig. 2. Domain of an AM build 

Based on the above discussion, the optimization problem for support structure design can be expressed 

mathematically as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑚(𝝆) = ∑ 𝜌𝑒𝑣𝑒
𝑁
𝑒=1                                                  (1) 
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where 𝑚(𝝆) is the objective function of the optimization problem and represents the total mass of the 

support structure. 𝐊, 𝐔  and 𝐅𝑖𝑛 in the equilibrium equation denote the stiffness matrix, global displacement 

and prescribed loading, respectively. 𝜌𝑒 is the relative density of element 𝑒, and 𝑣𝑒 is the corresponding 

elemental volume. The design variable 𝜌𝑒 is limited by the upper bound 𝜌 and lower bound 𝜌.  𝑪̅ = 𝑪̅(𝝆) 

represents elastic model of the support structure. 𝜎𝑚𝑎𝑥
𝐻  denotes the maximum stress of the entire domain, 

and 𝑁 is the number of elements in the support domain. Note that the stress measure in this work is given 

by the modified Hill criterion [26]. Without losing generality, the stress illustrated below is normalized by 

material’s yield strength, which means that when the value of stress is larger than 1, plastic deformation 

occurs in the material, while when the stress is smaller than 1, the stress state is elastic. To solve the 

optimization problem in Eq. (1-2), the P-norm stress [27-30] is applied for the maximum residual stress 

constraint, the sensitivity analysis is performed for both objective function, and its constraints, and the 

Method of Moving Asymptotes (MMA) [31, 32] is employed to obtain the optimal design. Appendix please 

find the detailed derivation for P-norm stress measure and sensitivity analysis. 

2.2 Inherent Strain Method for Residual Stress Estimation 

The numerical solution of the optimization problem described in Eq. (1-2) usually needs hundreds of 

iterations to reach convergence and part-scale residual stress analysis is required in each iteration. The most 

accurate way for residual stress calculation is to employ a high-fidelity numerical model where the real 

powder melting, and solidification is simulated in detail according to the printing strategy. The accuracy of 

such detailed simulation method has been verified for prediction of temperature and deformation fields, as 

well as grain growth [33-37]. However, for part-scale problem, it is impractical to simulate residual stress 

by performing detailed process simulation (i.e. transient coupled thermomechanical simulation), which may 

take tens of hours for a simple geometry and make iterative optimization impossible. To circumvent the 

very high computational cost, the inherent strain method [38, 39] will be employed to efficiently compute 

residual stress/distortion for powder bed metal AM. The inherent strain method is originally proposed to 

efficiently simulate residual stress inherent in welding process.  Due to the similarity of welding process 

with AM, the extension of the inherent strain method to rapidly simulate the residual stress distribution in 

AM part has drawn remarkable interest [40-45]. Keller et al. [42] proposed a multi-scale approach to extract 

inherent strain tensor components and implemented the inherent strain method by pure mechanical 

simulation. Good agreement was observed between computed distortion and experimental measure in 

Keller’s [42] work. Li et al. [46] developed a multi-scale finite element model for fast prediction of 

distortion of parts manufactured by selective laser melting (SLM) process; however, no details were given 

on how to extract the inherent strain tensor in this work. Recently, Bugatti et al. [47] developed a finite 

element AM simulation based on the inherent strain method and discussed the limitations and strengths of 

inherent strain method for prediction of residual deformation in metal AM through experiments. Liang et 

al. [17, 43] proposed a modified inherent strain method for laser engineered net shaping (LENS) and 

conducted experiments to validate the predicted residual distortion. Setien et al. [48] presented an empirical 

methodology to determine inherent strains and validated it using the twin-cantilever beam made in Ti6Al4V 

alloy.  



The prominent characterization of inherent strain method is that the computationally expensive thermo-

mechanical simulation is replaced by a single static mechanical analysis. This makes it possible to conduct 

physics-based iterative optimization to systematically eliminate residual stress induced build failure. In this 

work, the method developed in Ref. [17, 42, 43, 48] is employed to extract the inherent strain vectors for 

powder-bed metal AM. With regard the implementation, the inherent strains are applied to both the support 

structure and bulk component as an equivalent body loading and a static analysis is performed to simulate 

residual stress in the AM build. Once the stress distribution is obtained, the optimization problem described 

in Eq. (1-2) is solved iteratively to reduce volume of support structure until the maximum residual stress 

constrain is satisfied.  

2.3 Lattice Structure Topology Optimization for Support Structure Design 

Another barrier concerning the support design optimization problem stated in Eq. (1-2) is that designs 

obtained by conventional topology optimization (TO) may include a large number of long overhangs and 

closed-void structures [49], which lead to manufacturability issues and trapped powders. To address these 

issues, graded lattice structure topology optimization (LSTO) is employed to design the support structure 

instead of conventional TO.  The key feature of lattice structure is its self-supporting and open-celled nature 

when the bridge span and strut size are chosen appropriately for the AM process and material of interest. 

This makes lattice structure ideal for support structure design, since it can be printed out without support 

structure while the trapped powder can be easily removed. The LSTO method utilizes homogenized model 

to gain efficiency and has been applied to determine the layout of graded lattice structure for various 

problems, such as minimum compliance [25, 50], natural frequency [51], and heat conduction [23, 52].  As 

shown in Fig. 3, for a given component (illustrated in Fig. 3(a)), an overhang detection method [14, 15] is 

first applied to obtain support structure domain Ω𝑠 for optimization. Instead of infilling the support structure 

domain with block shell support, variable-density lattice structure (see Fig. 3(b)) obtained from LSTO is 

used to provide mechanical fixture, dissipate heat, as well as ensure manufacturability. The details of the 

constrained stress optimization algorithm under the LSTO framework can be found in Ref. [53, 54] for 

interested readers. With regard overhang detection, this work categorizes overhang features into three 

groups: facet overhang, edge overhang, and point overhang, in order to determine the critical support 

structure domain accurately. For instance, in Fig. 3(d), the overhang edges on the bottom surface of the 

oriented component are automatically detected, and the corresponding lattice structure supports are 

generated after optimization. 



 

Fig. 3.  Support structure design by the LSTO method: (a) Component, (b) component with bulk support, 

and (c) component with optimized variable-density lattice structure support, (d) bottom view of the 

optimized support structure for the component. 

2.4 Finite Cell method for Implementation of Modified Inherent Strain Method 

The unique feature of AM technology is its ability to manufacture geometrically complex components 

naturally with no additional tooling required. Nevertheless, mesh generation for such complex component 

and its support structure and build tray is computationally expensive and often error-prone. To simplify the 

mesh generation for complex geometry, the finite cell method (FCM) is employed to perform inherent 

strain-based analysis to obtain residual stress distribution for an AM build. The FCM, as a type of fictitious 

domain method, was first proposed by Parvizian et al [55] in 2007.  The underlying principle of FCM [55-

57] is to immerse the material domain of interest into a larger one, and a favorable Cartesian grid can thus 

be generated to avoid time-consuming and error-prone mesh generation. It has been successfully applied to 

solve a wide-range of problems, such as non-linear analysis [58], transport problem in porous media [59], 

biomechanical analysis [56, 60], etc.  



 

Fig. 4. The domain Ω in powder bed AM is embedded in a voxel-based domain Ω𝑒: (a) Domain of printed 

component, which is the combination by three subdomains: bulk component domain Ω𝑐, support structure 

domain Ω𝑠, and build tray domain Ω𝑡; (b) fictitious domain, and (c) embedding domain Ω𝑒. 

In the context of inherent strain analysis of an AM build, the domain of the build shown in Fig. 2 is 

embedded into a larger domain based on FCM, and its boundary conditions are depicted in Fig. 4. The 

domain of computation Ω is the combination of three subdomains: Bulk component domain Ω𝑐, support 

structure domain  Ω𝑠 , and build tray domain  Ω𝑡 , and Ω = Ω𝑐 + Ω𝑠 + Ω𝑡 . The physical domain Ω  is 

embedded in a fictitious domain Ω𝑒 with the boundary of 𝜕Ω𝑒. The embedded boundary of Ω within Ω𝑒 

can be described as Γ = 𝜕Ω (𝜕Ω ∩ 𝜕Ω𝑒). For metal AM process, the bottom of build tray is fixed in place, 

and hence, the Dirichlet boundary 𝒖̅ = 0 in domain Ω is directly extended to the embedded domain Ω𝑒. In 

the implementation, elements in the fictitious domain Ω𝑒\Ω is treated as a virtual material, whose elastic 

constants are set to small values to ensure robustness of the calculation, while for elements within the 

component domain Ω𝑐 and support structure domain Ω𝑠, inherent strain vector is assigned as a body force 

in the analysis. It is noted that voxelization method proposed in Ref. [14] is employed to discretize the 

domains and generate the desired Cartesian mesh for FCM analysis.  

Once the optimization based on FCM method is finished and the relative density is obtained, lattice 

reconstruction is performed to convert the density profile obtained from optimization into graded lattice 

structures. Figure 5 illustrates the reconstruction process for the support structure design. As can be seen in 

Fig. 5(b), for a given component, the voxel-based mesh is used to discretize the part and its support structure. 

The optimization problem proposed in Eq. (1-2) is solved by the method of moving asymptotes (MMA) 

[32] in order to optimize the relative density distribution in the support domain, refer to Fig. 5(c). After 

optimization, the relative density of the support structure is converted into variable-density lattice structure 

and combined with the solid component, which is then realized by AM.  



 

Fig. 5. Reconstruction process for a practical component. (a) Component for AM (b) voxel-based mesh 

for FCM analysis (c) optimal density profile of support domain (d) CAD model of component and 

optimal lattice support. 

3. Numerical Example and Experimental Validation 

The material of interest in this work is Ti6Al4V, which has Young’s modulus of 110 GPa, Poisson’s ratio 

of 0.3, and yield strength of 1140 MPa. As mentioned in Section 2, residual stresses described in the 

following discussions are normalized by yield strength in order to make it general for different materials. 

The inherent strain vector of Ti6Al4V used in this work is (-0.012, -0.012, 0.01), which is obtained using 

an in-house multiscale modeling code for laser powder bed metal AM based on the works in Refs. [17, 42, 

43, 48]. Cubic lattice structure, as shown in Fig. 5, is used as the support material to anchor the solid 

component to the build tray. The homogenized elastic and yield models for the cubic lattice structure 

obtained in [61] are used to effectively describe its properties as a function of relative density in the support 

domain Ω𝑠 . The relative density range of the support structure is set to be 𝜌 = 0.2 and 𝜌̅ = 0.95. The 

optimization is stopped when the change of volume fraction of the support structure within three successive 

iterations is smaller than 10−3 , while the stress constraint is satisfied. The voxel-based finite element 

analysis is implemented using Matlab R2016a.  

3.1 Double Cantilever Beam Example 

The first example is a classical double cantilever beam widely used as a benchmark to examine the accuracy 

of metal AM process simulation. Here, the model is applied to investigate the performance of the proposed 

support structure optimization method to prevent residual stress induced failure. The CAD model and voxel-

based mesh for the double cantilever beam are illustrated in Fig. 6. The design domain for the support 

structure is the volume immediately under the overhanging beams. As illustrated in the figure, the 

dimension of the double cantilever beam is 80 × 20 × 24 mm3. The support domain on each side of the 

double cantilever beam is 36 × 20 × 15 mm3. The optimization aims to minimize support volume and at 

the same time restrict the maximum residual stress in the domain Ω𝑠 + Ω𝑐 under the allowable stress. A 

mesh of 49,600 eight-node hexahedral elements of size 1 mm is applied to discretize the entire domain and 

solve the optimization problem. As illustrated in Fig. 6(b), the voxels of yellow color are for the support 

domain Ω𝑠, blue ones for the solid component Ω𝑐, and red ones for the substrate Ω𝑡. The thickness of the 

substrate is set to be 8 mm in the simulation. Note that in the simulation for residual stresses, a fixed 

boundary condition is subjected to the bottom of the substrate, while inherent strains are assigned to both 

the solid component and its support structure. For clarity, only the results in the domains of support structure 



Ω𝑠 and the domain of component Ω𝑐 are plotted and shown in the discussion. The relative density of each 

element in the support domain is initially set to 0.9, while the elements in the component domain and 

substrate domain remain solid (𝜌 = 1) during the optimization.  

  

Fig. 6. CAD model and mesh model of double cantilever beam used for validation. (a) CAD model of the 

beam (b) voxel-based mesh model. 

The optimization results are presented in Fig. 7 including the optimal density distribution, normalized stress 

distribution, and also the convergence history of the objective function and the normalized maximum 

residual stress. As can be seen in Fig. 7(c), the volume fraction of the support domain changes from 0.9 to 

0.412 after 53 iterations (a 54.2% decrease), while the normalized maximum residual stress is decreased 

from 1.1 to 0.99, where unity indicates yielding. For the optimization results, the higher densities are mainly 

distributed around the upper corners of the beam, while lower densities are found far away from the center 

pillar. A number of intermediate densities (i.e. the yellow color area) exist in support domain between the 

high-density region and low-density region. The corresponding normalized stress after the optimization is 

given in Fig. 7(b). It can be observed that most of the normalized stresses within the support domain are 

smaller than 0.8. The larger stresses are distributed at the bottom surface of the center pillar, where the 

relative densities remain solid during optimization. The normalized maximum stress of the domain Ω𝑠 +

Ω𝑐 are smaller than yield strength, which theoretically ensures manufacturability of the build.  

          

 



 

Fig. 7. Optimization results of the double cantilever beam: (a) Optimal density distribution (b) normalized 

residual stress distribution (c) convergence history. 

For comparison purpose, the simulation is performed on uniform lattice structure of the same volume 

fraction or 0.412. The results are presented in Fig. 8. Compared with the optimal design, the normalized 

maximum stress of the uniform design is 1.09, which is larger than yield strength. The largest stresses are 

observed at the four bottom corners of the beam and the bottom surface of the center pillar.  

 

            

Fig. 8. Simulation result of the design with uniform lattice structure: (a) Density distribution (b) 

normalized residual stress distribution. 

To quantify performance of the optimal design, the double cantilever beams with four different support 

structures are designed and printed out for deformation measurement and comparison. Figure 9 illustrates 

the four different designs: i) Block shell support from Materialize Magics software (widely used in metal 

AM), ii) optimal variable-density lattice structure support, iii) uniform lattice structure support, and iv) 

teeth support. The volume fraction of the block shell support is 0.45, while the volume fraction of teeth 

support is 0.5.  



 

Fig. 9. Four different support structure designs for double cantilever beam for comparison purpose: (a) 

Shell support from Magic software (b) optimally variable-density lattice structure support (c) uniform 

lattice structure support, and (d) tooth support. 

The four designs were printed out in Ti6Al4V on the same substrate and the photos are shown in Fig. 10. 

Due to cracking between support structure and build tray of the block shell style support, the beam is warped 

upward, which stops the powder recoater blade and results in a failed build. This demonstrates that the 

accumulation of residual stress inherent in the manufacturing process can lead to severe issue. One failed 

component can ruin the whole build and cause significant loss in time and costs. The failure not only lengths 

production of the component (i.e. designer needs to redesign the part), but also leads to a waste of material 

and time.  



 

Fig. 10. Failed samples of the double cantilever beams printed out for validation: (a) Failed 

manufacturing due to large deformation formed by cracks between shell supports from Magic software 

and build tray. (b) and (c) Side view of the cracks for the first design. 

To avoid build failure, the block shell support design was removed from the build and the remaining three 

beams were printed together in Ti6Al4V by the EOS DMLS. As shown in Fig. 11, although cracks are 

observed for the teeth support design, the build for the three beams were successful. Compared to the block 

shell support and teeth support, both the uniform lattice structure design and optimal lattice structure design 

were manufactured without observed cracking. This implies that the open-cell lattice structure can relieve 

residual stress effectively and can be used for support structure design for metal AM.  



 

Fig. 11. Second build for samples of the double cantilever beam printed out by EOS DMLA in Ti6Al4V: 

(a) Photos of the three printed out beams for validation; (b) photo of the beam with teeth support (c) photo 

of the beam with optimal lattice structure support (d) photo of the beam with uniform lattice structure 

support. 

In order to validate the effectiveness of the proposed method, one cantilever beam on either side was created 

by separating each from the support structure using a wire-cut EDM machine.  The beams deflected upward 

as a result of stress relief from the cutting. A 3D scanning device Faro Laser ScanArm V3 (FARO 

Technologies) with an accuracy of 0.065 mm was employed to experimentally measure the deformation. 

Following scanning, the Geomagic software was used to process the data from the scan.  The experimental 

apparatus, machined beams, and experimental results are shown in Fig. 12, respectively.  The optimized 

beam exhibits the smallest deformation compared to the other two designs. The maximum deformation of 

the beam with the optimized support is 0.45 mm, while the other two structures have deflections larger than 

1 mm. This demonstrates that the proposed method can significantly reduce the residual stresses inherent 

in the AM process.  The method not only ensures manufacturability of the design (i.e. comparing with the 

block style support in Fig. 9), but also considerably enhances the quality of the bulk component (i.e. smaller 

deformation).  



 

Fig. 12. Experimental measurement for the distortion of the beams after cut by electronic beam 

machining (EBM): (a) 3D laser scanning device Faro Laser ScanArm V3 made by FARO Technologies 

(b) photos of three beams after cut by EBM (c) deformation obtained by 3D scanning. 

To further examine the performance of the optimized design, full-scale process simulations are performed 

on the three models in Fig. 11. The commercial software Simufact Additive v4.0 from MSC Inc. is 

employed to simulate residual distortion distribution and residual stress distribution. As shown in Fig. 13, 

the three beams are placed on a substrate of dimension 250 × 250 × 30 mm3. A fixed boundary condition 

is subjected to the bottom of the substrate. A voxel-based mesh of element size of 0.4 mm is used to 

discretize the design domain for simulation, refer to Fig. 13(b). The material of interest for both the beams 

and substrate is Ti6Al4V, which has a Young’s modulus of 110 GPa, yield strength of 1140 MPa, tensile 

strength of 1340 MPa, and Poisson’s ratio of 0.3.  

 



Fig. 13. CAD model and mesh for the full-scale simulation: (a) Setup of the beams on the substrate for 

simulation (b) voxel mesh for the full-scale simulation. 

Figure 14 presents the simulation results containing both the total displacement and residual stress 

distribution for the three as-fabricated beams (i.e. before cutting). As illustrated in Fig. 14(a), larger 

distortions concentrate at the bottom outer edges of the beams near the support structure. Specifically, the 

optimal support design exhibits the smallest deformation (i.e., the maximum distortion is 𝑢𝑚𝑎𝑥 = 0.23 mm) 

compared to uniform lattice support design, 𝑢𝑚𝑎𝑥 = 0.39 mm, and teeth support design 𝑢𝑚𝑎𝑥 = 0.54 mm. 

This is consistent with the observation in Fig. 11 and Fig. 12, in which shrinkage is found at the bottom 

side edges of the teeth support design. Figure 14(b) illustrates the residual stress distributions in the as-

fabricated beams. As can be seen, the optimal lattice support design shows significantly smaller residual 

stresses than both uniform lattice support design and the teeth support design. Higher stresses are observed 

at the bottom areas of the teeth support. These higher stress regions cause delamination in the printed beam 

from the substrate, refer to Fig. 11(b). Among the three designs, the optimal lattice support shows the best 

overall control of residual stresses. This agrees well with the observation from the experimental 

measurement and proves that the proposed methodology is efficient in constraining residual stresses in 

components manufactured by powder-bed metal AM.   

 

Fig. 14. Full-scale simulation results of the beams before cutting: (a) displacement distribution of the 

beams and (b) residual stress distribution of the beams. 

 3.2 Hip Implant Example  

The second case is a typical hip implant used for bone replacement.  The CAD model and dimension of the 

hip implant is shown in Fig. 15(a). The design envelope for the implant is 120 × 35 × 16 mm3. There are 

several bolt holes along the length of the implant used to fix the implant to human bone. The hip implant 

with the block style support structure was printed using the EOS M290 DMLS system in Ti6Al4V. However, 

as shown in Fig. 15(c) and (d), cracks and delamination from the build tray occurred during the AM process 

due to residual stress within the support structure and solid component.  The cracking and delamination 

occurred certainly caused larger deformation of the build than otherwise, but they were not severe enough 

to cause a build failure.  Another issue observed from this build is that the block shell style support structure 

trapped most of the powders since it is a closed-cell lattice structure. The trapped powders are difficult to 

remove post-build and lead to almost 100% waste of material in the support domain.  On the other hand, 



for open-celled lattice structure, the trapped powder can be easily removed and recycled for the next build, 

which results in much material and cost savings.  

 

Fig. 15. CAD model of implant and its manufacturing in Ti6Al4V by EOS DMLS with shell support: (a) 

CAD model and dimension, (b) printed implant after cutting off from build tray, (c) left view of implant 

before cutting from the substrate, and (d) front view of implant before cutting from build tray.  

In this case, the proposed methodology is employed to optimize the support structure for the hip implant to 

ensure a successful build. In particular, we use the optimization algorithm for the implant built in three 

different orientations, since different build orientations may lead to less support region and thus less effort 

for post-machining. As shown in Fig. 16, the implant is rotated about the y-axis by angles of 0°, 45°, and 

90°, respectively, and is voxelized for both the part and its relevant support generated by the overhang 

detection proposed in Section 2. A uniform voxel-based mesh consisting of element size of 1 mm is 

employed to discretize the entire domain including the solid component, the support structure and the build 

tray. The thickness of the build tray here is identical to the former case, and the value is 8 mm, while the 

width and length of the base plate are determined by the bounding box of the part. The numbers of eight-

node hexahedral elements used for the simulations are 97,329 for the orientation of 0°, 93,778 for 45°, and 

75,607 for 90°, respectively; refer to Fig. 16(c), (f) and (i). In the simulation, the bottom surface of the base 

plate is fixed while the inherent strains are assigned to both the support structure domain Ω𝑠  and bulk 

component domain Ω𝑐. The highlighted region in Fig. 16(a), (d) and (g) are the detected overhang features, 

while the yellow voxels in Fig. 16(b), (e) and (h) are the corresponding detected overhang voxels. The 

support volumes of these three orientations are computed by summing the number of support voxel to be: 

 1.602 × 104 mm3 , 1.064 × 104 mm3 and 2.523 × 104 mm3 , respectively. It can be seen when the 

implant is rotated by an angle of 45°, the support volume is decreased by 5.38 × 103 mm3 or 33.6% of the 

0° angle case and by 1.459 × 104 mm3 or 57.62% of the 90° case. This is because for angle 45°, the major 

detected overhangs are edge overhangs, and most of the facets at that angle satisfy the critical overhang 

requirement (i.e. the included angle by building direction is larger than 45°). This implies that the build 

orientation plays an important role in the design of support structure. For simplicity, only the results contain 

the distribution in domains of  Ω𝑠 + Ω𝑐 are plotted in the following discussion. 



 

Fig. 16. Hip implant of different orientations: (a-c) STL file, voxelized part and Cartesian mesh for implant 

rotated by angle of 0°; (d-f) STL file, voxelized part and Cartesian mesh for implant rotated by angle of 

45°; (g-i) STL file, voxelized part and Cartesian mesh for implant rotated by angle of 90°.  

Table 1 Initial state of the optimization 

 Orientation 0° Orientation 45° Orientation 90° 

Support volume ( mm3) 1.602 × 104 1.064 × 104 2.523 × 104 

Normalized maximum 

residual stress 
3.1 2.42 2.12 

 

The orientation of the component can also influence the stress distribution, especially the location of the 

stress concentration and maximum residual stress. As shown in Fig. 17, when the volume fraction of the 

support structure is set to 0.9, the large stresses mainly distribute at the interface between support structure 

and substrate, e.g., at the lower left and right corners of the three designs. These are the areas where cracking 

initiate and grow. Table 1 tabulates the support volume and the normalized maximum residual stress for 

the three cases. It can be seen that the part with no rotation (angle of 0°) has the largest normalized 

maximum stress, while the case with rotation angle of 90o case has the smallest value. This indicates that 

the orientation also has great influence on the stress distribution and magnitude of the maximum stress. The 

aim of this example is to explore the performance of the proposed methodology for the implant with 

different orientations.  

 



Fig. 17. Normalized residual stress distribution of hip implant with volume fraction of 0.9: (a) Oriented 

by angle of 0°, (b) oriented by angle of 45° and (c) oriented by angle of 90°. 

The optimization results including the normalized stress profile, and relative density profile are given in 

Fig. 18. Table 2 tabulates the corresponding optimization results. For the 0° angle case, the volume fraction 

of the support structure converges from 0.9 to 0.41 after 60 iterations, and the normalized maximum residual 

stress is decreased to 0.82 from 3.1.  For the 45° angle case, the volume fraction of the support structure is 

reduced to 0.36, and the normalized maximum residual stress is decreased to 0.91 after 73 iterations. In 64 

iterations, the volume fraction for the final case of 90o angle converges to 0.46, and the normalized 

maximum stress is decreased to 0.81. The normalized maximum residual stresses in these three cases are 

optimized to below the yield strength and thus satisfy the imposed constraints after optimization. 

 

Fig. 18. Optimization results of the three orientations for hip implant: (a-c) Normalized residual stress 

distribution of the implant rotated by angle of 0°, 45° and 90°; (d-f) optimal density distribution of the 

implant rotated by angle of 0°, 45° and 90°.  

Table 2 Optimization results of hip implant oriented by different degrees 

 Orientation 0° Orientation 45° Orientation 90° 
Volume fraction 0.41 0.36 0.46 

Normalized maximum 

residual stress 
0.82 0.91 0.81 

 

The optimized densities shown in Fig. 18(d-f) are used to reconstruct the corresponding variable-density 

lattice structures, as illustrated in Fig. 19 in two different views. The contact areas between the component 

surface and support structure vary significantly as the implant is rotated at various angles. The angle of 45° 
exhibits the smallest contact area, which is consistent with the support volume calculated given in Table 1. 

The contact areas influence the cost of post-machining. Thus, among these three support designs, the 

orientation of 45° may require lower cost for post-machining. 



 

Fig. 19. Reconstruction of the optimal support structure design using variable-density lattice structure (a-

c) Home-view of the implant rotated by angle of 0°, 45°and 90°; (d-f) bottom views of the three support 

structure designs. 

For validation purpose, the three support structure designs for hip implant are printed out in Ti6Al4V and 

the photos are shown in Fig. 20. Compared with the un-optimized design shown in Fig. 15, the designs are 

successfully printed without obvious cracks. This demonstrates the effectiveness of the proposed 

methodology in constraining the residual stresses in an AM build.  It also implies that the optimization 

framework can be efficiently employed for components with predefined orientations.  

 

Fig. 20. Photos of the (a) printed implants at three different orientations with optimized graded lattice 

supports, (b) implant rotated by angle of 0° with its optimized support, (c) implant rotated by angle of 45° 

with its optimized support, and (d) implant rotated by angle of 90° with its optimized support. Note that 

there is no obvious cracking in all the designs.  



4. Conclusion 

The aim of this work is to experimentally examine the feasibility of part-scale optimization framework for 

support structure design, in order to address residual stress accumulation induced build failure in metal AM. 

The inherent strain method is employed to efficiently predict residual stress introduced by the powder 

melting and solidification process. The complex thermomechanical process, which normally requires very 

high computational cost, is simplified into a single-step static equilibrium analysis. This makes it possible 

to conduct optimization to iteratively solve the design problem involving residual stress. For the support 

structure, lattice structure is used as the support material due to its self-supporting and open-celled nature. 

The graded lattice structure topology optimization framework is proposed to iteratively minimize the 

sacrificial support structure under the maximum residual stress constraint. Several numerical examples are 

investigated to examine the performance of the optimization method. In the first example, the classical 

double cantilever beam structure is used to experimentally investigate the optimal design by comparing 

with a typical support design, teeth support design, and uniform lattice support design (same volume 

fraction as optimal design). By measuring the deformation after the beams are created by cutting, it is found 

that the optimal design can ensure the manufacturability of the design and also significantly reduce the 

residual stress (i.e. maximum deformation is reduced from 1.5 mm and 1.1 mm to 0.45 mm). The second 

example presents is a hip implant which also suffers from residual stress induced cracking. In that case, 

three different orientations are studied using the proposed optimization method and are printed out for 

validation. Although it is found that the orientation of the component has a significant influence on both 

the stress and support volume, the proposed methodology can optimize the design of support structure. 

Though visual inspection, the three designs for the implants are manufactured successfully without 

observed cracking. This further demonstrates the methodology can be effectively used to design industrial 

components for practical applications.  

The optimization method assumes that the part is completely manufactured without cracking and 

delamination. This hypothesis ignores potential delamination caused by intermediate higher stress due to 

the transient steep thermal gradient. A rigorous study to understand the underlying principle of such build 

failure and develop a suitable optimization method to reduce the intermediate higher stress will be 

conducted in the future, in order to comprehensively overcome the build failure issue for additive 

manufacturing.  

Although the proposed methodology can constrain the maximum residual stress and guarantee the 

manufacturability of the AM parts, the proposed method has not considered the post-removability of lattice 

structured supports by machining. The study for post-removability of the support lies in our future works. 

To address this issue, studies could be performed to minimize the support surfaces that are not accessible 

by post-machining through build orientation optimization or conduct optimization for support-free design. 

Alternatively, another method to remove the support structure is by using dissolvable support technique 

[62, 63], which utilizes a self-terminating chemical process to clean the support structure without destroying 

the original design. These topics should be explored in the future to take advantage of the simulation-based 

optimization to completely solve the issue of manufacturability and support post-removal for current 

powder-bed AM techniques. 
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Appendix 
1. P-norm stress measure 

Following the work of [28, 64-67], P-norm stress is applied to approximate the maximum stress measure 

of the design domain  

𝜎̅𝑚𝑎𝑥
𝐻 = max

𝑒=1,⋯,𝑁
(𝜎̅𝑒

𝐻) ≤ 1                                                 (A1) 

using the form of  

𝜎𝑃𝑁 = (∑ (𝜎̅𝑒
𝐻)𝑃𝑁

𝑒=1 )
1

𝑃 ≤ 1                                                (A2) 

where 𝜎̅𝑒
𝐻 denotes the normalized stress of element 𝑒, 𝜎̅𝑚𝑎𝑥

𝐻  is the normalized maximum residual stress, 𝑁 

represents the total number of elements in finite element analysis (FEA), 𝑃 is the coefficient factor of P-

norm and applied to control the smoothness of the approximation. When 𝑃 → ∞, formulation in Eq. (A2) 

approaches to the maximum stress, while when 𝑃 = 1, the P-norm value is the average stress. In practical 

implementation, since P is a limited value and the control on the actual maximum stress is lacking. Hence, 

the adaptive scheme proposed in [65, 68, 69] is applied to Eq. (A2) as 

𝜎𝑃𝑁 ≤ 𝜗𝐼                                                               (A3) 

where 𝜗 is calculated iteratively, and 𝐼 (𝐼 ≥ 1) represents the iteration number. 

𝜗𝐼 = 𝜍𝐼
(𝜎𝑃𝑁)𝐼

(𝜎̅𝑚𝑎𝑥
𝐻 )𝐼

                                                          (A4) 

where 𝜍𝐼 ∈ (0,1]. When 𝜍𝐼 = 1, Eq. (A3) is equal to Eq. (A1), the optimization converges to the optimal 

solution. In the optimization, 𝜍𝐼 = 0.5, when 𝜗𝐼  oscillates between two successive iterations, otherwise 

𝜍𝐼 = 1. 

 

2. Sensitivity Analysis 

The optimization problem for designing support structure proposed in Eq. (1-2) is solved by the Method of 

Moving Asymptotes (MMA) proposed by Svanberg [70], in which the first order derivative of the objective 

function and constraints are required. The following gives the sensitivity analysis of objective function and 

stress constraints. The first derivative of the objective function is 
𝜕𝑚(𝝆)

𝜕𝜌𝑒
= 𝑣𝑒                                                          (A5) 

The first order derivative of stress constraint to relative density in Eq. (2) is 
𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
= ∑

𝜕𝜎𝑃𝑁

𝜕𝜎̅𝑒
𝐻

𝜕𝜎̅𝑒
𝐻

𝜕𝜌𝑒

𝑁
𝑒=1                                                   (A6) 

The first term in the right-hand side of Eq. (A6) can be calculated based on the P-norm proposed in [27] as: 

𝜕𝜎𝑃𝑁

𝜕𝜎̅𝑒
𝐻 = (∑ (𝜎̅𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−1)                                    (A7) 

The second derivative in the right-hand side of Eq. (A2) can be calculated as: 

      
𝜕𝜎̅𝑒

𝐻

𝜕𝜌𝑒
=

𝜕{[(𝜺̅−𝜖𝜺𝑖𝑛)𝑇ℝ(𝜺̅−𝜖𝜺𝑖𝑛)]
1
2}

𝜕𝜌𝑒
=

1

2
[(𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
ℝ(𝜺̅ − 𝜖𝜺𝑖𝑛)]

−
1

2 𝜕[(𝜺̅−𝜖𝜺
𝑖𝑛)

𝑇
ℝ(𝜺̅−𝜖𝜺𝑖𝑛)]

𝜕𝜌𝑒
                    

=
1

2𝜎̅𝑒
𝐻 (2(𝜺̅ − 𝜖𝜺

𝑖𝑛)
𝑇
ℝ
𝜕(𝜺̅−𝜖𝜺𝑖𝑛)

𝜕𝜌𝑒
+ (𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇 𝜕ℝ

𝜕𝜌𝑒
(𝜺̅ − 𝜖𝜺𝑖𝑛))                        (A8) 

where ℝ is the tensor used to formulate yield strength of lattice structure by using the constitutive model 

and the yield strength tensor, which can be formulated as ℝ = 𝑪̅𝑻𝕄𝑪̅ and 𝕄 represents the plastic constants 

matrix, and 𝑪̅ denotes the constitutive model. More details about these two matrixes refer to [71]. Since the 

macroscopic strain 𝜺̅ can be expressed as 𝜺̅ = 𝑩𝐔, where 𝑩 denotes the strain-displacement matrix while 

𝐔 is the displacement vector. Thus, the first term in Eq. (A8) can be expressed as: 

2(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
ℝ
𝜕(𝜺̅ − 𝜖𝜺𝑖𝑛)

𝜕𝜌𝑒
= 2(𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
ℝ(

𝜕(𝑩𝑼)

𝜕𝜌𝑒
−
𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛) 



= 2(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
ℝ(𝑩

𝜕𝑼

𝜕𝜌𝑒
−

𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛)                      (A9) 

While the second term can be expressed as: 

(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇 𝜕ℝ

𝜕𝜌𝑒
(𝜺̅ − 𝜖𝜺𝑖𝑛) = (𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+ 𝑪̅𝑻

𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛)        (A10) 

Substituting Eq. (A9) and Eq. (A10) into Eq. (A8) yields 

𝜕𝜎̅𝑒
𝐻

𝜕𝜌𝑒
=

1

2𝜎̅𝑒
𝐻 (2(𝜺̅ − 𝜖𝜺

𝑖𝑛)
𝑇
ℝ(𝑩

𝜕𝑼

𝜕𝜌𝑒
−
𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛) + (𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+ 𝑪̅𝑻

𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛)) 

(A11) 

Substituting Eq. (A7) and Eq. (A11) into Eq. (A6), the sensitivity of the P-norm stress can be computed 

as: 

𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
=∑{(∑ (𝜎̅𝑒

𝐻)𝑃
𝑁

𝑒=1
)
(
1
𝑃
−1)

(𝜎̅𝑒
𝐻)(𝑃−1) [

1

2𝜎̅𝑒
𝐻 (2(𝜺̅ − 𝜖𝜺

𝑖𝑛)
𝑇
ℝ(𝑩

𝜕𝐔

𝜕𝜌𝑒
−
𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛)

𝑁

𝑒=1

+ (𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+ 𝑪̅𝑻

𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛))]} 

=∑[(∑ (𝜎̅𝑒
𝐻)𝑃

𝑁

𝑒=1
)
(
1
𝑃
−1)

(𝜎̅𝑒
𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
ℝ(𝑩

𝜕𝐔

𝜕𝜌𝑒
−
𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛)]

𝑁

𝑒=1

 

+
1

2
∑[(∑ (𝜎̅𝑒

𝐻)𝑃
𝑁

𝑒=1
)
(
1
𝑃
−1)

(𝜎̅𝑒
𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+ 𝑪̅𝑻

𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛)]

𝑁

𝑒=1

 

(A12) 

Based on the equilibrium equation, the derivative of 
𝜕𝐔

𝜕𝜌𝑒
 can be calculated using the equilibrium equation 

as: 

𝜕𝐔

𝜕𝜌𝑒
= 𝐊−1

𝜕𝐅𝑖𝑛

𝜕𝜌𝑒
− 𝐊−1

𝜕𝐊

𝜕𝜌𝑒
𝐔                                              (A13) 

Substituting Eq. (A13) into the first term of Eq. (A12), one can obtain 

      
𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
= ∑ [(∑ (𝜎̅𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
ℝ(𝑩𝐊−1 (

𝜕𝐅𝑖𝑛

𝜕𝜌𝑒
−

𝜕𝐊

𝜕𝜌𝑒
𝐔) −

𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛)]𝑁

𝑒=1   

+
1

2
∑ [(∑ (𝜎̅𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+ 𝑪̅𝑻

𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛)]𝑁

𝑒=1          (A14) 

An adjoint variable 𝝀 is introduced to solve the sensitivity of the first term, and its definition is  

𝝀𝑻 = ∑ (∑ (𝜎̅𝑒
𝐻)𝑃𝑁

𝑒=1 )(
1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
ℝ𝑩𝐊−1𝑁

𝑒=1                           (A15) 

The adjoint variable 𝝀 can thus be computed by solving the following adjoint equation 

𝐊𝝀 = ∑ (∑ (𝜎̅𝑒
𝐻)𝑃𝑁

𝑒=1 )(
1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)ℝ𝑩(𝜺̅ − 𝜖𝜺𝑖𝑛)𝑁
𝑒=1                                (A16) 

Once the adjoint variable is obtained, the sensitivity of the P-norm stress constraint in Eq. (A14) yields 

            
𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
= 𝝀𝑻 (

𝜕𝐅𝑖𝑛

𝜕𝜌𝑒
−

𝜕𝐊

𝜕𝜌𝑒
𝐔) − ∑ [(∑ (𝜎̅𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
ℝ

𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛]𝑁

𝑒=1   

+
1

2
∑ [(∑ (𝜎̅𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+ 𝑪̅𝑻

𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛)]𝑁

𝑒=1            (A17) 

The sensitivities in Eqs. (A5) and (A17) are implemented in the MMA method and are used for the lattice 

structure topology optimization for support structure design. 

 


