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1. Introduction

Suppose we have a family of operators {R,, »} acting on some vector space V, where
m, n run over all pairs of integers m,n > 0. Suppose Ry is the identity operator. For
each pair of relatively prime integers m,n > 0 let

Tonn = ZumkU"kRmkmk € End[V][[u, v]].
k=0

We say that the five-term relations hold if for any integers m,n,m’,n’ > 0 such that
mn' —m’n =1 we have:
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Tm,nTm’,n’ = Tm’,n’Tm+m’,n+n’Tm,n~ (1)
For instance, for (m,n) = (1,0) and (m’,n’) = (0,1) we obtain
T1,0T0,1 = To1T1,1T1 0. (2)

The motivation for the name comes from the fact that Faddeev—Kashaev’s quantum
dilogarithm [4] satisfies a similarly-looking identity. In their setup U and V" are arbitrary
operators satisfying UV = gV U, the quantum dilogarithm is

the identity is

and they show that it is a deformation of the classical five-term relation

L(z)+ L(y) — L(zy) = L (f_;cz) +L (i/—zz)

for the Rogers dilogarithm

x

L(z) = log(1l — z)log(z)/2 — /

0

log(1 — 2)
z

dz.

In [6] one can find the identity' (2), where it is related to wall-crossing for Donaldson—
Thomas invariants.

Using relations (1), the operator T,, ,, for any m,n can be expressed as a composition
using Tp,1, 11,0 and their inverses. Thus we obtain, in particular, that R,,, for any
m,n € Zx>q belongs to the algebra generated by the elements of the form Ry and Rg
(k € Zs0). Then (1), when expressed in terms of these elements, provide some interesting
relations between them. For instance, taking the coefficient of u*v in both sides of (2)
we obtain

[Ri,0, Ro1] = R11Rk—1,0-
For k =1 we have [Ry,0, Ro1] = R11, thus in general

[Rk.,0, Ro,1] = [R1,0, Ro,1]Ri—1,0-

! The identities (1) are also valid there due to the obvious SLz(Z) invariance.
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It is an interesting problem to describe a complete set of relations between the operators
Ry iy Rio which is in some sense smaller than the original set implied by (1).

Here we prove that our relations are satisfied by certain operators acting on the space
of symmetric functions in infinitely many variables over the field Q(g, t). To define these
operators we need the modified Macdonald polynomials of [5]. These are symmetric
functions ﬁu with coefficients in Z[g, t], orthogonal with respect to the modified Hall
scalar product defined in the power sum basis by>

1)
(P p)e = [J(=(1 = ) (1 =) (pr, pp)-

i=1

We recall that the (unmodified) Hall scalar product is given by

zy  if A =p,

(Pr,pp) = {

0  otherwise,

where z) = 19ta1!12%2qp! - - - for a partition A = 191292...,
Now we will construct the operators. In fact, we have two statements. In the first
statement we set

Rk,o = hév RO,k = (_1>kA/ek7 (3)

where the operator hi- is the operator conjugate to the operator of multiplication by
hi, with respect to the Hall scalar product, A% for a symmetric function F' denotes the
operator defined in the basis of the modified Macdonald polynomials as follows:

ApHy=F([B\JH\, Byx= > ¢t
(r,e)EX
‘= Ap for F'[X] = F[-1/M + X],

where M = (1 — ¢)(1 — t). In the second statement

Rio= (DAL, Rox= (D' | 37]. (@)

where e, [%] denotes the operator of multiplication by ey, [5;]. The two statements are
related by the conjugation with respect to the modified Hall scalar product.

Theorem 1.1. The operators defined by (3) (alternatively, by (4)) extend to a family of
operators { Ry, n} satisfying the five-term relations (1).

2 Qur definition differs from the one in [5] by a sign (—1)/*!. This does not affect the orthogonality
statement.
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Bergeron and Haiman conjectured ([1], Conjecture 6) certain identities between the
Ae,
polynomials. We show that their statement follows by expanding (2). In fact, it was our

and hi‘ operators, which imply interesting recursion relations for the Macdonald
attempt to prove Conjecture 6 that led us to the discoveries of the present work.
2. The proof

We introduce extra variables v and v and set®

Tu= Y uthy, Ay=) (<v)"A.,, A, =Y (-v)"Al =Explv/M]A,.
n=0 n=0 n=0

Then we have, for any symmetric function F,

(ruF)[X]=F[X +u], AHy = [] (1-vgt")Hy, (5)
(r,e)eX
%) ~ 1 ~
Al = "A AT = ——H,.
v T;J’U hn v A ( 1_)[6/\ 1_ UqctT A

It is convenient to modify the Bergeron—Garsia operator V by adding a sign, so that it
becomes closer to A, in shape:

Vi = [[ (~at) i = (~1)Pg Ve (6)
(r,e)EX

Now we write the identity (77) of [1], which is equivalent to Conjecture 6 there, in a
generating function form. It claims

k
Ve VhE = (=) Ay by A
r=0

enr (Kl € Z0).

Remember that our V has a sign that conveniently turns (—1)" to (—1)*~". Now we
multiply both sides by u*v! and sum up:

r<k
VIV = Y (=D)AL b A, uFol
k,l,r>0
We change the indexing: ¢ = k+ I, 5 = k — r, so that the new summation runs over

i,7,7 > 0,4 > j+r. We obtain (the old indexes are k =j+r,l=i— (j+71)):

3 We apologize for using conflicting notations Ar and A, and hope this does not cause confusion.
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Z (_1)jAhrhilAejuj-i_Tvi_(j-i_r) = Ail TyA’U./’U )

w/v v>0
Jr20,i>j+r

where the notation

. stands for “keep only the terms with non-negative power of v”.

vz

Proposition 2.1 (Generating function form of the conjecture). Conjecture 6 of [1] is equiv-
alent to

V'V, = AL 70y

u/v

(7)

v=0

Now we have the following observation:
Proposition 2.2. For a symmetric function F' of degree d the operator
AJYFEA,
is a polynomial in v of degree < d. The coefficient of v¢ is V"' F1V.
Proof. Pieri rules for Macdonald polynomials (VI.6, [7]) say that

Hi-Hy = Z Bua(g,t)H,
m

for certain rational functions B, x(q,t), where the sum is over the partitions p D A such
that p \ A is a vertical r-strip. Since the functions Hir generate the ring of symmetric
functions, we obtain that for any symmetric function F of degree d

FHy = Z CF (g, t) 2 H,
A

for some rational functions C*(g,t),. », where the summation is over u O X such that
|2\ A| = d. Dualizing, we obtain that for any symmetric function F' of degree d

FL-H)\ = Z CFL(Qat)#,)\f{p,
nCA

for some rational functions C¥*(q,t) u,x» Where the summation is over ;1 C A such that
A\ | = d. Applying (5), we obtain

A;lFLAUg,\ = ZCFL(q, t)m)\]j[” H (1 —Uqctr).
HCA (r,c)EX\ 1

The right hand side is a polynomial of degree < d and the coefficient of v? is
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Y CF g t)unH, [ (—¢t) =VT'FIVH,
HCA (r,e)eX\p

by (6). O

Proposition 2.2 implies that in A;/lUTUAu/U the exponent of u/v is less or equal to the
exponent of v. Therefore we don’t have any terms with negative powers of v and we can

omit | from (7). So the conjecture is equivalent to the following:
=

VT = AL oAy

Now we move 7, to the right, substitute uwv in u and interchange u and v:
Vi,V = A At

This is what we are going to prove. We write the right hand side as follows:

Z Wi juv? = AT, Ayt (8)
4,520

The main idea is to put parentheses in the right hand side in two different ways.

2.1. First way

(A 7, AL )T, L By Proposition 2.2, we know that in each non-zero term the exponent

1

of v is less than or equal to the exponent of w. Multiplying by 7, only increases the

exponents of u. Moreover, to calculate the terms where the exponent of v equals the
exponent of u we can replace A by V. Therefore we have

Proposition 2.3. We have W; ; =0 fori < j and W; ; = V" hi-V.
2.2. Second way
AT (T Ay, ). Tt turns out that there is exactly the same statement about 7, A, 7, !

as we had about A; 17, A,. To proceed we need to introduce a (partially defined) operator
S~! which acts on operators. Set 7 =71, M = (1 —q)(1 —t),

TF=F[X+1], 7"F=Exp [%] F,

where Exp is the plethystic exponential,

Exp[X] = Z hn[X] = exp (Z pnT[lX]> .
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The operator 7 sends symmetric functions to symmetric functions, but the operator 7*
sends a symmetric function to an infinite series so that the degrees of the terms tend to
infinity.

Denote by Sym[[X]] the algebra of infinite series of the form

F=Fy+F +F+-, (9)

where F; is a symmetric function of degree i for each 4. It is convenient to think of
Sym[[X]] as a complete topological algebra. The topology is defined in such a way that
a basis of neighborhoods of 0 is given by the sets

Sym=[[X]] ;== {Fo+ Fy + Fo+--- | F; =0 for all i < d}.

Then a sequence of infinite series F(1), F?)|is a Cauchy sequence if for each d > 0
the sequence of degree d terms Fél), Ff), ... eventually stabilizes. Each Cauchy sequence
clearly has a limit, therefore Sym[[X]] is complete. Any formal series can be approximated
by polynomials, for instance for F as in (9), we have

d
F = lim ng, FSd = ZFI S Sym[X]

d— o0 :
=0

Therefore Sym[X] is dense in Sym[[X]]. The topology on Sym|[X] induced from Sym|[[X]]
has as a basis of neighborhoods of 0 the sets Sym=?[X] = Sym=¢[[X]] N Sym[X]. Then
Sym[[X]] is the completion of Sym[X]. In particular, this implies that any continuous
linear operator Sym[X] — Sym[[X]] can be uniquely extended to a continuous linear
operator Sym[[X]] — Sym[[X]].

From this point of view, the operator 7* : Sym[X] — Sym[[X]] uniquely extends to
a continuous operator Sym[[X]] — Sym[[X]], which we denote by the same symbol 7*.
On the other hand, 7 is not continuous, and it does not extend to a continuous operator
Sym[[X]] — Sym[[X]]. The composition 7% is a linear operator Sym[X] — Sym[[X]]
which is not continuous.

Proposition 2.4. Let L : Sym[X]| — Sym[X] be a continuous linear operator. There exists
at most one continuous linear operator* S™Y(L) : Sym[X] — Sym[X] such that for all
F € Sym[X]

T*7LF = S™Y(L)T*TF. (10)

The set of all continuous linear operators L : Sym[X]| — Sym[X] such that S~ (L) exists
forms an algebra, and the operation S™1 is an algebra homomorphism.

4 The operation S™!, after a sign change, turns out to be the inverse of the operation S from [3], [2].
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Proof. Note that on the left hand side of (10) we have LF € Sym[X], 7LF € Sym[X] and
7*7LF € Sym[[X]]. On the right hand side we have 7F € Sym[X], 7*7F € Sym[[X]],
S™YL)r*7F € Sym[[X]].

First we prove the uniqueness. Suppose we have two continuous linear operators L/,
L"” such that

7LF =L't*tF, 77LF=L"7"7F (F € Sym[X]).

Then the difference L” — L’ vanishes on the set 77 Sym[X]. Since 7 : Sym[X] —
Sym[X] is invertible, we have 7Sym[X] = Sym[X]. Therefore L” — L' vanishes on
the set 7* Sym[X]. By continuity, we have that (L” — L’)7* vanishes on Sym|[[X]], so
(L" — L")r* = 0. Since 7* : Sym[[X]] — Sym[[X]] is invertible (the inverse is given by
the operator of multiplication by Exp [17]), we have L” = L.

Now suppose L1, Lo are such that S™1(L;), S71 (L) exist. Then for any F' € Sym[X]
we have

T T(Ly + Lo)F = (S7'(L1) + S~ (L))T*7F,
T L Ly F = S~ (L) T*TLoF = S~ (L1)S ™! (Lo)T*7F,

which shows that S~™1(L; + L) exists and is given by S=!(L;) + S~!(Ls), and similarly
S7Y(L1Ls) exists and is given by S~(L;)S~1(Ls). This completes the proof. O

Operators satisfying the conditions of Proposition 2.4 can be built up from the oper-
ators D,,.

Proposition 2.5. For any n € Z, define an operator D,, : Sym[X] — Sym[X] by

D, = F[X + Mz '] Exp[—X2]

Z’VL
Then D,, is a continuous linear operator and S~(D,) = —D,,_1.
Proof. The operator D,, is homogeneous of degree n in the sense that the degree of D, F’

is d 4+ n for any F' € Sym[X] of degree d. Therefore D,, is continuous. Let F' € Sym[X].
Expanding the definitions and using Exp[—z] = 1 — z, we obtain

X
71D, F = F[X + Mz"' + 1] Exp [—Xz —z— M]

an

X

X
= F[X + Mz~ +1]Exp [—Xz— M]

— F[X +Mz' 4+ 1]Exp [—Xz - —}

M| len

an mn

1

Similarly, but this time using Exp[—271] =1 — 271, we obtain
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X
—Dy_17"TF = —F[X + Mz"' + 1] Exp {Xz . }

M

an—1

= —F[X+Mz'+1]Exp [Xz — ])\H

+ F[X + Mz +1]Exp [Xz — ])\H

an—1 on

We see that S~1(D,,) exists and equals —D,,_;. O
Now we can formulate a statement analogous to Proposition 2.2.

Proposition 2.6. For a symmetric function F of degree d, the operator

TuApTu_l

is a polynomial in u of degree < d. The coefficient of u® is the operator S~'(A%).

Proof. We note that we can replace Ap by A% first. Indeed, this does not affect the
first statement, and assuming the first statement, the coefficients of u? in 7, Ap7, ! and
T A7t are the same because F[X] — F[—1/M + X] is a sum of functions of degrees
less than d.

The proof hinges on the fact that the operator A’ can be written as a linear combina-
tion of the operators D;, D;, - -- D;, (Lemma 3.1). This is well-known, but unfortunately
we could not find a complete reference for this fact, so we provide a proof in Section 3.

: —1.
Consider 7,D,, 7, *:

FIX] = F[X —u] = F[X+Mz"! —u] Exp[-X2]| — F[X+Mz""]Exp[~Xz—uz]

z zn

Because Exp[—uz] = 1 — uz, we obtain
TanTJ1 =D, —uDy,_;.

So we see that we obtained a polynomial in u of degree < 1, and the top coefficient is
—D,,_1 = S7Y(D,,). The claim follows from this and the expansion of A’ as a linear

combination of the operators D;, D;, - -+ D O

iq*

Proposition 2.6 implies that in each term of 7,A,7, ! the exponent of u is less than or
equal to the exponent of v. Multiplication by A, ! on the left only increases the exponent
of v. This proves the following

Proposition 2.7. We have W; j =0 fori > j and W;; = S™1(AL).
Putting Propositions 2.3 and 2.7 together we obtain

Theorem 2.8. The commutator of A;l and 7, is a powers series in uv and it has the
following two expressions:
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A;lTuA,UTu_l =V 1,V = S_I(Azw).

This establishes Conjecture 6 of [1]. To complete our proof of Theorem 1.1, denote
for any operator L

N(L)=VLV™', N YL)=V~'LV.

Let also N~! send u,v to uv,v respectively, and let S~! send u, v to u, uv respectively.
We define Ry 0, Rox and then Ty 1, Th0 as in (3), so that

Tio="Tu, To1=A,,
ToiTi0ToaTr g = N (Tro) = S (Toa). (11)

)

Hence we must necessarily have
Tip =N T10) =S (Toq).
Moreover, we have
N~YTp1) =To1, S '(Tip)=Exp [%} T 0. (12)

From this data there is a unique way to construct operators T}, ,, for all relatively prime
pairs m, n such that

N_l(Tm,n) = T m+n, S_l(Tm,n) = Ttnn (n > O)-

Moreover, applying the operators N~!, S~ to (11) we obtain the statements (1) for all
m,n,m’,n’ with mn’ —m/n = 1.

The statement for Ry o, Ro as in (4) is obtained from the statement we just estab-
lished by applying the conjugation with respect to the modified Hall scalar product.
Modified Macdonald polynomials are orthogonal with respect to the modified Hall
scalar product, so the operators Ap, A% are self-adjoint. The adjoint of hi- is given

by (=1)*ey, [37]-
3. Expansion of A’ in terms of D,,

Lemma 3.1. For any F' € Sym[X] of degree d, the operator A%, can be written as a finite
sum of the form

/ —_— . . . . DRI :
AF - E Clh»--ﬂdDZlDlz Dld?
U1,.0050d

where each c;, ... ;, 15 a rational function of q and t.
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Proof. Let &; denote the space of operators Sym — Sym that can be written as linear
combinations of operators of the form D;, D;, - -- D;, with coefficients in Q(q, 1), i; € Z.
So the statement of Lemma is Al € &;.

By Theorem 1.3 of [3],

t 1 1
[ x (1) | v = el (13)

where a, b are positive integers satisfying a + b = n. Using the recursions of Theorem 1.1
of [3] together with the initial values ®; = %[Dl, Dy], Uy = Dy, we show that @, € &,
for b>1and ¥, € &, for a > 2. Thus, for n > 3 the operator (13) is in &,. For n = 2,
we have (using the definition and the Jacobi identity):

1 1
D17D0]7 _Ql] = _—2[[D17Q1]7D0] - W[Dlv [DOagl]]~

1
— [P,V
M[ 1 1] M

=l
From the well-known identity %[Dn, e1] = Dp41, we deduce

1 1
M[®17\Ill] = —M[D27D0] E 52.

For n =1, we have

t 1
qtq——1VE1 |:X <E — ].>:| V_l = —Vle_l =D, € 1.

So for all n > 1 the operator in the left hand side of (13) is in &,. Expressing any symmet-
ric function as a polynomial in the functions h,, [X (% — 1)], we see that VGV ™! € &
for any symmetric function G of degree d.

The operation S~ is an algebra homomorphism by Proposition 2.4. So Proposition 2.5
implies that S—! preserves &;. By Lemma 3.2 below,

Ap=S8"1(VGV!),
where G[X] = F [£]. Hence A € &. O

Lemma 3.2. For any symmetric function F, the operator S~ (VEV™Y) exists and equals

Aparx-
Proof. We need to verify that for any F,G € Sym|[X]
™V (FV'G) = Apx T TG

Equivalently, for any F,G € Sym[X]
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T TV(FG) = Appx 7 7VG. (14)

Let us prove this identity for G = 1 first. In this case, the statement is

X
We will use the Cauchy formula
Xy 1\ X]HA[Y]
Exp [—:| = — (16)
M ; ( )\aH)\)*

The right hand side of (15) has the following expansion in the modified Macdonald basis:

F[M By — 1]H,[X]
Z (Hx, Hy). .

A

So in order to verify that the left hand side has the same expansion, we need to show
that for each partition A we have

(7*7VF, Hy). = FIM By, — 1].
Since V is self-adjoint and 7* is the adjoint operator of 7, we have
(7*7VF, Hy), = (F,V7*TH))..
Theorem 1.3 from [5] allows us to evaluate V7*7Hy, and we obtain

X(MB, — 1)}) .

(F,V7*TH)), = (F Exp {— 7

Applying (16) for Y = M B, — 1, we obtain

e a (F,H)). H\[MB, - 1] _ _
(RYrrih), =3 ==y, = FMB - L

So (15) has been established. Now suppose G is arbitrary. Using (15) for the product
FG instead of F, we write the left hand side of (14) as

X
/F[MX]G[MX] Exp {—M} .

Applying (15) for G instead of F', we write the right hand side of (14) as

X
A’ Al E ——.
FIMX]|2GMmx) BXP [ M]
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So (14) follows from the equality of the operators A;’[MX]G[MX] and A’F[MX] 'G[MX],
which is obvious from the definition. O
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