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1. Introduction

Suppose we have a family of operators {Rm,n} acting on some vector space V , where 
m, n run over all pairs of integers m, n ≥ 0. Suppose R0,0 is the identity operator. For 
each pair of relatively prime integers m, n ≥ 0 let

Tm,n =
∞∑

k=0

umkvnkRmk,nk ∈ End[V ][[u, v]].

We say that the five-term relations hold if for any integers m, n, m′, n′ ≥ 0 such that 
mn′ − m′n = 1 we have:
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Tm,nTm′,n′ = Tm′,n′Tm+m′,n+n′Tm,n. (1)

For instance, for (m, n) = (1, 0) and (m′, n′) = (0, 1) we obtain

T1,0T0,1 = T0,1T1,1T1,0. (2)

The motivation for the name comes from the fact that Faddeev–Kashaev’s quantum 
dilogarithm [4] satisfies a similarly-looking identity. In their setup Û and V̂ are arbitrary 
operators satisfying Û V̂ = qV̂ Û , the quantum dilogarithm is

Ψ(x) =
∞∏

n=1
(1 − xqn),

the identity is

Ψ(V̂ )Ψ(Û) = Ψ(Û)Ψ(−Û V̂ )Ψ(V̂ ),

and they show that it is a deformation of the classical five-term relation

L(x) + L(y) − L(xy) = L

(
x − xy

1 − xy

)
+ L

(
y − xy

1 − xy

)

for the Rogers dilogarithm

L(x) = log(1 − x) log(x)/2 −
x∫

0

log(1 − z)
z

dz.

In [6] one can find the identity1 (2), where it is related to wall-crossing for Donaldson–
Thomas invariants.

Using relations (1), the operator Tm,n for any m, n can be expressed as a composition 
using T0,1, T1,0 and their inverses. Thus we obtain, in particular, that Rm,n for any 
m, n ∈ Z≥0 belongs to the algebra generated by the elements of the form R0,k and Rk,0
(k ∈ Z>0). Then (1), when expressed in terms of these elements, provide some interesting 
relations between them. For instance, taking the coefficient of ukv in both sides of (2)
we obtain

[Rk,0, R0,1] = R1,1Rk−1,0.

For k = 1 we have [R1,0, R0,1] = R1,1, thus in general

[Rk,0, R0,1] = [R1,0, R0,1]Rk−1,0.

1 The identities (1) are also valid there due to the obvious SL2(Z) invariance.
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It is an interesting problem to describe a complete set of relations between the operators 
R0,k, Rk,0 which is in some sense smaller than the original set implied by (1).

Here we prove that our relations are satisfied by certain operators acting on the space 
of symmetric functions in infinitely many variables over the field Q(q, t). To define these 
operators we need the modified Macdonald polynomials of [5]. These are symmetric 
functions H̃μ with coefficients in Z[q, t], orthogonal with respect to the modified Hall 
scalar product defined in the power sum basis by2

(pλ, pμ)∗ =
l(λ)∏
i=1

(−(1 − qλi)(1 − tλi))(pλ, pμ).

We recall that the (unmodified) Hall scalar product is given by

(pλ, pμ) =
{

zλ if λ = μ,
0 otherwise,

where zλ = 1α1α1!2α2α2! · · · for a partition λ = 1α12α2 · · · .
Now we will construct the operators. In fact, we have two statements. In the first 

statement we set

Rk,0 = h⊥
k , R0,k = (−1)kΔ′

ek
, (3)

where the operator h⊥
k is the operator conjugate to the operator of multiplication by 

hk with respect to the Hall scalar product, Δ′
F for a symmetric function F denotes the 

operator defined in the basis of the modified Macdonald polynomials as follows:

ΔF H̃λ = F [Bλ]H̃λ, Bλ =
∑

(r,c)∈λ

qctr,

Δ′
F = ΔF ′ for F ′[X] = F [−1/M + X],

where M = (1 − q)(1 − t). In the second statement

Rk,0 = (−1)kΔ′
ek

, R0,k = (−1)kek

[
X

M

]
, (4)

where ek

[
X
M

]
denotes the operator of multiplication by ek

[
X
M

]
. The two statements are 

related by the conjugation with respect to the modified Hall scalar product.

Theorem 1.1. The operators defined by (3) (alternatively, by (4)) extend to a family of 
operators {Rm,n} satisfying the five-term relations (1).

2 Our definition differs from the one in [5] by a sign (−1)|λ|. This does not affect the orthogonality 
statement.
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Bergeron and Haiman conjectured ([1], Conjecture 6) certain identities between the 
Δek

and h⊥
k operators, which imply interesting recursion relations for the Macdonald 

polynomials. We show that their statement follows by expanding (2). In fact, it was our 
attempt to prove Conjecture 6 that led us to the discoveries of the present work.

2. The proof

We introduce extra variables u and v and set3

τu =
∞∑

n=0
unh⊥

n , Δv =
∞∑

n=0
(−v)nΔen

, Δ′
v =

∞∑
n=0

(−v)nΔ′
en

= Exp[v/M ]Δv.

Then we have, for any symmetric function F ,

(τuF )[X] = F [X + u], ΔvH̃λ =
∏

(r,c)∈λ

(1 − vqctr)H̃λ, (5)

Δ−1
v =

∞∑
n=0

vnΔhn
, Δ−1

v H̃λ =
∏

(r,c)∈λ

1
1 − vqctr

H̃λ.

It is convenient to modify the Bergeron–Garsia operator ∇ by adding a sign, so that it 
becomes closer to Δv in shape:

∇H̃λ =
∏

(r,c)∈λ

(−qctr)H̃λ = (−1)|λ|qn′(λ)tn(λ)H̃λ. (6)

Now we write the identity (77) of [1], which is equivalent to Conjecture 6 there, in a 
generating function form. It claims

∇−1h⊥
k ∇h⊥

l =
k∑

r=0
(−1)k−rΔhr

h⊥
k+lΔek−r

(k, l ∈ Z≥0).

Remember that our ∇ has a sign that conveniently turns (−1)r to (−1)k−r. Now we 
multiply both sides by ukvl and sum up:

∇−1τu∇τv =
r≤k∑

k,l,r≥0

(−1)k−rΔhr
h⊥

k+lΔek−r
ukvl.

We change the indexing: i = k + l, j = k − r, so that the new summation runs over 
i, j, r ≥ 0, i ≥ j + r. We obtain (the old indexes are k = j + r, l = i − (j + r)):

3 We apologize for using conflicting notations ΔF and Δv and hope this does not cause confusion.
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∑
j,r≥0,i≥j+r

(−1)jΔhr
h⊥

i Δej
uj+rvi−(j+r) = Δ−1

u/vτvΔu/v

∣∣∣
v≥0

,

where the notation 
∣∣∣
v≥0

stands for “keep only the terms with non-negative power of v”.

Proposition 2.1 (Generating function form of the conjecture). Conjecture 6 of [1] is equiv-
alent to

∇−1τu∇τv = Δ−1
u/vτvΔu/v

∣∣∣
v≥0

(7)

Now we have the following observation:

Proposition 2.2. For a symmetric function F of degree d the operator

Δ−1
v F ⊥Δv

is a polynomial in v of degree ≤ d. The coefficient of vd is ∇−1F ⊥∇.

Proof. Pieri rules for Macdonald polynomials (VI.6, [7]) say that

H̃1r H̃λ =
∑

μ

Bμ,λ(q, t)H̃μ

for certain rational functions Bμ,λ(q, t), where the sum is over the partitions μ ⊃ λ such 
that μ \ λ is a vertical r-strip. Since the functions H̃1r generate the ring of symmetric 
functions, we obtain that for any symmetric function F of degree d

FH̃λ =
∑
μ⊃λ

CF (q, t)μ,λH̃μ

for some rational functions CF (q, t)μ,λ, where the summation is over μ ⊃ λ such that 
|μ \ λ| = d. Dualizing, we obtain that for any symmetric function F of degree d

F ⊥H̃λ =
∑
μ⊂λ

CF ⊥(q, t)μ,λH̃μ

for some rational functions CF ⊥(q, t)μ,λ, where the summation is over μ ⊂ λ such that 
|λ \ μ| = d. Applying (5), we obtain

Δ−1
v F ⊥ΔvH̃λ =

∑
μ⊂λ

CF ⊥(q, t)μ,λH̃μ

∏
(r,c)∈λ\μ

(1 − vqctr).

The right hand side is a polynomial of degree ≤ d and the coefficient of vd is



A. Garsia, A. Mellit / Journal of Combinatorial Theory, Series A 163 (2019) 182–194 187
∑
μ⊂λ

CF ⊥(q, t)μ,λH̃μ

∏
(r,c)∈λ\μ

(−qctr) = ∇−1F ⊥∇H̃λ

by (6). �
Proposition 2.2 implies that in Δ−1

u/vτvΔu/v the exponent of u/v is less or equal to the 
exponent of v. Therefore we don’t have any terms with negative powers of v and we can 
omit 

∣∣∣
v≥0

from (7). So the conjecture is equivalent to the following:

∇−1τu∇τv = Δ−1
u/vτvΔu/v.

Now we move τv to the right, substitute uv in u and interchange u and v:

∇−1τuv∇ = Δ−1
v τuΔvτ−1

u .

This is what we are going to prove. We write the right hand side as follows:
∑

i,j≥0
Wi,juivj := Δ−1

v τuΔvτ−1
u (8)

The main idea is to put parentheses in the right hand side in two different ways.

2.1. First way

(Δ−1
v τuΔv)τ−1

u . By Proposition 2.2, we know that in each non-zero term the exponent 
of v is less than or equal to the exponent of u. Multiplying by τ−1

u only increases the 
exponents of u. Moreover, to calculate the terms where the exponent of v equals the 
exponent of u we can replace Δ by ∇. Therefore we have

Proposition 2.3. We have Wi,j = 0 for i < j and Wi,i = ∇−1h⊥
i ∇.

2.2. Second way

Δ−1
v (τuΔvτ−1

u ). It turns out that there is exactly the same statement about τuΔvτ−1
u

as we had about Δ−1
v τuΔv. To proceed we need to introduce a (partially defined) operator 

S−1 which acts on operators. Set τ = τ1, M = (1 − q)(1 − t),

τF = F [X + 1], τ∗F = Exp
[
− X

M

]
F,

where Exp is the plethystic exponential,

Exp[X] =
∞∑

hn[X] = exp
( ∞∑ pn[X]

n

)
.

n=0 n=1
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The operator τ sends symmetric functions to symmetric functions, but the operator τ∗

sends a symmetric function to an infinite series so that the degrees of the terms tend to 
infinity.

Denote by Sym[[X]] the algebra of infinite series of the form

F = F0 + F1 + F2 + · · · , (9)

where Fi is a symmetric function of degree i for each i. It is convenient to think of 
Sym[[X]] as a complete topological algebra. The topology is defined in such a way that 
a basis of neighborhoods of 0 is given by the sets

Sym≥d[[X]] := {F0 + F1 + F2 + · · · | Fi = 0 for all i < d}.

Then a sequence of infinite series F (1), F (2), . . . is a Cauchy sequence if for each d ≥ 0
the sequence of degree d terms F (1)

d , F (2)
d , . . . eventually stabilizes. Each Cauchy sequence 

clearly has a limit, therefore Sym[[X]] is complete. Any formal series can be approximated 
by polynomials, for instance for F as in (9), we have

F = lim
d→∞

F≤d, F≤d :=
d∑

i=0
Fi ∈ Sym[X].

Therefore Sym[X] is dense in Sym[[X]]. The topology on Sym[X] induced from Sym[[X]]
has as a basis of neighborhoods of 0 the sets Sym≥d[X] = Sym≥d[[X]] ∩ Sym[X]. Then 
Sym[[X]] is the completion of Sym[X]. In particular, this implies that any continuous 
linear operator Sym[X] → Sym[[X]] can be uniquely extended to a continuous linear 
operator Sym[[X]] → Sym[[X]].

From this point of view, the operator τ∗ : Sym[X] → Sym[[X]] uniquely extends to 
a continuous operator Sym[[X]] → Sym[[X]], which we denote by the same symbol τ∗. 
On the other hand, τ is not continuous, and it does not extend to a continuous operator 
Sym[[X]] → Sym[[X]]. The composition τ∗τ is a linear operator Sym[X] → Sym[[X]]
which is not continuous.

Proposition 2.4. Let L : Sym[X] → Sym[X] be a continuous linear operator. There exists 
at most one continuous linear operator4 S−1(L) : Sym[X] → Sym[X] such that for all 
F ∈ Sym[X]

τ∗τLF = S−1(L)τ∗τF. (10)

The set of all continuous linear operators L : Sym[X] → Sym[X] such that S−1(L) exists 
forms an algebra, and the operation S−1 is an algebra homomorphism.

4 The operation S−1, after a sign change, turns out to be the inverse of the operation S from [3], [2].
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Proof. Note that on the left hand side of (10) we have LF ∈ Sym[X], τLF ∈ Sym[X] and 
τ∗τLF ∈ Sym[[X]]. On the right hand side we have τF ∈ Sym[X], τ∗τF ∈ Sym[[X]], 
S−1(L)τ∗τF ∈ Sym[[X]].

First we prove the uniqueness. Suppose we have two continuous linear operators L′, 
L′′ such that

τ∗τLF = L′τ∗τF, τ∗τLF = L′′τ∗τF (F ∈ Sym[X]).

Then the difference L′′ − L′ vanishes on the set τ∗τ Sym[X]. Since τ : Sym[X] →
Sym[X] is invertible, we have τ Sym[X] = Sym[X]. Therefore L′′ − L′ vanishes on 
the set τ∗ Sym[X]. By continuity, we have that (L′′ − L′)τ∗ vanishes on Sym[[X]], so 
(L′′ − L′)τ∗ = 0. Since τ∗ : Sym[[X]] → Sym[[X]] is invertible (the inverse is given by 
the operator of multiplication by Exp

[
X
M

]
), we have L′′ = L′.

Now suppose L1, L2 are such that S−1(L1), S−1(L2) exist. Then for any F ∈ Sym[X]
we have

τ∗τ(L1 + L2)F = (S−1(L1) + S−1(L2))τ∗τF,

τ∗τL1L2F = S−1(L1)τ∗τL2F = S−1(L1)S−1(L2)τ∗τF,

which shows that S−1(L1 + L2) exists and is given by S−1(L1) + S−1(L2), and similarly 
S−1(L1L2) exists and is given by S−1(L1)S−1(L2). This completes the proof. �

Operators satisfying the conditions of Proposition 2.4 can be built up from the oper-
ators Dn.

Proposition 2.5. For any n ∈ Z, define an operator Dn : Sym[X] → Sym[X] by

Dn = F [X + Mz−1] Exp[−Xz]
∣∣∣
zn

.

Then Dn is a continuous linear operator and S−1(Dn) = −Dn−1.

Proof. The operator Dn is homogeneous of degree n in the sense that the degree of DnF

is d + n for any F ∈ Sym[X] of degree d. Therefore Dn is continuous. Let F ∈ Sym[X]. 
Expanding the definitions and using Exp[−z] = 1 − z, we obtain

τ∗τDnF = F [X + Mz−1 + 1] Exp
[
−Xz − z − X

M

] ∣∣∣
zn

= F [X + Mz−1 + 1] Exp
[
−Xz − X

M

] ∣∣∣
zn

− F [X + Mz−1 + 1] Exp
[
−Xz − X

M

] ∣∣∣
zn−1

.

Similarly, but this time using Exp[−z−1] = 1 − z−1, we obtain
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−Dn−1τ∗τF = −F [X + Mz−1 + 1] Exp
[
−Xz − z−1 − X

M

] ∣∣∣
zn−1

= −F [X + Mz−1 + 1] Exp
[
−Xz − X

M

] ∣∣∣
zn−1

+ F [X + Mz−1 + 1] Exp
[
−Xz − X

M

]∣∣∣
zn

.

We see that S−1(Dn) exists and equals −Dn−1. �
Now we can formulate a statement analogous to Proposition 2.2.

Proposition 2.6. For a symmetric function F of degree d, the operator

τuΔF τ−1
u

is a polynomial in u of degree ≤ d. The coefficient of ud is the operator S−1(Δ′
F ).

Proof. We note that we can replace ΔF by Δ′
F first. Indeed, this does not affect the 

first statement, and assuming the first statement, the coefficients of ud in τuΔF τ−1
u and 

τuΔ′
F τ−1

u are the same because F [X] − F [−1/M + X] is a sum of functions of degrees 
less than d.

The proof hinges on the fact that the operator Δ′
F can be written as a linear combina-

tion of the operators Di1Di2 · · · Did
(Lemma 3.1). This is well-known, but unfortunately 

we could not find a complete reference for this fact, so we provide a proof in Section 3.
Consider τuDnτ−1

u :

F [X] → F [X −u] → F [X +Mz−1 −u] Exp[−Xz]
∣∣∣
zn

→ F [X +Mz−1] Exp[−Xz−uz]
∣∣∣
zn

.

Because Exp[−uz] = 1 − uz, we obtain

τuDnτ−1
u = Dn − uDn−1.

So we see that we obtained a polynomial in u of degree ≤ 1, and the top coefficient is 
−Dn−1 = S−1(Dn). The claim follows from this and the expansion of Δ′

F as a linear 
combination of the operators Di1Di2 · · · Did

. �
Proposition 2.6 implies that in each term of τuΔvτ−1

u the exponent of u is less than or 
equal to the exponent of v. Multiplication by Δ−1

v on the left only increases the exponent 
of v. This proves the following

Proposition 2.7. We have Wi,j = 0 for i > j and Wi,i = S−1(Δ′
ei

).

Putting Propositions 2.3 and 2.7 together we obtain

Theorem 2.8. The commutator of Δ−1
v and τu is a powers series in uv and it has the 

following two expressions:
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Δ−1
v τuΔvτ−1

u = ∇−1τuv∇ = S−1(Δ′
uv).

This establishes Conjecture 6 of [1]. To complete our proof of Theorem 1.1, denote 
for any operator L

N(L) = ∇L∇−1, N−1(L) = ∇−1L∇.

Let also N−1 send u, v to uv, v respectively, and let S−1 send u, v to u, uv respectively. 
We define Rk,0, R0,k and then T0,1, T1,0 as in (3), so that

T1,0 = τu, T0,1 = Δ′
v,

T −1
0,1 T1,0T0,1T −1

1,0 = N−1(T1,0) = S−1(T0,1). (11)

Hence we must necessarily have

T1,1 = N−1(T1,0) = S−1(T0,1).

Moreover, we have

N−1(T0,1) = T0,1, S−1(T1,0) = Exp
[ u

M

]
T1,0. (12)

From this data there is a unique way to construct operators Tm,n for all relatively prime 
pairs m, n such that

N−1(Tm,n) = Tm,m+n, S−1(Tm,n) = Tm+n,n (n > 0).

Moreover, applying the operators N−1, S−1 to (11) we obtain the statements (1) for all 
m, n, m′, n′ with mn′ − m′n = 1.

The statement for Rk,0, R0,k as in (4) is obtained from the statement we just estab-
lished by applying the conjugation with respect to the modified Hall scalar product. 
Modified Macdonald polynomials are orthogonal with respect to the modified Hall 
scalar product, so the operators ΔF , Δ′

F are self-adjoint. The adjoint of h⊥
k is given 

by (−1)kek

[
X
M

]
.

3. Expansion of Δ′
F in terms of Dn

Lemma 3.1. For any F ∈ Sym[X] of degree d, the operator Δ′
F can be written as a finite 

sum of the form

Δ′
F =

∑
i1,...,id

ci1,...,id
Di1Di2 · · · Did

,

where each ci1,...,id
is a rational function of q and t.
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Proof. Let Ed denote the space of operators Sym → Sym that can be written as linear 
combinations of operators of the form Di1Di2 · · · Did

with coefficients in Q(q, t), ij ∈ Z. 
So the statement of Lemma is Δ′

F ∈ Ed.
By Theorem 1.3 of [3],

qt

qt − 1∇hn

[
X

(
1
qt

− 1
)]

∇−1 = 1
M

[Φb, Ψa], (13)

where a, b are positive integers satisfying a + b = n. Using the recursions of Theorem 1.1 
of [3] together with the initial values Φ1 = 1

M [D1, D0], Ψ2 = D2, we show that Φb ∈ Eb

for b ≥ 1 and Ψa ∈ Ea for a ≥ 2. Thus, for n ≥ 3 the operator (13) is in En. For n = 2, 
we have (using the definition and the Jacobi identity):

1
M

[Φ1, Ψ1] = 1
M2 [[D1, D0], −e1] = − 1

M2 [[D1, e1], D0] − 1
M2 [D1, [D0, e1]].

From the well-known identity 1
M [Dn, e1] = Dn+1, we deduce

1
M

[Φ1, Ψ1] = − 1
M

[D2, D0] ∈ E2.

For n = 1, we have

qt

qt − 1∇h1

[
X

(
1
qt

− 1
)]

∇−1 = −∇h1∇−1 = D1 ∈ E1.

So for all n ≥ 1 the operator in the left hand side of (13) is in En. Expressing any symmet-
ric function as a polynomial in the functions hn

[
X

(
1
qt − 1

)]
, we see that ∇G∇−1 ∈ Ed

for any symmetric function G of degree d.
The operation S−1 is an algebra homomorphism by Proposition 2.4. So Proposition 2.5

implies that S−1 preserves Ed. By Lemma 3.2 below,

Δ′
F = S−1 (

∇G∇−1)
,

where G[X] = F
[

X
M

]
. Hence Δ′

F ∈ Ed. �
Lemma 3.2. For any symmetric function F , the operator S−1(∇F∇−1) exists and equals 
Δ′

F [MX].

Proof. We need to verify that for any F, G ∈ Sym[X]

τ∗τ∇
(
F∇−1G

)
= Δ′

F [MX]τ
∗τG.

Equivalently, for any F, G ∈ Sym[X]
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τ∗τ∇(FG) = Δ′
F [MX]τ

∗τ∇G. (14)

Let us prove this identity for G = 1 first. In this case, the statement is

τ∗τ∇F = Δ′
F [MX] Exp

[
− X

M

]
. (15)

We will use the Cauchy formula

Exp
[
−XY

M

]
=

∑
λ

H̃λ[X]H̃λ[Y ]
(H̃λ, H̃λ)∗

. (16)

The right hand side of (15) has the following expansion in the modified Macdonald basis:

∑
λ

F [MBλ − 1]H̃λ[X]
(H̃λ, H̃λ)∗

.

So in order to verify that the left hand side has the same expansion, we need to show 
that for each partition λ we have

(τ∗τ∇F, H̃λ)∗ = F [MBλ − 1].

Since ∇ is self-adjoint and τ∗ is the adjoint operator of τ , we have

(τ∗τ∇F, H̃λ)∗ = (F, ∇τ∗τH̃λ)∗.

Theorem I.3 from [5] allows us to evaluate ∇τ∗τH̃λ, and we obtain

(
F, ∇τ∗τH̃λ

)
∗ =

(
F, Exp

[
−X(MBλ − 1)

M

])
∗

.

Applying (16) for Y = MBλ − 1, we obtain

(
F, ∇τ∗τH̃λ

)
∗ =

∑
λ

(F, H̃λ)∗ H̃λ[MBλ − 1]
(H̃λ, H̃λ)∗

= F [MBλ − 1].

So (15) has been established. Now suppose G is arbitrary. Using (15) for the product 
FG instead of F , we write the left hand side of (14) as

Δ′
F [MX]G[MX] Exp

[
− X

M

]
.

Applying (15) for G instead of F , we write the right hand side of (14) as

Δ′
F [MX]Δ′

G[MX] Exp
[
− X

]
.

M
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So (14) follows from the equality of the operators Δ′
F [MX]G[MX] and Δ′

F [MX]Δ′
G[MX], 

which is obvious from the definition. �
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