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Abstract. In Haglund et al. (Trans. Amer. Math. Soc. 370(6):4029-4057,
2018), Haglund, Remmel and Wilson introduce a conjecture which gives
a combinatorial prediction for the result of applying a certain operator
to an elementary symmetric function. This operator, defined in terms of
its action on the modified Macdonald basis, has played a role in work
of Garsia and Haiman on diagonal harmonics, the Hilbert scheme, and
Macdonald polynomials (Garsia and Haiman in J. Algebraic Combin.
5:191-244, 1996; Haiman in Invent. Math. 149:371-407, 2002). The Delta
Conjecture involves two parameters ¢, t; in this article we give the first
proof that the Delta Conjecture is true when ¢ = 0 or ¢t = 0.
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1. Introduction

For any partition p, we let IA{T“(X ;q,t) denote the corresponding modified
Macdonald polynomial, and

Bula.0) = " i,
ceEN

where the sum is over all squares ¢ in the Ferrers shape of u, a’(¢), the coarm
of ¢, is the distance to the left border of u, and I’(c), the coleg of ¢, is the
distance to the bottom border of u, as in Fig. 1.

Given any symmetric function f, let A’f be the linear operator defined

on the modified Macdonald basis H 1(X;q,t) as
where by f[B,(q,t) — 1] we mean the result of substituting the elements
q“/(c)tl/(c), ¢ € u, ¢ # (1,1), for the variables in the definition of f. This is
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FIGURE 1. The arm a, coarm a’, leg [ and coleg I’ of a cell

the simplest example of a plethystic substitution, which we define in Sect. 2.
Throughout this article, when dealing with a plethystic substitution of some
alphabet E into a symmetric function f, we will place F inside square brack-
ets, as in f[E], as opposed to placing E inside parentheses. We will also use
the standard notation e, (X) for the n-th elementary symmetric function in
the set of variables X = {x1,z5,...}.

The Delta Conjecture from [10] says that for any 1 < k < n,

A,ek,len(X) — Ztarea(ﬂ) Z xaqdinv(a) H (1 + Z/tai) g (11)

zn—
™ oceWP(7) ai>a;—1

where 7 is a Dyck path (a lattice path from (0,0) to (n,n) consisting of unit
North and East steps, which never goes below the line y = ), o is a “word
parking function” for 7 (a labelling on the North steps of 7 with positive
integers which is increasing up columns), and dinv, area are statistics on these
objects with simple combinatorial descriptions. The product on the right-hand
side of (1.1) is over all pairs of consecutive North steps of 7, a; is the number
of area cells in the i-th row of 7, and |,; means “take the coefficient of 27 in”.
We refer the readers to [10] for precise descriptions of these concepts; all we
will need here is what happens to the two sides of (1.1) when we set ¢ = 0,
which we describe in Sect. 3.

When k& = n the Delta Conjecture reduces to the well-known Shuffle
Conjecture from [9] (now a theorem of Carlsson and Mellit [1]). The techniques
used to prove the Shuffle Conjecture though do not seem to apply immediately
when k& < n. Romero [17] proved the Delta Conjecture when ¢ = 1. Zabrocki
[19] proved one of two conjectures from [10] involving the coefficient of a hook
Schur function in (1.1), and in recent work D’Adderio and Vanden Wyngaerd
[3] proved the other of these conjectures. In [12], it is proved that the right-
hand side of (1.1), when ¢ = 0, is the graded Frobenius characteristic of a
certain symmetric-group module. Recently in [2], D’Adderio et al. proved the
generalized Delta conjecture when ¢ =0 or ¢ = 0.



A Proof of the Delta Conjecture When g = 0 319

We will often refer to the left-hand side of (1.1) as SF(X; ¢, t) (the “sym-
metric function side”), and the right-hand side as Rise, 1 (X;¢,t) (the “com-
binatorial side”). Actually, the Delta Conjecture says that

SF(X;q,t) = Rise, 1 (X; ¢, t) = Val, 1 (X;q,t),

where Val,, (X ¢,t) has a combinatorial description similar to Rise,, 1 (X g, ).
It is still unknown if any of the three functions Val(X;q,t), Rise, 1 (X;q,t), or
SF(X;q,t) equal each other, but results in [10,15,16,18] imply that

Val,, 1(X;q,0) = Val,, (X;0,q) = Rise, 1(X;¢,0) = Rise,, x(X;0,q).

From its expansion in terms of Macdonald polynomials derived using (3.3), by
applying the fact that ﬁM(X; q,t) = fIM/(X; t,q), it is clear that SF(X;q,t) =
SF(X;t,q). It follows that the ¢ = 0 case of the Delta Conjecture implies
the case t = 0. In the following sections we prove that SF(X;0,q) =
Risep, 1 (X;0,¢q), which thus proves both the case ¢ = 0 and the case t = 0
of the Delta Conjecture, which were open until now.

Finally it is worth mentioning that our proof of the Delta conjecture
at ¢ = 0 uses a novel method of proving symmetric function identities. The
method consists in expanding both sides of the identity to be proved as a linear
combination of special evaluations of a “Cauchy Kernel” naturally associated
with the problem. This new method has since been successfully used in other
closely related problems involving Delta operators (cf. [6,11]).

2. Preliminaries

In this section, we define necessary notation and introduce backgrounds. We
basically follow the notation and terminology for symmetric functions in [14].

A partition of n, denoted by A F n, is a sequence of weakly decreasing
positive integers

A= (A, A, k),

such that Ele Ai = n. Each )\; is called a part and the number of parts is
the length of A, denoted by ¢()). For each i, m;(\) counts the number of times
i occurs as a part of A, called multiplicity of ¢ in \. Given a partition \, we
define

. Y
n(A) = (i-Dhi=) <2> => " l(e)=>_1'e).
i>1 i>1 cEX cEX
The conjugate of a partition A is a partition \’ whose parts are
N =i A =},

or whose multiplicities are m;(\) = A\; — Aiy1.
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For a partition A of n, we let
m)\(X)a e)\(X)a hk(X)v p)\(X), SX(X)a ITI}\(X;QJS)’

denote the monomial, elementary, complete homogeneous, power sum, Schur
and modified Macdonald symmetric functions, respectively.

In dealing with symmetric function identities, especially with those aris-
ing in the theory of Macdonald polynomials, we find it convenient and often
indispensable to use plethystic notation and so here we define plethystic sub-
stitution. Let E = E(t1,ts,...) be a formal Laurent series with rational coeffi-
cients in indeterminates t1, ts, . ... For the k-th power sum symmetric function
pe(X) =, zF, we define

pelE] = E(t5,t5,...).

This given, for any symmetric function f, we set

fIE] = Qf(p1,p2,--)

pkﬂE(t’f,tlg,‘..) ’

where Q¢ is the polynomial yielding the expansion of f in terms of the power
sum basis. The convention is that in a plethystic expression X stands for the
sum of the original indeterminates 1 + xo + - - -, since pi[X] = pr(X). Also,
note that pi[X — Y] = pr[X] — px[Y]. Hence, for example, by pi[X (1 —t)] we
mean pi(X)(1 —t*). In particular we have

pr [eX] = (—1)Fpr(X),
fl-eX] = wf(X),

for any symmetric function f(X), where € denotes a special symbol for replac-
ing variables by their negatives inside the plethystic brackets and w is the
usual involution on symmetric functions which acts on the Schur basis as
wsx(X) = sy (X). We refer the readers unfamiliar with these concepts to
Chapters 1 and 2 of [8] for background and more details on plethysm and
Macdonald polynomials.

To make our notations simple, we let

M= (1-q)(1-1),
Bu(a,t) =) "9,

cep

(g, t) = J] (1—q" @), (2.1)
(0.0)

We also define
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The following two identities will be useful in the proof of the Delta Conjecture
when ¢ = 0:

XY H,[ X3 .8 H,[Y3 9,1
Cauchy formula) € {e] = ’ £ , 2.2
( ) T3 R Py (22)
(Koornwinder-Macdonald reciprocity formula)
H,[1 + u(MBx(g,t) = 1);q,t] _ Ha[1+u(MB,(q,t) — 1);q,1] 2.3)

Hceu(l - uqa’(c)tl'(c)) B HCG)\(]‘ - uqa’(c)tl’(c))
The following lemmas will be used in the next section.
Lemma 2.1. [4, Theorem 3.4

en(X) =Y (1—g)(1 - t)Huzif(;q%} g)HH(q,t)BM(q,t).

pkEn

Proof. In the Cauchy formula (2.2), if we read out the homogeneous component
of degree n in X and Y we get

XY HulX;q,]H,[Y:q.t)
R s o 24

puEn

Thus, we only need to compute IA{T# [M;q,t] and let Y = M in (2.4). To this
end, we consider the Koornwinder—-Macdonald reciprocity formula (2.3). If we
cancel the common factor (1 —wu) out of the denominator on both sides of (2.3)
and set u = 1 we obtain

H,[MB(¢,t):q,t] _ H\[MB,(q.t);4,1]
1T}, (g, 1) 1T (g, 1)
In the case when A = (1), the above identity reduces to
IT[/L [M’ q, t] = MB,U.(q? t)H:,L(q7 t)7
which finishes the proof. O
The Schur coefficients of H,[X;q,1]

X q7 Z K)\,LL qa S)\ )
Al

are known as the modified q,t-Kostka polynomials and they are proved to be
positive polynomials in ¢ and ¢. The ¢, t-Kostka polynomials K, (q,t) satisfy
the following relation with Ky, (q,t):
Kaug,t) = "W Ky (.71,
and we also consider the following form of Macdonald polynomials
WXt =) Kaulg,t)sa(X).
AFp|

Note that if we set ¢ = 0, then we obtain the Hall-Littlewood polynomials
H,[X;0,t] = H,[X;t].
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In this setting, the Schur coefficients K,,(0,t) = K\(t) are known as the
Kostka—Foulkes polynomials.
Lemma 2.2. For any monomial u, we have

()~ ()~
H,[1 —u;q) = ¢ H (1—u/¢) =q"W~ (“¢”) H ¢ —u)

Proof. For X\ the empty partition, IA{T)\(X; q,t) =1 and MB)(q,t)—1=—1,so0
(2.3) in this case reduces to

Erﬂ[l — U Q?t] = H(l — ’U/tl,(c)qa/(c)).

cep
Since ﬁu(X;q, t) =t"WH W(X5q,t7h),

Hﬂ[l —u;q, t] = tn(,u) H(l - utill(c)qal(c))

cep
= (W) H (1 —ut™"() H (1 —ut™ V(g (@),
cen, cen,
a’(¢)=0 a’(¢)>0

Setting ¢ = 0 proves the lemma after replacing ¢ by ¢, since

0
Hy[1—wt] = Hy[1 = u;0,¢] = "0 T (1 —ut=07Y)
=1

J
()
?(;t) H tj 1

=

3. Schur Expansion of A;k_len When g = 0
Let

Ch.x(X;t) = Rise, 1(X;0,t).
We have the following;:

Lemma 3.1. [12, Theorem 6.11, 6.14]

k
(X:1)) ¢rn=( { H,(X;t),
“ACnslX:0) = 2 ma (), ma(p), ..y ma ()|, e
)=k

where

/t X t ZKA” S)\
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Equivalently, for any A we have

k

CusXithon) = X 00Ok, o) | (31

(CuslXith o) = 3 1 Lo )2, 0], O
)=k

Proof. This is a direct result by combining Theorem 6.11 and Theorem 6.14

of [12]. O

Proposition 3.2. The Delta Conjecture when q = 0 is equivalent to the follow-
ing identity

_ Cn—n n my(p)+1 g(ﬂ,) — ]. (Q7 Q)Z(u) —1
(_l)n l(u)q () +>27, ( 2 ) |: :| n—KA L(q )
% k—1 q [T (4 D) A
_ . 4 q)e
k(k—1) Z n(y >—<ﬂ>KM(q) (3.2)

ukn z 1(q7 )mi(ﬂ)

L(p)=k

forall A\Fnand1 <k <n.

Proof. Observe that the right-hand side of (3.2) equals qf(g) (Cnk(X;q),s7)
by (3.1). We obtain the left-hand side of (3.2) by computing (Al ey, s;)‘

q=0
t—q
algebraically.
Recall that by Lemma 2.1,
1—q)(1 — ) H,(X;q, DI, (q,t)B,(q,
en(X):Z( O — ) Hu(X; ¢, )L, (0, 1) Byu(q, 1) (3.3)
ukn wl»b((Lt)
Applying Al | to both sides of (3.3) we get
A=Y (1= q)(1 — t)H,(X;q,t)Bu(q, )T, (g, t)e—1[ B, — 1]
ep—1- 1 T .
pEn Wh
(3.4)
If we let ¢ =0 in (2.1) we have
Bu(0,t) =1+t 4+t = e,
IT,(0,1) = (£;t)e(u) -
(O,t) H tl(c) H (1 . 7fl(c)-l-l) . H (_tl(c)+1)
cep cep cep
a(c)=0 a(c)>0

(1 ne ) my(p)+1
=(-1) L) 2n(p)+n =, (i )H(t§t)mi(u)7

i

ek—l[BH(O’t) - 1} = €k_1(t,t2, RS tZ(u)_l) = tk_1+(kg1) |:£(]5)—1 1:| )
¢
where (¢;t), = (1 —t)--- (1 —t™). We use the above computations in (3.4) to
obtain

AL e,

€k—1
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(L= (X500l (a1 [P

- Z n n—%" (mi(w)+1
= (=1)n=0 g2+ =3 ) T (g3 9,
— Z(—1)"_é(“)qk_1+(k51)—2"(ﬂ>—n+2i (" H,(X;0,q)
pEn
TN L)
k-1 q ml(u)amQ(u>77mn<M) q
Hence,
<A/ek,1em S)\> q=0
t—q
- Z f(,\#(q)(—1)”4(#)(](’5)—2"(#)—%& (M
pukEn
" [ﬁ(u) - 1} [ m) }
k=1 | [ma(p),ma(p), ... oma(p)],
Since I?A#(q) = q"WK,,(¢7"), we eventually have
00 (F) ()t S, (i
(A;kilen,sm‘qzo = 3 (1) g(B) e, ()
t=q  pukn
() — 1] (@ @) o) 1
X = Koau(aT).
[ k-1 q Hi:l(q;q)mi(#) !
Then (3.2) is the result of multiplying both sides of
<A/ekilena 5>\> =0 = <Cn,k(X; q)a 8)\>
t—q
by ¢~ (2). 0

4. The Proof

In this section, we prove the Delta Conjecture when ¢ = 0 by verifying the
equivalent identity in (3.2).

Theorem 4.1. The Delta Conjecture is true when g = 0.

Proof. In Proposition 3.2, we showed that the Delta Conjecture at ¢ = 0 is
equivalent to the following identities

LHSy » = RHS A (for all A\Fn and 1 < k <mn), (4.1)
where

Lt = S0 [

pukEn

S () TG Deg e ooy (42)
i=1\4> O)m; (1)

q
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and

RHSy, = ¢ H60 3 g %fm(q). (43)

ukn, z 1(qa )mi(u)

L(p)=k

We first eliminate the presence of the expressions

n

]:[(q, Q)mi(u)a

i=1
which make the equality in (4.1) combinatorially forbidding. We note the fol-
lowing identity in [14, ITI, (2.11)]

1
T (& @) )
The idea is to translate the equality in (4.1) into a symmetric function iden-
tity involving the basis {Pu [X; Q]}u' Another important ingredient we find in

Macdonald’s book is the Hall-Littlewood Cauchy identity [14, II1. (4.4)]

SR aQulY i) = 3 S p XY (- @) = ha[XY (- q)l (15)

p

P,[X:q] = QulX;ql. (4.4)

puEn pEn

The presence of the Kostka—Foulkes polynomials in both (4.2) and (4.3) sug-
gests using the identity (cf. [8, (2.17), (2.18)])

QulXiq) =D salX (1= )] Kxu(g). (4.6)
AZ>p
Now if we define
H,(X:q) = Qu [%55a] = > s\[X]Koula), (4.7)
A>p

then (4.5) can be rewritten as the “Cauchy Kernel”
> PUX;qlHuYq) = ha[XY]. (4.8)
pukEn

This is particularly enticing since it remains true under the replacement of ¢
by 1/q. Using (4.6) and (4.7), we can rewrite (4.8) as

> PuX:1q) > salY]Kxu(g) = ha XY,
phn AFn
A>p

or better
> V1Y Kau(@)PulXiq = ha[XY],
AFn <A

forcing the identity

X] =" Kxu(q)Pu[X;q].

n<A
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The plan is to express ) ., LHSk xsx[X(1—q)] and >, , RHSy xsx[X(1—
q)] as identities in terms of the P,’s. We first work with the right-hand side of
(4.2). Using the fact that

= Y- 1) (1 1™ = (1L

( ; )’HL
©4 a—y q( 2 )

(4.2) can be rewritten as

1
(1/(], 1/Q)m,(,u)

LHSk A= Z q_n('u) n
pEn

/a0~ [ @,

Multiplying by sx/[X (1 — ¢)] and summing for all A - n gives

> LHSk asn[X (1 - )]

AFn
S/ — K -
B Z " ZAFﬁz/\f(l;i], 1/qq))]m15)(1/q) o [6(]5)_ 1 1] q 2w

pkEn

But since

sx[X(1—q)] =q"sx[X(1/q = 1)] = (=¢)"sx[X (1 —1/q)],

we obtain

ZLHSk,)\S)\’ [X(l - (J)]
AFn
—n(p nS -1 K w1 4 -1 :
=24 ”Z%Hj[l((l/q,l//g] LY

pkn

or better, using (4.6),

- Qu[X;1/4] {z(u) - 1]
FSEas X " (@ Q) e(0)-
);l /_;l z 1(1/Q§1/Q)7yli(u) k-1 . (1)

Thus (4.4) gives

SO LHSgsx [X(1—q)) = > ¢ "W P[X;1/g] {“]5)_1 1} (& Deg-

AFn pEn

Let us now work on the other identity (4.3). Replicating what we did
for (4.2), we multiply by sy [X (1 — ¢)] and sum over A F n to get

Z RHSy asx [X (1 — q)]

AFn

—k(k—1) n(,u)Z)\)—ns)\’[ (1 =) Kxulg)
Z 1 Hz 1(q7 )m,(u)

=4q
pukn,
)=k
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— g kD Z qn(,t) QuX q]
s 11 (@ D
L(p)=

=¢ " gk Y "WP[X:4q),
pn,
)=k

using (4.6) and (4.4) for the second and the third identities, respectively. Thus,
we are left to match up the following two identities

S LS X (1 - 9] = S0 rxsyad | o, @9

AFn ukn
and
D> RHSiasn[X(1—q)l =¢ " V(g > ¢""WP.[X;ql. (4.10)

Abn pukEn
L(p)=k

The idea is to use the following two identities to evaluate (4.9) and (4.10)
respectively:

) > PuX;qHuY:q] = ha[XY],

> PuX;1/qHuY;1/q) = hn[XY].

(4.11)

Computer experiments computing special cases of (4.10) showed us that the
Schur expansion of (4.10) only contains the Schur functions indexed by hook
shapes. The symmetric function identity which could explain this phenomenon
is the following which is valid for any monomial v [8, (1.72)]:

-] (—u)"(1—w), if A=n—-rl1" for0<r<n-1,
—ul =
0, otherwise.
Hence we try the same substitution ¥ =1 — u in (4.11).
Lemma 4.2. For all monomials u, we have
n—1
h[X (1 — u)] ZP [(X;q)Hu[1l —usq) = 1—uz )*8(n—s,15)[X].
pEn s=0

Proof. Note the following identity involving plethysm so called addition for-
mula

=3 hilElha [~ F],
k=0

where E = E(ty,to,...) and F' = F(w;,ws,...) are two formal series of rational
terms in their indeterminates (cf. [8, Theorem 1.27]). Using another property
of plethysm

fl-eX] = wflX],
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for Y =1—wu (4.11)(a) gives

> PulX;alHu[l - uiq]

pEn
= hp[X — uX]
n—1
= hn[X] + Z B s [X](—u)®es [X] 4 (—u)" e, [X]
s=1
n—1
= su[X]+ ) (=) (5(n—s.19) [X] + 5nsg1,20-1)[X]) + (—u)"s(1my[X]
s=1
n—1 n—1
— (L= w)salX] + 3 ()51 [X] + 3 (=) s 1 [X]
s=1 s=1
n—1
=1 —u) ) (—u)*sp—s15)[X]
s=0
O
Applying Lemma 2.2 in (4.11)(a) with u = ¢* gives
i £(p)—1
holX(1— ¢ n i
LRl S pwp g [ a-a). @
pkn J=1

Lemma 4.2 tells us that taking the coefficients of powers of w in the ratio
hn[X (1 —w)]/(1 — u) successively yields all the hook Schur functions. This
fact suggests the hook Schur function expansion would be explained if we can
find coefficients cl(-k) (q) yielding the identity

1 —
S P, [X:q) = Zc (iq” (4.13)
pkn, 4
)=k
A procedure was thus constructed that determined the cgk) (¢)’s from the
equations obtained by equating the two sides of (4.13). There we encountered

another incredible surprise: these coefficients depended only on k£ and not on
n. Moreover, in all instances explored the c( )( )’s turned out to be products
of g-analogues of integers. This evidence prompted us to prove this new phe-
nomenon by a close examination of the right-hand side of (4.13). To this end
notice first that using (4.12) we can rewrite (4.13) as

k !
ST OPIX () = k) = > (@)Y "W PLX ) [ - a)
pEn i=1 ukn j=1
k l(u) 1
=3 "WP[Xiq Y " (1-q"
pkn i=1 j=1

(4.14)
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by changing the order of summation. Notice that to make the factors in
Hﬁ(:“l)*l (1—¢*~7) nonzero, we should have i > £(u). We use the g-Pochhammer
symbol to denote HE(“ )= 1(1 —¢"77) in a compact form, namely,
£(p)—1 o ‘

IT G=a"7) = (@ 9)gu)-1-

j=1
Since the family of symmetric polynomials {PM [X; q]}m_n is a basis, (4.14) is
true if and only if

Zc(k) ¢y =x(h=k), foralll<h<k  (4.15)

More importantly, we can easily see that this system of equations is triangular
in the unknown coefficients ¢;(q). Thus the ¢;(q) exist and are unique.

A close look at the computer data revealed the following explicit formulas
for c( )( ).

Lemma 4.3. For 1 <i<k,

P (g) = (~1)¥ig(") [k_l] L__ L0

=1 (k-1 (4 Dk—i(q,0)i1

Proof. Since the equations in (4.15) uniquely determine the cgk)(q), to prove

(4.16) it suffices to show that the cgk) (q), as given by (4.16), are solutions of
the equations in (4.15). Thus it is sufficient to show that
kgl

1, ifh=F,
2 :

Y D v & o e _
~ Q7Q)k—i(97Q)1ﬁ—1(q = {0, if h < k.

Notice that this is trivially true for o = k. For 1 < h < k, making the
substitution a = k — ¢ we are reduced to showing that
k—h

(~1)%q%) k—a+1—h,

Z (q ;q) o1 =0

= (¢ 9)a(0: Dk-1-a

However, doing the necessary cancellations, this is none other than
k—h

> (=1)%) . =0.

= (4,9)a(@, Dt—h—a

Notice that if we multiply by (¢; ¢)x—rn the left-hand side becomes
k—h k—h
a (% Q)k—n oy [k—h
-1 aq(’z) = -1 aq(2) s
g( ) (¢, @)a(@, Dk—n—a ;( ) a |,

which is zero by the g-binomial theorem

(z;)n=01—-2)1—2q)---(1— an—l) _ Z(—Z)aq@) [n]

with z = 1. This completes the proof. 0
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Given (4.13), to verify that (4.9) and (4.10) are equal, we only need to
show that

X(1-—
ZC 1 q )]
i=1 -
_ qk(k 1)

(@ Dk

> g "B, [X;1/q] [ (p )_11] (4 Deuy» (4.17)

pkEn

with cz(-k) (q)’s as given in Lemma 4.3. To deal with the right-hand side of (4.17),
we utilize the identity (4.11)(b) with the replacement Y — (1—¢*) and obtain

halX(1—q")] = Pu[X;1/qlH,[1 - q';1/q]. (4.18)
pEn

By Lemma 2.2, after replacing ¢ by 1/q and u = ¢', we have

. (p)—1 o
Hu[1—¢51/g =g " J] (1=¢™).
7=0
Using this in (4.18) gives
i (p)—1
hnX(1 ¢ _ oy
[l(qi)] =Y "WRX;1/q [ (1—¢"). (4.19)
pkn j=1

We use (4.19) in the left-hand side of (4.17) to obtain an equivalent
identity

k £(p)—1 o
ST ) Y WPx /g T - q')
i=1 pEn J=1
k(k l E( -1
g "MWP[X:1/q [ ] Do)
(q7q Z fa | q( )e(w)
or better,
k £(p)—1
_ k i+
ST @R X1/ Y Pg) T - ¢)
pEn i=1 j=1
k(k—1)
(q7 q)k l;lq [ /q] k—1 . (qa q)ﬁ(u)

Since the family of polynomials {Pﬂ (X; 1/q)}m_n is also a basis, this can be
true if and only if

k - k(k—1)
(k Z-‘r] C] |:h - 1:| .
C; - q;49)h,
,; H gk [F-1], (@)
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for 1 < h < n. Using the explicit expression for cgk)(q), this is none other than
the equality

k kz(;) i1 g, R [
; i(;(,]Q)i_f)h 1 q(q;q)k {k B 1L(q;q)h7 (4.20)

forall 1 <h <n.
By substituting k — i — a, (4.20) becomes
k—1 a
T (-4 (¢; Qr (@ Dr—arn _ pen [A=1
(

= (6 Dk-a-1(4 0)a(@ Dk-a(g; D k-1],

Proposition 4.4.

k-1 o (2
(-0 (@ k(@ Dharno1 oy [h—1
= . (4.21)
= (6D k—a-1(0Da(@ Di—a(a: Dn k—1],
Proof. The left-hand side of (4.21) is equal to
2 N (g 9)i—asns
; (€ Dk-a—1(¢5 @)a(q3 @) -
k— —k
_ (@ Drtn Z alk— h) "1 0)ald”"10)a
(401 (g; Q)1 = Dal(q' "1 q)a
Now we apply the o¢py summation identity [7, Sec 1.5]
- c/b;q)n "
=3 i gy,
~  (¢cq
with m— k —1, b ¢'~" and ¢ — ¢ ~*~" to obtain
(ql‘ an(k m (@ " @)l 5 9)a
(¢ =+ s (@)@ """ q)a
Hence
@ Drrn—1 (@1 ey (@0
(@ Dn(@ k-1 (") (6 D)n—k(a3 @)1

h—1
_ k(k—1)
=4 [k:—l]q

This completes the proof of (4.20) and the proof of the theorem. O
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