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Abstract. In Haglund et al. (Trans. Amer. Math. Soc. 370(6):4029–4057,
2018), Haglund, Remmel and Wilson introduce a conjecture which gives
a combinatorial prediction for the result of applying a certain operator
to an elementary symmetric function. This operator, defined in terms of
its action on the modified Macdonald basis, has played a role in work
of Garsia and Haiman on diagonal harmonics, the Hilbert scheme, and
Macdonald polynomials (Garsia and Haiman in J. Algebraic Combin.
5:191–244, 1996; Haiman in Invent. Math. 149:371–407, 2002). The Delta
Conjecture involves two parameters q, t; in this article we give the first
proof that the Delta Conjecture is true when q = 0 or t = 0.
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1. Introduction

For any partition μ, we let ˜Hμ(X; q, t) denote the corresponding modified
Macdonald polynomial, and

Bμ(q, t) =
∑

c∈μ

qa′(c)tl
′(c),

where the sum is over all squares c in the Ferrers shape of μ, a′(c), the coarm
of c, is the distance to the left border of μ, and l′(c), the coleg of c, is the
distance to the bottom border of μ, as in Fig. 1.

Given any symmetric function f , let Δ′
f be the linear operator defined

on the modified Macdonald basis ˜Hμ(X; q, t) as

Δ′
f

˜Hμ(X; q, t) = f [Bμ(q, t) − 1] ˜Hμ(X; q, t),

where by f [Bμ(q, t) − 1] we mean the result of substituting the elements
qa′(c)tl

′(c), c ∈ μ, c �= (1, 1), for the variables in the definition of f . This is
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Figure 1. The arm a, coarm a′, leg l and coleg l′ of a cell

the simplest example of a plethystic substitution, which we define in Sect. 2.
Throughout this article, when dealing with a plethystic substitution of some
alphabet E into a symmetric function f , we will place E inside square brack-
ets, as in f [E], as opposed to placing E inside parentheses. We will also use
the standard notation en(X) for the n-th elementary symmetric function in
the set of variables X = {x1, x2, . . .}.

The Delta Conjecture from [10] says that for any 1 ≤ k ≤ n,

Δ′
ek−1

en(X) =
∑

π

tarea(π)
∑

σ∈WP(π)

xσqdinv(σ)
∏

ai>ai−1

(1 + z/tai)
∣

∣

∣

zn−k
, (1.1)

where π is a Dyck path (a lattice path from (0, 0) to (n, n) consisting of unit
North and East steps, which never goes below the line y = x), σ is a “word
parking function” for π (a labelling on the North steps of π with positive
integers which is increasing up columns), and dinv, area are statistics on these
objects with simple combinatorial descriptions. The product on the right-hand
side of (1.1) is over all pairs of consecutive North steps of π, ai is the number
of area cells in the i-th row of π, and |zj means “take the coefficient of zj in”.
We refer the readers to [10] for precise descriptions of these concepts; all we
will need here is what happens to the two sides of (1.1) when we set q = 0,
which we describe in Sect. 3.

When k = n the Delta Conjecture reduces to the well-known Shuffle
Conjecture from [9] (now a theorem of Carlsson and Mellit [1]). The techniques
used to prove the Shuffle Conjecture though do not seem to apply immediately
when k < n. Romero [17] proved the Delta Conjecture when q = 1. Zabrocki
[19] proved one of two conjectures from [10] involving the coefficient of a hook
Schur function in (1.1), and in recent work D’Adderio and Vanden Wyngaerd
[3] proved the other of these conjectures. In [12], it is proved that the right-
hand side of (1.1), when q = 0, is the graded Frobenius characteristic of a
certain symmetric-group module. Recently in [2], D’Adderio et al. proved the
generalized Delta conjecture when q = 0 or t = 0.
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We will often refer to the left-hand side of (1.1) as SF(X; q, t) (the “sym-
metric function side”), and the right-hand side as Risen,k(X; q, t) (the “com-
binatorial side”). Actually, the Delta Conjecture says that

SF(X; q, t) = Risen,k(X; q, t) = Valn,k(X; q, t),

where Valn,k(X; q, t) has a combinatorial description similar to Risen,k(X; q, t).
It is still unknown if any of the three functions Val(X; q, t), Risen,k(X; q, t), or
SF(X; q, t) equal each other, but results in [10,15,16,18] imply that

Valn,k(X; q, 0) = Valn,k(X; 0, q) = Risen,k(X; q, 0) = Risen,k(X; 0, q).

From its expansion in terms of Macdonald polynomials derived using (3.3), by
applying the fact that H̃μ(X; q, t) = H̃μ′(X; t, q), it is clear that SF (X; q, t) =
SF (X; t, q). It follows that the q = 0 case of the Delta Conjecture implies
the case t = 0. In the following sections we prove that SF(X; 0, q) =
Risen,k(X; 0, q), which thus proves both the case q = 0 and the case t = 0
of the Delta Conjecture, which were open until now.

Finally it is worth mentioning that our proof of the Delta conjecture
at q = 0 uses a novel method of proving symmetric function identities. The
method consists in expanding both sides of the identity to be proved as a linear
combination of special evaluations of a “Cauchy Kernel” naturally associated
with the problem. This new method has since been successfully used in other
closely related problems involving Delta operators (cf. [6,11]).

2. Preliminaries

In this section, we define necessary notation and introduce backgrounds. We
basically follow the notation and terminology for symmetric functions in [14].

A partition of n, denoted by λ � n, is a sequence of weakly decreasing
positive integers

λ = (λ1, λ2, . . . , λk),

such that
∑k

i=1 λi = n. Each λi is called a part and the number of parts is
the length of λ, denoted by �(λ). For each i, mi(λ) counts the number of times
i occurs as a part of λ, called multiplicity of i in λ. Given a partition λ, we
define

n(λ) =
∑

i≥1

(i − 1)λi =
∑

i≥1

(

λ′
i

2

)

=
∑

c∈λ

l(c) =
∑

c∈λ

l′(c).

The conjugate of a partition λ is a partition λ′ whose parts are

λ′
i = |{j : λj ≥ i}|,

or whose multiplicities are mi(λ′) = λi − λi+1.



320 A. Garsia et al.

For a partition λ of n, we let

mλ(X), eλ(X), hλ(X), pλ(X), sλ(X), ˜Hλ(X; q, t),

denote the monomial, elementary, complete homogeneous, power sum, Schur
and modified Macdonald symmetric functions, respectively.

In dealing with symmetric function identities, especially with those aris-
ing in the theory of Macdonald polynomials, we find it convenient and often
indispensable to use plethystic notation and so here we define plethystic sub-
stitution. Let E = E(t1, t2, . . .) be a formal Laurent series with rational coeffi-
cients in indeterminates t1, t2, . . . . For the k-th power sum symmetric function
pk(X) =

∑

i xk
i , we define

pk[E] = E
(

tk1 , t
k
2 , . . .

)

.

This given, for any symmetric function f , we set

f [E] = Qf (p1, p2, . . .)
∣

∣

∣

pk→E(tk
1 ,tk

2 ,...)
,

where Qf is the polynomial yielding the expansion of f in terms of the power
sum basis. The convention is that in a plethystic expression X stands for the
sum of the original indeterminates x1 + x2 + · · · , since pk[X] = pk(X). Also,
note that pk[X − Y ] = pk[X] − pk[Y ]. Hence, for example, by pk[X(1 − t)] we
mean pk(X)(1 − tk). In particular we have

pk [εX] = (−1)kpk(X),

f [−εX] = ωf(X),

for any symmetric function f(X), where ε denotes a special symbol for replac-
ing variables by their negatives inside the plethystic brackets and ω is the
usual involution on symmetric functions which acts on the Schur basis as
ωsλ(X) = sλ′(X). We refer the readers unfamiliar with these concepts to
Chapters 1 and 2 of [8] for background and more details on plethysm and
Macdonald polynomials.

To make our notations simple, we let

M = (1 − q)(1 − t),

Bμ(q, t) =
∑

c∈μ

qa′(c)tl
′(c),

Π′
μ(q, t) =

∏

c∈μ
c �=(0,0)

(1 − qa′(c)tl
′(c)),

wμ(q, t) =
∏

c∈μ

(

qa(c) − tl(c)+1
)(

tl(c) − qa(c)+1
)

.

(2.1)

We also define

Ω(X) =
∏

i

1
1 − xi

= exp

⎛

⎝

∑

k≥1

pk(X)
k

⎞

⎠ .
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The following two identities will be useful in the proof of the Delta Conjecture
when q = 0:

(Cauchy formula) Ω
[

−ε
XY

M

]

=
∑

μ

˜Hμ[X; q, t] ˜Hμ[Y ; q, t]
wμ(q, t)

, (2.2)

(Koornwinder-Macdonald reciprocity formula)

˜Hμ[1 + u(MBλ(q, t) − 1); q, t]
∏

c∈μ(1 − uqa′(c)tl′(c))
=

˜Hλ[1 + u(MBμ(q, t) − 1); q, t]
∏

c∈λ(1 − uqa′(c)tl′(c))
. (2.3)

The following lemmas will be used in the next section.

Lemma 2.1. [4, Theorem 3.4]

en(X) =
∑

μ�n

(1 − q)(1 − t) ˜Hμ(X; q, t)Π′
μ(q, t)Bμ(q, t)

wμ(q, t)
.

Proof. In the Cauchy formula (2.2), if we read out the homogeneous component
of degree n in X and Y we get

en

[

XY

M

]

=
∑

μ�n

˜Hμ[X; q, t] ˜Hμ[Y ; q, t]
wμ(q, t)

. (2.4)

Thus, we only need to compute ˜Hμ[M ; q, t] and let Y = M in (2.4). To this
end, we consider the Koornwinder–Macdonald reciprocity formula (2.3). If we
cancel the common factor (1−u) out of the denominator on both sides of (2.3)
and set u = 1 we obtain

˜Hμ[MBλ(q, t); q, t]
Π′

μ(q, t)
=

˜Hλ[MBμ(q, t); q, t]
Π′

λ(q, t)
.

In the case when λ = (1), the above identity reduces to
˜Hμ[M ; q, t] = MBμ(q, t)Π′

μ(q, t),

which finishes the proof. �
The Schur coefficients of H̃μ[X; q, t]

H̃μ[X; q, t] =
∑

λ�|μ|
K̃λμ(q, t)sλ(X),

are known as the modified q, t-Kostka polynomials and they are proved to be
positive polynomials in q and t. The q, t-Kostka polynomials Kλμ(q, t) satisfy
the following relation with K̃λμ(q, t):

Kλμ(q, t) = tn(μ)K̃λμ(q, t−1),

and we also consider the following form of Macdonald polynomials

Hμ[X; q, t] =
∑

λ�|μ|
Kλμ(q, t)sλ(X).

Note that if we set q = 0, then we obtain the Hall–Littlewood polynomials

Hμ[X; 0, t] = Hμ[X; t].
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In this setting, the Schur coefficients Kλμ(0, t) = Kλ(t) are known as the
Kostka–Foulkes polynomials.

Lemma 2.2. For any monomial u, we have

Hμ[1 − u; q] = qn(μ)

�(μ)−1
∏

j=0

(1 − u/qj) = qn(μ)−(�(μ)
2 )

�(μ)−1
∏

j=0

(qj − u).

Proof. For λ the empty partition, ˜Hλ(X; q, t) = 1 and MBλ(q, t)− 1 = −1, so
(2.3) in this case reduces to

˜Hμ[1 − u; q, t] =
∏

c∈μ

(1 − utl
′(c)qa′(c)).

Since ˜Hμ(X; q, t) = tn(μ)Hμ(X; q, t−1),

Hμ[1 − u; q, t] = tn(μ)
∏

c∈μ

(1 − ut−l′(c)qa′(c))

= tn(μ)
∏

c∈μ,
a′(c)=0

(1 − ut−l′(c))
∏

c∈μ,
a′(c)>0

(1 − ut−l′(c)qa′(c)).

Setting q = 0 proves the lemma after replacing t by q, since

Hμ[1 − u; t] = Hμ[1 − u; 0, t] = tn(μ)
�(μ)
∏

j=1

(1 − ut−(j−1))

= tn(μ)−(�(μ)
2 )

�(μ)
∏

j=1

(tj−1 − u).

�

3. Schur Expansion of Δ′
ek−1

en When q = 0

Let

Cn,k(X; t) = Risen,k(X; 0, t).

We have the following:

Lemma 3.1. [12, Theorem 6.11, 6.14]

ω(Cn,k(X; t)) =
∑

μ�n
�(μ)=k

tn(μ)−(k
2)

[

k
m1(μ),m2(μ), . . . , mn(μ)

]

t

Hμ(X; t),

where

Hμ(X; t) =
∑

λ

Kλμ(t)sλ(X).
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Equivalently, for any λ we have

〈Cn,k(X; t), sλ〉 =
∑

μ�n
�(μ)=k

tn(μ)−(k
2)Kλ′μ(t)

[

k
m1(μ),m2(μ), . . . , mn(μ)

]

t

.(3.1)

Proof. This is a direct result by combining Theorem 6.11 and Theorem 6.14
of [12]. �
Proposition 3.2. The Delta Conjecture when q = 0 is equivalent to the follow-
ing identity

∑

μ�n

(−1)n−�(μ)q−n−n(μ)+
∑n

i=1 (mi(μ)+1
2 )

[

�(μ) − 1
k − 1

]

q

(q; q)�(μ)
∏n

i=1(q; q)mi(μ)
Kλμ(q−1)

= q−k(k−1)
∑

μ�n
�(μ)=k

qn(μ) (q; q)�(μ)
∏n

i=1(q; q)mi(μ)
Kλ′μ(q) (3.2)

for all λ � n and 1 ≤ k ≤ n.

Proof. Observe that the right-hand side of (3.2) equals q−(k
2)〈Cn,k(X; q), sλ〉

by (3.1). We obtain the left-hand side of (3.2) by computing 〈Δ′
ek−1

en, sλ〉
∣

∣

∣q=0
t→q

algebraically.
Recall that by Lemma 2.1,

en(X) =
∑

μ�n

(1 − q)(1 − t) ˜Hμ(X; q, t)Π′
μ(q, t)Bμ(q, t)

wμ(q, t)
. (3.3)

Applying Δ′
ek−1

to both sides of (3.3) we get

Δ′
ek−1

en =
∑

μ�n

(1 − q)(1 − t) ˜Hμ(X; q, t)Bμ(q, t)Π′
μ(q, t)ek−1[Bμ − 1]

wμ
.

(3.4)

If we let q = 0 in (2.1) we have

Bμ(0, t) = 1 + t + · · · + t�(μ)−1 = [�(μ)]t,

Π′
μ(0, t) = (t; t)�(μ)−1,

wμ(0, t) =
∏

c∈μ

tl(c) ·
∏

c∈μ
a(c)=0

(1 − tl(c)+1) ·
∏

c∈μ
a(c)>0

(−tl(c)+1)

= (−1)n−�(μ)t2n(μ)+n−∑

i (mi(μ)+1
2 ) ∏

i

(t; t)mi(μ),

ek−1[Bμ(0, t) − 1] = ek−1(t, t2, . . . , t�(μ)−1) = tk−1+(k−1
2 )

[

�(μ) − 1
k − 1

]

t

,

where (t; t)m = (1 − t) · · · (1 − tm). We use the above computations in (3.4) to
obtain

Δ′
ek−1

en

∣

∣

∣q=0
t→q
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=
∑

μ�n

(1 − q) ˜Hμ(X; 0, q)[�(μ)]q(q; q)�(μ)−1q
k−1+(k−1

2 )
[

�(μ) − 1
k − 1

]

q

(−1)n−�(μ)q2n(μ)+n−∑

i (mi(μ)+1
2 ) ∏

i(q; q)mi(μ)

=
∑

μ�n

(−1)n−�(μ)qk−1+(k−1
2 )−2n(μ)−n+

∑

i (mi(μ)+1
2 )

˜Hμ(X; 0, q)

×
[

�(μ) − 1
k − 1

]

q

[

�(μ)
m1(μ),m2(μ), . . . , mn(μ)

]

q

.

Hence,

〈Δ′
ek−1

en, sλ〉
∣

∣

∣q=0
t→q

=
∑

μ�n

˜Kλ,μ(q)(−1)n−�(μ)q(
k
2)−2n(μ)−n+

∑

i (mi(μ)+1
2 )

×
[

�(μ) − 1
k − 1

]

q

[

�(μ)
m1(μ),m2(μ), . . . , mn(μ)

]

q

.

Since ˜Kλμ(q) = qn(μ)Kλμ(q−1), we eventually have

〈Δ′
ek−1

en, sλ〉
∣

∣

∣q=0
t→q

=
∑

μ�n

(−1)n−�(μ)q(
k
2)−n(μ)−n+

∑

i (mi(μ)+1
2 )

×
[

�(μ) − 1
k − 1

]

q

(q; q)�(μ)
∏n

i=1(q; q)mi(μ)

Kλμ(q−1).

Then (3.2) is the result of multiplying both sides of

〈Δ′
ek−1

en, sλ〉
∣

∣

∣q=0
t→q

= 〈Cn,k(X; q), sλ〉

by q−(k
2). �

4. The Proof

In this section, we prove the Delta Conjecture when q = 0 by verifying the
equivalent identity in (3.2).

Theorem 4.1. The Delta Conjecture is true when q = 0.

Proof. In Proposition 3.2, we showed that the Delta Conjecture at q = 0 is
equivalent to the following identities

LHSk,λ = RHSk,λ (for all λ � n and 1 ≤ k ≤ n), (4.1)

where

LHSk,λ =
∑

μ�n

(−1)n−�(μ)

[

�(μ) − 1
k − 1

]

q

q
∑n

i=1(
mi(μ)+1

2 )−n(μ) q−n(q; q)�(μ)
∏n

i=1(q; q)mi(μ)
Kλμ(q−1), (4.2)
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and

RHSk,λ = q−k(k−1)
∑

μ�n,
�(μ)=k

qn(μ) (q; q)�(μ)
∏n

i=1(q; q)mi(μ)
Kλ′μ(q). (4.3)

We first eliminate the presence of the expressions
n

∏

i=1

(q; q)mi(μ),

which make the equality in (4.1) combinatorially forbidding. We note the fol-
lowing identity in [14, III, (2.11)]

Pμ[X; q] =
1

∏n
i=1(q; q)mi(μ)

Qμ[X; q]. (4.4)

The idea is to translate the equality in (4.1) into a symmetric function iden-
tity involving the basis

{

Pμ[X; q]
}

μ
. Another important ingredient we find in

Macdonald’s book is the Hall–Littlewood Cauchy identity [14, III. (4.4)]
∑

μ�n

Pμ[X; q]Qμ[Y ; q] =
∑

ρ�n

1
zρ

pρ[XY (1 − q)] = hn[XY (1 − q)]. (4.5)

The presence of the Kostka–Foulkes polynomials in both (4.2) and (4.3) sug-
gests using the identity (cf. [8, (2.17), (2.18)])

Qμ[X; q] =
∑

λ≥μ

sλ[X(1 − q)]Kλμ(q). (4.6)

Now if we define

Hμ[X; q] = Qμ

[

X
1−q ; q

]

=
∑

λ≥μ

sλ[X]Kλμ(q), (4.7)

then (4.5) can be rewritten as the “Cauchy Kernel”
∑

μ�n

Pμ[X; q]Hμ[Y ; q] = hn[XY ]. (4.8)

This is particularly enticing since it remains true under the replacement of q
by 1/q. Using (4.6) and (4.7), we can rewrite (4.8) as

∑

μ�n
λ≥μ

Pμ[X; q]
∑

λ�n

sλ[Y ]Kλμ(q) = hn[XY ],

or better
∑

λ�n

sλ[Y ]
∑

μ≤λ

Kλμ(q)Pμ[X; q] = hn[XY ],

forcing the identity

sλ[X] =
∑

μ≤λ

Kλ,μ(q)Pμ[X; q].
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The plan is to express
∑

λ�n LHSk,λsλ′ [X(1−q)] and
∑

λ�n RHSk,λsλ′ [X(1−
q)] as identities in terms of the Pμ’s. We first work with the right-hand side of
(4.2). Using the fact that

(q; q)m

∣

∣

∣

q→ 1
q

= (1 − 1/q)(1 − 1/q2) · · · (1 − 1/qm) = (−1)m (q; q)m

q(
m+1

2 )
,

(4.2) can be rewritten as

LHSk,λ =
∑

μ�n

q−n(μ) 1
∏n

i=1(1/q; 1/q)mi(μ)
Kλμ(1/q)(−q)−n

[

�(μ) − 1
k − 1

]

q

(q; q)�(μ).

Multiplying by sλ′ [X(1 − q)] and summing for all λ � n gives
∑

λ�n

LHSk,λsλ′ [X(1 − q)]

=
∑

μ�n

q−n(μ)

∑

λ�n sλ′ [X(1 − q)]Kλμ(1/q)
∏n

i=1(1/q; 1/q)mi(μ)
(−q)−n

[

�(μ) − 1
k − 1

]

q

(q; q)�(μ).

But since

sλ′ [X(1 − q)] = qnsλ′ [X(1/q − 1)] = (−q)nsλ[X(1 − 1/q)],

we obtain
∑

λ�n

LHSk,λsλ′ [X(1 − q)]

=
∑

μ�n

q−n(μ)

∑

λ�n sλ[X(1 − 1/q)]Kλμ(1/q)
∏n

i=1(1/q; 1/q)mi(μ)

[

�(μ) − 1
k − 1

]

q

(q; q)�(μ),

or better, using (4.6),

∑

λ�n

LHSk,λsλ′ [X(1−q)]=
∑

μ�n

q−n(μ) Qμ[X; 1/q]
∏n

i=1(1/q; 1/q)mi(μ)

[

�(μ) − 1
k − 1

]

q

(q; q)�(μ).

Thus (4.4) gives

∑

λ�n

LHSk,λsλ′ [X(1 − q)] =
∑

μ�n

q−n(μ)Pμ[X; 1/q]
[

�(μ) − 1
k − 1

]

q

(q; q)�(μ).

Let us now work on the other identity (4.3). Replicating what we did
for (4.2), we multiply by sλ′ [X(1 − q)] and sum over λ � n to get

∑

λ�n

RHSk,λsλ′ [X(1 − q)]

= q−k(k−1)(q; q)k

∑

μ�n,
�(μ)=k

qn(μ)

∑

λ�n sλ′ [X(1 − q)]Kλ′μ(q)
∏n

i=1(q; q)mi(μ)
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= q−k(k−1)(q; q)k

∑

μ�n,
�(μ)=k

qn(μ) Qμ[X; q]
∏n

i=1(q; q)mi(μ)

= q−k(k−1)(q; q)k

∑

μ�n,
�(μ)=k

qn(μ)Pμ[X; q],

using (4.6) and (4.4) for the second and the third identities, respectively. Thus,
we are left to match up the following two identities

∑

λ�n

LHSk,λsλ′ [X(1 − q)] =
∑

μ�n

q−n(μ)Pμ[X; 1/q]
[

�(μ) − 1
k − 1

]

q

(q; q)�(μ), (4.9)

and
∑

λ�n

RHSk,λsλ′ [X(1 − q)] = q−k(k−1)(q; q)k

∑

μ�n
�(μ)=k

qn(μ)Pμ[X; q]. (4.10)

The idea is to use the following two identities to evaluate (4.9) and (4.10)
respectively:

(a)
∑

μ�n

Pμ[X; q]Hμ[Y ; q] = hn[XY ],

(b)
∑

μ�n

Pμ[X; 1/q]Hμ[Y ; 1/q] = hn[XY ].
(4.11)

Computer experiments computing special cases of (4.10) showed us that the
Schur expansion of (4.10) only contains the Schur functions indexed by hook
shapes. The symmetric function identity which could explain this phenomenon
is the following which is valid for any monomial u [8, (1.72)]:

sλ[1 − u] =

{

(−u)r(1 − u), if λ = n − r, 1r for 0 ≤ r ≤ n − 1,

0, otherwise.

Hence we try the same substitution Y = 1 − u in (4.11).

Lemma 4.2. For all monomials u, we have

hn[X(1 − u)] =
∑

μ�n

Pμ[X; q]Hμ[1 − u; q] = (1 − u)
n−1
∑

s=0

(−u)ss(n−s,1s)[X].

Proof. Note the following identity involving plethysm so called addition for-
mula

hn[E − F ] =
n

∑

k=0

hk[E]hn−k[−F ],

where E = E(t1, t2, . . .) and F = F (w1, w2, . . .) are two formal series of rational
terms in their indeterminates (cf. [8, Theorem 1.27]). Using another property
of plethysm

f [−εX] = ωf [X],
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for Y = 1 − u (4.11)(a) gives
∑

μ�n

Pμ[X; q]Hμ[1 − u; q]

= hn[X − uX]

= hn[X] +
n−1
∑

s=1

hn−s[X](−u)ses[X] + (−u)nen[X]

= sn[X] +
n−1
∑

s=1

(−u)s(s(n−s,1s)[X] + s(n−s+1,1s−1)[X]) + (−u)ns(1n)[X]

= (1 − u)sn[X] +
n−1
∑

s=1

(−u)ss(n−s,1s)[X] +
n−1
∑

s=1

(−u)s+1s(n−s,1s)[X]

= (1 − u)
n−1
∑

s=0

(−u)ss(n−s,1s)[X].

�

Applying Lemma 2.2 in (4.11)(a) with u = qi gives

hn[X(1 − qi)]
1 − qi

=
∑

μ�n

qn(μ)Pμ[X; q]
�(μ)−1
∏

j=1

(1 − qi−j). (4.12)

Lemma 4.2 tells us that taking the coefficients of powers of u in the ratio
hn[X(1 − u)]/(1 − u) successively yields all the hook Schur functions. This
fact suggests the hook Schur function expansion would be explained if we can
find coefficients c

(k)
i (q) yielding the identity

∑

μ�n,
�(μ)=k

qn(μ)Pμ[X; q] =
k

∑

i=1

c
(k)
i (q)

hn[X(1 − qi)]
1 − qi

. (4.13)

A procedure was thus constructed that determined the c
(k)
i (q)’s from the

equations obtained by equating the two sides of (4.13). There we encountered
another incredible surprise: these coefficients depended only on k and not on
n. Moreover, in all instances explored the c

(k)
i (q)’s turned out to be products

of q-analogues of integers. This evidence prompted us to prove this new phe-
nomenon by a close examination of the right-hand side of (4.13). To this end
notice first that using (4.12) we can rewrite (4.13) as

∑

μ�n

qn(μ)Pμ[X; q]χ
(

�(μ) = k
)

=
k

∑

i=1

c
(k)
i (q)

∑

μ�n

qn(μ)Pμ[X; q]
�(μ)−1
∏

j=1

(1 − qi−j)

=
∑

μ�n

qn(μ)Pμ[X; q]
k

∑

i=1

c
(k)
i (q)

�(μ)−1
∏

j=1

(1 − qi−j),

(4.14)
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by changing the order of summation. Notice that to make the factors in
∏�(μ)−1

j=1 (1−qi−j) nonzero, we should have i ≥ �(μ). We use the q-Pochhammer

symbol to denote
∏�(μ)−1

j=1 (1 − qi−j) in a compact form, namely,

�(μ)−1
∏

j=1

(1 − qi−j) = (qi+1−�(μ); q)�(μ)−1.

Since the family of symmetric polynomials
{

Pμ[X; q]
}

μ�n
is a basis, (4.14) is

true if and only if
k

∑

i=h

c
(k)
i (q)(qi+1−h; q)h−1 = χ(h = k), for all 1 ≤ h ≤ k. (4.15)

More importantly, we can easily see that this system of equations is triangular
in the unknown coefficients ci(q). Thus the ci(q) exist and are unique.

A close look at the computer data revealed the following explicit formulas
for c

(k)
i (q).

Lemma 4.3. For 1 ≤ i ≤ k,

c
(k)
i (q) = (−1)k−iq(

k−i
2 )

[

k − 1
i − 1

]

q

1
(q; q)k−1

=
(−1)k−iq(

k−i
2 )

(q, q)k−i(q, q)i−1
. (4.16)

Proof. Since the equations in (4.15) uniquely determine the c
(k)
i (q), to prove

(4.16) it suffices to show that the c
(k)
i (q), as given by (4.16), are solutions of

the equations in (4.15). Thus it is sufficient to show that
k

∑

i=h

(−1)k−iq(
k−i
2 )

(q, q)k−i(q, q)i−1

(

qi+1−h; q
)

h−1
=

{

1, if h = k,

0, if h < k.

Notice that this is trivially true for h = k. For 1 ≤ h < k, making the
substitution a = k − i we are reduced to showing that

k−h
∑

a=0

(−1)aq(
a
2)

(q, q)a(q, q)k−1−a

(

qk−a+1−h; q
)

h−1
= 0.

However, doing the necessary cancellations, this is none other than
k−h
∑

a=0

(−1)aq(
a
2) 1

(q, q)a(q, q)k−h−a
= 0.

Notice that if we multiply by (q; q)k−h the left-hand side becomes
k−h
∑

a=0

(−1)aq(
a
2) (q; q)k−h

(q, q)a(q, q)k−h−a
=

k−h
∑

a=0

(−1)aq(
a
2)

[

k − h
a

]

q

,

which is zero by the q-binomial theorem

(z; q)n = (1 − z)(1 − zq) · · · (1 − zqn−1) =
n

∑

a=0

(−z)aq(
a
2)

[

n
a

]

q

with z = 1. This completes the proof. �
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Given (4.13), to verify that (4.9) and (4.10) are equal, we only need to
show that

k
∑

i=1

c
(k)
i (q)

hn[X(1 − qi)]
1 − qi

=
qk(k−1)

(q; q)k

∑

μ�n

q−n(μ)Pμ[X; 1/q]
[

�(μ) − 1
k − 1

]

q

(q; q)�(μ), (4.17)

with c
(k)
i (q)’s as given in Lemma 4.3. To deal with the right-hand side of (4.17),

we utilize the identity (4.11)(b) with the replacement Y → (1−qi) and obtain

hn[X(1 − qi)] =
∑

μ�n

Pμ[X; 1/q]Hμ[1 − qi; 1/q]. (4.18)

By Lemma 2.2, after replacing q by 1/q and u = qi, we have

Hμ[1 − qi; 1/q] = q−n(μ)

�(μ)−1
∏

j=0

(1 − qi+j).

Using this in (4.18) gives

hn[X(1 − qi)]
1 − qi

=
∑

μ�n

q−n(μ)Pμ[X; 1/q]
�(μ)−1
∏

j=1

(1 − qi+j). (4.19)

We use (4.19) in the left-hand side of (4.17) to obtain an equivalent
identity

k
∑

i=1

c
(k)
i (q)

∑

μ�n

q−n(μ)Pμ[X; 1/q]
�(μ)−1
∏

j=1

(1 − qi+j)

=
qk(k−1)

(q; q)k

∑

μ�n

q−n(μ)Pμ[X; 1/q]
[

�(μ) − 1
k − 1

]

q

(q; q)�(μ),

or better,

∑

μ�n

q−n(μ)Pμ[X; 1/q]
k

∑

i=1

c
(k)
i (q)

�(μ)−1
∏

j=1

(1 − qi+j)

=
qk(k−1)

(q; q)k

∑

μ�n

q−n(μ)Pμ[X; 1/q]
[

�(μ) − 1
k − 1

]

q

(q; q)�(μ).

Since the family of polynomials
{

Pμ(X; 1/q)
}

μ�n
is also a basis, this can be

true if and only if

k
∑

i=1

c
(k)
i (q)

h−1
∏

j=1

(1 − qi+j) =
qk(k−1)

(q; q)k

[

h − 1
k − 1

]

q

(q; q)h,
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for 1 ≤ h ≤ n. Using the explicit expression for c
(k)
i (q), this is none other than

the equality

k
∑

i=1

(−1)k−iq(
k−i
2 )(qi+1; q)h−1

(q, q)k−i(q, q)i−1
=

qk(k−1)

(q; q)k

[

h − 1
k − 1

]

q

(q; q)h, (4.20)

for all 1 ≤ h ≤ n.
By substituting k − i 
→ a, (4.20) becomes

k−1
∑

a=0

(−1)aq(
a
2)(q; q)k(q; q)k−a+h−1

(q; q)k−a−1(q; q)a(q; q)k−a(q; q)h
= qk(k−1)

[

h − 1
k − 1

]

q

.

Proposition 4.4.

k−1
∑

a=0

(−1)aq(
a
2)(q; q)k(q; q)k−a+h−1

(q; q)k−a−1(q; q)a(q; q)k−a(q; q)h
= qk(k−1)

[

h − 1
k − 1

]

q

. (4.21)

Proof. The left-hand side of (4.21) is equal to

(q; q)k

(q; q)h

k−1
∑

a=0

(−1)aq(
a
2)(q; q)k−a+h−1

(q; q)k−a−1(q; q)a(q; q)k−a

=
(q; q)k+h−1

(q; q)h(q; q)k−1

k−1
∑

a=0

qa(k−h) (q
1−k; q)a(q−k; q)a

(q; q)a(q1−k−h; q)a
.

Now we apply the 2φ1 summation identity [7, Sec 1.5]

(b; q)m

(c; q)m
=

m
∑

n=0

(q−m, c/b; q)n

(q, c; q)n
(bqm)n,

with m 
→ k − 1, b 
→ q1−h and c 
→ q1−k−h to obtain

(q1−h; q)k−1

(q1−k−h; q)k−1
=

k−1
∑

a=0

qa(k−h) (q
1−k; q)a(q−k; q)a

(q; q)a(q1−k−h; q)a
.

Hence

(q; q)k+h−1

(q; q)h(q; q)k−1
· (q1−h; q)k−1

(q1−k−h; q)k−1
= qk(k−1) (q; q)h−1

(q; q)h−k(q; q)k−1

= qk(k−1)

[

h − 1
k − 1

]

q

.

�

This completes the proof of (4.20) and the proof of the theorem. �
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