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Inverting the Rational Sweep Map

ADRIANO GARISA* , AND GUOCE XINT,

We present a simple algorithm for inverting the sweep map on
rational (m,n)-Dyck paths for a co-prime pair (m,n) of positive
integers. This work is inspired by Thomas-Williams work on the
modular sweep map. A simple proof of the validity of our algorithm
is included.

Mathematics Subject Classifications: 05A19, 05A99, 05E05
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1. The Algorithm

Inspired by the Thomas-William algorithm [4] for inverting the general modular sweep map, we
find a simple algorithm to invert the sweep map for rational Dyck paths. The fundamental fact
that made it so difficult to invert the sweep map in this case is that all previous attempts used
only the ranks of the vertices of the rational Dyck paths. Moreover the geometry of rational
Dyck paths was not consistent with those ranks.

A single picture will be sufficient here to understand the idea. In what follows, we always
denote by (m,n) a co-prime pair of positive integers, South end (by letter S) for the starting
point of a North step and West end (by letter W) for the starting point of an East step, unless
specified otherwise. This is convenient and causes no confusion because we usually talk about
the starting points of these steps.
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Figure 1: A rational (7,5)-Dyck path and its sweep map image.

Figure 1 illustrates a rational (m,n)-Dyck path D for (m,n) = (7,5) and its sweep map
image D on its right. Recall that the ranks of the starting vertices of an (m, n)-Dyck path D are
recursively computed starting with rank 0, and adding m after a North step and subtracting
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n after an East step as shown in Figure 1. To obtain the sweep image D of D, we let the main
diagonal (with slope n/m) sweep from right to left and successively draw the steps of D as
follows: i) draw a South end (and hence a North step) when we sweep a South end of D; ii)
draw a West end (hence an East step) when we sweep a West end of D. The steps of D can
also be obtained by rearranging the steps of D by increasing ranks of their starting vertices.

The sweep map has become an active subject in the recent 15 years. Variations and exten-
sions have been found, and some classical bijections turn out to be the disguised version of the
sweep map. See [1] for detailed information and references.

The open problem was the reconstruction of the path on the left from the path on the right.
The idea that leads to the solution of this problem is to draw these two paths as in Figure 2.
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Figure 2: Transformation of the (7,5)-Dyck paths in Figure 1.

That is we first stretch all the arrows so that their lengths correspond to the effect they
have on the ranks of the vertices of the path then add an appropriate clockwise rotation to
obtain the two path diagrams in Figure 2. The path diagrams are completed by writing an S
for each South end in our original path and a W for each West end. On the left we have added a
list of each level. The ranks of D become visually the levels of the staring points of the arrows.
On the right, at each level we count the red (solid) segments and the blue (dashed)! segments
which traverse that level and record their difference. Of course these differences, called row
counts or (signed) row sum, turn out to be all equal to 0, for obvious reasons. This will be
referred to as the 0-row-count property. Theorem 3 states that this is a characteristic property
of rational Dyck paths, which becomes evident when paths are drawn in this manner. This fact
is conducive to the discovery of our algorithm for constructing the pre-image of any (m, n)-Dyck
path.

The first step in our algorithm is to vertically shift the arrows of the path on the left of
Figure 3. The resulting path diagram is on the right, whose arrows have their starting ranks
minimally strictly increasing. More precisely the first three red arrows are lowered in their
columns to start at levels 0, 1, 2. To avoid placing part of the first blue arrow below level 0 we
lower it to start at level 5. This done all the remaining arrows are successively placed to start at
levels 6,7,8,9,10,11,12,13. Notice the row counts at the right of the resulting path diagram.

1Suggested by the referee, we have drawn blue dashed arrows for convenience of black-white print.
We will only use “red” and “blue” in our transformed Dyck paths, but in our context, red, solid, up
and positive slope are equivalent; blue, dashed, down and negative slope are equivalent.
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Figure 3: A given rational Dyck path and its starting path diagram on the right.

Our aim is to progressively reduce them all to zeros, which are the row counts characterization
of the path diagram we are working to reconstruct.

The miracle is that this can be achieved by a sequence of identical steps. More precisely,
at each step of our algorithm we locate the lowest row sum that is greater than 0. We next
notice that there is a unique arrow that starts immediately below that row sum. This done
we move that arrow one unit upwards. However, to keep the ranks strictly increasing we also
shift, when necessary, some of the successive arrows by one unit upwards. In this particular
case our MATHEMATICA implementation of the resulting algorithm produced the sequence
of 18 path diagrams in Figures 4 and 5. Notice, the green (thick) line has been added in each
path diagram to make evident the height of the lowest positive row count. Of course each step
ends with an updating of the row counts.

The final path diagram yields a path that is easily shown to be the desired pre-image.
For example, in Figure 6, to obtain the left path from the middle balanced increasing path
diagram, we simply start with the leftmost red arrow, and at each step we proceed along the
arrow that starts at the rank reached by the previous arrow. Continue until all the arrows have
been used. The reason why there always is an arrow that starts at each reached rank, is an
immediate consequence of the 0-row-count property of the middle path diagram. Such an arrow
is unique in our case, since (m,n) is a coprime pair. On the other hand, to obtain the sweep
map image of the left path, we reorder the arrows according to their starting ranks, which
corresponds to horizontally shift the arrows (without changing the ranks) so that their starting
ranks are increasing. This gives the middle path diagram. Then we read the arrows (ignoring
their starting ranks) from left to right. This gives the right path, as desired. This manner of
drawing rational Dyck paths makes many needed properties more evident than the traditional
manner and therefore also easier to prove. As a case in point, we give a simple visual way of
establishing the following nontrivial result (see, e.g., [1]).

Lemma 1. The sweep image of an (m,n)-Dyck path is an (m,n)-Dyck path.

Proof. On the left of Figure 6 we have the final path yielded by our algorithm. To obtain
the path diagram in the middle we simply rearrange the arrows (by horizontal shifts) so that
their starting ranks are increasing. The path on the right is obtained by vertically shifting the
successive arrows so that they concatenate to a path. To prove that the resulting path is a
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Figure 4: Part 1 of the 18 path diagrams that our algorithm produced.

(7,5)-Dyck path, we need only show that the successive partial (signed) sums of the segments
(i.e., a red segment is counted as 1 and a blue segment is counted as —1.) of these arrows are
all non-negative. This is a consequence of the 0-row-count property. In fact, for example, let us
prove that the sum of the segments to the left of the vertical green line v is positive.

To this end, let A be the arrow that starts on v and £ be its starting rank. Let h be the
horizontal green (thick) line at level £. Denote by L the region below h, and let L;, Ly be the
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Figure 5: Part 2 of the 18 path diagrams that our algorithm produced.
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Figure 6: A (7,5)-Dyck path on the left; by horizontal shifts of the arrows we obtain the middle
path diagram whose starting ranks are increasing; then by vertical shifts of the arrows to obtain
a (7,5)-Dyck path on the right picture.
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left and right portions of L split by v. Let us also denote by |rLi|, |rLs|, the red arrow segment
counts in the corresponding regions and by |bL1|, |bL2| the corresponding blue segment counts.
This given, since red segments contribute a 1 and a blue segment contributes —1 to the final
count, it follows that

Z) ‘T'Ll‘ + ’TLQ’ = |bL1’ + |bL2’, ZZ) ’T‘LQ’ =0.

In fact, 7) is due to the O-row-count property and i) is simply due to the fact that all red
arrows to the right of v must start above h. Thus we must have

|’I“L1| — |bL1| == |bL2| Z 0.
This implies that the sum of the arrows to the left of v must be > 0. |

A proof of the validity of our algorithm may be derived from the Thomas-Williams result
by letting their modulus tend to infinity. However, our algorithm deserves a more direct and
simple proof.

Such a proof will be given in the following pages. This proof will be based on the validity of
a simpler but less efficient algorithm. To distinguish the above algorithm from our later one, we
will call them respectively the StrongFindRank and the WeakFindRank algorithms, or “strong”
and “weak” algorithm for short.

The rest of the paper is organized as follows. Section 2 is devoted to the proof of the
WeakFindRank algorithms. It also includes all the necessary concepts and concludes with The-
orem 8, which asserts the invertibility of the rational sweep map. Theorem 9 is the main result
of Section 3. It allows us to analyze the complexity of both the “strong” and the “weak” al-
gorithms. It is also used in Section 4, where we show the validity of the “strong” algorithm.
Finally, we discuss the difference between the Thomas-Williams algorithm and our algorithm
in Section 5. We also talk about some future plans.

2. The Proof

2.1. Balanced path diagrams

A path diagram T consists of an ordered set of n red arrows and m blue arrows, placed on a
(m+n) x N lattice rectangle, where N is a large positive integer to be specified. See Figure 7.

A red arrow is the up vector (1, m) and a blue arrow is the down vector (1, —n). The rows
of lattice cells will be simply referred to as rows and the horizontal lattice lines will be simply
referred to as lines. On the left of each line we have placed its y coordinate which we will simply
refer to as its level. The level of the starting point of an arrow is called its starting rank, and
similarly its end rank is the level of its end point. It will be convenient to call row i the row of
lattice cells delimited by the lines at levels ¢ and ¢ 4 1. Lattice columns are defined in a similar
way.
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Given a word X with n letters S and m letters W, and

0
a sequence R = (r1,...,7myn) of n + m nonnegative ranks, ?: 0
the path diagram T'(X, R) is obtained by placing the letters 1 2
of ¥ at the bottom of the lattice columns and drawing in the " i
i'" column an arrow with starting rank r; and red (solid) if :: f 2
the it" letter of ¥ is ¥; = S or blue (dashed) if ¥; = W. = "” :
See Figure 7, where ¥ = SSSWWWWSSWWW and R = Tt
(0,1,2,5,6,7,8,9,10,11,12,13). The sequence R will be called kst
the rank sequence of the path diagram T'. Notice that each lat- ™ BAE
tice cell may contain a segment of a red arrow or a segment Z f. A &
of a blue arrow or no segment at all. The red segment count 7 —4" I r E ‘_"01
of row j will be denoted ¢"(j) and the blue segment count is : T s 0
denoted c®(j). We will set c(j) = ¢"(j) — ®(j) and refer to it /IR [ 18] -t
as the count of row j. In the above display on the right of each 3 ” H T '.‘ \ —01
row we have attached its row count. The following observation f BA| 0
will be crucial in our development. 0 Al 0

§ § S wWWWWs s www

Figure 7: A path diagram for

Lemma 2. Let T(X, R) be any path diagram. It holds for every e B e Tand N < 21

integer j > 1 that

(1)

c(j) —c(j — 1) = #{arrows starting at level 3} — #{arrows ending at level j}.

Proof. Let us investigate the contribution to
the difference ¢(j) — ¢(j — 1) from a single ar-
row A. The contribution is 0 if i) A has no seg-

ments in rows j and j — 1, ii) A has segments | j —d - —0 -
in row j and 7 — 1. In both cases, it is clear j-1 0 i 1 |0
that A cannot start nor end at level j. Thus 3

the remaining cases are as listed in Figure 8. 1

It will be convenient to say that a path di-

agram T'(X, R) is balanced if all its row counts
are equal to 0. The word X is said to be the
(S, W)-word of a Dyck path D in Dy, , if it

Figure 8: The difference ¢(j) —c(j —1) is 1 in the
left two cases, is —1 in the right two cases, and is
0 in the previous cases.

is obtained by placing an S when D takes a
South end (hence a North step) and a W when
D takes a West end (hence an East step).

Theorem 3. Let ¥ be the (S,W)-word of D € Dy, p, and let R = (r1,72,...,Tmin), With
r1 = 0, be a weakly increasing sequence of integers. Then R is a rearrangement of the rank
sequence of a pre-image D (regarded as a path diagram) of D under the sweep map, if and only
if the path diagram T(3, R) is balanced and the sequence R is strictly increasing.

Proof. Suppose that D is a pre-image of D. This given, let T'(3, R) with 3 the (S, W)-word of
D, R the rank sequence of D, and height N chosen to be a number greater than nm +max(R).
It is clear that the arrows of T'(X, R) can be depicted by starting at level 0 and drawing a red
arrow (1,m) every time D takes a South end and a blue arrow (1,—n) every time D takes
a West end, with each arrow starting where the previous arrow ended. It is obvious that the
row counts of T(X, R) are all 0 since, in each row every red segment is followed by a blue
segment. Now let T'(X, R) be the path diagram of same height N obtained by reordering the
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arrows by their starting ranks. This is achieved by horizonal shifts. Since the co-primality of
(m,n) assures that R has distinct components, the resulting R is the increasing rearrangement
of R by a unique permutation. Likewise, the word ¥ is obtained by rearranging the letters of
Y by the same permutation, and it is the sweep image of ¥. Thus we may say that the same
permutation can be used to change 7'(3, R) into T'(X, R). Since this operation only permutes
(or shifts) segments within each row, it follows that all the row counts of T'(X, R) must also be
0. This proves the necessity. See the left two pictures in Figure 6.

For the sufficiency, suppose that the path diagram T'(X, R) is balanced, with D the Dyck
path whose word is > and R a weakly increasing sequence. Then by Lemma 2 it follows that
for every level j, either i) no arrow starts or ends at this level, or ii) if £ > 0 arrows end (start)
at this level then exactly k arrows start (end) at this level. This given, we will construct a
Dyck path D by the following algorithm. Starting at level 0 we follow the first arrow, which we
know is necessarily red and starts at level 0. This arrow ends at level m. Since there is at least
one arrow that starts at this level follow the very next arrow that does. Proceeding recursively
thereafter, every time we reach a level, we follow the very next arrow that starts at that level.
This process stops when we are back at level 0, and we must since in X there are n .S and m W.
Let D be the resulting path. Using the colors of the successive arrows of D gives us the ¥ word
of D. Now notice that D must be a path in D,,,, since all its starting ranks are nonnegative
due to the weakly increasing property of R and therefore they must necessarily be distinct by
the co-primality of (m,n). In particular, if R denotes the sequence of starting ranks of D we are
also forced to conclude that its components are distinct. Since the components of R are only a
rearrangement of the components of R we deduce that R must have been strictly increasing to
start with. This implies that D must be a Sweep map image of D since the successive letters
of ¥ can be obtained by rearranging the letters of ¥ by the same permutation that rearranges
R to R. This completes the proof of sufficiency. |

This given, we can easily see that the validity of our “strong” algorithm hinges on estab-
lishing that it produces a balanced path diagram after a finite number of steps. Theorem 3
allows us to relax the strictly increasing requirements on the rank sequences of the successive
path diagrams produced by the algorithm. The WeakFindRank algorithm, defined below, has
precisely that property. This results in a simpler proof of the termination property of both
algorithms.

2.2. Algorithm WeakFindRank and the Justification

Algorithm WeakFindRank

Input: A path diagram T(%, R©)) with ¥ the word of a Dyck path D & Dyym, a weakly
(0) (0) )

increasing sequence RO = (7“%0),7“2 s Tonin
Output: A balanced path diagram T'(3, R).

It will be convenient to keep the common height equal to IV for all the successive path
diagrams constructed by the algorithm, where N = U + 2mn, with U = max(R®) +m + 1.

Step 1 Starting with T(Z,R(O)) repeat the following step until the resulting path diagram is
balanced.

Step 2 In T(X, R®), with R(®) = (r%s),rés), ) ), find the lowest row j with ¢(j) > 0 and

»I'm—+n

find the rightmost arrow that starts at level j. Suppose that arrow starts at (i, 7). Move
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(41 _ ) 4

up the arrow one level to construct the path diagram 7'(X, Re+)) with

and 7’5/5 = 7’2(,5 ) for all = ¢. If all the row counts are < 0 then stop the algorithm, since

all row counts must necessarily vanish.

Figure 9 shows that we are weakly reducing
the number of rows with positive row counts in
Step 2. It also makes the following key observa- |b
tion evident. /

-
'
~

0
as+ =

Lemma 4. If at some point c(k) becomes > 0 / E

then for ever after it will never become negative. \

In particular, since c(k) = 0 with k > U for |q 1 0 b*Jr-l 0
the initial path diagram T(X, R©)) we will have

c(k) > 0 when k > U for all successive path dia-
grams produced by the algorithm.

Figure 9: Shifting up one unit an arrow from
level a to level b will decrease c¢(a) by 1 and

increase c(b) by 1.
Proof. The lemma holds true because we only de-

crease a row count when it is positive. |
We need some basic properties to justify the algorithm.

Lemma 5. We have the following basic properties.

(2) If row j is the lowest with ¢(j) > 0 then there is an arrow that starts at level j. In this
situation, we say that we are working with row j.

(ii) The successive rank sequences are always weakly increasing.
(7i1) If T'(X, R) has no positive row counts, then it is balanced. Consequently, if the algorithm
terminates, the last path diagram is balanced.
Proof.
(7) By the choice of j, we have ¢(j) > 0 and ¢(j — 1) < 0. Thus ¢(j) — ¢(j — 1) > 0, which by
Lemma 2, shows that there is at least one arrow starting at rank j.
(7i) Our choice of 7 in step (2) assures that the next rank sequence remains weakly increasing.

(73i) Since each of our path diagrams 7'(3, R) has n red arrows of length m and m blue arrows
of length n, the total sum of row counts of any T'(X, R) has to be 0. Thus if 7'(X, R) has
no positive row counts, then it must have no negative row counts either, and is hence
balanced. 1

Justification of Algorithm WeakFindRank. By Lemma 5, we only need to show that the algo-
rithm terminates. To prove this we need the following auxiliary result.

Lemma 6. Suppose we are working with row k, that is ¢(k) > 0 and c(i) <0 for all i < k. If
row ¢ has no segments for some £ < k, then the current path diagram T(X, R') has no segments
below row .
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Proof. Suppose to the contrary that T'(3, R’) has a seg- Region ¢

ment below row /£, then let V' be the right most arrow 5, starting arrows .

that contains such a segment and say that it starts at Region D .
column ¢. Since row ¢ has no segments, the starting rank

of V must be < ¢. This implies that i +1 < m +n since

the arrow that starts at level k must be to the right of V' £
(by the increasing property of R'). This given, the cur-

rent path diagram could look like in Figure 10, where

the two green (thick) lines divide the plane into 4 re-
gions, as labelled in the display.

no segments
| | |

segments

The weakly increasing property of R’ forces no start-
ing ranks in C, therefore there are no segments there.
By the choice of V' there cannot be any segments in B.
Thus the (gray) empty row ¢ forces no segments within
both B and C.

Now notice that since ¥ is the word of a path D € _
Dyy,.n, the number of red segments to the left of column I+
7 + 1 minus the number of blue segments to the left of
that column must result in a number s > 0. However,
since ¢(j) < 0 for all j < /it follows that ¢(0)+- - -+c(£—
1) < 0. But since regions B and C' have no segments it
also follows that s = ¢(0) +--- 4+ ¢({ — 1) <0, a contradiction. 1

Figure 10: When row ¢ has no seg-
ments, there will be no segments in re-
gions B and C.

Next observe that since each step of the algorithm increases one of the ranks by one unit,
after M steps we will have |RM) — R(O)| = S~mdn rZ(M) s 7“1(0) = M. This given, if the
algorithm iterates Step 2 forever, then the maximum rank will eventually exceed any given
integer. In particular, we will end up working with row k with k so large that k — U exceeds
the total number mn of red segments. At that point we will have ¢(k) > 0 and ¢(j) = 0 for all
the k — U values j = U,U + 1,...,k — 1. The reason for this is that we must have ¢(j) < 0
for all 0 < j < k and by Lemma 4 we must also have ¢(j) > 0 for j > U. Now, by the pigeon
hole principle, there must also be some U < ¢ < k for which ¢"(¢) = 0. But then it follows
that c?(¢) = ¢"(£) — ¢(£) = 0, too. That means that row ¢ contains no segments. Then Lemma
6 yields that there cannot be any segments below row ¢ either. This implies that the total row

count is D ;g c(d) = > 5y ¢(j) = c(k) > 0, a contradiction. 1
Thus the WeakFindRank algorithm terminates and we can draw the following important
conclusion.

Theorem 7. Given any (m,n)-Dyck path D with (S, W)-word ¥ and any initial weakly in-
creasing rank sequence R() = (rio),réo), SRPACY ), let T(X, R) be the balanced path diagram

'y 'm4n
produced by the WeakFindRank algorithm. Then the rank sequence
R = (T1,T2, *+ ,Tim+n) will be strictly increasing. Moreover, the sequence
R= (0,72 — 71,73 — F1y- -+, Tntn — T1)

is none other than the increasing rearrangement of the rank sequence of a pre-image D of D
under the sweep map.

Proof. Clearly, the path diagram 7'(%, é) of height N = 7,,,4., + m + 1 will also be balanced.
Thus, by Theorem 3, R must be the increasing rearrangement of the rank sequence of a pre-
image D of D. In particular not only R but also R itself must be strictly increasing. |
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This result has the following important corollary.

Theorem 8. For any co-prime pair (m,n) the rational (m,n)-sweep map is invertible.

Proof. Lemma 1 shows that the rational (m,n)-sweep map is into. Theorem 7 gives a proof
(independent of the Thomas-Wiliams proof) that it is onto. Since the collection of (m, n)-Dyck
paths is finite, the sweep map must be bijective. |

Figure 11 depicts the entire history of the WeakFindRank algorithm applied to a (7,5)-Dyck
path D paired with initial rank sequence R(®) = (0,0,5,5,5,5,5,5,5,5,5,5). Both D (on the
left) and its pre-image D (on the right) are depicted below.

24 | 24 |
23 3 23 A
22 | 6 22 '
21 | 21 F‘_
20 | 64 20 I
19 || Imsfs 19 T ¥ '
18 72|57 18 I L N
17 | 77 |6455 17 vf] s
16 A ||| |82]|70]s084s 16 HIIR ]
15 H 7|75|62|46 |44 15 . A
14 80|60]42840 |38 14 | J '
13 || |es|7a|selze a4 a2 13 | B _
12 || |78|es|se|30|28|26 12 | p D
11 71[54¢4s]24]22]20 11
10 88 [63[47]45]18[18]17 10 ’ A
9 81|e8]43]41]3s]16]15]14 9 '
8 74|54 |37]35]33]13[12]11 8 '
7 |1 Tes|a1]2al27f10] o 8|7 e 7 | !
6| JIJ| [52]25[23821]s]4]3]2]1 6 _ﬁ; | ]
s [T s [JT1] I
4 H 1| s[f] L
3 " 3] L
2| l67] » 2 v
1] Is3] ¥ 1' 4
S S WWSsS WS WS www S W s § 8§ WW S WWWW
15—10—5
R4
13—8
I
11—
D
14—9 —4 4
I
T
I
0

Figure 11: The top left picture is the balanced path diagram produced by the WeakFindRank
algorithm. The top right picture is obtained by Theorem 3.

A boxed lattice square in column ¢ with an integer k inside indicates that arrow A; was
processed at the k" step of the algorithm. As a result A; was lifted from the level of the bottom
of the square to its top level. For instance the square with 63 inside indicates that the red arrow
Ay was lifted at the 637¢ step of the algorithm from starting at level 9 to starting at level 10.
We also see that the last time that the arrow Ag reached its final starting level at step 87. The
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successive final starting levels of arrows Aj, As, ..., A2 give the increasing rearrangement of
the ranks of the path D. Notice, arrows A; and As were never lifted.

3. Tightness of Algorithm WeakFindRank

Following the notations in Theorem 7, the number of steps needed for Algorithm WeakFindRank
is |R| — |[R©| = |R| — |[RO| + (m + n)7,. We will show that a specific starting path diagram
can be chosen so that 71 = 0.

For two rank sequences R = (71,72,...,"p4m) and R' = (r],75,...,77,,,,) let us write

R < R’ if and only if we have r; <} for all 1 <i < m +mn, if r; < r} for at least one i we will
write R < R’. The distance of R from R’, will be expressed by the integer

m+n m+n m+n
|R' — R| = Z(rg—ri) = Zré— Zn.
i=1 i=1 i=1

Given the (S, W)-word ¥ of an (m, n)-Dyck path D, we will call the initial starting sequence
RO canonical for ¥ if it is obtained by replacing the first string of §in X by 0’s and all the
remaining letters by n, and call the balanced path diagram T'(X, R) yielded by Theorem 7
canonical for ¥. Clearly R < R. This given, we can prove the following remarkable result.

Theorem 9. Let ¥ be the (S, W)-word of a Dyck path D € Dy, . If RO gnd T(E,é) are
canonical for ¥ and R is any increasing sequence which satisfies the inequalities

RO <R=<R

then the WeakFindRank algorithm with starting path diagram T'(3, R) will have as output the
rank sequence R.

Proof. Notice if |}~?, — R| = 0 there is nothing to prove. Thus we will proceed by induction on
the distance of R from R. Now assume the theorem holds for |R — R| = K. We need to show
that it also holds for |R — R| = K + 1. Suppose one application of step (2) on R gives R’. We
need to show that R’ < R. This done since R and R’ only differ from one unit we will have
|R — R'| = K and then the inductive hypothesis would complete the proof.

Thus assume if possible that this step (2) cannot be carried out because it requires increasing
by one unit an r; = 7; . Suppose further that under this step (2) the level k£ was the lowest
with ¢(k) > 0 and thus the arrow A; was the right most that started at level k. In particular
this means that r; = r; = k. Since |R — R| > 1, there is at least one i’ such that r; < 7. If
ry = k' let ¢ be the right most with 7 = k’. Define R” to be the rank sequence obtained by
replacing 7 by 7 + 1 in R. The row count c¢(k’) is decreased by 1 and another row count is
increased by 1, so that c¢(k) in R” is still positive. Since |R — R"| = K the induction hypothesis
assures that the WeakFindRank algorithm will return R. But then in carrying this out, we have
to work on row k, sooner or later, to decrease the positive row count c(k). But there is no
way the arrow A; can stop being the right most starting at level k, since arrows to the right
of A; start at a higher level than A; and are only moving upwards. Thus the fact that the
WeakFindRank algorithm outputs R contradicts that fact that the application of step (2) to R
cannot be carried out.

Thus we will be able to lift A; one level up as needed and obtain the sequence R’ obtained
by replacing r; by r; 41 in R. But now we will have |R — R'| =K with R’ < R and the inductive
hypothesis will assure us that the WeakFindRank algorithm starting from R will return R as
asserted. |
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It is clear now_that the complexity of the WeakFindRank al- | 20—15—10—57
gorithm is O(|R|). Recall that reordering R gives the rank set 1 |3
{r1,72, ..., "m4n} of D. It is known and easy to show that 1@

|
m+n —
1 9—4
area(D) = p—— ( E T (m 2+ n>> 7 |

7—2
i=1
B B 1A
where area(D) is the number of lattice cells between D and
the diagonal. Indeed, from Figure 12, it should be evident that Figure 12: A (7,5)-Dyck path

reducing the area by 1 corresponds to reducing the sum r; + with area 4. Removing the
black cell changes the rank 18
<o+ Tygn by m 4+ n.

to 18 —=7—5=06.
It follows that

m-+n

(2)  |R| = (m+ n)area(D) + ( 5

) = O((m + n)area(D)).

Theorem 9 together with (2) gives the following result.
Corollary 10. Given any (m,n)-Dyck path D, its pre-image D can be produced in O((m +

n) area(D)) running time.

Proof. Let ¥ be the (S, W)-word of D. We first construct the path diagram T' = (X, R(0))
with R(®) being canonical for ¥ and compute the row counts of the path diagram. Next we
use the WeakFindRank algorithm to update 7" until we get the balance path diagram (X, R) by
Theorem 9. Finally we use Theorem 7 to find the pre-image D.

__ Iteration only appears in the middle part, where the WeakFindRank algorithm performs
|R| — |[R)| times of Step 2. In each Step 2, we search for the lowest positive row count ¢(5),
then search for the rightmost arrow r; that is equal to j, and finally update r; by r; + 1 and
the row counts at only two rows (see Figure 9). Therefore, the total running time is O(|R]),
and the corollary follows by (2). 1

4. Validity of Algorithm StrongFindRank

Let R = (r1 < rg < --- < 1) be a sequence of nonnegative integers of length [. The

strict cover R = sc(R) = (r] <14 < --- < 1)) of R is recursively defined by r{ = r; and r] =

min(r;,7;_, + 1) for ¢ > 2. It is the unique minimal strictly increasing sequence satisfying
R’ = R. The following principle is straightforward.
If R < R with R weakly increasing and R strictly increasing, then sc(R) < R.

A direct consequence is that R(0) = sc(R©) < R if R is canonical for . This sequence
is exactly the starting rank sequence of our “strong” algorithm (see Figure 3). It will be good
to review our definitions before we proceed.

Algorithm StrongFindRank

Input: A path diagram 7'(3, }?5(0)) with ¥ the word of a Dyck path D € D, ,,, the nonnegative
strictly increasing rank sequence R() as above.

Output: The balanced path diagram 7'(%, ﬁ)

It will be convenient to keep the common height equal to N for all the successive path
diagrams constructed by the algorithm, where N = U + 2mn, with U = maX(R(O)) +m+ 1.
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Step 1 Starting with T(E,]/%(O)) repeat the following step until the resulting path diagram is
balanced.

Step 2 In T(Z, R®), with R®) = (ﬁs),és), BN ) find the lowest row j with ¢(j) > 0 and

»m~+n

find the unique arrow that starts at level j. Suppose that arrow starts at (¢, j). Define R’
to be the rank sequence obtained from R®) by the replacement ?gs) — ?fs) + 1, and set
R(sHD) = sc(R'). Construct the path diagram T'(3, §(3+1)) and update the row counts.
If all the row counts of T(X, R()) are < 0 then stop the algorithm and return R(®), since
all these row counts must vanish.

This given, the validity of the StrongFindRank algorithm is an immediate consequence of
the following surprising result.

Theorem 11. Let D € D, ,, with (S, W)-word ¥, and let the balanced path diagram (%, R) be

canonical for 3. Then all the successive rank sequences R®) produced by the StrongFindRank
algorithm satisfy the inequality

(3) R®) <R
and since the successive rank sequences satisfy the inequalities
(4) ﬁ(O) < E(l) < §(2) = ﬁ(?’) <= E(S)’

there will necessarily come a step when T'(X, R®) = T(Z, R). At that time the algorithm will
stop and output R.

Proof. The inequality (4) clearly holds since we always shift arrows upwards.

We prove the inequality (3) by induction on s. The basic fact that will play a crucial role
is that the output R is strictly increasing. See Theorem 3.

_ The case s = 0 of (3) is obviously true since RO is the strict cover of R©® < R. Assume
R®) < R and we need to show (3) holds true for s + 1. Now R¢*1) is the strict cover of R,
where R’ is the auxiliary rank sequence used by Step 2 of the StrongFindRank algorithm. Since
R’ is precisely the successor of R®) by Step 2 of the WeakFindRank algorithm, it will necessarily
satisfy the inequality R’ < R by Theorem 9. Our principle then guarantees that we will also
have

unless R®) = R and the StrongFindRank algorithm terminates. |

Remark 12. This proof makes it evident that, to construct the pre-image of an (m,n) Dyck
path, the StrongFindRank algorithm will be more efficient than the WeakFindRank algorithm.
This is partly due to the fact that the distances |§(5+1) — }AB(S)| do turn out bigger than one unit
most of the time, as we can see in the following display.

In the middle of Figure 13 we have a Dyck path D, and below it, its pre-image D. To recover
D from D we applied to D the WeakFindRank algorithm (on the left) and the StrongFindRank
algorithm (on the right). The display shows that the “weak” algorithm required about 3 times
more steps than the “strong” algorithm. The numbers in the Cyan squares reveal that, in
several steps, two or more arrows were lifted at the same time. For instance, in step 13, as
many as 4 arrows were lifted. The other step saving feature of the “strong” algorithm is due
to starting from the strict cover of the canonical starting sequence. This is evidenced by the
difference between the number of white cells below the colored ones on the left and on the right
diagrams.
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26 W 26 W
25 85 25 26
24 78 10—5 24 20
23 71 AU 23 19
22 65 22 16
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Figure 13: Comparison of the WeakFindRank algorithm and the StrongFindRank algorithm
by an example.

5. Discussion and Future Plans

This work is done after the authors read [4] version 1, especially after the first named author
talked with Nathan Williams. The concept “balanced path diagram” is a translation of “eq-
uitable partition” in [4]. The intermediate object “increasing balanced path diagram” is what
we missed in our early attempts: The obvious 0-row-count property of Dyck paths gives the
necessary part of Theorem 3, but we never considered the 0-row-count property to be sufficient
until we read the paper [4].

Once Theorem 3 is established, inverting the sweep map is reduced to searching for the
corresponding increasing balanced path diagram. Our algorithm is similar to the Thomas-
Williams algorithm in the sense that both algorithms proceed by picking an initial candidate
and then repeat an identical updating process until terminates. In the rational Dyck path model,
our updating process is natural and has more freedom than the Thomas-Williams algorithm.
For instance, we can start with any weakly increasing rank sequence.

The precise relation between our algorithm and the Thomas-Williams one will be addressed
in an upcoming paper, where we will extend the arguments in this paper to a more general
class of sweep maps. These sweep maps have been defined in [1]. Though the invertibility of
these sweep maps can be deduced from Nathan’s modular sweep map model [4], they deserve
direct proofs.

Even the rational sweep map needs further studied. The (m, n)-rational sweep map on D, ,,
is known to take the dinv statistic to the area statistic. This result is proved combinatorially
by Gorsky and Mazin in [3], but the proof is indirect. Our view of Dyck paths leads to visual
description of the dinv statistics and a simple proof of the dinv and area result. See [2] for
detailed information and references.
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