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Abstract

The use of network control theory to analyze the organization of white matter fibers in the human brain has the
potential to enable mechanistic theories of cognition, and to inform the development of novel diagnostics and treatments
for neurological disease and psychiatric disorders [1]. The recent article [2] aims to challenge several of the contributions
of [1], and particularly the conclusions that brain networks are theoretically controllable from single regions, and that
brain networks feature no specific controllability profiles when compared to random network models. Here we provide
additional theoretical arguments in support of [1] and against the results and methodologies used in [2], thus settling
that (i) brain networks are controllable from a single region, (ii) brain networks require large control energy, and (iii)
brain networks feature distinctive controllability properties with respect to a class of random network models.

The authors of the recent article [2] revisit and chal-
lenge the characterization of controllability of structural
brain networks reconstructed from diffusion imaging data,
which was first conducted in [1]. Briefly, the topics of
disagreement relate to the questions of (i) whether a lin-
ear dynamical network is controllable from a single node,
where the network structure is akin to those reconstructed
from tract tracing data in non-human animals, or from
diffusion tensor, diffusion spectrum, and other diffusion-
weighted imaging scans in humans, and (ii) whether the
structure of the system leads to distinctive controllability
profiles (see [1] for a detailed description of the problem).
Although the authors in [2] claim to provide contrasting
results to the ones published in [1], we respectfully believe
that the arguments presented in [2] hardly dispute any of
the conclusions of the earlier work. In fact, if anything,
the article [2] strengthens the conclusions of [1], as we ar-
ticulate in the following paragraphs.

(Controllability of brain networks from a single region.)
Both [1] and [2] adopt the same standard definition of con-
trollability. In particular, a network with dynamics

x(t + 1) = Ax(t) + Bu(t) (1)

is controllable if and only if the controllability Gramian

W =

∞∑
τ=0

AτBBT(AT)τ

is nonsingular [3]. Controllability of (1) implies that, for
any states x(0) and xf, there exists a sequence of inputs
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u(0), u(1), . . . , u(T − 1) such that x(T ) = xf, where T is a
sufficiently long control horizon. For the study in [1], the
matrix A in (1) can be viewed as the symmetric weighted
adjacency matrix of a graph where the nodes represent
brain regions and the edge weights are proportional to the
number of white matter streamlines connecting two differ-
ent brain regions (see [1] for details). Further, the matrix
B equals the i-th canonical vector of appropriate dimen-
sion, indicating that only the i-th node is in fact controlled.

In [1] we numerically show that brain networks are
controllable from a single brain region, a result that is
challenged in [2] using numerical evidence. The source
of confusion is due to the fact that assessing controllabil-
ity via numerical analysis typically leads to ill-conditioned
problems, and often generates results that are difficult to
interpret; e.g., see [4]. If one knew that the smallest eigen-
value of the Gramian were equal to ε, for any arbitrarily
small but positive value of ε, then controllability would
follow. Thus, the problem is not the magnitude of the
smallest eigenvalue of the Gramian, if computed reliably,
and stating that it is statistically compatible with zero, as
done in [2], does not constitute reliable or useful evidence
in favor or against controllability of the considered brain
networks. For instance, the eigenvalues of the controllabil-
ity Gramian are always nonnegative [3], showing that the
negative values reported in [2] are certainly incorrect.

To support our conclusion, in [5], which was available
before the publication of [2], and also in [6], we follow an al-
ternative theoretically-validated and numerically-reliable
approach to assess controllability of brain networks from a
single region. Our results show that the considered brain
networks are structurally controllable1 from every single

1Structural controllability depends only on the network struc-
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region. That is, the papers [5, 6] mathematically prove
that the considered brain networks controllable for almost
all choices of network weights, with methods that are rig-
orous and numerically reliable. To clarify further, in [5, 6]
we prove that the structure of brain networks is sufficiently
rich to allow for controllability from any single brain re-
gion. And we also prove with probability equal to one that
the result in [1] is correct: because brain networks are
structurally controllable, they are numerically controllable
for any generic choice of network weights. Interestingly,
the authors of [2] decided to ignore our results on struc-
tural controllability, which we had shared with them, and
instead decided to include a similar structural study on
networks of C. Elegans connectomes (see below).

(Controllability of human brain networks versus C. El-
egans.) To support the results of [2], the authors an-
alyze structural controllability of networks representing
C. Elegans connectomes. It is found that these networks,
which are much simpler than human brain networks, re-
quire about 7% of all nodes to be controlled to ensure
controllability of the whole system, and this fact is used
to challenge the result that a single node is sufficient to
control human brain networks. We believe that this con-
clusion is incorrect. To see this, notice that the simplest
network of all, the network with n nodes and no edges,
requires n control nodes to ensure controllability, and that
the most complex network of all, the complete network
with n nodes and n2 edges, is instead structurally control-
lable from any single node, even when the edge weights
are symmetric. In other words, as we discuss earlier, the
structure of the human brain is complex enough to ensure
controllability from any single region, as proven in [5, 6].

(Difference in the network model (1).) The papers [1] and
[2] used slightly different matrices for the model (1). In
particular, while the matrix A in [1] is the weighted adja-
cency matrix of the considered brain networks, the matrix
A used in [2] is derived by linearization from of a general
Wilson-Cowan system. From a practical perspective, the
main difference between the network matrices used in [1]
and [2] is that the diagonal entries of the matrix in [1] are
zero, while they are nonzero in the matrix used in [2]. Al-
though we find puzzling that [2] uses a different model to
challenge the existing results of [1], and as also argued in
[2],2 we believe that the difference of the used models do
not explain the difference in the conclusions of the papers.

ture and can be assessed reliably and efficiently. When a network is
structurally controllable, almost all choices of the edge weights re-
sult in a network that is numerically controllable [7]. In our analysis,
structural controllability is a proxy to study controllability of brain
networks while avoiding ill-conditioned numerical problems.

2“Although we do not agree on this procedure that neglects the
differences between the linearized system dynamics given by the ma-
trix A and the brain connectivity structure given by the matrix M,
we note that, for the case of the Wilson-Cowan modeling framework,
in practice there is no relevant difference between the two approaches
on the final results.”

Importantly, because the controllability results in [5, 6] are
valid for almost all choices of network weights, they apply
to both the dynamical models used in [1] and [2], showing
that the networks used in [2] are also structurally control-
lable. In fact, it is a known result that self-loops, that is,
nonzero diagonal entries, can only facilitate the verifica-
tion of the conditions for (structural) controllability [7].

(Theoretical versus practical controllability.) Although brain
networks are theoretically controllable from a single region,
the energy needed to fully control the system is extremely
large, indicating that brain networks are practically un-
controllable from one region. This property is well rec-
ognized and discussed in [1]. For instance, we explicitly
say: “These values (smallest eigenvalues of the Gramian)
were consistently greater than 0, indicating that the sys-
tem is theoretically controllable through a single region,
but remained small with respect to the largest eigenvalues
(always greater or equal to 1), indicating that in practice
the system is extremely hard to control through a single
region.” Thus, the results in [2] do not challenge, but they
rather validate what had already been discussed in [1]. Fi-
nally, it should be noticed that the above considerations on
the control energy of brain networks are expected [8], and
compatible with the results on structural controllability in
[5, 6], which guarantee that the smallest eigenvalue of the
Gramian is greater than zero although possibly small.

To conclude, it should also be noticed that the calcu-
lation of the minimum number of control nodes in [2] is
based on an arbitrary limit on the control energy. Thus,
the values in [2, Table 1] should not be regarded as the min-
imum number of control nodes to control such networks,
but rather as the number of control nodes required to con-
trol the network with a pre-selected and arbitrary control
energy – in fact, as we formally show in [5, 6], one single
node is sufficient to control our structural brain networks.

(Controllability as a distinct feature of brain networks.) In
[2], it is argued that the connectivity properties of struc-
tural networks estimated from diffusing imaging (DSI/DTI)
do not play an important role in brain controllability. We
respectfully disagree with this statement. For instance, in
[5, 6] we show that the connectivity properties of DSI/DTI
matrices are such that brain networks are structurally con-
trollable from a single region, while many different real
networks require a larger number of driver nodes to ensure
controllability [9]. In [10] we show that different network
models lead to different controllability profiles. As can be
seen in Fig. 1, brain networks occupy a region of the three
dimensional space defined by our controllability metrics
(average, modal, and boundary controllability) that is far
away from the regions covered by classic models of random
networks. These data suggest that the structure of brain
networks leads in fact to unique controllability features,
a conclusion that is also supported by the relations be-
tween controllability and the functions that brain regions
perform in terms of cognitive control [1] and intrinsic pro-
cessing [11]. Additional supporting evidence comes from
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[12], where we show that controllability of random net-
works is significantly different from that observed in brain
networks estimated from diffusion imaging data across 882
humans, and that controllability profiles differ across in-
dividuals of different ages, corresponding with individual
differences in cognitive ability. Moreover, in [13] we show
that controllability profiles are different in individuals who
have suffered from mild traumatic brain injury, suggesting
that changes of the brain structure affect its controllability
properties, and in [14] we show that controllability pro-
files differ across the structural brain networks of different
species. Finally in [15] we show that a different controlla-
bility metric, the controllability radius, is also consistently
different in brain networks and random network models.

The analysis in [2] of centrality measures and corre-
sponding rankings to compute the number of control nodes
and their properties is interesting, but besides the point
of challenging the results in [1]. To do so, brain and ran-
dom networks should have been compared using the same
metrics used in [1] as in Fig. 1, which shows that different
networks can indeed be distinguished by their controlla-
bility properties. Finally, the fact that certain random
networks may feature controllability properties similar to
brain networks cannot invalidate the direct analysis con-
ducted in [1], which numerically characterizes the control-
lability properties of given brain and random networks,
and does not argue that such controllability properties are
unique across different classes of random network models.

In conclusion, we believe that [2] contains interesting
ideas, including the comparison of brain and random net-
work models based on controllability and centrality mea-
sures, and we agree with [2] that the use of network control
theory to model, analyze, and treat the human brain is
still in its infancy. Yet, based on the discussions provided
in [1] and in the supplementary material, the results of
several follow-up studies, and the additional evidence and
arguments discussed in this response, we believe that the
results and the conclusions in [1] are accurate and correct.

References

[1] Shi Gu, Fabio Pasqualetti, Matthew Cieslak, Qawi K Telesford,
B Yu Alfred, Ari E Kahn, John D Medaglia, Jean M Vettel,
Michael B Miller, Scott T Grafton, and Danielle Bassett. Con-
trollability of structural brain networks. Nature Communica-
tions, 6, 2015.

[2] C. Tu, R. P. Rocha, M. Corbetta, S. Zampieri, M. Zorzi, and
S. Suweis. Warnings and caveats in brain controllability. Neu-
roImage, 176:83–91, 2018.

[3] T. Kailath. Linear Systems. Prentice-Hall, 1980.
[4] A. C. Antoulas, D. C. Sorensen, and Y. Zhou. On the decay

rate of Hankel singular values and related issues. Systems &
Control Letters, 46(5):323–342, 2002.

[5] T. Menara, S. Gu, D. S. Bassett, and F. Pasqualetti. On
structural controllability of symmetric (brain) networks. Arxiv,
1706(05120), 2017.

[6] T. Menara, D. S. Bassett, and F. Pasqualetti. Structural con-
trollability of symmetric networks. IEEE Transactions on Au-
tomatic Control, 2018. In press.

0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0
MD4RL

m
o

d
al

 c
o

n
tr

o
lla

b
ili

ty

WS
MD2

RG

5

boundary controllability

Brain

MD8

10

BA

WRG

average controllability
1.071.081.091.11.111.121.131.14

(a)

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0

MD4RL
WSMD2m

o
d

al
 c

o
n

tr
o

lla
b

ili
ty

RG

Brain

MD8

WRG

BA

boundary controllability

20

average controllability

40
11.051.11.151.21.251.3

(b)

Figure 1: This figure shows that different network models may fea-
ture inherently different controllability profiles. Brain networks can
be uniquely identified in this 3-dimensional controllability space, sug-
gesting that their structure differs from classic random network mod-
els and can be uniquely distinguished through a controllability anal-
ysis. To compare different network models, the weights of the edges
of all networks have been drawn from an empirically-estimated frac-
tional anisotropy distribution, which describes typical weight dis-
tributions in large-scale human brain structural networks estimated
from diffusion imaging tractography [11]. For each network model,
we generate a number of networks (100 for the synthetic network
models and 30 for brain networks) with the same cardinality (128
nodes), assign the edge weights, and compute the controllability met-
rics by varying the control node over all nodes. Then, in panel (a) we
report the average values computed over all possible control nodes,
while in panel (b) we report the average values computed over all net-
work instances. Thus, a data point in panel (a) represents a network,
while a data point in panel (b) represents a network node. We use
the following random networks: WRG: Weighted Erdős-Rényi model;
RL: Ring Lattice model; WS: Watts-Strogatz model; MD2: Modular
Network with 2 communities; MD4: Modular Network with 4 com-
munities; MD8: Modular Network with 8 communities; RG: Random
Geometric model; BA: Barabasi-Albert model. See also [10], which
contains a detailed description of the network models used here.
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