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MATHUSLA is a proposed surface detector at CERN that would be able to observe the decays of
nonhadronic electrically neutral long-lived particles (LLPs) with almost no background or trigger
limitations. This would allow MATHUSLA to probe sub-GeV to TeV masses and lifetimes up to
cτ ∼ 107 m. MATHUSLA can play an important role in probing dark-matter scenarios involving extended
hidden sectors, where additional dark states often manifest as LLPs. A prime example of such a scenario is
furnished by the Dynamical Dark Matter (DDM) framework, which intrinsically gives rise to large
ensembles of dark states exhibiting a broad range of masses and lifetimes. In this paper, we examine the
extent to which MATHUSLA can probe the DDM parameter space, and we demonstrate that MATHUSLA
may be capable of providing direct confirmation of certain unique aspects of the DDM framework which
might be difficult to probe in other ways.
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I. INTRODUCTION

Understanding the properties of dark matter is one
of the most important outstanding mysteries of both
particle physics and cosmology. (For recent reviews, see
Refs. [1–7].) Although much remains unknown about these
properties, the particles which constitute the dark matter
must either be absolutely stable or “hyperstable,” with
extremely long lifetimes τ ≳ 1026 s. Methods of detecting
dark matter can be classified as direct (involving the
scattering of ambient dark-matter particles in a detector),
indirect (involving astrophysical observation of the anni-
hilation or decay of dark matter into visible final states),
or collider-based (involving the production of dark matter
and its detection via missing-energy signatures). Only for
indirect detection do the potentially finite lifetimes of the
dark-matter particles themselves play a possible role.
Since no human-scale experiment is capable of pro-

ducing dark matter and directly observing the resulting
decay, one might suspect that long-lived particle (LLP)
searches can play no immediate role in the discovery or

identification of dark matter. However, in many theories of
dark matter, the stable or cosmologically long-lived par-
ticles which constitute the dark-matter energy density today
are only part of an extended dark sector. Moreover, the
other dark states residing within such extended sectors
could couple to the Standard Model (SM) via highly
suppressed interactions, and therefore have lifetimes which
exceed collider timescales but which are nevertheless
shorter than the age of the Universe. Such states are
therefore potential LLPs. The detection of such additional
states is possible in “hidden-valley” scenarios [8,9], includ-
ing theories of SIMP dark matter [10], ELDERs [11], co-
decaying dark matter [12], asymmetric dark matter [13],
and dark matter produced via cosmological freeze-in [14].
Indeed, the prospects for detecting LLP states within these
scenarios are discussed in Ref. [15].
Dynamical Dark Matter (DDM) [16–21] is an alternative

framework for dark-matter physics in which the dark sector
comprises an entire ensemble of states exhibiting a broad
range of lifetimes and cosmological abundances. Those
states within the ensemble whose lifetimes exceed the
current age of the Universe together comprise the dark
matter observed today. Thus, within this framework, the
fraction of the total energy density of the Universe
associated with dark matter is inherently dynamical,
even in a matter-dominated epoch. Moreover, phenomeno-
logical considerations require that the lifetimes of the
ensemble states be carefully balanced against their cosmo-
logical abundances [16], so that states with larger abun-
dances must have longer lifetimes but states with smaller
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abundances can have shorter lifetimes. This balancing
therefore replaces the usual notion of dark-matter stability.
Indeed, within this framework, the lifetimes and abundan-
ces of the states within the DDM ensemble are generally
connected through scaling relations which hold across the
entire ensemble. These scaling relations will be discussed
further below. Thus, the DDM framework is unique in
connecting the finite lifetimes of possibly all dark-sector
states to the observed dark-matter relic abundance today.
Theories of DDM are therefore natural targets of LLP
searches at colliders such as the (HL-)LHC since they give
rise to many different dark-sector LLPs exhibiting an entire
spectrum of lifetimes, potentially stretching from collider to
cosmological timescales.
Since the DDM ensemble has to include states with

lifetimes all the way up to the hyperstability bound
τ ≳ 1026 s, it inherently motivates LLP searches in the
long-lifetime regime. In general, collider acceptances scale
as ∼ðL=λÞn for a detector of size L, decay length λ, and
number n of observed decays needed for discovery. Thus,
within the long-lifetime regime with λ ≫ L, only those
LLP searches involving a single LLP decay are efficient.
However, at the (HL-)LHC main detectors, searches for a
single LLP are often limited by low trigger acceptances or
complicated backgrounds, especially for LLPs that decay
hadronically with less than a few hundred GeV, or leptoni-
cally with less than ∼1–10 GeV, of visible energy [15].
The recently proposed MATHUSLA detector [22] is

designed to probe the long-lifetime regime by searching for
displaced vertices on the surface above ATLAS or CMS.
This detector will be able to discover LLPs with a similar
geometric acceptance as the main detectors, but without
background or trigger limitations. This can extend sensi-
tivity by up to three orders of magnitude in cross section.
The physics motivation for such a detector is very broad
and general, as recently discussed in Ref. [15].
In this paper, we shall demonstrate that MATHUSLA is

uniquely well suited for probing DDM scenarios. To do
this, we shall evaluate the reach of the MATHUSLA
detector within the parameter space of a particular DDM
toy model. Indeed, as we shall show, MATHUSLA can
probe important regions of this parameter space that may
be inaccessible to the main detectors.
This paper is organized as follows. In Sec. II, we describe

the MATHUSLA detector and its overall capabilities. Then,
in Sec. III, we provide a brief self-contained review of the
salient features of the DDM framework. In Sec. IV, we
describe the potential signatures of DDM at colliders, and
we sketch the ways in which MATHUSLA can play a
unique and critical role in collider-based probes of DDM.
In Sec. V, we then examine the reach of the MATHUSLA
detector within the parameter space of our DDM toy model,
and find that there exist several compelling “sweet spots”
within which MATHUSLA can be particularly relevant
for probing the corresponding dark sector. Finally, we

conclude in Sec. VI with a discussion of possible future
directions for study.

II. THE MATHUSLA DETECTOR

In this section we briefly describe the details of the
MATHUSLA detector that are relevant for our study. More
details can be found in the original MATHUSLA paper
[22], in the MATHUSLA theory white paper [15], and in
the MATHUSLA letter of intent [23].
MATHUSLA is motivated by the long-lifetime regime

for LLPs, where main-detector searches are limited by
complicated backgrounds and triggers that are optimized
for prompt high-energy particle production. As a result, the
inherently rare LLP signals in this regime can be swamped
or overlooked, resulting in sensitivities for LLP decays
which are much worse than implied by the geometric
acceptance of the main detector.
MATHUSLA circumvents these limitations by operating

on the surface above CERN, close to either ATLAS or
CMS.We assume the benchmark geometry of Refs. [15,22]
(specifically, the so-called “MATHUSLA200” geometry
discussed in Ref. [23]), which assumes a 200 m× 200 m×
20 m decay volume on the surface, displaced horizontally
from the interaction point by 100 m, and instrumented only
with a highly robust multilayer tracking system above the
decay volume. This allows for the reconstruction of
displaced vertices for LLPs that decay inside the detector.
Crucially, due to its large size, MATHUSLA can recon-
struct displaced vertices in four dimensions, including
consistent timing intersection of all upward-traveling
charged tracks associated with the LLP decay. In principle,
this allows all backgrounds, most importantly downward-
traveling cosmic rays, to be rejected by the stringent
displaced-vertex reconstruction criteria satisfied by the
LLP signal.
In the long-lifetime regime, MATHUSLA has a similar

geometric acceptance for LLP decays as the main detectors.
However, since MATHUSLA is not hampered by trigger
or background limitations, LLP searches at MATHUSLA
can—depending on the details of the LLP signal—
potentially probe production cross sections that are several
orders of magnitude smaller than can be probed through
searches at the main detectors. As discussed in detail in
Ref. [15], the advantages of MATHUSLA are most
pronounced for LLPs that decay hadronically with less
than a few hundred GeV of visible final-state energy,
or those that decay leptonically with masses below
∼1–10 GeV. Since these include such generic scenarios
as LLPs produced and decaying via the Higgs portal,
MATHUSLA would clearly play a vital role in exploring
the lifetime frontier. MATHUSLA can probe LLP cross
sections ≲fb for lifetimes in the 100 m range. For ∼pb LLP
production cross sections, MATHUSLA can probe the
BBN lifetime limit [24] of cτ ≲ 107 m, thereby scratching
the ceiling of parameter space for most LLP theories.
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This capability is vital for maximizing the chances of
discovering DDM.
In our reach estimates, we assume perfect detection

efficiency within the MATHUSLA decay volume and zero
backgrounds. Since tracking efficiency is driven by cosmic-
ray rejection and has to be excellent, this optimistic
assumption is actually a very reasonable approximation
of the true reconstruction efficiency for hadronically
decaying LLPs [23]. For leptonically decaying LLPs, the
reconstruction efficiency will depend more on details of
the final MATHUSLA design and tracking coverage of the
decay volume, but these details would not qualitatively
change our results.

III. DYNAMICAL DARK MATTER

In this section we outline the fundamental properties of
the DDM framework. We also explain why MATHUSLA
may be able to provide evidence for this framework and
potentially place constraints on its overall properties.
We begin by recalling the traditional view of dark matter.

Within a traditional setup, the dark sector is composed
of one or several hyperstable dark-matter particle(s) χ
which carry the entire dark-matter cosmological abundance
ΩCDM ≈ 0.26 [25]. This stability is critical for traditional
dark matter. Indeed, any particle which decays too rapidly
into SM states is likely to upset BBN and alter light-element
abundances, and also leave undesirable imprints in the CMB
and diffuse x-ray/gamma-ray backgrounds. However, as a
result of this stability, the resulting dark sector is then
essentially “frozen” in time, with ΩCDM remaining constant
in our late-time matter-dominated universe. Moreover, as
explained above, this stability also ensures that once such a
dark-matter particle is produced in a collider, it escapes
without any subsequent observable decay.
Dynamical Dark Matter is different. The DDM frame-

work [16–21] begins by assuming that the dark sector
consists of not merely one dark-matter particle, but many
such particles. Indeed, the number N of dark-matter
particles can be relatively large, with N reaching 10,
100, 1000, or even growing to infinity. Thus, instead
of having a single dark-matter particle χ, the dark
sector contains an entire ensemble of dark states χn
(n ¼ 0;…; N − 1). Of course, no state individually needs
to carry the full abundance ΩCDM so long as the sum of
their individual abundances Ωn matches ΩCDM. In par-
ticular, the individual dark components within the ensem-
ble can carry a wide variety of abundances Ωn, some
relatively large but others relatively small. This is a critical
observation, because a given dark-matter component χn
need not be stable if its abundance Ωn at the time of
its decay into SM states is sufficiently small. Indeed, a
sufficiently small abundance assures that all of the
disruptive effects of the decay of χn into SM states will
be minimal, and that all constraints from BBN, CMB, etc.
will continue to be satisfied.

We are thus naturally led to an alternative concept [16]: a
balancing of decay widths Γn against cosmological abun-
dances Ωn, where Γn are the widths for decays into SM
states. Dark-matter states with larger abundances must have
smaller decay widths and survive until (and potentially
beyond) the present time, whereas states with smaller
abundances can have larger decay widths and decay at
earlier times. As long as decay widths are balanced against
abundances in this way across our entire dark-sector
ensemble, all phenomenological constraints can potentially
be satisfied. Thus, dark-matter hyperstability is no longer
required.
This, then, is DDM: an alternative framework for dark-

matter physics in which the notion of dark-matter stability
is replaced by a balancing of lifetimes against cosmolo-
gical abundances across an ensemble of individual dark-
matter components χn with different masses mn, lifetimes
τn ≡ Γ−1

n , and cosmological abundancesΩn. In some sense,
this is the most general dark sector that can be contem-
plated, reducing to the standard picture of a single stable
particle as N → 1. However, as N is increased from 1, we
now see that the notion of dark-matter stability generalizes
into something far richer: a balancing of lifetimes against
abundances. In other words, the dark sector becomes truly
dynamical, with the different components of the DDM
ensemble decaying before, during, and after the present
epoch. Indeed, some portions of the DDM ensemble
have already decayed prior to the present epoch, and are
thus no longer part of the dark sector. However, other
portions of the DDM ensemble have yet to decay. It is
these ensemble constituents whose abundances Ωn
together comprise the specific dark-matter abundance
ΩCDM ≈ 0.26 observed today.
Since the original DDM proposal [16–18], there have

been many explicit realizations of such DDM ensembles—
i.e., many different theoretical scenarios for physics beyond
the SM which naturally give rise to a large collection of
dark states in which the widths for decays into SM states
are naturally inversely balanced against cosmological
abundances. These include theories involving large extra
spacetime dimensions [16–18], theories involving strongly
coupled hidden sectors [26,27], theories involving large
spontaneously broken symmetry groups [28], and even
string theories [26,27,29]. Indeed the dark states within
these different realizations can accrue suitable cosmologi-
cal abundances in a variety of ways, including not only
through nonthermal generation mechanisms such as mis-
alignment production [16–18] but also through thermal
mechanisms such as freeze-out [30]. Mass-generating
phase transitions in the early universe can also endow
collections of such states with nontrivial cosmological
abundances [31–33].
In these and other realistic DDM scenarios, the masses,

lifetimes, and abundances of these individual particles are
not arbitrary. Rather, these quantities follow directly from
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the underlying physics model and generally take the form
of scaling relations (either exact or approximate) which
dictate how these quantities scale relative to one another
across the ensemble as a whole. Through these scaling
relations, the properties of the ensemble constituents—and
thus the properties of the ensemble itself—are completely
specified through only a small number of free parameters.
Thus, even though the number of particles which contribute
to the total dark-matter abundance is typically quite large,
specific top-down realizations of the DDM framework are
very predictive.
The most fundamental of these scaling relations governs

the spectrum of masses for the DDM constituent particles
χn. In general, we assume a constituent mass spectrum of
the form

mn ¼ m0 þ ðΔmÞnδ ð3:1Þ

where fm0;Δm; δg are arbitrary parameters and where
Δm; δ > 0 (so that n labels the DDM constituents in order
of increasing mass). Indeed, most concrete realizations
of DDM ensembles have mass spectra which take this
general form, either exactly or approximately. For example,
if—as in Refs. [16,17]—the ensemble constituents are
the Kaluza-Klein (KK) excitations of a scalar field
compactified on a circle of radius R (or a Z2 orbifold
thereof), we have either fm0;Δm; δg ¼ fm; 1=R; 1g or
fm0;Δm; δg ¼ fm; 1=ð2mR2Þ; 2g, depending on whether
mR ≪ 1 or mR ≫ 1, respectively, where m is the four-
dimensional scalar mass. In general, for arbitrary mR, we
find that the latter behavior holds for n ≪ mR and the
former for n ≫ mR. Likewise, if the ensemble constituents
consist of the bound states of a strongly coupled gauge
theory, as in Refs. [26,27], we have δ ¼ 1=2, where Δm
and m0 are related to the Regge slope and Regge intercept
of the strongly coupled theory, respectively. Thus δ ¼ 1=2,
δ ¼ 1, and δ ¼ 2 may be considered as particularly
compelling “benchmark” values.
Given a mass spectrum of this general form, we then

typically take a scaling relation for the decay widths Γn
of the form

Γn ¼ Γ0

�
mn

m0

�
y

ð3:2Þ

where Γ0 is the decay width of the lightest DDM state and
where y is an additional free parameter. Note that Γn is
assumed to be the decay width of the nth ensemble
constituent χn into SM states, and in such analyses one
typically disregards the possibility of intra-ensemble
decays (or assumes that the branching ratios for such
decays are relatively small). The corresponding χn lifetimes
are then given by τn ≡ Γ−1

n . In general, the scaling exponent
y can be arbitrary. For example, if we assume that the
dominant decay mode of χn is to a final state consisting of

SM particles whose masses are all significantly less than
mn, and if this decay occurs through a dimension-d contact
operator of the form On ∼ cnχnOSM=Λd−4 where Λ is an
appropriate mass scale and where OSM is an operator built
from SM fields, we have

y ¼ 2d − 7: ð3:3Þ

Likewise, if we assume that the χn are dark hadrons
experiencing “hidden-valley” [8,34] decays mediated by
a dark photon, we would have y ¼ 5. In general one finds
y > 0, but this is not a strict requirement. Indeed, since
the fundamental couplings that underlie such decays can
often themselves depend on n, the scaling exponents y can
often grow quite large.
There are also additional important scaling relations

which are often utilized in the DDM literature. For
example, one important quantity for many purposes is
the spectrum of cosmological abundances Ωn associated
with each DDM constituent. These are likewise assumed
to satisfy an approximate scaling relation of the form

Ωn ¼ Ω0

�
mn

m0

�
γ

: ð3:4Þ

The precise value of the scaling exponent γ generally
depends on the particular dark-matter production mecha-
nism assumed. One typically finds that γ < 0 for misalign-
ment production [16,17], while γ can generally be of either
sign for thermal freeze-out [30].
In a similar vein, for many investigations it proves

important to focus on the coupling coefficients cm;n;…p

of Lagrangian operators which involve multiple ensemble
constituents fχm; χn;…; χpg together with some set of
particles outside the ensemble. Such couplings can ulti-
mately be relevant for dark-matter production, scattering,
annihilation, and decay. In the analysis below, we shall
mostly be interested in couplings that involve two dark-
matter constituents χm and χn (or their antiparticles), and
we shall further restrict our attention to the “diagonal”
case in which m ¼ n. We shall then assume a scaling
relation for such couplings of the form

cnn ¼ c0

�
mn

m0

�
ξ

ð3:5Þ

where c0 is an overall normalization and where ξ is a
corresponding scaling exponent. Assuming a scaling rela-
tion of this general form allows us to study a wide variety of
underlying theoretical mechanisms that might generate
such couplings. For example, ξ ¼ 0 corresponds to dem-
ocratic decay into different final states that are much lighter
than the parent particle, while ξ ¼ 1 corresponds to a
Yukawa-like coupling. Of course, once a particular scaling
relation for the coupling is specified, the scaling behaviors
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of the corresponding production, scattering, or annihilation
cross sections are also determined. Since these cross
sections also depend on kinematic factors, their behavior
across the ensemble can deviate significantly from the
kinds of simple power-law relations we have assumed for
the couplings. For example, the results in Ref. [30]—
although derived for an entirely different purpose—can be
interpreted as illustrating the tremendous range of possible
scaling behaviors that can be exhibited by an annihilation
cross section even when the underlying annihilation cou-
plings cnn are held fixed, with ξ ¼ 0, across the entire
DDM ensemble.
In general, the phenomenological viability of the DDM

framework rests upon certain relations between these
different scaling exponents. Two of the most important
which underpin the entire DDM framework are the
relations [16,30]

γy < 0 ð3:6Þ

and

−1≲ 1

y

�
γ þ 1

δ

�
< 0: ð3:7Þ

The first of these relations ensures a proper balancing of
lifetimes against abundances across the entire DDM
ensemble, as discussed above. By contrast, the second
relation ensures a suitable equation of state for the
collective DDM ensemble, with an effective equation-of-
state parameter weff ≈ 0 which does not change appreciably
over a significant portion of the recent cosmological
past [30]. Moreover, in cases of DDM ensembles with
infinite numbers of closely spaced constituents, this rela-
tion also ensures that the total energy density carried by the
ensemble is finite.

IV. DYNAMICAL DARK MATTER AT
COLLIDERS, AND THE ROLE OF MATHUSLA

Scenarios within the DDM framework can give rise
to distinctive signatures at colliders [35–37], at direct-
detection experiments [38], and at indirect-detection
experiments [39–42]. Such scenarios also give rise to
enhanced complementarities [43,44] between different
types of experimental probes.
In this section, we discuss the DDM signatures that are

possible at the HL-LHC, assuming the existence of a
production channel for the DDM ensemble. While a variety
of prompt signals are possible, we focus on the features
most relevant to the long-lifetime regime: missing energy
and LLP signatures. In doing so, we highlight the important
role of the LLP search program in general and hence the
important role MATHUSLA can play in collider-based
searches for DDM.

A. DDM at colliders: MET signatures

As a result of the variety of decay lifetimes exhibited by
the different components χn of a generic DDM ensemble,
these components may manifest themselves in qualitatively
different ways at colliders—even in situations in which the
χn all have similar quantum numbers and are therefore
produced via similar processes.
If the shortest lifetime in the DDM ensemble is

cτ ≳ 10 m, a significant fraction or all of the DDM states
produced at the LHC escape the detector and can only
be reconstructed as missing energy (MET). In that case,
the scenarios with the best detection prospects at the main
detectors involve DDM states that are produced with
sizable cross sections and in association with prompt
visible final states to ensure a large MET signal.
For example, techniques have been developed in

Refs. [35–37] for discerning the existence of an entire
DDM ensemble of dark-matter components at hadron
colliders such as the Large Hadron Collider (LHC) or
future high-luminosity (HL-)LHC, and for distinguishing
such DDM ensembles from more traditional dark-matter
candidates. Such studies focused on DDM scenarios in
which the ensemble constituents are produced via the
decays of additional, heavier “parent” particles which are
charged under SUð3Þc color and can therefore be pair-
produced copiously at hadron colliders. In cases in which
each parent particle decays to a single ensemble constituent
and a pair of hadronic jets, it was shown in Ref. [35] that the
invariant-mass distribution of these two jets could provide a
distinctive signal of DDM. Indeed, this possibility extends
throughout large portions of the underlying DDM param-
eter space of scaling exponents [35]. Moreover, decay
topologies of this sort arise generically in cases in which
both the parent particle and the constituents of the DDM
ensemble are charged under an approximate symmetry.
Similarly, in cases in which the parent particle decays
primarily into a single ensemble constituent and a single
jet, it was shown in Ref. [36] that the MT2 distribution [45]
can likewise provide such a signal.
The general lesson from such studies is that distinguish-

ing between minimal and DDM-like nonminimal dark
sectors at colliders typically involves more than merely
identifying an excess in the total number of signal events
over background. In particular, it typically requires a
detailed analysis of the shapes of relevant kinematic
distributions.
It is also important to note that in comparison with simple,

“bump-hunting” searches, distribution-based searches of
this sort involve a number of additional subtleties [36].
For example, cuts imposed on the data for purposes of
background reduction can distort event-shape distributions
whenever nontrivial correlations exist between the corre-
sponding collider variables. The results of an examination
of the effects of these distortions on the event-shape
distributions of the kinematic variables most sensitive to
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the structure of the dark sector were reported in Ref. [36].
Indeed, it was shown that appropriately chosen cuts on
certain variables can actually enhance the distinctiveness of
these distributions, while cuts imposed on other variables
tend to obscure signals of nonminimality in the dark sector.
More details behind all of these results can be found in
Refs. [35,36].
Such scenarios for DDM are somewhat optimistic in

terms of their collider-based detection prospects and
illustrate how much information about the ensemble can
be extracted if the production cross section and missing
energy per event are large. However, even scenarios which
are much less favorable in terms of their collider-detection
prospects can be effectively probed using monojet [46,47]
and other related searches that exploit the inevitable MET
signal from initial-state radiation associated with any
potential DDM or other invisible particle-production proc-
ess. Recent projections for the reach of monojet searches at
the HL-LHC can be found in Ref. [15]. For typical
benchmark scenarios where an SM-singlet mediator has
couplings ≲1 to SM fermions and a single dark-matter
species, mediator masses above a TeV can be discovered
at the HL-LHC. In this case, less information about the
ensemble may be available, since the MET spectrum is
dictated by the properties of the mediator and not the
invisible particle(s). This nevertheless demonstrates the
possible reach of the HL-LHC in probing DDM and other
dark-matter scenarios. Of course, if the DDM ensemble
includes states that are sufficiently short-lived to yield even
just a few decays inside MATHUSLA or the main detec-
tors, then the observation of those decays could provide
further evidence for DDM, especially if a multitude of
masses and lifetimes is observed and if those measurements
are correlated with the results of MET searches to further
elucidate the properties of the DDM spectrum.

B. DDM at colliders: LLP signatures

The direct observation of several different LLPs obeying
discernible scaling relations constitutes an obvious smok-
ing gun for the DDM framework. If all of the observable
decay lengths are similar to or smaller than the LHC main-
detector size, the analysis strategy involves correlating
the discoveries made in several different main-detector
searches to uncover the properties of the ensemble.
But what if we do not have such an embarrassment of

riches? Indeed, this would be the case in the long-lifetime
regime. Understanding how to probe DDM in this regime is
important for purely pragmatic reasons, but also has a
particular theoretical motivation. The DDM ensemble must
contain states with lifetimes up to the hyperstability bound.
Hence, if the DDM ensemble contains states with any
collider-observable lifetime, then it is likely to also contain
states all the way up to the upper bound of collider-
observable lifetimes. Therefore, while a search program
specifically targeting the long-lifetime regime is important

for many different scenarios for physics beyond the SM,
it is particularly well-motivated for DDM.
That said, searching for LLPs is challenging at the main

LHC detectors, as detection prospects at these detectors are
significantly limited by triggering requirements and com-
plicated backgrounds. By contrast, as discussed in Sec. II,
MATHUSLA does not suffer from these limitations and is
therefore capable of providing a far greater discovery reach
in LLP searches—often by orders of magnitude—than the
main LHC detectors, despite having a comparable geo-
metric acceptance. For this reason, MATHUSLA affords
potentially the only discovery opportunity for many new-
physics scenarios involving LLPs—especially those in
which the LLPs are relatively light and decay hadronically.
In the context of the DDM framework, these considerations
are doubly important, since probing the underlying struc-
ture of the DDM ensemble requires the observation of
several different LLP states. For these reasons, it is crucial
to examine the extent to which a dedicated surface detector
like MATHUSLA is capable of probing the parameter
space of DDM scenarios. Indeed, the results of such a study
will be presented in Sec. V.
As we shall find, a dedicated surface detector like

MATHUSLA can, in and of itself, play a crucial role in
probing the parameter space of DDM scenarios. However,
the prospects of correlating signal information gleaned
from MATHUSLA with signal information gleaned from
the main LHC detectors renders MATHUSLA an even
more powerful tool for detecting and characterizing DDM
scenarios. For example, despite its minimal instrumenta-
tion, analysis of observed LLP decays at MATHUSLA can
not only measure the boost of the LLP in each individual
detection event, but also strongly suggest the most likely
decay mode for the LLP in that event on the basis of
purely geometric information [48]. This allows one to
identify the particular HL-LHC bunch crossing in which
the LLP was created. On the basis of information recorded
by the main detector for the corresponding collision event—
or the absence of such information in cases where no L1
trigger criterion is satisfied—the production mode of the
LLP, and hence also its mass, can then be determined or
constrained.
For DDM, the importance of these correlations extends

beyond the characterization of any one LLP signal. As
we have discussed above, detailed analysis of data from
MET searches at the main LHC detectors can also reveal
information about the DDM ensemble. Correlating infor-
mation gleaned from such searches with information
gleaned from LLP searches both at MATHUSLA and at
in the main detectors themselves can yield further infor-
mation still. Moreover, even without a significant MET
signal, the correlation of LLP searches between the main
detectors and MATHUSLA can nevertheless reveal non-
trivial information about the DDM ensemble. For example,
it is possible that a given DDM ensemble contains both
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shorter-lived and longer-lived LLP states. For such an
ensemble, a significant number of displaced vertices would
be expected in the main detector, while a small number
of events—but a number potentially sufficient to constitute
a signal nevertheless—would also be expected at
MATHUSLA. Taken together, these signals could reveal
the existence of both the shorter-lived and longer-lived
portions of the DDM ensemble.
The enhanced prospects for probing the structure of DDM

ensembles afforded by the correlation of signal information
between the main detectors and MATHUSLA clearly merit
further study. In this paper, however, we shall henceforth
focus on the prospects afforded by MATHUSLA alone, and
leave the analysis of how such correlations can improve the
reach of LLP searches for future work [49].

V. THE REACH OF MATHUSLA WITHIN THE
DDM PARAMETER SPACE: A GENERAL STUDY

In order to provide a quantitative assessment of the reach
of MATHUSLAwithin the DDM parameter space, we shall
conduct a toy study of the simplest situation in which our
DDM dark-matter constituents χn are produced through the
prompt decays of a single heavy parent particle ϕ of mass
mϕ via a two-body process of the form ϕ → χnχn. At our
level of analysis the spins of ϕ and χn are irrelevant, and we
shall imagine that ϕ itself is produced at threshold so that it
is essentially at rest at the time of its decay. We shall let σϕ
denote the LHC production cross section of ϕ, and likewise
we shall assume that the χn masses mn, decay widths Γn,
and couplings cnn governing the ϕχnχn interactions are
described by the DDM scaling relations in Eqs. (3.1), (3.2),
and (3.5), respectively. We therefore have a nine-dimen-
sional parameter space fmϕ; σϕ; m0;Δm; δ;Γ0; y; c0; ξg.
For concreteness, we take Γ0 to be determined by the

traditional dark-matter hyperstability bound, i.e., Γ0 ¼
ð109tnowÞ−1 where tnow ¼ 4.35 × 1017 s is the current
age of the Universe. (Larger values will simply linearly
rescale the signal in the long-lifetime limit.) We also set
mϕ ¼ 2 TeV as a concrete benchmark, to be discussed
further below. We further take δ ¼ 1.5, which lies within
the range spanned by the set of theoretically motivated
benchmark values for δ discussed in Sec. III. As will
become evident, shifting δ while holding the other param-
eters fixed will not change our fundamental results and
will merely shift the portions of the DDM ensemble to
which MATHUSLA is ultimately sensitive. Likewise, the
quantity c0 determines the overall scale of the branching
ratios BRðϕ → χnχnÞ, and thus determines the total invis-
ible branching fraction BRχχ ≡P∞

n¼0 BRðϕ → χnχnÞ.
Since MATHUSLA is ultimately sensitive not to σϕ
alone but to the product σϕBRχχ , we therefore now have
a seven-dimensional parameter space fmϕ; σϕBRχχ ; m0;
Δm; δ; y; ξg. We shall therefore quantitatively assess the
reach of the MATHUSLA detector in terms of the

minimum value of σϕBRχχ that gives rise to four observed
LLP decays within the MATHUSLA decay volume,
given specific values of the remaining six parameters
fmϕ; m0;Δm; δ; y; ξg. In the zero-background regime, this
can be interpreted as an exclusion limit on σϕBRχχ . In the
event that LLP decays are observed, this would correspond
roughly to the minimum cross section required for DDM
discovery.
For any value of mϕ, the decays of ϕ can potentially

produce the ensemble constituents fχ0; χ1;…χnking, where
nkin is the kinematic limit, defined as the maximum value
of n for which mn ≤ mϕ=2. Indeed, each such dark-
matter constituent χn is produced with a relativistic boost

factor γnβn¼mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4m2

n=m2
ϕ

q
=ð2mnÞ. Likewise, we shall

define two further quantities nmin and nmax as those values
of n which delimit the range of ensemble constituents
χn whose subsequent decays into SM states are responsible
for approximately 90% of the observed events within
MATHUSLA. Thus ðnmin; nmaxÞ describes that portion of
the DDM ensemble to which the MATHUSLA detector is
most sensitive. Finally, we define ncs as indicating the
heaviest ensemble constituent χn which is cosmologically
stable, with τn ≡ Γ−1

n ≥ tnow. Thus only the ensemble
constituents fχ0; χ1;…; χncsg will have survived to the
present time and have the potential to contribute to the
total present-day dark-matter abundance ΩCDM ≈ 0.26. We
have already noted that the MATHUSLA detector, while
capable of probing large portions of the DDM ensemble,
cannot actually probe those elements of the ensemble
which constitute dark matter today. Thus, as a general
rule, we shall always find that ncs < nmin.
In this connection, it is important to note that situations

for which ncs < 1 represent the “traditional” limit of the
DDM scenario in which only a single dark-matter state χ0
comprises the dark matter of the universe at the present
time. Indeed, this would be the case regardless of the
particular spectrum of abundances Ωn that might have
been generated in the early Universe. However, even in
such cases, the dynamics of the Universe through much
of cosmological history would be significantly different
from what would be expected within a traditional
single-component theory of dark matter, and indeed
MATHUSLA—while not probing present-day dark
matter—would nevertheless be probing those portions
of the DDM ensemble which are relevant for producing
this nontrivial dark-sector dynamics.
Given these definitions, our results are as follows.

In Fig. 1, we indicate the sensitivity of MATHUSLA by
plotting contours (black curves) of σmin

ϕ BRχχ , where σmin
ϕ is

the minimum production cross section for the parent
particle ϕ which will produce at least four signal events
within MATHUSLA. Within each panel we also show
contours of nmin (blue curves), nmax − nmin (red curves),
and ncs (green curves). The orange shaded regions are the
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regions in which at least one of the χn has a characteristic
decay length βγcτmin < 1 m. In the left and center panels of
Fig. 1, the contours are plotted within the ðm0=Δm; yÞ and
ðm0=Δm; ξÞ planes, respectively, while in the right panel
of Fig. 1 these contours are plotted directly within the
ðy; ξÞ plane, thereby illustrating the dependence on both
DDM scaling exponents simultaneously. For each plot
we have chosen the benchmark values mϕ ¼ 2 TeV,
m0 ¼ 100 MeV, and δ ¼ 1.5. While the results in Fig. 1
correspond to the case in which the χn are real scalars, the
results for spin-1=2 fermions are qualitatively similar.
In this connection, our choice of the benchmark value

mϕ ¼ 2 TeV deserves further comment. This benchmark is
motivated in part by a self-consistency requirement: in
order for the ensemble to lead to a detectable signal at
MATHUSLA during the HL-LHC run, the production cross
section σϕ must exceed the sensitivity threshold σmin

ϕ at any
point within the DDM parameter space. For example, if ϕ is
a real scalar that couples to quarks through a Yukawa-type
interaction with a flavor-independent coupling constant gq,
the dominant production process for ϕ is resonant pro-
duction of ϕ through quark fusion. In this case, we find that
the product of the production cross section and this
branching fraction is σϕ × BRχχ ∼ 100 fb for the choice
mϕ ¼ 2 TeV (with gq ¼ 0.15 and c0 chosen such that the
total branching fraction BRχχ of ϕ to χn pairs is 0.5). Asmϕ

increases beyond this benchmark value, σϕ rapidly
decreases, rendering nearly all of the DDM parameter
space beyond the reach of MATHUSLA during the
upcoming LHC run. By contrast, while σϕ can be

significantly larger than 100 fb for mϕ below our 2 TeV
benchmark, ATLAS and CMS searches for new physics in
the monojetþMET [46,47] and dijet [50,51] channels
impose stringent lower bounds onmϕ. Nevertheless, values
of mϕ at or slightly below this benchmark are consistent
with these constraints. Thus, we see that the choice mϕ ¼
2 TeV corresponds to a MATHUSLA sensitivity in the
range σmin

ϕ × BRχχ ∼ 100 fb and that values of mϕ near this
benchmark are of particular phenomenological interest.
We see from the results shown in the left panel of Fig. 1

that there is indeed a substantial region of parameter
space within which MATHUSLA is capable of detecting
a DDM ensemble. Of course, the main-detector reach for
our simple scenario depends strongly on the decay mode of
the DDM states, which is not specified in our toy model.
However, there are many general scenarios, such as decay
to hadrons or Yukawa- or gauge-ordered democratic decay
to SM fermions, for which MATHUSLA is likely to exceed
the main-detector reach by orders of magnitude.
As indicated in the left panel of Fig. 1, the most

compelling region of DDM parameter space for a
MATHUSLA signal is that within which 7.5≲ y≲ 8.8.
For y≳ 8.8, the characteristic decay lengths of the heaviest
states in the tower fall below βγcτn ≲Oð1 mÞ. Since a
significant number of particles with decay lengths in this
regime would decay inside the main collider detector,
ensembles with y≳ 8.8 would either be detected at the
HL-LHC without the help of MATHUSLA or would
already have been detected during the current LHC run.
On the other hand, for y≲ 7.5, a parent-particle production

FIG. 1. The reach of MATHUSLA within the DDM parameter space for the benchmark values m0 ¼ 100 MeV and δ ¼ 1.5. Black
curves indicate contours of σmin

ϕ BRχχ , while blue, red, and green curves indicate contours of nmin, nmax − nmin, and ncs, respectively.
Likewise, the orange shading indicates the region of DDM parameter space in which at least one of the ensemble constituents χn has a
characteristic decay length βγcτmin < 1 m. As discussed in the text, the region with m0=Δm≳ 0.1, 7.5≲ y≲ 8.8, and ξ ≳ −0.3 is a
particular “sweet spot” within which multiple light states within the DDM ensemble comprise the present-day dark matter while
numerous heavier states within the same ensemble can lead to an observable signal at MATHUSLA.
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cross section σϕBRχχ ≳ 103 fb is required in order for the
expected number of signal events in the MATHUSLA
detector to exceed the detection threshold. This is
approaching the upper range of typical strong production
rates for TeV-scale states. Furthermore, given the sensitivity
of monojet searches to invisible Higgs decays, such large
cross sections are likely to be detectable (and possibly
excluded by) current or future LHC monojet searches or
future HL-LHC monojet searches.
The center panel of Fig. 1 indicates how the sensitivity of

MATHUSLA depends on ξ, the scaling exponent for the
couplings in Eq. (3.5). For this plot we have taken a fixed
scaling exponent y ¼ 8 for the decay widths of the χn. We
see from this figure that there is generally a loss of
sensitivity for MATHUSLA as ξ decreases. This behavior
ultimately reflects the fact that for ξ < 0, the width of ϕ is
dominated by decays to the lightest states in the DDM
ensemble, which are also the states with the longest
lifetimes.
We see from the left and center panels of Fig. 1 that the

reach of the MATHUSLA detector is not particularly
sensitive to the ratio m0=Δm—at least not within the
region of parameter space shown. However, we see that
this ratio nevertheless plays a crucial role in determining
ncs, the number of χn states which are cosmologically
stable, with τn ≳ tnow. Indeed, given the contours of ncs
shown in Fig. 1, we see that a significant number of
ensemble constituents χn are cosmologically stable for
m0=Δm≳ 0.1. By contrast, for m0=Δm≲ 0.1, the only
contribution from the ensemble to ΩCDM is that associated
with the single lightest particle species χ0. Thus, the region
of parameter space in which ξ≳ −0.3, m0=Δm≳ 0.1, and

7.5≲ y≲ 8.8 is of particular interest from a DDM per-
spective, with many individual dark-matter components χn
potentially comprising the total present-day dark-matter
abundance ΩCDM.
While the left and center panels of Fig. 1 illustrate how

the contours of σmin
ϕ BRχχ , nmin, nmax − nmin, and ncs depend

on m0=Δm and either of our scaling exponents (y for the
left panel, ξ for the center panel), in the right panel of Fig. 1
we have plotted these contours directly relative to both
scaling exponents together. To do this, we have chosen the
“sweet spot” benchmark valuem0=Δm ¼ 1, corresponding
to ncs ≈ 5. We observe from this panel that the sensitivity
of MATHUSLA generally depends on both scaling expo-
nents. However, we also find that this sensitivity loses its
dependence on either exponent if the other exponent
becomes sufficiently large.
Taken together, the results in Fig. 1 indicate that there

exists a significant region of parameter space within which
multiple light states in the DDM ensemble can contribute
non-negligibly to the present-day dark-matter abundance—
all while heavier states in the same ensemble can lead to an
observable signal at MATHUSLA. This alone provides
explicit verification that MATHUSLA can be particularly
relevant for collider-based probes of the DDM framework.
The above results indicate the existence of a “sweet spot”

within which the values of the scaling exponent y are
relatively large. Although there is no fundamental reason
why such values are problematic, it would be interesting
from a theoretical and aesthetic perspective to know
whether the same successes can be achieved with smaller
values of y. Fortunately, such regions of parameter space
also exist. In Fig. 2, we plot essentially the same

FIG. 2. Same as Fig. 1, except that we have now shifted m0 from 100 MeV to 100 keV. This allows MATHUSLA to be sensitive
to DDM ensembles with smaller values of y, leading to an even more compelling “sweet spot” with m0=Δm≳ 0.01, 4.3≲ y ≲ 5.0,
and ξ≳ −0.2.
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information as we plotted in Fig. 1, the only significant
change being that we have now takenm0 ¼ 100 keV rather
than m0 ¼ 100 MeV. We see that this shift in m0 has not
changed the gross features of these plots relative to those in
Fig. 1, but has shifted the regions in which MATHUSLA is
most sensitive down to smaller values of y—precisely as
desired. Indeed, we now see that MATHUSLA remains
sensitive to the DDM ensemble even below y ≈ 5—a very
natural value for y, given that this value corresponds to a
dimension-six decay operator according to Eq. (3.3). Once
again, just as for greater m0, we find that taking m0=Δm≲
0.01 leads to situations in which only a single dark-matter
component survives to the present day. However, for values
ofm0=Δm≳ 0.01, we find that multiple components of the
ensemble survive to the present day and can potentially
contribute to ΩCDM. Thus, for m0 ≈ 100 keV, we see that
we now have a “sweet spot” within the region of DDM
parameter space with m0=Δm≳ 0.01, 4.3≲ y≲ 5.0, and
ξ≳ −0.2. Of course, this region of parameter space
corresponds to a dark sector with many light degrees of
freedom. Such a region will therefore be subject to
numerous stringent astrophysical constraints. This region
is nevertheless an intriguing one, and we leave the detailed
phenomenological analysis of this region of parameter
space for future work.

VI. DISCUSSION AND CONCLUSIONS

As we have discussed, DDM is an alternative dark-
matter framework in which the dark sector no longer
consists of a single (or a few) hyperstable dark-matter
constituents, but instead consists of an entire ensemble of
dark-sector states whose lifetimes are balanced against their
cosmological abundances. Indeed, the DDM framework
arises naturally in a variety of top-down theoretical frame-
works and gives rise to metastable states that are related
through specific scaling relations to the relatively stable
states that constitute the dark-matter abundance today.
Given this broad spectrum of realizable lifetimes, we have
shown that MATHUSLA will be an important discovery
and diagnosis tool for DDM. Moreover, if all accessible
ensemble states have decay lengths exceeding the main-
detector size, MATHUSLA could easily be the first or only
discovery opportunity for DDM.
Many avenues remain open for future investigation. In

this paper we analyzed the reach of the MATHUSLA
detector within the DDM parameter space, focusing on
potential LLP signals that might be observed within
MATHUSLA alone. However, as discussed in Sec. IV,
there also remains the possibility of enhancing such results
by correlating LLP signal information from MATHUSLA
with both LLP and MET signal information from the
main detectors—an approach which might be particularly
fruitful in the case of DDM. Another direction for
future study might be to analyze the implications of
potential MATHUSLA data within the context of the

complementarities that are known to exist between
different dark-matter detection methods. For example,
within certain realizations of DDM, the interaction portal
responsible for the production of the shorter-lived con-
stituents in a DDM ensemble which manifest themselves at
colliders as LLPs is also the portal responsible for establish-
ing the cosmological abundances of the longer-lived,
cosmologically stable ensemble constituents which con-
tribute to the dark-matter abundance today. In such cases,
information gleaned from observation of the shorter-lived
constituents at MATHUSLA can tell us about the scaling
relations which govern the spectrum of masses within the
ensemble as well as their couplings to the mediator particles
associated with that portal, and this information can then be
extended to predict the properties of the longer-lived states
which constitute the dark matter today. In this way, data
from MATHUSLA could eventually guide future efforts to
explore the nature of these longer-lived states at other,
complementary experiments which probe—either directly
or indirectly—the nature of the dark matter. Investigations
of the capabilities of MATHUSLA along both of these lines
are currently underway [49].
MATHUSLA can also play a complementary role in

relation to other experiments either proposed or under
construction which would also be capable of probing the
physics of LLPs. Of course, MATHUSLA is ideally suited
for the detection of DDM ensembles whose constituents
are produced with significant transverse momentum at
colliders—for example, ensembles whose constituents
are produced via the decays of other, heavier particles
which serve as the primary portal between the dark and
visible sectors. Indeed, other proposed detectors such as
CODEX-b [52] could also potentially probe LLP scenar-
ios of this sort. The long-lifetime sensitivity of these
smaller detectors is much lower than that of MATHUSLA,
but such detectors could probe somewhat shorter lifetimes
or lower masses below the MATHUSLA reconstruction
threshold. However, for situations in which the DDM
ensemble constituents are produced predominately in the
forward direction—for example, through kinetic mixing
with the photon or with the neutral pion—other instru-
ments such as the proposed FASER detector [53] are
likely to be more suitable for discovery [54]. Thus, in this
way, MATHUSLA and FASER can be viewed as provid-
ing complementary coverage of DDM theory space at the
LHC.
On a final note, we also observe that certain realizations

of the DDM framework could also give rise to signals at
experiments such as DUNE [55], SHiP [56], LDMX [57],
SeaQuest [58], or Hyper-K [59]. Indeed, the interplay
between the results obtained from low-energy facilities of
this sort and the results obtained from high-energy facilities
such as the LHC will play a crucial role in furthering our
understanding of the structure of any hidden sectors that
might yet be revealed by data.
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