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Abstract

The computational complexity of a quantum state quantifies how hard it is to make.
‘Complexity geometry’, first proposed by Nielsen, is an approach to defining computational
complexity using the tools of differential geometry. Here we demonstrate many of the
attractive features of complexity geometry using the example of a single qubit, which
turns out to be rich enough to be illustrative but simple enough to be illuminating.
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1 Introduction

The inner-product distance gives a metric on quantum states. Two states that have a large
inner product are close; two states that have a small inner product are far; two states that are
orthogonal are as distant as any two states can be.

But there are some intuitive notions of proximity that are not captured by the inner product.
In the example below, we consider the following two states: the Earth plus a single spin-up
electron; and the Earth plus a single spin-down electron. Since these two states are orthogonal,
the inner-product distance says they are maximally separated. Nevertheless, since they differ
by only a single spin, there is a sense in which they are close. The intuition is that they are
close since it is ‘easy’ to change one into the other—you just need to flip a single spin.

We'd like a notion of proximity that captures the sense in which the two states of Fig. 1 are

close. Comnutational comnlexitv nrovides such a notion. The relative comnutational complex-

ity of two . Since the
two Earth ry different
weather pi

far in inner-product

near in complexity

Figure 1: According to the inner-product metric, these two states are as far apart as any two states can be:
they are orthogonal. The ‘complexity distance’ captures the sense in which they are nevertheless close.

This paper will study one approach to characterizing the complexity distance, which will
involve making mathematically precise our notion of when a transformation is easy.

Of course, whether a given task is ‘easy’ or ‘hard’ depends on one’s capabilities. Questions
of quantum computational complexity were first addressed by those who wanted to know what
we would be able to do with a quantum computer. In this context, the primitive capability
would be the ability to lay out gates in a quantum circuit. Thus the traditional definition of
complexity, which we will review in Sec. 1.2.1, is the gate definition that asks how many gates
are needed in the smallest quantum circuit that implements the desired transformation.

The gate definition of complexity is well-defined, carries the weight of tradition and the

benefits of incumbency, and is a natural measure from the point of view of electrical engineers



planning to build actual quantum circuits. But for some purposes it has a number of drawbacks,
which we will describe in Sec. 1.2.1, not least that it is discontinuous.

In this paper we will instead explore another idea, due to Nielsen and collaborators [1-5],
that seeks to replace the discrete counting of quantum gates with a continuous definition of
complexity. As we will explain in Sec. 1.2.2, the complexity geometry approach puts a new met-
ric on Hilbert space, different from the inner-product metric. Unlike the inner-product metric,
this new metric doesn’t treat all directions in the tangent space equally. Instead it stretches
directions that are hard to move in, assigning them a large distance. This definition then per-

mits us to bring all the tools of differential geometry to bear on the question of complexity.

Our background motivation is twofold. First, we wish to better understand the holographic
complexity conjecture [6-9], and therefore better understand the emergence of spacetime in
quantum gravity. If this conjecture is to be made more precise, we will need an exact definition
of the complexity of the holographic field theory. Such a definition could potentially be provided
by complexity geometry, and our first background motivation will be to evaluate it for that
role; as we will see, it is in many ways a better candidate than the definition provided by gate-
counting. Our second background motivation is to explore whether the tantalizing analogies
between quantum complexity and statistical thermodynamics [10] could be better teased out
with a more amenable definition of complexity.

While those are our motivations, the direct goal of this paper will be more modest. The
complexity geometry, while simple to define, can for large systems become extremely unwieldy.
To try to build our intuitions, and to demonstrate the power of this way of thinking in the
simplest non-trivial context, we will in this paper calculate the complexity geometry of a sin-
gle qubit. We will see that the complexity geometry of a single qubit is simple enough to be
intuitive, and to make illuminating contact with the rotation of rigid bodies, but complicated

enough to exhibit many of the signature phenomena of multi-qubit complexity geometry.

‘Complexity Geometry’ should not be confused with ‘Geometric Complexity’ [11], which as
far as we know is completely unrelated. The complexity geometry of a holographic system is
also not to be confused with the geometry of the holographic dual—they are not the same, and

their dimensionalities exponentially differ.

In Sec. 1.1 we will distinguish the two kinds of objects whose complexities we may which to
calculate: unitaries and states. In Sec. 1.2 will discuss the two ways we might seek to charac-

terize the complexity of these objects: gate counting and complexity geometry.



1.1 Unitary wvs. state complexity

In this paper we examine the complexity both of unitaries and of pairs of states.

Unitary complexity is a property of a unitary transformation that quantifies how hard it is to
implement. This is the quantum analogue of the classical function complexity. The complexity
geometry of unitaries will provide a new metric on the unitary group. We will see that the
metric is homogeneous but not isotropic, and is right-invariant but not left-invariant.

We may also speak of the relative complexity of a pair of unitaries, defined as C[U;;Us| =
C[U,U; . For Uy = 1 this reduces to the standard definition of the unitary complexity of U.

State complexity is a property of a pair of states, and quantifies how hard it is, given one,
to make the other. The complexity geometry of quantum states will provide a new metric
on Hilbert space. We will see that this metric is not left-invariant, which means it is neither

homogeneous nor isotropic.

These two kinds of complexity can be related. The state complexity is the complexity of

the least complex unitary that connects the reference and target states!,

Cstatele); |1/)0>] - minUCunitary[U] where W1> = U|¢0> (11)

While real life is replete with examples of things that are easier to do than to undo, in the
field of computational complexity it is conventional to choose a definition such that C[U] =
C[U1]. This has the consequence that relative complexity is symmetric: the distance from A
to B is equal to the distance from B to A. In the context of gate complexity this will mean
that if ¢ is a fundamental gate, then so too is ¢~ !; in the context of complexity geometry this
will mean that we will be able to use a metric that is symmetric: C[Uy;Us] = C[UUy Y] =
ClUy; Uy = C[ULU.

1.2 Gate complexity vs. complexity geometry

The ‘complexity’ of a transformation characterizes how hard it is to implement. This paper will
explore the ‘complexity geometry’ definition of hardness, but as a foil let’s first briefly describe

another popular way to characterize hardness: gate complexity.

I'Note that the converse would not be correct—unitary complexity is not the complexity of the most complex
pair of states that the unitary connects. Indeed this wouldn’t be true even if we replaced ‘complexity distance’
with ‘inner-product distance’, since we can have (|U|) = 0 while Tr[U] is still close to maximal.



1.2.1 Gate Complexity

The gate definition of complexity is a natural one for those trying to actually build quantum

circuits out of component gates. It tells you how many of those components you will need:

‘Gate Complexity’ = the number of primitive gates in the smallest quantum  (1.2)

circuit that implements the transformation (to within ¢)

To finish unambiguously specifying the definition, we will further need to:

e Choose the set of primitive gates.

For example, a classic choice for the set of primitive gates out of which we will build our cir-
cuits is to use the two-qubit ‘CNOT” gate, together with the one-qubit gates ‘Hadamard’
and ‘m/8" (otherwise known as the ‘T’ gate; see e.g. [12] for the definition of these gates,
and more discussion of gate complexity). Together these three primitive gates are ‘univer-
sal’, in the sense that by compiling these gates we can approximate any N-qubit unitary

with arbitrary accuracy.

(Were we just concerned with making all the 1-qubit unitaries, we could drop the CNOT.)

e Choose the ‘tolerance’ ¢ with which we wish to approximate our desired unitary.

Since there are uncountably many N-qubit unitaries but by assumption only countably
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Figure 2: The ‘gate’ definition of complexity imagines implementing U by building a quantum circuit out
of primitive gates. In this example, the primitive gates each act only on one or two qubits at a time, but in
combination they may approximate any N-qubit unitary with arbitrary accuracy. The computational complexity
is then defined as the total number of gates in the smallest circuit that approximates the desired unitary.



Drawbacks of Gate Complexity. The gate-counting definition of complexity has a number

of features that for certain applications are undesirable:

1. The choice of primitive gates seems arbitrary.

Why those particular one-qubit and two-qubit primitive gates, out of all possible gates?

2. The definition requires, and is sensitive to, the introduction of an arbitrary ‘tolerance’.

Why € = 107, rather than some other value?

3. The complexity is discontinuous.

Two points in the unitary group (or in Hilbert space) can be arbitrarily close in inner

product but exponentially far in complexity.

Some of these drawbacks could be addressed by tinkering with our definition of gate com-
plexity. For example, we could give ourselves as primitive gates all possible two-qubit unitaries.
This would largely address complaint #1 (leaving over only the question of why we permitted
two-qubit gates but not three-or-more-qubit gates); and it would mean that we could entirely
dispense with a tolerance—with this continuous set of primitives, using O(4") gates we can hit
everywhere in SU(2V) ezactly [12]. Nevertheless, this definition would still give complexities
that are discontinuous—indeed if each gate still had unit cost there would be pairs of states
that are arbitrarily close in inner product but which have exponentially large relative gate
complexity, and the set of states with sub-maximal complexity would be measure zero.

Because of these limitations, many computer scientists try to look only at coarse-grained
complexity classes that are insensitive to these definitional ambiguities. For example, the
complexity class BQP (the class of (decision) problems that can be probabilistically solved in
polynomial time using a quantum computer) is so broad as to be largely choice-independent.

However, it is somewhat disappointing if that is the best we can do. We would like to have
a definition that assigns a quantitative number to the complexity of a particular unitary and
have that number be somewhat robust against arbitrary choices, perhaps up to a multiplicative

renormalization of the complexity. With this motivation, we turn to complexity geometry.

1.2.2 Complexity geometry

The ‘complexity geometry’ approach to quantifying quantum complexity was invented by
Michael Nielsen and collaborators [1-5]. Rather than leaping through Hilbert space with dis-
crete gates, instead we imagine smoothly flowing from state to state along continuous paths.
The length of the shortest path gives the computational complexity.

Were it equally easy to move in every direction in Hilbert space, this definition would recover

the standard inner-product metric. But not all directions are equally hard: the whole point of



inventing the notion of ‘complexity’ is that the inner-product metric does not accurately reflect
how difficult a transformation is to implement. Instead, the complexity metric reflects that
some transformations are hard to implement (i.e. some directions in Hilbert space are hard to
move in) by ‘stretching’ the metric in those directions. By assigning hard directions a large
metric penalty, even steps in hard directions that are quite short in the inner-product metric
become far in the complexity metric.

The motivation of the originators of the complexity geometry idea seems to have been pri-
marily to use it as a tool to bound the value of the gate complexity. Our motivation is somewhat
different. Instead of using it to better understand the gate definition of complexity, we consider
the geometric definition of complexity to be an interesting quantity in its own right, with a
potentially interesting holographic dual. We will study the complexity geometry as a candidate

for being the fundamental definition of complexity.

For the rest of this paper we will explore the simple case of the complexity geometry of a
single qubit, but first let’s give the general mathematical definition of the complexity geometry
for a general number of qubits N. We’ll start by defining the unitary complexity geometry; the
state complexity geometry then follows by using Eq. 1.1.

Following Nielsen, the unitary group we will consider is SU(2Y). Up to a discrete iden-
tification, this is the group of purity-preserving transformations of N qubits that ignore the
global phase. The tangent space of the unitary group is spanned by Hermitians. For a single
qubit, a complete basis for the tangent space of SU(2) is provided by the 22 — 1 = 3 Pauli
matrices, o;. For N qubits, a complete basis for the tangent space of SU(2") is provided by
the 22V — 1 ‘generalized’ Pauli matrices, o;. The generalized Pauli matrices are composed of
direct products of single-qubit Pauli matrices and identity operators. Thus a typical example
might be

example of generalized Pauli 07 = 01, ® 09, ® 13 ® ... @ oy, . (1.4)

The inner-product metric on SU(2Y) gives the inner-product distance, ds, between two
nearby unitaries, U and U + dU, as?

ds® = Tr[dU'dU] (1.5)
inner-product
= Y T[idUU"o,]6,, Tr[idUU o] (1.6)
1J
= Y T[iUdUe,]6;, Te[iUdUo ). (1.7)
1J

2Recall that if given a vector V and a complete orthonormal basis {€;}, the inner-product can be written

either as V - V or as ZZ(V - €)?; Eqgs. 1.5-1.7 reflect that we have the same freedom for matrices. Recall also
that we have normalized the trace such that Tr[1] = 1.



(The form in Eq. 1.6 is manifestly right-invariant U — UUg; the form in Eq. 1.7 is manifestly
left-invariant U — ULU; the form in Eq. 1.5 makes both invariances manifest. Since the inner-
product metric is invariant under U — ULUUg it is sometimes called the ‘bi-invariant’ metric.)
The inner-product metric treats all the tangent directions o; the same, as is reflected by the
coefficient of every diagonal term in Eq. 1.6 being identical.

The complexity metric generalizes d;; in Eq. 1.6 to a symmetric positive-definite penalty
factor Z;;. The complexity distance, ds, between two nearby unitaries, U and U + dU, is then
given by

ds*

=Y T(idU Ule )T, Te[idU U'o,). (1.8)
complexity 4~
While still right-invariant, this metric is no longer left-invariant, as will be discussed in Sec. 4.1.

Some directions may be harder to move in than others. This will be captured by the tensor
Z;; which penalizes ‘hard’ directions with a larger coefficient. For example, a classic choice
would be that the more qubits a certain o; touches, the higher the penalty Z;; it should be
assigned. This reflects the fact that in the laboratory it is typically difficult to perform controlled
operations that touch many qubits simultaneously®. In [10], we advocated for the proposal that
the penalty factor should grow exponentially with the number of qubits the operator touches
simultaneously (known as the operator’s ‘weight’). We were motivated by two considerations.
First, the complexity of an operator of fixed weight should be independent of the total number
of qubits. Second, to reflect that the maximal complexity of a unitary can be exponentially
large, the largest penalty factor also needs to be (at least) exponentially large.

For large N, this geometry is negatively curved and very complicated. Both the negative
curvature and the unsimplicity of this metric are responsible for the chaotic behaviour of com-
plexity, but they also make the analysis of the geometry difficult. It is therefore worth analyzing
the simplest possible case.

In this paper we will examine the complexity geometry of a single qubit, N = 1, which turns
out to be surprisingly rich. In Sec. 2 we’ll look at the unitary complexity; in Sec. 3 we’ll look
at the state complexity. In Sec. 4 we’ll extract the general lessons that the one-qubit example

can teach us about N-qubit complexity geometry.

3For example, the next generation of superconducting-qubit circuits are projected to have an error rate for
two-qubit gates that is five times larger than the error rate for one-qubit gates [13].



2 Unitary-Complexity Geometry of a Single Qubit

In this section we will examine the transformations of a single pure-state qubit. Ignoring global
phase, the group of linear transformations of a single qubit is, up to a discrete identification,
SU(2). The standard inner-product metric on SU(2) is that of the round three-sphere?

ds? = Tr[dUTdU| = Tr[idUU 0,)? + Tr[idUU o, )? + Tr[idUU o). (2.1)

But the complexity geometry will define a new metric on SU(2). Introducing a symmetric

positive-definite two-index penalty factor Z;; gives

ds* = Tr[idUU'e,]Z;Te[idUU o;) (2.2)
= L. Tt[idUU'c,)? + L, Tx[idUUe,)? + Z.. Tr[idUU0.)?, (2.3)

where in the last step we have adopted the basis in which Z;; is diagonal. In this section we

will explore this metric.

In the typical application of complexity geometry as defined in Sec. 1.2.2, we imagined a
metric that rewards k-locality (gates that touch only &k qubits at once are easy to implement)
and punishes non-locality (gates that touch many qubits at once are given a large penalty
factor). When there is only one qubit, such a distinction is meaningless: if there is only one
qubit, no gate may touch more than a single qubit! If we treat all 1-local transformations the
same, the only possibly complexity metric on SU(2) is the standard round metric of Eq. 2.1.

To reach Eq. 2.3, we had to do something different—we had to distinguish between one-qubit
operators. A complete basis for the tangent space of one-qubit operators is provided by the three
Pauli matrices, which may be thought of as effecting rotations around the three Cartesian axes.
The standard inner-product metric makes all three of these rotations equally easy. Instead, we
imagined that some are easier than others. The three parameters Z,,, Z,,, & Z.. capture how
hard it is to rotate around the three different axes.

There are any number of practical considerations that might give rise to unequal Z,,, Z,,,
& 7,,. For example, if our qubit is a spin, we could compile our unitary by applying a magnetic
field according to some schedule B (t). Were it easy to apply a magnetic field in the x-y plane,
but for mechanical reasons hard to apply magnetic fields out of that plane, then this would be

described by a small Z, & Z,, but large Z,,. The complexity metric of Eq. 2.3 assigns a degree

4 Again recall that we have normalized the trace so that Tr[c;0;] = ;.



of difficulty to a given schedule for compiling the unitary

difficulty — / dtr [ Tow Bo(t)? + I,y By (1) + To. B.()" (2.4)

The complexity of the unitary is given by the least difficult schedule that produces it.

For many laboratory realizations of controlled qubits, there is indeed an asymmetry between
the difficulty of implementing o, or o, and the difficulty of implementing o,. The asymmetry
arises because the two quantum states in which the qubit is embodied are typically two non-
degenerate energy levels, so the resting (‘drift’) evolution of the qubit naturally implements a
0, Hamiltonian, and not a o, or o, Hamiltonian. Ironically this means that it is often harder
to add additional o, to the Hamiltonian (above and beyond the natural evolution) than it is
to add o, or o,. Ted White has explained to us that for the superconducting qubits being
built by the Santa Barbara group, o, or o, can be implemented with high fidelity using a
properly shaped microwave pulse, whereas additional o, requires the use of a harder-to-control
and lower-fidelity pseudo-DC pulse. Thus for these superconducting qubits it would be natural
to take Z,, & 7,, small and equal but Z,, large.

In this paper we will calculate the complexity geometry for a general single-qubit penalty
factor, but will focus on the same case as is relevant for superconducting qubits—the case where

one penalty factor is much larger than the other two,
penalty assignment focussed on in this paper: L. > Ty =1y, (2.5)

While this is the same hierarchy as pertains for superconducting qubits, that is not our reason
for focusing on it. Instead, our motivations will become clear in Sec. 4. We will see that
penalizing o, more than o, or o, is the assignment that best captures the characteristic features
of multi-qubit complexity geometry.

Even though there is now only a single qubit, there is nevertheless a sense in which the
hierarchy of Eq. 2.5 still fits into the scheme of taking higher-weight operators to be more pe-
nalized. The qubit can be thought of as being comprised of two Majorana fermionic operators,
which satisfy {1;,1;} = 26;;. The Hermitian operators ¢; and v, each have weight 1, whereas
the Hermitian operator #1115 has weight 2. On the other hand the commutation and anti-
commutation relations of these three operators would be the same if we make the identification
{1, Yo, 1h12ha} <> {04, 04,0.}. The penalty factor penalizes the weight-2 operator relative to
the weight-1 operators.

To explore the complexity metric Eq. 2.3 further, it will be helpful to introduce explicit

coordinates. But first we will point out that we have seen this metric before.

10



2.1 Complexity geometry and the motion of rigid bodies

As well as representing the complexity geometry of a single qubit, the metric Eq. 2.3 arises in

a more mundane context: the rotation of a rigid body.

2.1.1 The motion of rigid bodies

Recall that the configuration of a rigid body in three dimensions may be described by R;;, the
element of SO(3) that transforms from the lab frame to the body frame. For rigid bodies with
symmetric moments of inertia, Z;; ~ 9,5, it is equally easy to rotate around any axis, so the

kinetic energy depends only on the angular velocity
o 3 AT 1 4
Z;; = 6;; — Kinetic Energy = éTr[R R| = QW (2.6)

where w; = el-jk(RT) ﬂle and the factor of 3 arises because of our trace normalization Tr[R]| =
Y;Ri;/3. We may define the distance between any two configurations as the total angle through
which you must rotate one to reach the other. The infinitesimal metric defined in this way is

that of the round three-sphere,
Zi; = 6;; — ds® = 3Tr[dR" dR). (2.7)

The geodesics of this metric both describe the locally extremal way of effecting a given trans-
formation (the way to twist and turn the body so that it connects two configurations with the
smallest total angular rotation), and also describes the path traced out through configuration
space by the free motion of a symmetric rigid body.

Rigid bodies that are not spherically symmetric may have unequal moments of inertia.
Consequently the kinetic energy required to rotate with a given angular speed is different for
different axes

Kinetic Energy = ;Tr[RTMR] = %wTIw, (2.8)

where M;; = [ &Pz p(z) x;z; and T = 3Tr[M]1 — M. Reflecting the fact that some angular

directions are harder to move in, the metric becomes stretched in those directions
ds* = 3Tr[dR" MdR). (2.9)

The free motion of a rigid body traces out the geodesics of this squashed three-sphere. (Specif-
ically, the polhode rolls without slipping on the herpolhode lying in the invariable plane.)

11



2.1.2 SO(3) = SU(2)/Z,

The metrics Eq. 2.2 and Eq. 2.9 are (almost) the same. Underlying the link between the
geometry of unitaries acting on a single qubit and the geometry of rotations in three dimensions
is the mathematical fact that SU(2) is the double cover of SO(3),

SU@2) = &° (2.10)
SO(3) = symmetries of $* = S§*/7,. (2.11)

The transformations of a single qubit may thus be mapped to the configurations of a rigid body,

with the mapping given by

Ry, = Tr[U'o;Uay) (2.12)
w; = iT[UUay). (2.13)

Both U and —U get mapped to the same element R;;, reflecting the fact that SU(2) is the
double cover of SO(3). (Indeed, since U and —U differ only by a global phase, we might be
tempted to change the definition of complexity geometry so as to identify them, moving from
SU(2) to PU(2) = U(2)/U(1) = SU(2)/Zy = SO(3), in which case the connection between

complexity geometry and rigid motion becomes exact.)

UNITARY COMPLEXITY RIGID BODY MOTION GEODESIC MOTION
of single qubit in three dimensions on squashed three-sphere
space of single-qubit space of orientations space of points
operators is SU(2) = §3 is SO(3) = SU(2)/Z, = S3/Z, is topologically S3
some tangent directions are some axes have some directions have
easy/hard to move in small /large moment of inertia small /large circumferences
least complex way free rotation geodesic motion
to compile unitary of rigid body on squashed sphere
if all tangent directions if all axes if all circumferences
are equally penalized have same moment of inertia are equally squashed
recover inner-product metric recover round SO(3) metric recover round S metric

12



Lab-frame quantities like I?;; are neither left-invariant nor right-invariant, in the sense that
they change under both U — U U and U — U U. By contrast body-frame quantities like w;
are right-invariant, since they don’t care about the overall orientation of the rigid body.

For the complexity geometry the coefficients Z;; encapsulate the extent to which some tan-
gent space directions are easier or harder to move in. For the rigid body, this gets mapped to
different axes being easier or harder to rotate around because of unequal moments of inertia.
(For the complexity geometry the only restriction is that the coefficients of Z;; be positive; for
a rigid body with non-negative mass-density there is a triangle inequality 0 <Z,, <7,, +Z,,,
so that, for non-negative mass-density, Z,, = Z,, = 1 & Z,, > 2 is an impossible Berger.)

2.2 Complexity geometry in Euler coordinates

Let’s put a coordinate system on the unitary group in order to give an explicit representation
of the complexity metric. We will use (the Tait-Bryan version of) Euler angles. Any element of
SU(2) may be written as U = ¢/=%¢ios9¢ioabs  and plugging this parametrization into Eq. 2.3

gives an explicit form for the metric.

2.2.1 Iij = 5ij — round S°

In Euler coordinates, the inner-product metric is

inner product: ds? =db? + deQ +df? + 2sin 20, db,d0.. (2.14)
Zijzzsi]'
This is the round three-sphere, in unusual coordinates. All points are the same, and all direc-

tions are the same.

2.2.2 71,,=7, =1— Berger Sphere

We may break the symmetry SU(2) — U(1) by making one of the moments of inertia different
from the other two. This gives the metric of the so-called Berger sphere [15]

ds® = cos” 20,d0? + df} + T..(db. + sin 20,d6,,)*. (2.15)

Tuw=Tyy=1
The geometry of Eq. 2.15 is also sometimes called a ‘squashed three-sphere’, but it is not
squashed in the same sense that a beachball gets squashed when you sit on it. A squashed
beachball (an oblate spheroid, if you will) is neither isotropic nor homogeneous—the equa-
tor bulges more than the poles. A squashed sphere, by contrast, is also not isotropic but is

homogeneous—though not all directions are the same, all points are. We will have more to say

13



about this—and how it relates to the right-but-not-left-invariance of Eq. 2.3—in Sec. 4.1.°
For the inner-product metric of Eq. 2.14, all the sectional curvatures are positive—indeed

we know that the inner-product metric gives a uniformly positively curved three-sphere—which

means that geodesics converge. However, for the Berger sphere with large enough Z, ., sections

defined by two easy directions become negatively curved

0,0 0.0
which means that easy geodesics diverge. We will discuss the significance of this in Sec. 4.3.
(Even as Z,, gets large, the curvature of sections defined by one easy and one hard direction
remains positive, Rezezzez = Rey gizey =7,., but not positive enough to prevent the Ricci scalar

020 0,00 %6 0,0. . .
R =Ry " +Roo" + Ry " +Rog" + Ry,g" + Ry 4" =8 2L.. going negative.)

3 State-Complexity Geometry of a Single Qubit

In the last section we considered the computational complexity of unitaries. The space of SU(2)
unitaries is topologically an % (and, for the inner-product metric but not the complexity metric,
also geometrically an $?). In this section, we will consider the computational complexity of pure
states. The CP' space of one-qubit pure states is topologically an 52 (and, for the inner-product
metric but not the complexity metric, also geometrically an 2, the Bloch sphere).

The space of single-qubit pure states has one fewer dimension since any given unitary has a
kernel—a state it leaves invariant. Thinking of the unitary as a rotation, this kernel is the vector
that points down the rotation axis. Therefore a given infinitesimal step in Hilbert space may
be effected by any member of a one-parameter family of unitaries—to calculate the complexity

metric on state space, we will want to find the shortest unitary in this family.

5Beyond Berger: for general Z;; the components of the complexity metric in Euler coordinates are

Gaa (Zypw — Lyy) cos 20, cos26,sin26, I, sin26,
9ij = | (Zyw — Lyy) cos 26, cos 26, sin 26, T, sin® 20, + T,y cos® 20, 0 , (2.16)
T..sin20, 0 I..

where g, = cos? 20, (L cos? 26, + Ly sin? 20.)+Z,. sin? 20,. This is the fully general squashed three-sphere.
Though it is again not obvious from inspection, this metric is completely homogeneous but also completely
anisotropic. The sectional curvature is minus the deviation of a vector in the ith direction due to displacement
in the jth direction, namely [14]

_ 8T8 — 2(Tii + L) ek — (Zii — Lj5)°
LiiZj i Tx

geodesic deviation;; = —’Rijﬂ’ (2.17)

not summed

not summed
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3.1 Deriving the one-qubit state-complexity metric

The state of the qubit will be represented with YZ, a unit-vector in R3. In this representation
the states in the Hilbert space form an S%* the Bloch sphere. The map from the {|1),]0)}

representation of the quantum state to the Bloch sphere representation is given by

¥ = (IF). (3.1)
The Hilbert space inner product of two states defined in this way is

1—1—151-1;2 1+ cos Oy

(ol = Y E eI e (3.2

To compute the metric it suffices to consider target states that are nearby, [¢) 4+ dv)); normal-
ization requires that 1; . d;ﬂ = 0. To leading order, the one-parameter family that transforms
from [¢) to ¢ + dip) is

U:ﬂ+%i(d@x&+a&)-&+.... (3.3)

Geometrically we can understand this unitary as rotating the state around an axis

po Wxvay (3.4)
|dp x b + aip|
that is orthogonal to di) (but not necessarily orthogonal to J), see Fig. 3.
With no penalty factor (Z;; = d;;), the metric is
dip X P+ o) - (dip x ¥ + o) dip - dip + o

4 4

This is minimized at o = 0, giving the inner-product metric 4ds® = d_{b . d_ib = db? + sin® Od¢?.
(The factor of 4 in this expression is because the distance is half the angle, as in Eq. 3.2, reflect-

ing that orthogonal states, As = 7/2, appear on the Bloch sphere at antipodal points, Ay = 7.)
Now let’s introduce a penalty factor, Z;; = 0;; + (Z,. — 1)p;p;, that punishes rotations around

the axis p’ while leaving rotations round axes orthogonal to p'unpunished. The penalized scalar
product may be defined as o b = a;Li;b; =a- b+ (Z.. —1)(@-p)(b- p). Equation 2.2 gives the
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complexity ds of implementing dU as

ds* = Tr[idUU'e,]Z;Te[idUU o;] (3.6)

4ds? = (dib x ¥+ a) o (d x ¥ + ap (3.7)

~—

- - o4 2

4ds® = d@xwodwxw—4+ﬁow<a+w> . (3.8)
Yo

If we set o = 0 by fiat, then the metric is 4ds? = d#? + I.. sin? 8d¢?: motion down a line

of longitude is unpenalized; motion around a line of latitude is penalized by v/Z.."; and there

is a conical singularity at the origin. However, choosing o = 0 is choosing to go the long way
around, because we can generally shorten distances by judicious choice of a.

To derive the state complexity geometry, Eq. 1.1 tells us to choose the member of the one-

parameter family of connecting unitaries that minimizes the complexity, which means choosing

a to put the last term in Eq. 3.8 to zero. Then using polar coordinates on the two-sphere that

place the penalized axis p’ at the north pole gives the metric for Z,, = Z,,, = 1 as®

Izz - 1)(d;b : 77; X @2 _ d92 + Izz SiIlQQ

1ds* = dip - dip + =
’ vyt (Z..— D -p)2+1 T, cos2 0 +sin’ 0

d¢?. (3.10)

For 7., = 1, all directions are treated the same and we recover the standard round ‘Fubini-
Study’” metric on the Bloch sphere. For Z,, # 1, however, the complexity metric differs from

the inner-product metric. We will study the properties of this metric in Sec. 3.2.

3.1.1 Geometric interpretation

To add insight, let’s re-examine the derivation of Eq. 3.10 while stressing its geometrical inter-
pretation. The essential idea is captured by Fig. 3.

To transform from J to J + d?b (where d& . 1/7 = 0 by conservation of normalization) we

-
—

For general Z;; we should reuse Eq. 3.8 except now with @ o b= Tou(@- )b py) + Zyy(a@-py)b-py) +
Z..(a- ﬁz)(g - P). This gives the unilluminating expression
1ds? — L..Zyy cos?0cos® ¢+ Z,, Ty, cos® sin? ¢+ Loalyy sin® 6d92
Z..cos2 6+ T, sin? 0 cos2 ¢ + Tyy sin? 0 sin? ¢
Z..(Zyw — Lyy)sin ¢ cos ¢sin b cos §

Z.. cos2 0 + T, sin® 0 cos? ¢ + Zyy sin? 0 sin? ¢

n T (Zyy cos® ¢+ 1y, sin? ¢) sin? @
T.. cos? 0 + T,y sin 0 cos? ¢ + Zyy sin? @ sin® ¢

dods

de? . (3.9)
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Figure 3: Top left: the state of the qubit can be represented as a unit vector 1/1 on the two-sphere. Top right:
to transform from |¢> to |¢ + dw) we can rotate around any axis 7 that is orthogonal to the change in state,

dl/} = 0. There is a one-parameter family of possible rotation axes that all satisfy - d?/) = 0 and therefore
any of which can be used to implement the transformation; these lie on a great circle. Bottom left: in order to
make the rotation angle df as small as possible, we should rotate around an axis orthogonal to the initial state,
d_; -7” = 0; this is the appropriate rotation axis when Z,, = 1. Bottom right: in order to make the penalty factor
as small as possible, we should rotate around an axis orthogonal to the penalized direction, p'- 7 = 0; this is the
appropriate rotation axis when Z,, — oo, as in Sec. 3.3. For intermediate values, 1 < Z,, < oo, the optimal
rotation axis, given by Eq. 3.15, lies between these two extremes.
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must rotate around an axis 7 that is orthogonal to de
dp-7=0. (3.11)

Any such axis will work, and there is a one-parameter family of them, given by Eq. 3.4.
Elementary geometry tells us that, to get from @Z to @/7 + d;:b by rotating around the axis 7,
the total angle dfl through which we must rotate is given by

do* = M. (3.12)

[ x 72

This angle is minimized when the axis of rotation " is orthogonal to the initial state J, so that

|z/7 x 7] = 1. This is equivalent to putting & = 0. When there is no penalty factor this is the
optimal rotation axis, and this gives the inner-product metric.

However, once Z,, # 1 not all dfs count equally. Instead, the complexity distance ds

associated with a given df varies with the axis of rotation as
4ds® = (1 + (Z.. — 1)(p- 7)?) d6”. (3.13)

For Z., > 1, the larger |p’- 7], the more the rotation is penalized.

As a function of 7, the complexity distance associated with a given d;ﬂ is therefore

4ds? = 1+ (Z.. - 1)(p- 7:')2
v x 7|2

i) - dip. (3.14)

The optimal rotation axis is determined by the interplay of two factors. On the one hand, to
make the rotation angle df small we should choose a rotation axis that is as close as possible
to orthogonal to the initial state, 7 - J = 0. On the other hand, to make the penalty factor
small we should choose a rotation axis that is as close as possible to orthogonal to the penalized

direction 7 - p’= 0. The optimal compromise is given by

—,

1+ (Z..—Dp- v

which not-coincidentally is also the value of a that puts the last term in Eq. 3.8 to zero. When
Z.. = 1 the optimal axis of rotation is orthogonal to the initial vector 7 ~ 1; X dAw. When
Z.. > 1, the axis of rotation is forced to be equatorial, 7+ p’= 0. For any value of Z,., rotating

around the optimal axis recovers the complexity metric of Eq. 3.10.
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north pole

The
tion

> 1

Figure 4: Deformed Bloch spheres with various penalty factors Z,.. Unlike the ‘squashed’ three-sphergs of
Sec. 2.2, these two-spheres are squashed in the same sense that a beachball gets squashed when you sit on it.
For Z,, = 1 every direction is punished equally and we have the Bloch sphere with the standard inner-prgduct
metric. The Bloch spheroid is prolate for Z,, < 1 and oblate for Z,, > 1. For Z,, > 3/2 the Bloch sphero¢id is
negatively curved at the poles and cannot be embedded in R3. For very large Z,, the Bloch spheroid becpmes
two back-to-back negatively curved spaces glued together by positive curvature at the equator.

The curvature of this metric is

8Z..(1 —2(Z.. — 1)cos?0)

R = 3.16
(Z.. cos? 0 + sin’ )2 (3.16)
pole: R = 8 <Ii - 2) (3.17)
0=0 2z
equator : R = 8Z... (3.18)
0=5

For Z,, < % the curvature is everywhere positive. But, as is shown in Fig. 5, for large Z,, the
curvature starts out negative at the pole, becomes more negative away from the pole, before

hitting a minimum just above the equator at

2 8Z.,.
R =0 = cos’Opp = ———— — Rupm = — )

1
Z..—1 3 (319)

The curvature then shoots up to a large positive value 8Z,, at the equator.

"This might be a good metric to describe historical trade and migration patterns on Earth, where there is
evidence that climate gradients make East-West spreading easier than North-South spreading [16].
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Figure 5: The curvature R of the deformed Bloch sphere for different values of Z,,, given by Eq. 3.16. For
T.. < 1 the curvature is everywhere positive and largest at the poles. For Z,, = 1 the curvature is uniformly
positive and the Bloch sphere is spherical. For large Z, ., the curvature is like two negatively curved disks stuck
together by a thin very positively curved wall.

3.3 Even simpler case: one-qubit complexity with 7., — oo

Let us consider the state complexity of a single qubit in the limit in which o.-rotations are
completely forbidden, Z,, — oco: the z-axis of the gimbal has completely seized up and will not
rotate at all, and so the rotation axis 7" is required to be equatorial.

Everywhere except very close to the equator, the state complexity geometry becomes

Too=ZTy=1&1T,, — c0: 4ds® = db” + tan®0de*. (3.20)
16

R = — : 3.21

- cos? 0 (3:21)

The one-qubit state complexity geometry is almost-everywhere negatively curved as Z,, — oo.
However, nowhere does the geometry closely resemble the hyperbolic plane: there are no regions
many-curvature-lengths long where the curvature length (¢ = cos#) is roughly constant.

Very close to the equator, 0 ~ 7 & O(\/I;?), the metric deviates from Eq. 3.21 and has a
delta-function positive curvature. For the unitary complexity metric of Sec. 2.2, when Z,, — oo
the curvature diverged everywhere; for the state complexity it only diverges at the equator.

In the limit Z,, — oo, the complexity state geometry becomes two negatively curved disks

glued together along the equator.

As with the unitary complexity of the last section, we have seen that non-trivial Z;; can
deform a positively curved sphere such that sectional curvatures become negative. We will

return to this again in Sec. 4.3.
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4 Discussion

The single-qubit example is rich enough to exhibit many of the essential features of complexity

geometry, as we will now assess.

4.1 Right-invariance vs. left-invariance

The one-qubit example accurately captures that the wnitary complexity distance is right-
invariant but not left-invariant, and that the unitary complexity metric is homogeneous; the
same example also captures that the state complexity distance is not left-invariant, and that
therefore the corresponding metric is not homogeneous. These properties apply both to com-

plexity geometry and to the gate definition of complexity. Table 1 gives a summary.

4.1.1 Unitary complexity geometry on SU(2") is homogeneous but anisotropic
The inner-product distance on SU(2%) is both left- and right-invariant since it is invariant under
{Ul, UQ} — {ULUlUR, ULUQUR},

left- and right-invariant:  Tr[(ULU,Ug)(ULUsUg)T] = Te[U,U]). (4.1)

The right-invariance makes the inner-product metric on SU(2Y) homogeneous (i.e. every point
is the same). For the single-qubit example of Eq. 2.14, the inner-product metric on SU(2) is
that of the round S, and so the SU(2) metric is in addition isotropic (i.e. every direction is

the same); for N > 2, the inner-product metric on SU(2") is not isotropic.

The complezity distance on SU(2Y) is right-invariant but not left-invariant. The complexity
distance between two unitaries U; and U, is given by the complexity of the unitary that connects
them

C[Uy; Uy] = C|Uya] where Uy = UyUs. (4.2)

(Taking U; and U, to be infinitesimally separated gives the complexity metric.) It clear that
U, = UpUs if and only if U1Ugr = UoUsUpg, which means that the complexity is right-invariant:

right-invariant:  C[Uy; U] = C[U1Ug; UsUg). (4.3)

We see this reflected in Eq. 2.2 where taking U — UUg and dU — dUUpg does not change the
complexity distance. By contrast, U; = UoUs does not imply U,U; = U;oUpUs, so in general

the complexity is not left-invariant:

not left-invariant:  C[Uy; Us] # C[ULU; ULUs). (4.4)
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right-invariant | left-invariant || homogeneous | isotropic

inner-product metric SU(2) 4 v 4 v
inner-product metric SU(2V) v v 4 X
complexity metric SU(2) 4 X 4 X
complexity metric SU(2%) v X v X
inner-product metric CP* N/A v 4 v
inner-product metric CP>" ! N/A v v v
complexity metric CP* N/A X X X
complexity metric cp2 -t N/A X X X

Table 1: Inner-product metrics are left-invariant, whereas complexity metrics are not.

The asymmetry between left and right arises because Ujs acts from the left and not from the
right—we compile circuits by adding gates to the end, not to the start. (Beware that in much of
the mathematics literature this convention is reversed [18].) Right-invariance of the complexity
distance translates into homogeneity of the complexity geometry, since right-multiplying by Ugr

can translate any point to any other.

1

4.1.2 State complexity geometry on CP*" ! is neither homogeneous nor isotropic

The inner-product distance on CP>" ~! is left-invariant since it is invariant under {|1h,), [1hs)} —

{UL|¢1>’ UL|77Z}2>}7
left-invariant:  (Ug 1)) (U i) = ([¥1)) ([102)). (4.5)

This makes the inner-product metric (also known as the ‘Fubini-Study’ metric) on CP*"~! both
homogeneous (every point is the same) and isotropic (every direction is the same). Indeed, for
the single-qubit example of Eq. 3.10, the inner-product metric on CP! is that of the round S2.

!is not left-invariant, for the same reason that the unitary

The complexity distance on CP?"-
complexity on SU(2%V) is not left-invariant. As a consequence the state complexity geometry

Eq. 3.10 is neither isotropic nor homogeneous.
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The complexity metric is not left-invariant. Instead, there is a preferred basis in which
the penalty tensor Z;; is diagonal. This should not surprise us. Nature itself also picks out a
preferred basis, since the Hamiltonian of the Standard Model is local in some bases but not in
others. Ultimately, it is this special structure to the interactions of fundamental physics that

is inherited by our laboratory equipment and begets the preferred basis for complexity.

4.2 Geodesics and time-independent Hamiltonians

The one-qubit example accurately captures the general relationship between time-independent
Hamiltonians and geodesics. Hamiltonians generate paths on SU(2%) and (DIPQN’l, and we will

now analyze the relationship between this dynamical motion and the geodesics of the geometry.

For the inner-product metric the relationship is close.

e For the inner-product metric on unitaries, every geodesic is generated by a time-independent
Hamiltonian, and every path generated by a time-independent Hamiltonian is a geodesic

of the inner-product metric. The relationship is one-to-one.

e For the inner-product metric on states, every geodesic is generated by a time-independent
Hamiltonian, but most paths generated by time-independent Hamiltonians are not geodesics

of the inner-product metric.

For example, the time-independent Hamiltonian o, rotates about the North Pole of the
Bloch sphere and so generates all the lines of latitude, but only one of those lines of
latitude—the equator—is an actual geodesic. By contrast all geodesics (all great circles)

may be generated by rotating around some axis.
For the complexity metric the relationship is much looser.

e For the complexity metric on unitaries, in general there is no connection between geodesics
and time-independent Hamiltonians. However, time-independent Hamiltonians where ev-
ery term has the same penalty factor generate geodesics. In general to generate geodesics

requires the use of a time-dependent Hamiltonian.

e For the complexity metric on states, in general there is no connection between geodesics
and time-independent Hamiltonians. For the example of Eq. 3.10, the only geodesics that
are generated by time-independent Hamiltonians are either lines of longitude (generated

by purely easy Hamiltonians) or the equator (generated by purely hard Hamiltonians).

To use an automotive simile, minimizing the unitary complexity is like optimizing the driving

route. To minimize travel time, the optimal route must strike a balance between keeping the
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number of miles small and keeping the traffic speed high. Similarly, to minimize complexity
distance, the geodesic must strike a balance between keeping the inner-product distance small
and keeping the penalty factor low. Using a time-independent Hamiltonian minimizes the
inner-product distance, which is only optimal if the penalty factors are the same. When traffic

speeds differ, the geodesic gives the route that minimizes not driving miles but driving minutes.

4.3 Negative curvature

The one-qubit example accurately captures that introducing anisotropic penalty factors may

generate negative curvature.

The inner-product metric for a single qubit is spherical, so the curvature is positive. The
mean curvature is positive, and every sectional curvature is positive. However, we saw with
Egs. 2.17 and 3.16 that for sufficiently anisotropic penalty factors some sectional curvatures
become negative.

For example, consider the state complexity metric of Eq. 3.10. Expanding near the North
pole at 6 = 0 (i.e. expanding near the state that has (o,) = 1) gives

2 1

4ds* = do* + (92 + (— — ) 0t + .. ) de?. (4.6)
3 Izz

For small Z,, the coefficient of 6 is negative, and so the curvature is positive. But for Z,, > 3/2

the sign flips. Two ‘easy’ geodesics that start together at # = 0 and emanate along lines of

constant ¢ have a separation that grows like

_ L2 1 ps
2A3_(9+2(3 Izz)e +...)A¢+.... (4.7)

For Z,, > 3/2 the geodesics accelerate apart—negative curvature makes geodesics diverge.
Anisotropic penalty factors do not make all sections negatively curved. Sections are defined
by a pair of directions, and we saw in Eq. 2.17 that when the pair is comprised of one easy and
one hard direction, or two hard directions, the sectional curvatures are still positive. But when
the section is defined by two easy directions, the sectional curvature becomes negative.
The mathematical origin of the negative curvature is that the commutator of two easy
directions is itself hard. To see this, consider the Baker-Campbell-Hausdorff formula, which

tells us that, to second order in t,

1
expliHt] expliHot] = exp |i(Hy + Ha)t — §[H1, Hot* 4+ ... . (4.8)
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This formula can be used to relate the length of the hypotenuse of a right-angled triangle to the
length of its two sides. If one triangle arm points in the (—H;)-direction, and the other in the
Hs>-direction, then Eq. 4.8 tells us that the hypotenuse points not only in the H; + H,-direction
but also has a component in the [Hy, Hs]-direction. If the commutator [Hy, Hs| is hard, then
the effect of the penalty factor will be to make the hypotenuse longer.

Long hypotenuses are a feature of negative curvature. Consider the right-angled triangles

sh use (the red
ge vo arms. In
ne; nds to ‘hug’
ea und therefore
lor
H, H, !
Hl Hl

Figure 6: Left: in a positively curved (or flat) space, taking the hypotenuse substantially shortens the path
compared with following each arm in turn, Lpypor. < V2 Lorm. Right: in a negatively curved space, the
hypotenuse tends to hug each arm in turn—the more negative the curvature, the smaller the distance saved by
taking the red path rather than the blue path, Liypot. > V2 Laym-

In the complexity geometry, the hypotenuse is not much shorter than the sum of the two
arms. In this regard, the complexity geometry reflects our expectations from complexity. One

way to compile e!teif2t g to first compile e’ iHat

and then compile e and then concatenate
the resulting unitaries—this is like taking the blue path in Fig. 6. There may be a more efficient
way to do it than simple concatenation—a red path—but generally the efficiencies are small,
and this is reflected in the failure of the geodesic on the hypotenuse to substantial shorten the

path.

Geodesics deviate on negatively curved spaces, and the deviation causes geodesic instabil-
ity. Rigid body motion also has a well-known instability—the “tennis-racket effect”—in which
rotation around the principal axis with intermediate moment of inertia is unstable. Given that
we have shown that evolution on the complexity geometry is isomorphic to rigid body motion,
you might wonder if these two instabilities are the same. They are not. For example, the

tennis-racket instability is absent when Z,, = 7,,,, whereas the negative curvature persists.
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We have seen that the easy-easy section of the single-qubit complexity geometry is negatively
curved. In the full N-qubit complexity geometry described in Sec. 1.2.2, it is also true that
sections defined by two easy (low-k) directions are generally negatively curved. For the N-qubit
complexity geometry the negative curvature gives rise to the chaotic growth of perturbations
and is necessary to recover the ‘switchback’ effect. The connection between complexity and

negative curvature is explored in more detail in Ref. [17].

4.4 Cut loci and ‘tacking’

Another feature of complexity geometry that the one-qubit example manifests is the existence
and importance of cut loci. (This section is based on material that was explained to us by
Henry Lin.)

Consider the complexity of the unitary U = €%, for § <« 1. One way to generate this
unitary is straightforward: rotate directly in the o,-direction through an angle 6. The length

of this path upper-bounds the complexity distance

Cle""*)] < \/T.. 6. (4.9)

This is the most direct way to generate U. But it is not the only way, and for large Z,, may
not be the cheapest way. An alternative path is to zigzag in the easy directions, commutating

o, and o, to build up o, indirectly. To leading order in 6 we have
eficrz\/é/Z efiay\/5/2 ez’am/a/z eiay\/5/2 — ¢ido: + 0(53)_ (4'1())

This path is not itself a geodesic, but it doesn’t need to be to upper-bound the complexity
distance

Cle"=%] < 2V/5. (4.11)

The reason for the square-root growth is that this path only generates o, to the extent that o,
and oy, fail to commute; in the language of differential geometry, the failure of parallel transport
is proportional not to the perimeter of the path but to the area.

For very small 4, the direct geodesic is always the shortest. However beyond a certain point,
known as the ‘cut locus’ [19], the indirect path becomes cheaper. For large Z,,, the (first-order)

transition between Eq. 4.9 and Eq. 4.11 occurs at

1 1
~ — Ccut locus

5cut locus ~ .
IZZ Vv z’-ZZ

After going much less than a single unit of complexity in the o.-direction, it is already cheaper

(4.12)

to take a ‘circuitous’ route round the easy directions. To use a loose nautical metaphor, rather
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than sail directly into the wind we tack back and forth.®

Indeed, we already saw this prefigured in Sec. 4.3 where negative curvature means that
rather than proceeding directly down the hypotenuse at 45° it is cheaper to hew close to an
easy direction down one arm of the right-angled triangle, and then switch to the other easy
direction for the second arm. It is a general feature of complexity geometry—both for a single
qubit and also for the many qubit case—that the cheapest way to move a long distance in a
hard direction is to tack back and forth in the easy directions.

Starting at any point, and proceeding along any geodesic, one eventually arrives at a cut
locus. The distance to the cut locus depends on the hardness of the geodesic. Equation 4.12
shows that in hard directions, the cut locus is close. By contrast, in easy directions, the cut
locus is much farther away: to make ¢=%, the cheapest way is generally just to proceed directly
in the (easy) o,-direction. It is only for 6 > m—which is to say only once that antipode at —1

has been reached—that the cut locus is encountered.

4.5 Close in inner product, far in complexity

The example of Fig. 1 shows two states that are maximally separated in inner-product distance
but relatively close in complexity distance. The opposite situation can also arise: we can have
two states that are close in inner product but far in complexity. Let’s examine three aspects of
the relationship between inner-product distance and complexity distance; we will see that the

single-qubit example captures only the first two.

1. Two states that are arbitrarily close in inner product will be arbitrarily close in complexity,

and vice versa.

The complexity metric and inner-product metric are topologically identical, which means if

two points are arbitrarily close in one metric they are arbitrarily close in the other. More

8We can repeat this for the completely anisotropic case Z,, > Zyy > Lpe = 1. As before, the direct path
just ploughs along in the o,-direction and has complexity given by Eq. 4.9 as C[direct] = v/Z,, 6. The indirect
path uses that

10,0

e ~ ewmem elaygye—lamﬂwe—layGy (413)

so long as the area of the rectangle is large enough 6,6, ~ ¢ and 6,,6, < 1. The length of this indirect path is
Cllz,0,) ~ 6, + /Ly, 0y, and minimizing this subject to the constraint 6,6, ~ ¢ gives

Clindirect] = Z}/*V6. (4.14)

The cut locus occurs when the direct and indirect paths have the same length

\/Z T
5cut locus ™~ Tyy <~ Ccut locus ™~ # . (415)
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specifically, two states that are separated by an inner-product distance § have a complexity

V ZLnin 0 < AC < \/Tpax 6, (4.16)

where Zin and Z,,,.x are the smallest and largest penalty factors. That the geometric definition

distance bounded by

of complexity is a continuous function of SU(2V) and CP?"~! is in marked contrast to the gate
definition of complexity outlined in Sec. 1.2.1. An immediate corollary of Eq. 4.16 is that if

Zin > 1 then the complexity distance is never less than the inner-product distance.
2. The complexity distance can be a huge multiple of the inner-product distance.

In the metric of Eq. 2.15 (and Eq. 3.10) the ratio of the complexity distance to the inner-product
distance can be very large. Indeed, for small enough ¢ the upperbound of Eq. 4.16 is tight,

C[eiazé]
)

for§ < IZ': =vZ.. (4.17)
Even though two points are separated by only a small inner-product distance, if the direct route
passes in a hard direction then the complexity distance gets multiplied by a huge number, and

this ratio becomes ginormous.

3. The complexity distance can be huge even while the inner-product distance is small.

(True for the large-N complexity metric; not true for the single-qubit complexity metric.)

In the complexity metric with a large number N of qubits discussed in Sec. 1.2.2, there may
be states that are exponentially close (in N) in inner product but exponentially far (in N) in
complexity. However, this is a feature that is not captured by the single-qubit example with
Z.,.>71,, =71, =1. As we will now show, in the single-qubit metric all complexity distances

are upperbounded by an O(1) number no matter how large Z,, gets:

o One-qubit unitary complexities are never large.

For the inner-product metric, the two unitaries 1 and —1 = explino,| are as distant as
two unitaries can be: they lie at opposite antipodes of the S? and are therefore separated
by 7. You might imagine that turning on a large penalty factor Z,, would greatly increase
the distance between these two unitaries, since you are punishing movement in the o.-
direction. But in fact increasing Z.. doesn’t increase the distance at all, since there

remains a path in the unpunished o,-direction using —1 = exp[imo,].

Generalizing away from the antipodal case, it is clear that there are no pairs of points

that become very distant since any SU(2) can be written in ‘proper’ Euler coordinates
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as e9=01¢iov02¢i9205 - Tndeed, Ref. [20] shows that no matter how large Z.., no distance

exceeds T,

A

0 < inner-product distance < complexity distance . (4.18)

Izz zl-zz::z—yyzl -

o Omne-qubit state complexities are never large.

The same pattern applies to state complexity, considered in Sec. 3. For the inner-product
metric on quantum states the maximum distance is 7/2. Inspecting Eq. 3.21 shows that

making Z,, arbitrarily large does not increase the maximum distance

0 < inner-product distance < complexity distance < I (4.19)
To22Tun=Tyy=1" 2

In summary, in the single-qubit example adding a large penalty factor may greatly multiply
the distance between two points that start off close, but does not greatly increase the distance
between two points that start off already distant. The explanation is related to a phenomenon
discussed in Sec. 4.4: sufficiently distant points will generally be beyond the cut locus, and
therefore connected together by many different geodesics. Some geodesics will be short (in
inner-product distance) but hard (large Z), others will be long (in inner-product) but easy
(small Z). The easier paths will be mostly unaffected by making Z,, arbitrarily large. The
reason that there is still a relatively short easy path is that for the single-qubit example a large
fraction of the directions are easy—two out of three. This is very different to the multiqubit
case of Sec. 1.2.2 where easy directions are by assumption exponentially rare.

(Of course, we can make the single-qubit example capture that complexities can be large by
making two of the moments of inertia large’, or even more trivially and even more tastelessly
by making all three large. But even if we did, the single-qubit complexity geometry would still
fail to capture why the complexity can grow so large, and in particular would fail to exhibit

the fractal nature of the complexity frontier described in Sec. 4.7.)

9Reference [20] shows that for Z,,, = Z,, > 27, the maximum distance is 72, /vZyy — L5 -
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Figure 7: The maximum separation on the Berger sphere as a function of 7., for Z,, = Z,,, = 1. The maximum
distance is never greater than m, no matter how large Z,,; on the other hand the maximum distance never goes
below /2 no matter how small Z,, [20].

Even though the maximum distance does not grow as Z,, gets large, there are two simple
geometrical quantities that do. The first is the volume—the volume of the Berger sphere
depends linearly on Z,,—and indeed for the general higher-dimensional complexity metric the
volume also gets large as the penalty factors grow. The second quantity is the average distance.
As T, grows, the average distance between two points on the Berger sphere gets closer to the
maximum distance. It is also a property of the higher-dimensional complexity geometry that

the average distance is close to the maximum distance.

4.6 Complexity geometry vs. gate complexity

The single-qubit example accurately illustrates some of the relative merits of the geometric and

gate-counting definitions of complexity.

In this paper we have discussed two different definitions of computational complexity: gate
complexity (Sec. 1.2.1) and complexity geometry (Sec. 1.2.2). That there are multiple definitions
is to be expected: computational complexity measures how hard a given transformation is to
implement, and so it is no surprise that two different people with two different sets of abilities
will disagree about how difficult is a given task. We are now in a position to compare these

two definitions.
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GATE COMPLEXITY COMPLEXITY GEOMETRY
complexity is number of complexity is length of
gates in smallest circuit that the shortest path that
implements transformation implements transformation
only allowed steps are all directions allowed but
primitive gates some highly penalized
primitive gates typically k-local directions typically
taken to be k-local assigned low penalty (unpenalized)
tolerance € required when no tolerance € required:
primitive gate set is countable can hit target exactly
complexity is discontinuous complexity is continuous
function of SU(2V) & CP*>" ! function of SU(2V) & CP*" !

In Sec. 1.2.1 we saw some of the shortcomings of the gate definition of complexity when
applied to systems undergoing evolution by a continuous Hamiltonian. Let’s see how the com-
plexity geometry definition fixes or ameliorates those shortcomings.

First, in the gate definition the choice of which primitive gates are permitted, while perhaps
dictated by real-world engineering constraints, seems arbitrary. Why those particular k-local
gates and not others? In the complexity-geometry definition, all possible k-local directions
(i.e. all terms in the Hamiltonian that are the tensor product of at most k one-qubit o;s) are
permitted, and typically with the same penalty factor too. The only arbitrariness that remains
is deciding how severely to punish non-k-local directions as a function of their non-k-locality
(deciding what schedule of penalty factors Z;; to apply as a function of the weight).

Second, the gate definition of complexity as described in Sec. 1.2.1 required the introduction
of a ‘tolerance’ €, which described how close we must come to the target state before declaring
victory. This is no longer necessary with complexity geometry: movement in all directions in
Hilbert space is now permitted (even if punished by a large penalty factor), and every target
state can now be hit exactly.

Third, the gate definition of complexity is discontinuous in the sense that two points may
be arbitrarily close in inner product but still have very different complexities. By contrast,

Eq. 4.16 told us that, when the penalty factors are all finite, points that are arbitrarily close in
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inner product are also arbitrarily close in the complexity metric, so the map from inner-product

geometry to complexity geometry is continuous.

What exactly is it about complexity geometry that allows it to dispense with a tolerance
and that makes it continuous? Examining Eq. 4.16, you might imagine that the essential fea-
ture is that the complexity geometry permits direct motion in every direction. But that’s
overkill. Even if direct motion in some directions were completely forbidden—even if the
penalty factors in some directions were infinite—then so long as a generating subset is still
permitted we can build up everything by tacking back and forth and there is no need for a
tolerance. Furthermore, since infinitesimal motion in the permitted directions has infinitesimal
cost, the map from inner-product geometry to complexity geometry is continuous. Thus even
if we took Z,, = oo in the single-qubit complexity geometry of Eq. 2.15 (and even if we took
Tz = Lj—y = ... = Tj—ny = o0 in the multi-qubit complexity geometry), there would still be

no need for a tolerance and the complexity geometry would still be continuous.

It is worth clarifying what ‘continuity’ does and does not mean. On the one hand we have
just seen that the complexity metric is continuous. On the other hand we discussed in Sec. 4.5
that in the multi-qubit example there are pairs of points that are exponentially close in inner
product but exponentially far in complexity. There is no contradiction because continuity is
a statement about infinitesimals. On short enough scales the complexity doesn’t vary much
from point to point—it is clear that for § < Ima_xé the complexity varies by less than a single
unit, and in the last paragraph we argued that the existence of indirect easy paths means the
variation in complexity may be small even for somewhat larger 6. But move too far and the
complexity starts varying dramatically. If for some experimental reason we were constrained
to measure the complexity with an inner-product resolution worse than the characteristic scale

of variation, the complexity distance would be functionally discontinuous.

We have highlighted three big differences between complexity geometry and the gate defini-
tion of complexity. Let’s mention one more. When compiling circuits out of a countable set of
primitive gates, at each step motion is restricted to discrete jumps in a discrete set of directions.
This means there are many fewer options than when applying an arbitrary Hamiltonian, and
this limitation gives rise to a pattern of gate complexity that is considerably more intricate than
that produced by the complexity geometry. As one example, consider the set of states that have
a complexity below some value: in the complexity geometry this set forms a single connected
component; in the gate definition the set breaks up into numerous disconnected islands. As
another example, we have seen that the complexity geometry of a single qubit is too simple to

generate large complexity; by contrast the gate complexity of a single qubit may be huge.
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(Indeed, when only a discrete set of gates are permitted, even the complexity of just a single
U(1) phase is rich enough to be interesting. Fernando Pastawski has explained to us that if we
are are permitted to pick only one gate, the choice that minimizes the average complexity of
U(1) is the ‘golden gate’ that rotates by the Golden Ratio. This is because the Golden Ratio

optimally avoids near-collisions by having the ‘most irrational’ continued fraction expansion.)

For some applications, the so-called ‘shortcomings’ of the gate definition of complexity may
actually be advantageous. For other applications, we might try to modify the gate definition so
that it becomes more like the complexity geometry and inherits some of its features [1-4,21-24].

But for our intended applications, the complexity geometry definition seems superior.

4.7 What N =1 fails to capture

We have seen that the single-qubit example manifests many of the important features of com-
plexity geometry. What are the features that the single-qubit case does not capture?

The short answer is that the single-qubit example fails to capture anything that relies on
the distinction between scaling polynomially, exponentially, or double-exponentially with N.
The difference between these scalings gets washed out when N = 1. This means that the
single-qubit example misses many of the ‘statistical’ properties of complexity.

For example, for the general-N complexity geometry described in Ref. [1] and in Sec. 1.2.2,
there are vastly more hard directions than easy directions: exponentially many hard directions
versus only polynomially many k-local directions. By contrast, for the single-qubit example we
focussed on in this paper, there are more easy directions than hard: two versus one.

Similarly, for the general-/V case there are double-exponentially more high-complexity states
than low-complexity states, with the consequence that there may emerge a statistical thermo-
dynamics of complexity, and in particular an analog of the Second Law [10]. By contrast, for
the single-qubit case, there is no parametric separation between the time to reach maximum
complexity [O(2V)] and the quantum recurrence time [O(22")].

Another feature of large-N complexity geometry that the single-qubit complexity geometry
fails to capture is the fractal-like structure of the set of low complexity states. Consider the
set of N-qubit unitaries with a complexity less than some value. For very small values, this
set is a high-dimensional ball around the identity, bounded by a spherical ‘complexity frontier’.
Measured in the complexity metric this ball looks round; measured in the inner-product metric
the ball is deformed by being stretched in easy directions and squeezed in hard directions. For
larger values of the complexity, the set becomes increasingly convoluted, with multidimensional
tendrils wrapping many times round the SU(2%) in easy directions while making little progress

in the hard directions. The tendrils are intertwined and give rise to a fractal-like structure. The
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topology of the set becomes increasingly complicated as it intersects itself at cut loci. We expect

the one-qubit complexity geometry to be too simple to exhibit this convoluted behavior!®.

5 Conclusion

In complexity geometry, nothing is ever forbidden, it is merely expensive. Rather than leaping
through Hilbert space in discrete gate-sized jumps, now steps of any size and in any direction
are permitted. However, steps in difficult directions are penalized in proportion to their dif-
ficulty. In this paper we discussed why this geometric definition of complexity is one that is
well-suited to holographic applications, and have studied the single-qubit example as a simple
tractable case that nevertheless embodies many of the general phenomena that apply to com-

plexity geometries in general.

There is prior literature on using single-qubit examples as simple laboratories to study gate
complexity. For a very carefully chosen set of primitive gates, it is possible to used advanced
mathematics to calculate the gate complexity efficiently [25]. For more general sets of primitive
gates, Solovay and Kitaev proved a theorem about how accurately one-qubit operators can
be approximated [26]. As discussed in Sec. 4.6, since the gate definition of complexity limits
evolution to discrete jumps, the resultant pattern of complexity is more intricate and convoluted.

There is also prior literature on seeking simple models of complexity geometry. The com-
plexity geometry has been explored for harmonic oscillators [21], coherent states [27], free
fermions [28], the permutation group [29], and other systems [22,30-35].

There is even prior literature on considering the complexity geometry of a single qubit. In
Ref. [5], Gu, Doherty, & Nielsen considered the complexity geometry of SU(2) with, in our
notation, Z,, = Z,, = 1 and Z,, = 0. They showed that in this limit the metric of Eq. 2.15
becomes that of a round two-sphere. Notice that this limit is opposite to the one we focus on
in this paper: we have argued that studying the limit Z,, > 7,, = Z,, produces generalizable

morals by better embodying the characteristic phenomena of multi-qubit complexity geometry.

In this paper we have looked at complexity geometry with the smallest positive integer
number of qubits: one. The next smallest possible integer number of qubits is two. Following
the method of Sec. 2.1, two-qubit unitary complexity geometry can be related to the rotation
of rigid bodies in siz dimensions, since SU(4) ~ SO(6). In the two-qubit case it would be
tempting to make the two-local operators ‘hard’ (large moments of inertia), and make the one-

local operators ‘easy’ (small moments of inertia). However, it would actually better reflect the

9Though it might be interesting to numerically investigate the complexity geometry for the case Z,, > 7, >
T to see what vestiges remain.
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large- N case if the assignment were the other way round. In Sec. 4.3 we saw that to generate
negative curvature, the commutator of two easy directions should be hard. But one-local
operators commute to other one-local operators, so making the one-local directions easy will
not generate negative curvature. Instead, to faithfully imitate the large- N complexity geometry,
even if not to accurately reflect a realistic laboratory capability, the one-local directions should
be hard and it should be the two-local directions that are easy.

Another simple example would be the complexity geometry of the Heisenberg group. The
Heisenberg group is in some sense even simpler than the single qubit, since one of the generators—
the identity, which generates a global phase—commutes with the other two: [1,#] = [1, 5] = 0.
The only non-trivial commutator is [#,] = il. In order that easy directions commute to a
hard direction, both Z and p should be easy, and 1 should be hard.

Even in the single-qubit case, there is a limit to what we have been able to wring from
analytic analysis. Clear targets for numerical investigation include: tracing the cut locus; cal-
culating the average distance between two points; mapping the shape of what we have called the
‘complexity frontier’; and calculating the distance between two unitaries generated by evolving
for a time ¢ with slightly different easy Hamiltonians (the ‘switchback’ configuration). Given
the relatively low dimensionality, this should be within computational reach for general Z,,,

Z,y, and Z,,, and indeed even if generalized to a handful of qubits.

In this paper we have examined the complexity of a single qubit. In the limit we focussed
on—large Z,, but still moderate Z,, and Z,,—the complexity never gets very large. When
normalized so that a unit step in an easy direction reaches an orthogonal state, the largest
relative complexity is never more than O(1). From the perspective of the gate definition of
complexity it is somewhat surprising that increments of complexity less than one— “sub-gate
complexity”—have any meaning. And yet they do: within a single unit of complexity we
have found most of the key phenomena of computational complexity. We even found negative
curvature that leads to the exponential growth of perturbations, despite the fact that this
phenomenon is commonly explained in terms of an epidemic spreading amongst the qubits [36],
an explanation that makes no sense whatsoever when there is just a single qubit. When there are
N qubits, the corresponding surprise is that it is sensible to talk about increments of complexity
less than N—a circuit depth less than one—and yet we have seen that from the perspective of
complexity geometry there is nothing wrong with considering “sub-depth-one complexity”.

In the AdS/CFT correspondence, both the AdS (‘bulk’) side and the CFT (‘boundary’)
side of the duality are separately ‘local’, in the sense that the interactions in each theory
arrange themselves so that only nearby points interact. From tensor network constructions of

holographic theories it is clear how the locality of the CFT is directly inherited by the AdS so as
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to give rise to bulk-locality on scales longer than the AdS-length. But the AdS that arises from
holographic field theories is local not merely on scales longer than the AdS-length, but also on
scales much shorter than the AdS-length, all the way down to the string/Planck length. From
the CFT point of view this is something of a surprise. From the CFT point of view it is not
at all obvious that it makes sense to talk about bulk regions smaller than an AdS length, and
it is not well understood how the CF'T’s strongly coupled matrix degrees of freedom arrange
themselves so as to give rise to “sub-AdS locality”.

The holographic complexity conjecture relates the computational complexity of the CFT to
the volume or action of regions of the AdS bulk [6-9]. In light of the forgoing it is interesting
that the ‘surprise’ that locality makes sense even on sub-AdS scales is mapped by the duality
onto the ‘surprise’ that complexity makes sense even on sub-depth-one scales. A single AdS
volume in the complexity-volume conjecture [7], and single AdS-sized Wheeler-de-Witt patch
in the complexity-action version of the conjecture [8,9], gets mapped to a complexity equal to
the dimension of the boundary gauge group, which is to say a complexity equal to the number
of qubits—a depth-one circuit. If the holographic complexity conjecture is to resolve sub-AdS
scale features of the bulk, it is necessary to have a definition of complexity that can resolve
circuit-depths of less than one. The ultimate limit of locality—a single Planck-sized region—

corresponds to a complexity far less than a single gate.

In this paper we have explored different definitions of ‘complexity’. Ultimately, the question
of which definition is the best is really a question of which definition is the most useful, which
in turn depends on what system we wish to study, and to what purpose. For us, the most
interesting definition of complexity would be the one holographically dual to the size of the
black-hole wormhole. With this motivation, we investigated the complexity geometry definition.
We did this by calculating the complexity geometry of a single qubit. Within a single qubit we
found many of the signature phenomena of the full multi-qubit complexity geometry: we saw
that the geometry is right-but-not-left invariant, and saw the impact that has on homogeneity
and isotropy; we saw that geodesics are no longer generated by time-independent Hamiltonians;
we saw that easy-easy sections develop negative curvature, and saw the consequences that has
for the exponential growth of perturbations; we saw that highly anisotropic penalty factors drive
the cut locus close to the origin, and saw the repercussions this has on the pattern of complexity
distances; we saw that the ratio between the complexity distance and the inner-product distance
may be ginormous; and we saw exhibited the relative merits of the gate-counting and geometric
definitions of complexity. In short, we saw that the humble Bloch sphere, when squashed by
anisotropic penalty factors, prefigured and illustrated many of the features of the complexity

geometry of an exponentially larger Hilbert space.
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