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We present a new wormhole solution connecting two points of the same universe separated by finite

distance. Virtually all the existing solutions connect two disconnected universes, or two points of the same

universe that are infinitely far away. We construct our solution by placing two black holes at the antipodes

of the closed de Sitter space with a matter shell between them. The gravitational action of the matter shell

and cosmological constant counteracts attractive gravity between the black holes and makes the whole

configuration static. The whole space outside the wormhole mouths is causally connected, even though the

wormhole is not traversable. The stress energy tensor corresponds to de Sitter vacuum everywhere outside

of the black holes except at the equator where we match the black hole spacetimes, where a shell with

positive energy density appears. We discuss the physical relevance of this solution in various contexts,

including the cosmological constant problem.
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I. INTRODUCTION

The study of wormholes has a long and distinguished

history. The original wormhole solution was discovered by

Einstein and Rosen (ER) in 1935 [1]. In the 1950s and

1960s Wheeler [2] and collaborators emphasized the

importance of wormholes (and topology change) in quan-

tum gravity, as insightfully reviewed in [3]. Then in the

1980s two parallel developments stressed the role of

wormholes in fundamental physics: In the first develop-

ment, Baum [4], Hawking [5] and Coleman [6] focused on

the role of topology change in Euclidean quantum gravity

(see [7] for a review), and they speculated that this process

is crucial for the possible fix of fundamental constants in

nature, and in particular, the cosmological constant.

Around the same time Thorne and collaborators realized

that it was possible to construct “traversable” wormhole

solutions [8,9]. (For an in-depth review of this latter work

consult [10].) More recently there has been a lot of activity

on the subject of wormholes and quantum entanglement

[in the form of the Einstein-Podolski-Rosen (EPR) setup]

since the ER ¼ EPR proposal [11] (see also, [12]).

Such possible connections between topology change in

quantum gravity and the (distribution of) values of funda-

mental constants, as well as the conjectured relation

between wormholes and quantum entanglement represent

the main motivation for our present work. In this paper we

present a new exact solution to vacuum Einstein’s equa-

tions describing a wormhole connecting two causally

connected points of the same universe separated by finite

distance. This new solution is obtained by placing two

black holes at the antipodes of the closed de Sitter space

with a matter shell between them. In this situation the

gravitational action of the matter shell and cosmological

constant counteracts attractive gravity between the black

holes and makes the whole configuration static. An

interesting feature of this solution (and what makes it

substantially different from the maximal extension of

Schwarzschild–de Sitter black hole) is that causal commu-

nication is in principle possible across the equator since the

cosmological de Sitter horizon does not have to be crossed.

We show that the metric is nonsingular at the equator, but a

shell with positive energy density appears there. Motivated

by this solution, we then discuss its physical relevance in

the contexts of the dS=CFT [13–18] and AdS=CFT [19–21]

duality and the possible relationship of wormhole configu-

rations and quantum entanglement, especially in the setting

of the Baum-Hawking-Coleman proposal.
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II. WORMHOLE SOLUTION

The first wormhole solution was originally constructed

by Einstein and Rosen in [1]. This wormhole connects two

spacetime points through two black holes. If we start from

the static black hole metric in the Schwarzschild form

ds2 ¼ −

�

1 −
2M

r

�

dt2 þ dr2

1 −
2M
r

þ r2dΩ ð1Þ

and apply a simple coordinate transformation, u2¼r−2M,

we find

ds2 ¼ −
u2

u2 þ 2M
dt2 þ 4ðu2 þ 2MÞdu2 þ ðu2 þ 2MÞ2dΩ:

ð2Þ

This metric contains two asymptotically flat spacetimes,

u > 0 and u < 0, which are connected at u ¼ 0. The

geometry is shown in Fig. 1(a). In this representation,

the wormhole connects two different universes, and as such

it does not allow for shortcuts connecting separate points in

the same universe. To circumvent this feature, these two

universes are sometimes artificially connected at infinity to

make the whole construct look as if it were one single

universe, e.g., as in Fig. 1(b). Since the geometry is static,

one can argue that two distant points are in causal contact

since the signal has infinite time to travel between them

(that is, outside the wormhole). However, since the two

black holes are still infinitely far away, they cannot have

any useful communication or interaction outside the worm-

hole. This might not be a serious problem; however it

renders this solution useless when such interaction is

needed, e.g., as in the ER ¼ EPR conjecture [11].

In the present paper, we want to construct a wormhole

solution which connects two black holes that are a finite

distance apart, and which can still communicate outside the

wormhole. At first glance, it appears that we need a time-

dependent solution, since two black holes that are finite

distance apart are always attracted to each other. One can

achieve a static configuration by assigning some charge to

the black holes to counteract gravity. Such a solution might

exist, but it is not clear if it can be found in analytic form.

Alternatively, to overcome this problem, we consider a static

closed universe. We place two Schwarzschild black holes at

the two antipodes (say the north and south poles, respec-

tively), as in Fig. 2(a). The black holes still gravitationally

attract each other and make a static solution impossible to

find. Therefore, we work in de Sitter space endowed with

positive vacuum energy density (cosmological constant),

which produces a repulsive force that could balance the

gravitational attraction of two black holes. Also, we intro-

duce a matter shell between the black holes. Thus, the new

solution is obtained by placing two black holes at the

antipodes of the closed de Sitter space with a matter shell

between them. In this situation the gravitational action of

the matter shell and cosmological constant counteracts

attractive gravity between the black holes and makes the

whole configuration static.

For our purpose, we write a metric for the closed

spherically symmetric de Sitter space in the form

ds2 ¼ −AðλÞdt2 þ BðλÞdλ2 þ r2ðλÞdΩ; ð3Þ

where rðλÞ is the radial coordinate defined as

ffiffiffiffi

S
4π

q

, while S

is the surface of a two-sphere with the center located at the

north pole. The Einstein tensor for this metric is

Gt
t ¼

2r00Brþ Br02 − rr0B0 − B2

r2B2
; ð4Þ

Gλ
λ ¼

Ar02 þ rr0A0 − BA

BAr2
; ð5Þ

Gθ
θ ¼ ð4r00A2Bþ 2A00BAr − 2B0r0A2 þ 2A0r0BA

− A0B0Ar − A02BrÞ=ð4rA2B2Þ; ð6Þ

G
ϕ
ϕ ¼ Gθ

θ: ð7Þ

The prime denotes derivative with respect to λ. We now

write down the well-known Schwarzschild black hole

metric in de Sitter space [22]

(a) (b)

FIG. 1. (a) is the original wormhole solution constructed by

Einstein and Rosen. The wormhole connects two different

universes. (b) is the same solution as (a), but the universes are

connected at infinity. While the whole construct looks as if it were

one single universe, the black holes are still infinitely far apart.

(a) (b)

FIG. 2. (a) represents closed de Sitter space with two black

holes located at the north pole and south pole respectively.

(b) represents the same black holes connected by a wormhole.

There is a mass shell at the equator marked with a dashed line.

Now the causal signal can go either through the wormhole

or across the equator which connects the north and south

hemispheres.
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ds2 ¼ −

�

1 −
2M

r
− r2

�

dt2 þ dr2

1 −
2M
r
− r2

þ r2dΩ; ð8Þ

where we set the Hubble parameter (and thus, essentially,

the cosmological constant) to unity. By Birkhoff’s theorem,

this metric is the unique solution representing a black hole

in de Sitter spacetime. We use this metric to describe two

patches in the north and south hemispheres as shown in the

Fig. 2(a). We locate the north pole at the origin, r ¼ 0.

Since the north and south hemispheres are copies of

Eq. (8), we should find the value of the coordinate r that

corresponds to the equator. We can now use the physical

requirement which states that on the south hemisphere a

test particle is attracted to the south pole, while on the

north hemisphere a test particle is attracted to the north

pole. This implies that there is no net force at the equator,

and consequently, the gravitational acceleration must van-

ish at that location. Therefore, the required condition reads

∂rgtt ¼ 0: ð9Þ

From Eq. (8) we find the location of the equator at

r0 ¼ M1=3. This is where we connect the north and south

hemispheres.

The only remaining task is to find the explicit form of

rðλÞ across the whole spacetime. To find a match between

the black hole geometry and the background de Sitter

spacetime, we parametrize the transformation as

ðr − 2M − r3Þ ¼ a2sin2λ: ð10Þ

We choose this form because we need a periodic function

to obtain a continuous metric connecting two identical

patches, so that it reduces to the Einstein-Rosen coordinate

transformation for the vanishing cosmological constant

near λ ¼ 0 or λ ¼ π. If the transformation is not continuous

at the equator, we need to introduce some extra matter

contribution there.

Since the north and south hemispheres are connected, the

location of the equator is at the maximum of a2 sin2 λ,
which is at λ ¼ π=2. From Eq. (10) and the radial location

of the equator, r0 ¼ M1=3, we find the value of a2 as

a2 ¼ M1=3 − 3M: ð11Þ

Since a2 sin2 λ monotonically increases from λ ¼ 0 to

λ ¼ π=2, the left-hand side of Eq. (10) must be a mono-

tonically increasing function of r from the black hole

horizon to r0. Therefore M must satisfy

M < 3
−
3

2: ð12Þ

This condition puts a restriction on the black hole mass that

gives a satisfactory solution. Since we set the Hubble

parameter to 1, this black hole mass is given in units of the

inverse Hubble parameter, which in turn depends on the

cosmological constant of de Sitter space. We can now write

down the solution to Eq. (10) as

r ¼ cosðαÞ
ffiffiffi

3
p − sinðαÞ; ð13Þ

α ¼ arctanð
ffiffiffiffiffiffiffiffiffiffiffi

3−81b2
p

9b
Þ

3
; ð14Þ

b ¼ M þ a2

2
sin2λ; ð15Þ

which gives the explicit form of the coordinate rðλÞ in the

metric (3). The remaining metric elements in Eq. (3) are

A ¼ 1 −
2M

rðλÞ − r2ðλÞ; ð16Þ

B ¼ 1

1 −
2M
rðλÞ − r2ðλÞ

�

drðλÞ
dλ

�

2

: ð17Þ

Note that the resulting metric looks like that of the

Schwarzschild black hole in de Sitter space. However, in

the r and t coordinates one sees only the local geometry.

By introducing the λ parameter we are nontrivially match-

ing the two copies. The λ parameter determines the physical

metric across the whole spacetime, except at the equator,

where B ¼ 0. To connect to the equator smoothly, we use

the coordinate transformation

r ¼ r0 − jξj; ð18Þ

which gives the following metric

ds2 ¼ −

�

1 −
2M

r
− r2

�

dt2 þ dξ2

1 −
2M
r
− r2

þ r2dΩ: ð19Þ

In these coordinates the equator is located at ξ ¼ 0, while

two black hole horizons are at ξ ¼ �ðr0 − rhÞ, where rh
denotes the radius of the black hole horizon. Since

∂2

ξr ¼ −2δðξÞ, a delta function appears in the Einstein

tensor

Gt
tjξ¼0 ¼

−4δðξÞ
rB

; ð20Þ

Gλ
λjξ¼0 ¼ 0; ð21Þ

Gθ
θjξ¼0 ¼ Gθ

θjξ¼0 ¼
−2δðξÞ
rB

: ð22Þ

We have kept only the terms with δðξÞ, since only the delta
function remains after integration. The nonzero elements of

the Einstein tensor indicate that there is a positive energy
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density and tension at the equator. The geometry of

this matter distribution is described by a shell located at

ξ ¼ 0, or equivalently r ¼ r0. Thus, to smoothly cover the

whole spacetime, we need to use the λ parametrization

everywhere except around the equator, where we need to

switch to the ξ parameter.

The null energy condition and the weak energy condition

are easily checked by looking at

Tαβx
αxβ ≥ 0 ð23Þ

where xα is a null or timelike vector. In general relativity

Gα
β ¼ Tα

β , implying jTt
tj ¼ 2jTθ

θj ¼ 2jTϕ
ϕj. These two con-

ditions are always satisfied at the equator. At the same time,

since jTt
tj > jTθ

θj ¼ jTϕ
ϕj, the dominant energy condition is

satisfied as well. The strong energy condition requires

T̄αβx
αxβ ≥ 0 ð24Þ

where, T̄αβ ¼ ðTαβ −
1

2
trðTÞgαβÞ. The nonzero elements of

T̄αβ are

T̄t
tjξ¼0 ¼

−8δðξÞ
rB

; ð25Þ

T̄λ
λjξ¼0 ¼

4δðξÞ
rB

; ð26Þ

T̄θ
θjξ¼0 ¼ Gθ

θjξ¼0 ¼
2δðξÞ
rB

: ð27Þ

It can be checked that Eq. (24) is satisfied. The strong

energy condition is satisfied at the equator as well. Outside

the mass shell, we have de Sitter vacuum, and the strong

energy condition is violated, as usual.

The total energy, Ee, at the equator can be found by

integrating the Tt
t ¼ Gt

t near the equator:

Ee ¼ −

Z

ϵ

−ϵ

Gt
t4π

ffiffiffiffi

B
p

r2
0
dξ ¼ 16πM1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3M2=3
p

: ð28Þ

If M > ð−3 × 2
7π2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
2
2
14π4 þ 2

8π2
p

Þ3=2, then M > Ee.

This condition has an overlap with Eq. (12). Therefore, it is

possible to satisfy the conditionM > Ee or, it is possible to

arrange for the black hole masses to be greater than the

shell’s energy.

This metric allows for a wormhole throat, located at

λ ¼ 0 or ξ ¼ �ðr0 − rhÞ, to connect the north and south

poles directly, and not through the equator. The relevant

geometry is shown in Fig. 2(b). The global topology of the

resulting spacetime is that of a torus. Since this is a static

universe, any signal can causally propagate from one to the

other black hole across the equator. However, the wormhole

is not traversable because of the existence of the horizon.

Note that the solution connects two black holes in the same

universe. Of course one can connect the north pole to any

other black hole located anywhere in the other universe.

This will make the spacetime structure more complicated.

III. DISCUSSION

We note that the following Ref. [23] has considered some

subtleties related to the Schwarzschild–de Sitter solution,

however, without addressing the possibility of a wormhole

solution. Our solution has some superficial similarities to

the classic paper [22], where a maximal extension of the

Schwarzschild–de Sitter solution was briefly discussed

(see also [24]). However, the crucial difference is that

our construct does not have a cosmological horizon

between the black holes, while this classic paper uses

the full patch of the static de Sitter spacetime and connects

different patches either at the black hole horizon or at the

cosmological horizon. No useful information can travel

through the cosmological or black hole horizons. Therefore

even though the patches might be connected in [22],

observers located in different patches cannot exchange

any useful information with other patches. Our solution

does not use the whole static de Sitter spacetime. It includes

only the spacetime from the black hole horizon to that place

where the gravitational acceleration is 0. Since the space-

time metric is not divergent, the signal can propagate, in

principle, from one patch to the other one without any

problems. If one can avoid the horizon, then a traversable

wormhole may be possible [8]. In our case, the wormhole

throat from one black hole to the other black hole is not

traversable, because there is a usual Schwarzschild–de

Sitter black hole horizon. Note that there exist traversable

wormhole solutions in the available literature [25–27]. A

traversable wormhole may be constructed by replacing the

metric near the black hole with a traversable wormhole

solution. Note that our goal was to construct a wormhole

solution such that outside of which any two points can

communicate with each other. In other words, the two

mouths of our wormhole solution open into the same

universe. After this clarification, we collect some com-

ments about the physical relevance of this solution.

(1) First, it would be interesting to understand this

solution from the Euclidean point of view. Of course,

the Lorentzian solution is more physical, and more general,

but the corresponding Euclidean solution should be under-

stood as well, especially in the context of Euclidean

quantum gravity. (2) Next, it would be natural to under-

stand the doubly Wick rotated solution in the AdS context.

The Lorentzian de Sitter and the Euclidean anti–de Sitter

have the same isometries, and thus it should be possible to

relate the Lorentzian de Sitter solution to the Euclidean

anti–de Sitter solution. As noted in [18] (see also [17]),

there exists a natural nonlocal map between these two

spaces that can be used in this context. (3) This in turn leads

to the issue of the possible holographic meaning of the new

wormhole solution. One natural guess is that this solution
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represents an entangled state between two conformal field

theory duals living on the infinite past and future “boun-

daries,” once again discussed in the above paper [18].

In particular, it is natural to conjecture that this is a BCS-

like entangled state well known from the BCS theory of

superconductivity (and also mentioned in the same paper

[18]). Perhaps the 3d example is the simplest here, because

it involves two entangled 2d Euclidean CFT duals. The 3d

example should be also understood from the point of view

of the Chern-Simons formulation of 3d gravity. (4) One can

also envision that the so-called elliptical de Sitter (going

back to Schrödinger’s classic book [28], in which the

antipodal points are identified, and the space is not time

orientable) should be important for the full understanding

of the wormhole solution. The elliptical de Sitter was

pursued in [29] in the early days of dS=CFT correspon-

dence. (5) Also, in the context of Euclidean and Lorentzian

quantum gravity, it would be valuable to understand

multiwormhole solutions. In the dilute wormhole gas

approximation, such multiwormhole solutions should be

independent and weakly interacting. In general, of course,

the dense wormhole gas is not a simple superposition of

individual wormhole solutions. (6) Finally, any discussion

of wormholes always involves the issues of stability and

causality, which are also subtle in the holographic context,

especially in de Sitter space [17,18]. In particular, the dual

Euclidean CFT had unusual conjugacy relations for its

Virasoro generators. Thus one could easily imagine that the

stability of the wormhole bridge is related to such unusual

properties of the holographic dual.

Next, we collect some comments related to the cosmo-

logical constant problem and the relevance of topology

change and wormhole configurations (including, not only

the new wormhole discussed in this paper, but also the

standard maximally extended Schwarzschild–de Sitter

solution) in quantum gravity/string theory. Given such

wormhole solutions in de Sitter space, it is tempting to

think about the old Baum-Hawking-Coleman mechanism

[4–6] for resolving the cosmological constant problem

from a new point of view inspired by the recent discussion

about wormholes and entanglement, or ER ¼ EPR [11,12].

We recall that, in particular, Coleman’s version of the

Baum-Hawking-Coleman mechanism [6], which asserts

that topology change (in Euclidean quantum gravity) may

imply a probabilistic distribution for coupling constants in

the relevant effective field theory (based on Euclidean

quantum gravity coupled to matter) and, in particular, that

the relevant probability distribution (in the dilute wormhole

approximation) for the cosmological constant is peaked

around 0þ. Nevertheless, there are many problems with this

proposal:

(A) Euclidean quantum gravity has many conceptual

issues, and thus it might not be entirely trustworthy (even

though the AdS=CFT correspondence has clarified some of

its aspects), and the Lorentzian analysis gives complex

phases, so the Baum-Hawking-Coleman measure for the

cosmological constant is not peaked around any real value

(as shown by Polchinski in [30]). (B) The proposal suffers

from the menace of the giant wormholes [as pointed out

by Kaplunovsky (unpublished) and Fischler and Susskind

in [31] ]. (C) The proper analysis (claimed to have been

done by Fischler et al. [32]) asserts that Coleman’s proposal

should be reinterpreted from the point of view of infrared

divergences in quantum gravity (which connects to the

current discussion about soft modes and deep infrared

physics [33]). (D) There was a philosophical dissatisfaction

that this proposal in some sense ignores short-distance

physics, even though it does emphasize the role of non-

locality in the cosmological constant problem. (A few nice

and balanced reviews on this subject are presented in

[34,35]. For a discussion of the Baum-Hawking-Coleman

measure and holography, see [36].)

However, if we follow the idea of connecting holography

and the Baum-Hawking-Coleman proposal [36] and the

recent suggestion that wormholes (à la ER bridges) can be

understood as being “dual” (or equivalent, in some sense)

to entanglement (à la EPR), the so called “ER ¼ EPR”

[11,12], we could rephrase the Coleman proposal from the

point of view of entanglement of degrees of freedom at

short distance and long distance (in a Lorentzian picture of

quantum gravity). Note that in this case the wormholes

cannot be traversed. In this way, one would end up with

nonlocality (the good feature) and perhaps evade the

problem of giant wormholes. This could provide a proper

Lorentzian proposal (in the Euclidean picture, the entan-

glement does not really make sense, because we cannot

define spacelike separated regions), and finally, we might

connect to the recent discussion of the relevance of soft

modes in the infrared [33] in the context of quantum gravity

and the cosmological constant problem. Both the high

energy and low energy modes should be essential from this

new point of view. Thus, according to this new scenario, the

(maximal) entanglement of high energy and low energy

modes (and, thus, the maximal entanglement of the two

holographically dual Euclidean CFTs) should be crucial for

understanding why the Universe is large.

In this way one would be turning the Baum-Hawking-

Coleman proposal upside down in order to explore the good

feature of nonlocality via entanglement, while (hopefully)

avoiding the bad features of Euclidean quantum gravity

and Euclidean effective field theory with topology change.

(We should also note the recent criticism of Euclidean

quantum gravity and the need for a fundamental Lorentzian

description in [37].) There are also connections here

with the recent research on quantum gravity/string theory

[38–45] with intrinsic nonlocality, and other approaches to

the cosmological constant problem, such as the sequester

mechanism [46], which invoke the Coleman mechanism, at

least, in spirit. (For other connections between wormholes

and cosmology, see [47].)
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IV. CONCLUSION

In conclusion, we have presented here a new wormhole

solution connecting two causally connected points of the

same universe separated by finite distance. This solution

was constructed by placing two black holes at the

antipodes of the closed de Sitter space with a matter shell

between them. By utilizing the gravitational action of the

matter shell and cosmological constant which counteracts

attractive gravity between the black holes the whole

configuration can be made static. The obtained spacetime

does not have a cosmological horizon between the black

holes which makes it substantially different from the

maximal extension of the Schwarzschild–de Sitter sol-

ution. The metric can be smooth at the equator, but

some matter distribution with positive energy density

must be placed there. Motivated by this solution, we

have then outlined its physical relevance in the context

of the relation between wormhole configurations and

quantum entanglement which should be important for

the Baum-Hawking-Coleman proposal, albeit from a new

and more general viewpoint. We plan to explore these

implications elsewhere.
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