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Over the last two decades there has been a proliferation of methods for
simulating crowds of humans. As the number of different methods and
their complexity increases, it becomes increasingly unrealistic to expect
researchers and users to keep up with all the possible options and trade-offs.
We therefore see the need for tools that can facilitate both domain experts
and non-expert users of crowd simulation in making high-level decisions
about the best simulation methods to use in different scenarios. In this paper,
we leverage trajectory data from human crowds and machine learning tech-
niques to learn a manifold which captures representative local navigation
scenarios that humans encounter in real life. We show the applicability of
this manifold in crowd research, including analyzing trends in simulation ac-
curacy, and creating automated systems to assist in choosing an appropriate
simulation method for a given scenario.
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1 INTRODUCTION

The last two decades have seen a dramatic rise in the number of
techniques used in simulating real-world phenomena, from animat-
ing fluid and sound to modeling hyperelastic materials and human
crowds [Bridson 2015; Lee 2010; Pelechano et al. 2016; Sifakis and
Barbic 2012]. In many fields, this growth in choice of simulation
methods raises many questions for domain experts in choosing ap-
propriate simulation techniques. This is especially true in the field
of human crowd simulation, where there are a large number of sim-
ulation methods that all preform well in some scenarios, but none
of which performs “best" in all scenarios. However, choosing the
right simulation method can be very important. When crowds are
used in games and movies, poor simulation performance can lead to
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unnatural crowd behavior, quickly breaking the immersion. When
crowd simulations are used to guide event planning and building
design, poor simulation models can lead to bad practices affecting
thousands of people.

Domain experts in crowd simulations, as in many fields, have a
wealth of informal knowledge about what simulation approaches
to use when. Many experts will suggest not to use reactive methods
such as social forces or boids [Helbing et al. 2000; Reynolds 1987]
unless the simulation task involves a small number of agents in
sparse scenarios. Likewise, many researchers tend to feel geometric
methods such as ORCA [van den Berg et al. 2011] are likely to
struggle in medium density scenarios where agile maneuvers are
important, but do well in dense scenarios where efficient accounting
for constraints is key. This kind of informal, unquantified knowledge
is crucial to the proper choice of simulation method, but cannot
always be reliably communicated in an objective and universally
accesible fashion.

In this paper, we propose to leverage data-driven learning tech-
niques to develop a method to compactly represent this type of
meta-information about crowd simulation scenarios. To this end,
we introduce Crowd Space, a low-dimensional manifold learned from
human trajectories, which represents the space of likely interaction
scenarios that humans can encounter (see Figure 1). We also learn a
continuous labeling of this manifold based on a novel method that
allows us to evaluate the local simulation accuracy.

Ultimately, our work provides a method for formalizing and quan-
tifying knowledge about what types of simulation techniques to
use in different scenarios. To that end, we propose the following
contributions:

e Crowd Space. An agent-centric, low-dimensional manifold
representing a large variety of crowd interaction scenarios.

e An agent-centric formulation of the entropy metric of [Guy
et al. 2012] that allows the estimation of a simulation’s local
accuracy.

e An analysis of key trade-offs between simulation methods,
along with a learning-based approach to automatically predict
the best (i.e., most accurate) simulation methods to use in a
given scenario.

2 RELATED WORK
2.1 Multi-Agent Navigation Methods

There is a significant amount of research in robotics, traffic engineer-
ing, and computer graphics on planning paths for multiple agents
such as virtual characters, pedestrians, and cars. The most com-
mon approach is to decompose global planning from local collision
avoidance. Typically, a graph is used to capture paths which are
collision-free with respect to the static part of the environment,
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Fig. 1. Crowd space embedding using PCA. The space is obtained by sampling 15,000 60D mpd-based local scenario descriptors gathered from six training
datasets (2,500 descriptors per dataset), and taking the first 6 principal components. Here, we visualize this 6D space by random sampling of non-overlapping

descriptors and plotting them according to their first two principle components. The resulting space clusters together agents with similar local conditions,
even if they come from different datasets. In this 2D projection, the horizontal axis tends to correspond to density (more dense on the left) and the vertical axis
whether the agent is entering, leaving, or located in the middle of congestion (top, bottom, middle, respectively). The edges in the 2D embedding denote

nearest neighbors.

and a local collision avoidance technique is then used to navigate
each agent around other nearby agents and obstacles. Our work
here will focus on the local navigation, as many different methods
rely on the same global planning approaches (e.g., artist-designed
roadmaps), and variation in global planning tend to have less in-
fluence on the collective behavior of the agents than variation in
local planning. (We refer the reader to the recent books of [Kapadia
et al. 2015; Pelechano et al. 2016] for a more extensive review of
state-of-the-art local navigation and global planning approaches.)
While a large variety of local navigation methods have been
proposed, many popular methods can be classified into one of
five classes: a) reactive approaches where agents rely primarily on
distance-based functions to avoid collisions with nearby agents and
obstacles [Helbing et al. 2000; Helbing and Molnar 1995; Reynolds
1999]; b) geometrically-based approaches where agents compute
collision-free velocities using sampling or optimization [Pettré et al.
2009; van den Berg et al. 2011, 2008], c) vision-based approaches
where the steering behavior of each agent is directly correlated
to its (simulated) visual stimuli [Hughes et al. 2015; Kapadia et al.
2012; Moussaid et al. 2011; Ondrej et al. 2010]; d) gradient-based
approaches where each agent tries to independently minimize an
energy or cost function that accounts for future collisions [Dutra
et al. 2017; Karamouzas et al. 2014; Wolinski et al. 2016]; and e)
example-based approaches that use human data to update the veloc-
ities of simulated agents [Charalambous and Chrysanthou 2014; Ju
et al. 2010; Lerner et al. 2007]. Here, we do not consider example-
based approaches directly, as their accuracy depends directly on
how closely their training dataset matches our testing dataset, rather
than how well their mathematical models capture human behavior.
There are, of course, navigation methods that do not fit easily
into one of these categories. For example, some methods focus on
explicitly accounting for grouping and other social dynamics [Ren
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et al. 2017], level-of-detail methods [Kulpa et al. 2011], and meth-
ods that closely model the biomechanics of body orientation and
footstep patterns [Singh et al. 2011; Stuvel et al. 2016]. Furthermore,
with recent advancements in deep learning, approaches have been
introduced that seek to improve the collision avoidance behavior
and the locomotion of the agents [Holden et al. 2017; Long et al.
2017; Peng et al. 2017].

2.2 Data-driven evaluation and analysis

Perhaps the most intuitive way to analyze the accuracy of a sim-
ulated crowd is by defining a number of test-case scenarios along
with evaluation metrics that can be used to collect statistics about
the behavior of the agents. For example, Reitsma and Pollard [2007]
used task-based metrics to evaluate the animation capabilities of
virtual agents, while the work in [Kapadia et al. 2009, 2011; Singh
et al. 2009] focus on the steering behavior of the agents. Such met-
rics have also been used by data-driven evaluation techniques to
determine how similar are simulated pedestrians to real ones ex-
tracted from video crowd footage [Lerner et al. 2010]. This include
approaches that automatically detect outlying behavior [Charalam-
bous et al. 2014] and optimization-based techniques that tune the
parameters of the agents to enable simulations that best fit the given
data [Berseth et al. 2014; Wolinski et al. 2014]. Evaluation techniques
that focus on the macroscopic behavior of the agents have also been
proposed, such as the work in [Wang et al. 2017] that uses Bayesian
inference to learn path patterns and compare them to reference
data, and the entropy metric work [Guy et al. 2012] that estimates
in a robust way the similarity between the aggregate motion of real
pedestrian and simulated trajectories.

Our work is complementary to the crowd evaluation techniques
mentioned above. In particular, we extend the entropy work to



focus on the predictive accuracy of a simulation method at a per-
agent level. Furthermore, as compared to previous solutions, our
method learns to automatically predict the most accurate simulation
methods for a given interaction scenario. We note that there is also a
significant amount of work on perceptually evaluating simulations.
In particular, user studies have been proposed in different fields
to assess the visual quality of videos, rendering techniques, and
fluid simulation methods (see, e.g., [Aydin et al. 2010; Um et al.
2017]. Furthermore, perceptual studies have been extensively used
in the field of character animation and crowd simulation, with recent
work focusing on the visual realism and expressiveness of animated
crowds [Durupinar et al. 2017; Hoyet et al. 2013; McDonnell et al.
2009]. While related to our work, the goal of these approaches
is somewhat orthogonal to ours, as they focus on the perceptual
quality rather than the predictive accuracy of simulations.

3 BACKGROUND AND DEFINITIONS

While the question of how to analyze different crowd simulation
techniques can take many forms, our work focuses on the follow-
ing two questions: i) Given a simulation method, in what crowd
scenarios does this method perform the best? And ii) Given a par-
ticular crowd scenario, which methods produce the most accurate
simulations?

Formally, we define the above terms as:

e Crowd Scenario: A crowd simulation scenario, S, consists
of a set of n agents, each with its own initial position, goal
position, goal speed, radius, and (optionally) a set of obstacles
demarcating impassable regions.

e Simulation Method: A simulation method is a function
which takes as input a crowd scenario, and returns as out-
put a trajectory for each agent.

e Simulation Accuracy: The accuracy of a simulation method
is a measure of how closely the resulting trajectories match
those which would have been produced by humans in the
same crowd scenario.

In particular, we note that there are many different plausible
measures of simulation accuracy (see, e.g., [Singh et al. 2009; Um
et al. 2017]). Here, we focus on the notation of predictive accuracy
as introduced by the Entropy Metric [Guy et al. 2012], that is: given
a representative collection of real human trajectories, what is the
likelihood that a given simulation method would produce similar
trajectories in similar circumstances.

3.1 Generating Scenarios from Human Data

To best estimate the accuracy of a given technique in a particular
crowd scenario, we should have access to a collection of representa-
tive trajectories that real humans took in the same (or very similar)
situations. While it would be best to randomly sample a well dis-
tributed range of crowd scenarios and ask human subjects to enact
these situations, this approach is impractical to achieve at scale. In-
stead, we invert this strategy and infer likely crowd scenarios given
previously observed trajectories from real-world crowd videos. By
breaking real-world crowd datasets and videos into small time steps
we can infer hundreds of new crowd scenarios by estimating a posi-
tion, velocity, radius, goal position and goal speed for each agent.
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Appendix A gives details on how we estimate each of these terms.
Importantly, deriving crowd scenarios from real-world data allows
us to know what paths real people took in each of these scenarios.

Crowd Datasets. Because all of our crowd scenarios are derived
from real-world datasets, it it is important to choose a large, var-
ied collection of human data for training. Here, we use ten dif-
ferent human trajectory datasets representing efforts from a vari-
ety of researchers, crowd densities, motion heterogeneity, and so
on. These include: i) sparse crowds (average space-time density
less than 0.5 ppl/m?) captured at a snowy intersection [Pellegrini
et al. 2009] and in front of a church [Lerner et al. 2010], labeled
Snow_eth and Church, respectively; ii) Medium-density (between
0.5-2 ppl/m?) groups of shoppers walking down a street at two
different times of day, Zaral and Zara2, and students on a college
campus, Students [Lerner et al. 2007]; iii) Dense groups (average
density greater than 2 ppl/m?) of participants in various scenarios
including walking through differently shaped bottlenecks, labeled
Bottleneck and Bottleneck-long [Seyfried et al. 2009], interacting as
two large streams moving past each other through a train station
hallway, Berlin-180, and two large streams of people interacting
perpendicularly Berlin-90 [Limmel and Plaue 2014]; iv) And, finally,
results from experiments with small groups walking simultaneously
down a hallway, One-way [Ju et al. 2010].

3.2 Simulation Methods

We investigate several different local navigation methods, repre-
senting a wide variety of different simulation techniques. In gen-
eral, we selected methods which are either recently proposed or
in wide-spread use. This includes reactive Social Forces [Helbing
et al. 2000], the geometrically-based methods of T-Model [Pettré
et al. 2009] and ORCA [van den Berg et al. 2011], the Vision-based
method of [Moussaid et al. 2011] which uses a sampling-based ap-
proach to optimize an anticipatory energy function, and predictive
force-based approaches of PAM [Karamouzas et al. 2009] and TTC
Forces [Guy and Karamouzas 2015]. Where possible, we obtained
the latest, revised implementation directly from the authors, though
in the case of the Social Forces and Vision-based models we provided
our own implementation.

Note, we exclude the PowerLaw model proposed in [Karamouzas
et al. 2014] as it was explicitly trained on part of the data used to cre-
ate our learning method. Likewise, we avoid data-driven approaches
such as the ones proposed in [Charalambous and Chrysanthou 2014;
Lerner et al. 2007] due to similar concerns with over-fitting. Finally,
we do not consider continuum-based solutions or those which re-
quire explicit global solvers such as those proposed in [Karamouzas
et al. 2017; Narain et al. 2009; Treuille et al. 2006] as these methods
tend to be too slow for the entropy-based accuracy analysis we
employ (Section 4) and can have difficulty with agents who enter
and exit a simulation.

3.3 Organization

The next section details our approach to evaluating the time-varying
accuracy with which a simulation captures the behavior of real-
world pedestrians in various settings. In Section 5, we detail our
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approach to building a crowd scenario manifold to facilitate sim-
ulation analysis. In Section 6, we use the resulting Crowd Space
to analyze the relative accuracy of the aforementioned simulation
methods in various scenarios. Finally, Section 7 introduces a method
to automate the process of predictive crowd analysis by formulating
it as a multi-label classification problem.

4 AGENT-CENTRIC ENTROPY

In order to facilitate our predictive analysis of various crowd simula-
tion techniques, we must first establish an evaluation metric. Here,
we wish to focus on the accuracy of a simulation technique; that is,
how closely a simulation matches the behavior of real pedestrians
in similar scenarios. Much of the previous work in this area has fo-
cused on studying indirect measures of accuracy, such as comparing
the local density of simulated agents to those found in database of
typical human motion as in [Lerner et al. 2010] and [Charalambous
et al. 2014], or has used user-defined metrics to evaluate a path such
as smoothness or number of collisions [Kapadia et al. 2009; Singh
et al. 2009]. While these approaches are valuable metrics of path
quality, they do not directly address the predictive accuracy a simu-
lation method may have in a given scenario. Closer to our goal is the
entropy metric proposed in [Guy et al. 2012], which uses a stochastic
inference framework to directly estimate prediction accuracy of a
method given a set of pedestrian trajectories in a manner which is
robust to the large amount of sensor noise present in real-world
datasets. However, the original formulation of this metric has two
issues we seek to address:

(1) Fixed Simulation Size. The original entropy metric assumes the
number of agents is static throughout a dataset. In practice,
agents will likely enter and leave the scene quite frequently
in any dataset lasting more than a few seconds.

(2) Global Accuracy Estimates. The original entropy metric pro-
vides a single accuracy estimate per simulation method per
dataset. In reality, the accuracy of a simulation varies spatially
(per-agent), and over time (for a given agent).

In this section, we propose a per-agent entropy metric which
(1) allows agents to enter and exit a scene over time and (2) pro-
vides a per-agent, ego-centric estimate of how well a given crowd
simulation method would predict the motion of each agent in the
crowd. Together, these changes remove the fundamental hetero-
geneity assumption found in the original entropy metric. As a result,
we can now identify localized problem regions within an otherwise
high-quality simulation method, greatly improving the metric’s
applicability for crowd analysis.

4.1 Approach Overview

Similar to the original entropy metric approach, we seek to measure
the degree to which a simulation method is likely to produce the
behavior captured in a real-world dataset. As in [Guy et al. 2012], we
follow an information-theoretic formulation, and treat measuring
accuracy as a likelihood estimation problem. The overall approach
to computing the entropy metric is as follows: first, decompose the
observed crowd data into several single time step prediction tasks
by using Bayesian filtering (e.g. Kalman filtering); second, add zero-
mean Gaussian noise with covariance Q to each simulation step and
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run localized simulations per-time-step to estimate the effect of Q;
and third, estimate the size and shape of Q which maximizes the
likelihood of the observed data via Expectation Maximization (EM).
The smaller the Gaussian Q needed to reproduce the data, the more
accurate the simulation method.

The key difference from our approach and [Guy et al. 2012] is in
how the dataset is decomposed into the per-time-step prediction
tasks. Guy et al. represented the simulation state as a joint state over
all agents in an entire frame of a simulation (necessitating a fixed
number of agents throughout the data); here, we instead estimate a
time-varying value of Q for each agent independently. This is done
by treating each agent as a central agent in a one-off simulation with
all of its nearby neighbors. The process is run independently for
each agent, and is used to generate a value of Q per central agent,
per-time-step (as described below). To produce a final accuracy
estimate, we accumulate values of Q across several seconds and
refer to the average of these Q value as Q. The per-agent, per-time
step accuracy score is then the entropy of this distribution:

e(0) = 3log((2me)det(Q)), (1)

where d is the dimensionality of Q

It is important to stress that even though we produce a new
accuracy estimate for each agent, for each time step our modified
entropy metric is not estimating the instantaneous accuracy for
this time step, rather it is estimating the accuracy over the entire
timerange over which we accumulate values to estimate Q. Here,
we use a 5s window as most agents in our dataset have tracked
interactions for 5s or less.

4.2 Computing the Per-Agent Entropy Metric

The approach we use to decompose real crowd data into small sim-
ulation tasks is detailed in Algorithm 1. Here, we use an Ensemble
Kalman Smoother (EnKS) as a state estimation technique [Evensen
2003]. Our EnKS-based approach works by iteratively estimating
the most likely internal agent state a; at timestep k based on exter-
nal observations over the entire dataset. We assume we know the
position observation function h, the trajectory observations z from
both before and after the current timestep, an estimate of the state
at the previous timestep aj_q, and a prediction function f which
advances the state to the next timestep. Here, the function f is the
crowd simulation under consideration by the entropy metric.

EnKS takes a two stage approach of first predicting the new
state for the next timestep, f(ay), based on the prediction function
(predict step), and then correcting this prediction based on the
observations (correct step). The effect of simulation uncertainty is
modeled through the use of noise. Rather than running a single
simulation to predict the next agent state, m simulations are run
each with a sample of Gaussian noise with covariance Q added
to the prediction. An agent’s state, then, is actually represented
by an ensemble of different states. (A similar step adds noise of
fixed size R to the observations.) At each timestep, the correct step
fits a Gaussian to this ensemble of samples, and updates the state
estimation based on the Kalman gain equation.

After the ensemble of states have been estimated via EnKS, we
can estimate the noise covariance, Q, which would maximize the
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ALGORITHM 1: EnKS for Estimating Agent’s States

ALGORITHM 2: Maximum Likelihood Estimation for an Agent

Input :Measured Real-World States Z = {z;, - - - zt, }, Appearance
Period p, Crowd Simulation technique f, Estimated Average Error
Variance Q

Output :Estimated Agent State Distribution A = {d, - - - d¢, }

foreach k € t; - -1, do

// Predict Step

foreachi €1---mdo

(i)

s k_l 5 3
a = f@) ) +q,
Draw r?) from R
29 = n@?)+rl?

Ze= 7 L1 ff)

Zp = 2 2m G - 200G - 2T

// Correct Step

foreachj € 1-- -k do

aj =7 L% d;l)
%)= 5 2@ - ap) - 20"
foreachi €1---mdo
[ = a0+ 5,20 - 2)

Draw g, . from Op

likelihood of the observed trajectory using Maximum Likelihood
Estimation (Algorithm 2). This gives us a new 0 which we can now
apply in a new round of EnKS. We can run this process until the
estimate for Q converges. (Note an agent may serve as a non-central
agent for several other central agents, but this will not change its Q
value.) Once Q is known we can measure its size using Equation 1,
providing us with the final estimate of the simulation error.

Importantly, this approach assumes that the error between the pre-
dicted state and the observed state can be well modeled by a Gauss-
ian when performing the Maximum Likelihood Estimation. We can
test the validity of this hypothesis using a Kolmogorov-Smirnov
test [Massey Jr 1951]. Figure 2 shows p-values of the Gaussian fit-
ness test for simulation errors when using ORCA as the prediction
function, distributed across 10 randomly selected agents extracted
from four datasets (Zaral, Students, Berlin-90, and One-way). Across
the 2,000 collected samples (one per agent, per time step), almost
none was able to reject the null (Gaussian) hypothesis at the 5%
significance level, which indicates that the error between observed
and predicted state is generally Gaussianly distributed. In addition,
the Gaussians show a strong tendency to be zero-meaned (e.g., the
average px error has a mean value of 0.011 + 0.057), suggesting
an unbiased Q. Appendix B shows similar results for additional
simulation methods and provides further analysis.

Implementation Details. In our results, we represent each agent’s
simulation state A with an ensemble of m=2000 simulation state
samples for each time step {dy, - - - ds, }, and run 3 iterations of EnKS
and MLE for each agent each time step. Each agent is assumed to
exist continuously from time ¢y until time t,; if an agent exits and
reenters, it is treated as a separate agent. We use the current position

Input :Estimated State Distribution Ap = {ag - -dtp}
Output :Estimated Average Error Variance Op = {(j,g0 e Qtp }
foreach k € ty - - -, do

L Or=0,0,=0
foreach k € o - - - tp-1 do

foreachi €1---mdo
| Q= (@), — @ nag, - r@)’

// Average Window
foreach k € ty-- - tp do

5 _ 1 <k
L Ok = 2w+121:12v—wQ(P,1)

ORCA p_ error ORCAv_ error
X X

5. 03 0.3

g 1 1
g a=.051 a=.051
3 02 1102 |
£ 1 1

1

2 01 1104 :
Kol 1 1
[0}

=0 0

=y

08 06 04 02 0 1 08 06 04 02 0
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Fig. 2. Analysis of Gaussian fit in four datasets based on one-sample
Kolmogorov-Smirnov test. Here, almost all ORCA agents fail to reject the
null hypothesis of a Gaussian model of error distribution at & = .05, sug-
gesting the true distribution is well approximated by a Gaussian.

and velocity for each time step ¢, and assume the goal position is
externally estimated as discussed in Section 3.1.

The prediction function f is executed over a period of 125ms to
match the framerate of the pedestrian datasets. For each central-
agent, we choose all neighbors within a 5m radius to use as non-
central simulation agents. In theory, entropy scores have no lower
bound (a perfect simulation would have a score of negative infinity).
In practice, we observe only finite values which we scale such that
all scores lie between -2 and 2.

4.3 Metric Analysis

Our modified approach to the entropy metric allows for a per-agent,
per-time step analysis of simulation accuracy, while retaining many
of the key robustness properties of the originally proposed metric
of [Guy et al. 2012]. This is due to the fact that the entropy metric
compares the predictions made by a given simulation technique to
the distribution of decisions latent in a given dataset; this is in con-
trast to other crowd analysis techniques which focus on comparing
predicted trajectories to observed trajectories.

As a point of comparison, we consider two alternative classes of
trajectory-based error estimation: i) a distance-based metric where
the error is the L2 distance between the observed and predicted tra-
jectories at any time step (as was used in [Lerner et al. 2010]); and ii),
a neighbor-based metric where the error is based on the distance be-
tween an agent and its nearest neighbor as compared to the relative
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Fig. 3. A comparison of the time-varying error in an ORCA simulation as
measured by our entropy metric, an absolute distanced-based error metric,
and a nearest neighbor-based error metric in a two-person crossing scenario
from [Pettré et al. 2009]. All graphs are normalized to run from 0 to 1 and
report the mean error of the two agents.

distances seen in the reference data (as was used in [Charalambous
et al. 2014]). Figure 3 shows results from these three different types
of metrics on 2-person interaction data from [Pettré et al. 2009]
where two pedestrians cross paths perpendicularly to each other.
The corresponding simulations were obtained using ORCA.

Comparing the different metrics reveals a fundamental difference
in how they measure error. The distance-based metric allows a
small but consistent error in the predicted speed of the agents to
accumulate over time revealing a strong sensitivity to estimating the
initial state correctly and showing that the metric fails to capture
the notion of the instantaneous error that we seek in the entropy
metric. In contrast, both the entropy metric and the neighbor-based
metric capture a peak in error at the point were the two pedestrians
are most interacting (~4s). However, the neighbor-based metric
continues to show a high error well after the agents have passed
each other, whereas the entropy metric quickly approaches zero.
This ability to estimate the current simulation accuracy without
being overly influenced by past behavior will be exploited later in
Sections 6 and 7 to allow us to treat each frame of the training data
as an independent dataset.

Robustness to Noise. To determine how robust different metrics
are to sensor noise, we considered the previous scenario and added
independent and identically distributed noise to the positions of the
reference pedestrians. Figure 3 shows the corresponding results for
different noise magnitudes v, sampled from the uniform distribution
on a disc centered at 0 with radius v. Note that the graphs have all
been normalized to run from 0 to 1 in order to focus on the shape of
the estimated error over time. Both the distance-based and neighbor-
based approaches show very noisy outputs as a result of the input
noise. However, the entropy metric shows very little sensitivity to
this input noise, retaining a smoothly varying estimate of error with
an almost identical point of “peak” error even with a large amount
of noise added to the data.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 186. Publication date: November 2018.

Table 1. Both real humans paths and crowd simulations can change drasti-
cally under small perturbations of initial state. In the 6-person circle scenario,
we estimate the effect of small perturbations for various metrics by adding
a small offset to the start and goal position in the data, and looking at the
coefficient of determination (r2) of the time varying errors estimated by
various metrics with and without these perturbations. The entropy metric
is more robust to these perturbations than the two other metrics. Likewise,
mirroring the paths taken by two people swapping positions creates an
equally likely trajectory, and the time-varying entropy metric values af-
ter this mirroring are highly correlated with the values derived from the
unmodified data.

Scenario | Data Modification | Dist NN Entropy
6-person circle | Perturbed .1m .89 52 97
6-person circle | Perturbed .4m .83 .20 .92

2-person swap | Mirrored paths 75 .97 .99

Non-determinism in Human Motion. Two different people given
the exact same navigation task (i.e., same start, goal, and neighbors)
might make very different decisions. The entropy metric accounts
for this non-determinism by treating the reference human data as
a single sample from the true distribution of plausible pedestrian
responses to a given scenario. The results of this can be seen if we
apply small perturbations to the start and goal positions in reference
data. Here, we look at a challenging scenario from [Wolinski et al.
2014] where 6 people walk to antipodal points in a circle. Because of
the near-symmetry of the scenario, small perturbations in the initial
position will cause the simulations (or real people) to significantly
change their path to the goal (e.g., clockwise vs. counter-clockwise
motion). Table 1 shows the correlation of the errors reported by the
various metrics with and without these perturbations using ORCA
as simulation. Here, the entropy metric shows very high correlation
between the results with and without the perturbations showcasing
its robustness to these types of large changes; our metric retains
its high correlation because it treats the reference data as a sample
from a distribution of likely trajectories, rather than as the ground
truth. Finally, we can complete a similar experiment to that shown
in [Guy et al. 2012] where we use as reference data trajectories
of two agents exactly swapping positions, passing each other on
the right. By exactly mirroring the velocities of the agents, we can
generate a different, but equally plausible, set of trajectories for the
same start-goal pair (where agents now pass on the left). Table 1
reports the correlation between the Vision-based simulation error
when computed against the original trajectories and when against
the mirrored trajectories. Where the distance-based metric shows
a big change in the error (due to the change in passing side), the
entropy metric shows nearly perfect correlation between errors.

4.4 Applications

Because our formulation generates a per-agent, per-timestep estima-
tion of simulation accuracy, it allows for applications not possible
with the original entropy metric. For example, our metric can be
used to detect hot-spots in a dataset that are poorly captured by
a simulation. Figure 4 shows the heatmap of our agent-centric
entropy scores for ORCA on the Bottleneck dataset. Our method
reveals that ORCA works well in the center of the hallway flow, but
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Fig. 4. Our improved entropy metric provides spatially (and temporally)
varying estimates of simulation error (lower is better). Here, an ORCA
simulation of the Bottleneck scenario shows almost no error in the center
of the bottleneck (green), but matches the data less well near the edges of
the hallway (yellow).

has higher error for agents who are walking close to the walls of
the bottleneck. Figure 5 shows a comparison between two simula-
tions on the Berlin-90 dataset. Here, we can see ORCA and PAM
work equally well for some of the trajectories (i.e., both with very
low error), but for many agents flows are better captured by PAM,
especially for those on the edges of the crowd. This type of analysis
can also be used for outlier detection (as in [Charalambous et al.
2014]) and can be applied to help in per-agent tuning of simulation
parameters (see supplemental video and Appendix D).

5 CROWD SPACE

In addition to estimating how accurate a simulation is for a given
crowd state, we would also like to represent the state of the crowd
in a compact and generalizable fashion. To this end, we introduce
Crowd Space, an agent-centric manifold representing the local con-
ditions in a crowd. There are two key features which we seek in
this manifold. One: it should provide a natural way to represent a
wide range of crowd scenarios. Two: similar crowd scenarios should
lie near each other on the manifold (to provide a clear semantic
interpretation of local regions of the manifold).

Here, we use the human trajectories from Section 3.1 to build
the Crowd Space. Our approach requires two steps. First, we must
find a structured descriptor which provides a fixed-width vector
representation of the current crowd state. Secondly, we apply a
dimensionality reduction technique to automatically produce a low-
dimensional representation which faithfully captures the higher
dimensional structure. The result is a compact representation of the
state of the crowd, appropriate for visual analysis, and prediction
tasks. We described each of these steps in turn.

5.1 Per-Agent Crowd Descriptor

There are many challenges in representing the current state of
the crowd with a single fixed-size descriptor. For one, the state of
the crowd can be very different across different regions of space.
Additionally, as the size of the crowd grows and shrinks, the size of
the descriptor would need to change to maintain the same fidelity in
description. Here, we propose to overcome both of these challenges
by using a separate egocentric representation of the crowd state
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Fig. 5. A comparison between ORCA and PAM in the Berlin-90 scenario.
While ORCA matches some agents well, PAM has consistently lower error.

for each agent. The full crowd is then represented by an unordered
collection (i.e., a set) of these per-agent descriptors. That is, rather
than storing the global crowd structure explicitly, our approach
relies on the emergent effect this structure has on each individual
agent’s local conditions.

Agent State Descriptor. We use a local descriptor of a given agent’s
local crowd state that is based on the oriented, spatially varying,
relative distances and velocities to nearby agents. In this way, we
can capture both how the local density changes around the agent
(based on positions) and how it is likely to change in the near future
(from relative velocities). In practice, we found that it was sufficient
to combine the relative distance and velocity in a single quantity
known as the minimal predicted distance (MPD) between an agent
and its nearby neighbors [Olivier et al. 2012]. Here, we compute
the MPD as the closest distance between the two interacting parties
assuming a linear extrapolation of their goal velocities (we assume
agent goal velocities, but not instantaneous velocities, are part of
the crowd scenario specification). Formally, given an agent A, the
MPD to its nth neighbor is computed as:

min [[(p = pn) + (v = va) 7. @)

where p and v denote the current position and goal velocity of the
agent A, and p, and v, denote the position and goal velocity of the
neighbor, respectively.

In order to capture how MPD varies spatially, we use an egocen-
tric descriptor, x, which records the local crowd conditions from
the perspective of the agent as MPD values along evenly-spaced
radial intervals around the agent A. Similar to many visibility-based
approaches [Charalambous and Chrysanthou 2014; Kapadia et al.
2012; Ondfej et al. 2010], we consider a local neighborhood around
A, and assume a local coordinate system centered at the agent and
oriented towards its goal velocity. As such, in constructing the agent
descriptor, x, the first ray is always oriented towards the agent’s
goal direction (and the rest sampled in a clockwise fashion) so as
to provide a meaningful overall orientation to the rays. For each
interval we determine the closest agent or static obstacle to agent
A using ray tracing. If such a neighbor exists, we store the MPD to
this agent.
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Fig. 6. Example of a minimal predicted distance (MPD) descriptor that
captures the crowd scenario as seen from the perspective of the red agent.

Similar to [Charalambous and Chrysanthou 2014], we found 60
angular segments to be sufficient for estimating the agent’s descrip-
tor. In addition, we only consider neighboring agents that are within
a 5 m radius from the agent A, and static obstacles that are 1 m away.
If no neighbor is traced along a given ray, the corresponding MPD
value is set to a default maximum of 5 m. We also clamp the MPD
values to the maximum value, and normalize the results accord-
ingly. Formally, the descriptor x € R® of an agent is a vector of 60
MPD values, where each value denotes a mapping [-r, 7] — [0, 1].
In total, we extracted 7,946 frames from the ten crowd datasets
described in Section 3.1. From the 7,946 scenarios, we computed
68,086 descriptors. As an example, Figure 6 visualizes the descriptor
corresponding to the red highlighted agent.

Importantly, this MPD-based formulation uses only information
that is available in the crowd scenario description (e.g., it does not
rely on any future crowd positions). This allows us to compute
a descriptor from just the scenario description, while still being
inherently anticipatory in nature, accounting for the expected fu-
ture interactions of the agents through their relative positions and
velocities.

5.2 Manifold Learning

We can use the approximately 68,000 MPD descriptors from real
pedestrians to directly learn a low-dimensional Crowd Space mani-
fold which captures the structure and variation seen in the crowd
datasets. In order to create balanced training data which is repre-
sentative of the entire variety of training scenarios, we randomly
select an equal number of stratified samples from each dataset.

Generically, let X € R™*d pe stratified training data obtained
after concatenating the m, d-dimensional, descriptors from a subset
of agents present in the crowd datasets. We are interested in learning
a mapping from X to a new representation Y € R™Xd’ where
typically d” < d. Here, we use Principal Component Analysis (PCA),
to learn a linear projector operator Y = XP, where P is an d X
d’ matrix whose columns are the eigenvectors of the covariance
XTX. By keeping only the first d’ principal components, a reduced
representation can be obtained while controlling the percentage of
variability that is retained.

While PCA provides the optimal linear model for dimensional-
ity reduction, it is important to note that our framework does not
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depend on this method specifically. Other popular (non-linear) di-
mensionality reduction techniques include Multidimensional scaling
(MDS) [Torgerson 1952], Isomap [Tenenbaum et al. 2000], multilayer
denoising autoencoders (SDAE) [Vincent et al. 2010], and Local Lin-
ear Embedding (LLE) [Roweis and Saul 2000] (projections using
these approaches are shown in Appendix E). We can quantitatively
measure these various techniques in terms of how well they main-
tain the relative distances and neighborhood relationships seen in
the original high-dimensional data [Venna et al. 2010].

To estimate how well relative distances were retained in the low
dimensional space, we used the six datasets depicted in Figure 1 and
extracted 2,500 MPD descriptors per dataset. We then took a random
subset of 10,000 distances between pairs of samples in the original
60D space and the same sample pairs in various lower dimensional
spaces, and computed the Spearman’s rank correlation coefficient
between each low-D set and the 60D space. Ideally, these distances
should be exactly correlated indicating the projection preserves
all of the global structure of the full space. In practice, Table 2a
shows that PCA maintains the highest level of correlation across all
methods tested and across different number of output dimensions.
Corresponding scatterplots, known as Shepard diagrams [Shepard
1980], are shown in Appendix E.

We can focus more on the quality of the local structure by com-
puting the generalization error of each space [van Der Maaten et al.
2009] (as estimated by a 1-NN classifier of the source video dataset
for each given MPD descriptor). Table 2b reports these results, where
again PCA shows the best performance among the different methods.
These findings are consistent with prior work that has suggested
that many non-linear techniques do not outperform classical princi-
pal component analysis for many real-world tasks [van Der Maaten
et al. 2009; Venna et al. 2010].

For any dimensionality reduction technique, the optimal number
of reduced dimensions d’ depends on the task at hand. For the
purposes of visualization, 2D projections (d’ = 2) are typically the
most appropriate. While using too few dimensions fails to capture
all of the structure of the data, using too many increases the risk
of overfitting and requires more training data to achieve the same
amount of generalizability. In fact, for our dataset, the generalization
error of the original 60D data is slightly higher than with PCA at
6-10 dimensions, due to the reduced space capturing less of the
unimportant variation (i.e., noise). Below, unless otherwise stated,
we use a d’ of 6, to balance these tradeoffs.

5.3 Crowd Space Analysis

Figure 1 shows a 2D projection of the crowd space obtained with
PCA using 2,500 MPD descriptors from six datasets, where each
sample is colored according to the dataset from which it was gener-
ated. Even this 2D projection captures a semantic meaningful crowd
space. For example, the primary direction (x-axis) of the embed-
ding corresponds closely to the density of the scenario, going from
regions of dense interactions (left) to sparse interactions (right).
The orthogonal axis in this projection is less direct, but is closely
related to whether agents in the crowd are heading into or out of
congestion (top and bottom, respectively) or if they are in the middle
of it (center). In addition, similar agent-based descriptors tend to
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Table 2. Analysis of various dimensionality reduction techniques at different numbers of output dimensions. (a) Rank-correlation analysis of how well the
reduced space preserves the (high-dimensional) distances between data points. (b) The generalization error as measured by 1-NN video dataset misclassification

rate. For both metrics, PCA performs the best across all output dimensions.

(a) Distance Correlations (higher is better)
# Dim. ‘ PCA SDAE MDS Isomap LLE

2D 931 .824 896 925 478
6D 975 963 931 970 .347
10D 985 .956 944 971 .256

naturally cluster together independent of the crowd dataset they
came from, indicating the ability of our linear projector to learn the
high-dimensional structure of the MPD-based input data.

Classification Accuracy. We can quantify how well the derived Crowd
Space captures high-level, semantically meaningful information
about the structure of the crowd, by training a k-nearest neighbors
(k-NN) classifier using this space. Here, we use the label of which
dataset a given MPD descriptor came from as training. Because
nearby descriptors in a (smooth) low-D space should share consis-
tent labels, a neighbor-based classifier should be able to reliably
label novel samples with high accuracy.

Formally, given a scenario descriptor 7 = {x1,...,X,} (i.e., con-
sisting of n per-agent MPD descriptors), we need to predict its
dataset label y which can take one of K different known values. To
do so, we need to estimate the probability p(y; = 1| P, I') for each
Jj € [1,K]. Since the scenario consists of n agents, we use a plurality
voting scheme to determine such probability (relying on a maximum
likelihood assumption). In particular, we use the learned operator
P to project each agent descriptor x; € I to the PCA crowd space
and identify its k-closest training examples. The most represented
dataset label by the k X n nearest neighbors is considered as the 7’s
predicted dataset label.

Results. Here we focus on the six datasets used to learn the space
depicted in Figure 1. To prevent overfitting, we partitioned the
scenarios from each dataset into ten consecutive subsets of frames
and employed a 10-fold cross validation, where in each fold one
of the subsets of every dataset is retained as testing data and the
remaining nine subsets are used as training scenarios. This allows us
to use all scenarios both for training and testing, with each scenario
being used for testing exactly once. The results from the 10 folds
can then be averaged to determine the classification accuracy which
varies with the number of components used to define the PCA
space. With a 2D space shown in Figure 1, we have 63.31% accuracy.
Increasing the number of components increases the accuracy until a
plateau at six components resulting in 80.45% classification accuracy.
Figure 7 shows the corresponding confusion matrix. Misclassified
scenarios tend to appear primarily between datasets that share many
similar features such as Bottleneck and Bottleneck_long (both dense
bottleneck scenarios) or Snow_eth and Students (both have agents
who commonly overtake slower pedestrians), further validating our
PCA-based dimensionality reduction approach.

(b) Generalization Error (lower is better)

# Dim. ‘ PCA SDAE MDS Isomap LLE

2D 442 464 474 448 524
6D 152 232 542 213 376
10D 113 .200 545 196 .326

1
Oneway 0.03
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Fig. 7. Percentage of correct and incorrect scenario classification for six
crowd datasets obtained using PCA with 6 principal components and our
voting scheme with 5 nearest neighbors. Datasets that contain many crowds
in similar scenarios tend to be confused (e.g., both Students and Berlin-180
contain bidirectional flows of pedestrians) . All reported results are the
averages over 10 folds.

6 SIMULATION METHOD ANALYSIS

We can now combine our localized estimate of simulation accuracy
(Section 4) with our Crowd Space (Section 5) to generate a map
of the expected accuracy of different simulation methods across
different potential crowd scenarios. The result is shown in Figure 8,
where each local descriptor sample is colored according to its cor-
responding accuracy as measured by our modified entropy metric.
This type of visualization can provide insight both on the (absolute)
accuracy of a given simulation method in different types of scenar-
ios, and as to the relative merit of different simulation methods on
different types of scenarios.

Recall that in the 2D projection of the Crowd Space used here
(c.f. Figure 1), the horizontal axis corresponds strongly to the local
density and the north (or south) portions represent regions were
agents are entering into (or exiting from) local congestion. With
these correlations in mind, several important trends can be seen
in Figure 1. For example, nearly all simulation methods perform
better in low density scenarios than high density ones, reflecting
the fact that human-like navigation in dense crowds remains a
challenging problem for the field. Additionally, while there is a loose
ordering of accuracy between the methods (Social Forces generally

ACM Transactions on Graphics, Vol. 37, No. 6, Article 186. Publication date: November 2018.



186:10 « loannis Karamouzas, Nick Sohre, Ran Hu, and Stephen J. Guy

Vision-based

1.5

0.5

-1

TTC Forces Entropy

Fig. 8. Mapping of the local simulation accuracy (as computed by our modified entropy metric) for the Crowd Space shown in Figure 1. The lower the entropy

score, the better the simulated agent matches the behavior of the real pedestrian.

under-performing and TTC forces generally over-performing), each
method has some regions where it performs very strongly.

Some methods, such at PAM and TTC Forces, show a strong
up-down asymmetry on the y-axis, especially in dense scenarios,
where they have worse performance at the bottom of the Crowd
Space (i.e., exiting scenarios). This could suggest that these methods
underestimate the effect of neighbors that are behind an agent. This
is especially likely in the case of TTC forces where very close agents
are ignored if an agent is moving away from them (i.e., time to
collision is less than 0).

It is also interesting to see where similar methods differ in perfor-
mance. ORCA and T-Model were both derived from analyzing the ge-
ometry of collision dynamics but show fairly different entropies. The
T-Model accounts only for pair-wise interactions whereas ORCA
agents more robustly account for the simultaneous set of all neigh-
bors. This may be what contributes to ORCA outperforming T-
Model in dense scenarios. However, this comes as a cost as ORCA
typically under-performs in medium density crowds (center of the
space), and is noticeable worse than the T-Model here.

We can facilitate a direct comparison between these two methods
by highlighting for each point in the Crowd Space whether there are
more nearby neighboring samples with lower entropy metric scores
for one method than another. Figure 9a shows a direct pair-wise
comparison for every point in Crowd Space based on if ORCA or
T-Model is the predicted winner (if there is a tie, both are considered
winners). As can be seen, there are several regions where each
method outperforms the other. Figure 9b shows a similar comparison
between PAM and TTC Forces (two methods based on anticipatory
avoidance forces). Here, PAM and TTC forces have very similar
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performance in many scenarios, but TTC Forces has consistently
higher accuracy in dense scenarios. In the following section, we
propose a method to automatically apply this type of predictive
analysis in determining the best simulation method to use on new
crowd scenarios.

(b) PAM vs TTC Forces

(a) ORCA vs T-Model

.

ORCA Models equal T-Model PAM Models equal TTC Forces
better better better . better

Fig. 9. Pairwise model comparison between (a) ORCA and T-Model and
(b) PAM and TTC Forces. Coloring indicates what percentage of the 5
nearest neighboring samples have the lowest predicted simulation error
(with a mean filtering applied for smoothing). White regions indicate the
two methods performed equally well.

7 CROWD SIMULATION PREDICTION

Here, we consider the task of predicting which simulation method
is the most accurate to use in a given scenario. We assume that be-
cause there is uncertainty in measuring the accuracy of a simulation
method, multiple approaches may be equally well suited for any
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Fig. 10. (a) Overview of our simulation method prediction pipeline. Given a new crowd scenario (1), we decompose it to a collection of per-agent descriptors
(2), where each descriptor provides an egocentric representation of the scenario from the eyes of the agent based on the concept of minimal predicted distance.
Having learned an embedding from real world crowd datasets, we project each agent descriptor to the embedding (3), and employ a voting scheme (4) to

predict the class of the input interaction scenario.

given scenario leading to the potential of multiple best methods for
a given scenario.

7.1 Voting-Based Framework

The intuitive, neighbor-based, approach to analyzing the best method
for a given scenario presented in the previous section can be formal-
ized as a k-nearest neighbor framework. That is, we look at which
samples in our data lie nearby, as measured on the low-dimensional
manifold, to the feature descriptors that make up the crowd scenario
in question. However, this approach will provide a separate label for
each agent in the scenario. To develop a single label for the scenario,
each agent votes for each simulation method based on whether or
not its percentage of nearby neighbors is above a (learned) thresh-
old. Any simulation method with enough votes above the learned
threshold is declared a predicted winner for this crowd scenario. An
overview of this approach is given in Figure 10.

More formally, we assume we are a given a scenario descriptor
I ={x1,...,X,} consisting of n MPD descriptors, and we want
to estimate the performance of K crowd simulation methods. To
solve this problem, we associate each agent-based MPD descriptor
in our training data with a binary vector t € {0, 1}X, where its
jth element denotes whether the method j € [1,K] is suited for
simulating the agent. To compute the vector t for the agent, we use
for each method its corresponding entropy metric (see Figure 8) to
determine whether it has the best entropy score, or it is within a
small threshold of the best score. Given the scenario J in question,
we project each agent descriptor x; € J to the crowd space and
compute its k-nearest neighbors. For each simulation method j, we
can then determine the percentage of k X n neighbors that can be
simulated by this method. If this percentage is above a threshold,
we consider the method j suitable for the testing scenario 7.

Parameter Tuning. This prediction approach leaves a number of
hyperparameters opened for tuning. This includes how many neigh-
bors to consider in the k-NN neighborhood, and what threshold of
voting is needed to declare a simulation method as a winner. All of
these were fit using a three-way testing-training-validation split as
detailed in Appendix F.

7.2 Prediction Accuracy

We evaluated the prediction performance on scenarios from the
ten datasets described in Section 3.1. To compute the accuracy of
the resulting classifier, we used a 10-fold cross validation scheme.
Because a simulation method is very likely to exhibit similar behav-
ior in scenarios extracted from the same dataset, we employed a
leave-4-out cross validation scheme, where we randomly select six
of the datasets as training data and the remaining four datasets are
retained as testing data. In each fold, we randomly select an equal
number of MPD descriptors from the training datasets to re-learn
the PCA space, and compute the accuracy from the testing datasets.

Accuracy results from a single fold are shown in Figure 11a based
on 4 datasets that were not in the training environment. Since this
is a multi-label and multi-class classification problem, the standard
definition of accuracy is not directly applicable. Instead, we report
one minus the hamming loss normalized over all testing examples
and classes [Tsoumakas and Katakis 2006]. Here, the Church dataset
has the lowest accuracy, likely because several of the participants
are walking in intentionally silly or playful manner that is unlike
any of the other training data used in the fold’s training.

The average accuracy over all 10 folds is 83.56% + 4.57% (here
scenarios where no simulation method is winning for the major-
ity of agents are removed from testing). Importantly, as shown in
Figure 11b, our approach had a 87.04% (+ 3.53%) success rate in
predicting the best simulation method to use for a given scenario
(rank-1 accuracy). In almost every case where we mis-predicted
the winner, we instead predicted the second best method (i.e., the
method with the second highest vote total). Our accuracy at pre-
dicting either the best or second best method (rank-2 accuracy) was
97.53% (+ 1.71%).

7.3 Deep Neural Networks

The overall, voting-based prediction framework described in Fig-
ure 10 can naturally support different methods for manifold learning
(step 3) and different agent prediction methods (step 4). While k-NN
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Fig. 11. (left) Method prediction accuracy for the datasets not used in the
training of Figure 1. (right) Rank accuracy averaged across 10 folds. Our
pipeline predicts the best method 87% of the time and one of the two best
methods 97% of the time.

prediction across a PCA-learned manifold gives high prediction accu-
racy, deep neural networks provide a natural alternative, especially
given the large amount of data we have available for training. In-
stead of PCA, for example, we can employ a deep network based on
stacking layers of denoising autoencoders (SDAE), where the input
units of each autoencoder are first corrupted by additive Gaussian
noise, to learn robust representations of complex data [Vincent et al.
2010]. Instead of k-NN, we can use a fully connected network to
predict the class of an agent, based on it’s SDAE-encoded features.

To create our deep network, we pretrained a 100-100-100 SDAE
network using a zero mean Gaussian noise with 0.1 variance. For
each autoencoder we used an affine mapping followed by hyperbolic
tangent to encode the visible units to a hidden representation. An
affine+tanh decoder is then used to map the hidden representation
back to the input space and reconstruct the input data. Each au-
toencoder was pretrained using conjugate gradient minimization
with a squared reconstruction error loss function. As with PCA, the
input data X € R"™*® was obtained after concatenating m MPD
descriptors from a subset of agents present in the crowd datasets.
Using the pretrained SDAE network, we connected K logistic units
to the top layer that denote the feasibility of using each method
to simulate an input agent, and fine-tuned the whole network by
minimizing the cross-entropy error with respect to the winning
simulation method(s) for the agent.

Similar to k-NN, we can use each output of this network to de-
termine the probability that a method is likely to have the highest
accuracy. If this percentage is above a (learned) threshold, we mark
this method as a winner. As with the k-NN-based predictions, we
used a 10-fold cross validation scheme where we stratified our folds
by dataset using a 6-4 pattern (i.e., train on 6 datasets, test on the
4 holdout, repeat 10 times), to compute the prediction accuracy.
Overall, the two methods performed similarly with deep neural net-
work showing a slight improvement over k-NN both in the rank-1
accuracy (88.59% vs 87.04%) and rank-2 accuracy (98.46% vs 97.53%).
However, in some situations this small increase in accuracy may be
worth the additional training time.

7.4 Applications

Because the overall prediction framework we propose requires no
information besides the initial crowd state, it can be used in part of
an animation assistance tool to provide automatic recommendations
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of the best simulation method to use in a given scenario. Impor-
tantly, this framework can be applied to entirely new configurations
never seen in training, needing only the environment and initial
and goal conditions of the crowd. As a result, we can evaluate the
likely accuracy of a simulation method without needing to run the
simulation so long as the local conditions do not significantly change
over the lifetime of the agents (which is true for all our datasets); if
the agents enter substantially new conditions, though, it would be
necessary to gather new MPD descriptors and predictions.

In the supplementary video, we show results for two user-created
scenarios: a bi-directional hallway scenario, and a circle scenario
where agents are tasked to walk to antipodal points in circle, a task
unlike any found in our training data. Here, our framework pre-
dicts the Vision model will outperform ORCA, and the subsequent
simulations show the motion from ORCA is indeed more halting
and less smooth. For truly user-drawn scenarios, there is no known
right motion, so we cannot compute entropy numbers to compute
our prediction accuracy. However, the supplementary video shows
results from several of the hold-out scenarios from our folds, high-
lighting the predictive power of our framework in data that it has
not seen in training.

8 DISCUSSION AND CONCLUSION

We introduced a new method for analyzing crowd simulation accu-
racy based on a novel low dimensional crowd space. We have shown
both how this space can provide interesting insights into the relative
merit of different simulation techniques, and how our proposed per-
agent, voting-based classifier can be used to automate predictions
of the best method to use in a given scenario with high accuracy. To
this end, we also introduced a modification of the entropy metric to
allow localized (per-agent, per-time step) estimations of simulation
accuracy. This modified entropy metric can also be used as an anal-
ysis tools on its own by highlighting aspects of real-world crowd
datasets that different simulation methods fail to capture.

It is interesting to consider how our method may be applied to pre-
dict perceptual quality (e.g., as estimated from a user study) rather
than simulation accuracy (as computed by our Entropy metric). In
theory, it is possible to simply replace the entropy labeling with a
“looked best" manual labeling. However, visually inspecting simu-
lations is a tedious task, especially given the large datasets needed
to get high-quality results. Additionally, while visual simulation
quality is often correlated with prediction accuracy, there are other
important aspects such as the rendering, animation, camera place-
ment, etc., which can have a large impact. Experts and lay-people
may also differ on which simulations look best, and small errors in
accuracy that are difficult to notice at first may be magnified after
seeing them happen repeatedly.

Limitations. There are some important limitations of our approach
that are worth emphasizing. Most notable, being a data-driven ap-
proach, the quality of our results is limited to the scope and size
of datasets used in training. Relatedly, individual pedestrians are
rarely tracked for more than several seconds, preventing us from
training on long term changes in simulation accuracy. Likewise, the
difficulty of inferring a person’s true desired position and velocity
from noisy trajectories can create error in the crowd scenarios we



extract from the tracked pedestrian datasets. In terms of the learn-
ing approach, our descriptor of a crowd scenario is broken into an
unstructured collection of per-agent, MPD-based descriptors. This
representation can lose some of the long-range structure inherent
in certain scenarios.

Additionally, our proposed voting-based framework treats each
agent equally, which can dampen the effect of extreme outliers
(e.g., the negative effect of a small number of very poorly simu-
lated agents can be underestimated). Overall, the high accuracy of
our approach suggest these issues had only a limited effect on the
scenarios contained in our datasets, but there are of course many
other important simulation scenarios than those we were able to
test. Another limitation stems from what is being measured as accu-
racy through the entropy metric. The statistical approach used here
can be biased in favor of methods that predict the correct average
behavior but fail to capture some of the interesting (though unusual)
deviations from average.

Future work. Looking forward, we see many possibilities for expand-
ing the scope of this work and increasing its potential impact. In
addition to using the Crowd Space to predict simulation accuracy
(as measured by the modified entropy metric), we can look at other
important measures of quality such as path smoothness, energy
minimization, or number of collisions. A similar manifold-based
approach might also be applicable to other domains where multiple
competing simulation methods are popular such as character ani-
mations or modeling the motion of plants and animals. Though, to
be useful, there would need to exist large datasets of reference real
world motions.

We also hope to address some of the above limitations in fu-
ture work. In particular, ideas from object recognition which use
multi-scale, image-based (i.e., sampling-based) feature descriptors
to represent objects at different scales may also be applied to ex-
plicitly capture the structure in crowd simulations. We would also
like to incorporate additional simulation methods to our framework,
such as the recent work in [Wolinski et al. 2016] that provides a
probabilistic collision prediction scheme for the agents. We note
that in our current work we tested the simulation accuracy of six
methods using their default simulation parameters (as provided
in the corresponding papers and/or software libraries). However,
besides different methods, our approach can also support the testing
of the same method but simulated with different sets of parameters,
a mixture of the two, etc. As such, we are excited about the prospect
of building a tool which can provide visual analysis and automated
insights as to the best simulation models to use in various scenarios.

Lastly, we are interested in exploring the potential of using our
approach to directly drive a simulation method. This could be in
the form of an AI which chooses a new simulation method for
each frame (or each agent) based on the best option for the current
conditions.
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