
CONTEXT-REFINED NEURAL CELL INSTANCE SEGMENTATION

Jingru Yi1, Pengxiang Wu1, Qiaoying Huang1, Hui Qu1, Daniel J. Hoeppner2, Dimitris N. Metaxas1

1 Department of Computer Science, Rutgers University, NJ, USA
2 Astellas Research Institute of America, IL, USA

ABSTRACT

Neural cell instance segmentation serves as a valuable tool
for the study of neural cell behaviors. In general, the instance
segmentation methods compute the region of interest (ROI)
through a detection module, where the segmentation is sub-
sequently performed. To precisely segment the neural cells,
especially their tiny and slender structures, existing work em-
ploys a u-net structure to preserve the low-level details and
encode the high-level semantics. However, such method is
insufficient for differentiating the adjacent cells when large
parts of them are included in the same cropped ROI. To
solve this problem, we propose a context-refined neural cell
instance segmentation model that learns to suppress the back-
ground information. In particular, we employ a light-weight
context refinement module to recalibrate the deep features
and focus the model exclusively on the target cell within each
cropped ROI. The proposed model is efficient and accurate,
and experimental results demonstrate its superiority com-
pared to the state-of-the-arts. Code is available at https:
//github.com/yijingru/CRNCIS-Pytorch.

Index Terms— Neural cell analysis, instance segmenta-
tion, SSD, u-net, detection, semantic segmentation

1. INTRODUCTION

In the central nervous system, neural stem cells become spec-
ified as neurons, astrocytes, and oligodendrocytes. During
this process, cells are constantly sampling their environment,
and making transient and long-term contacts with neighbor-
ing cells via filopodia and lamellipodia. To better understand
the role of cell-cell contacts in influencing specified fates
from neural stem cells, it is critical to first identify such cell
interactions. With the aid of a real-time imaging system [1],
this could be achieved via vision techniques. In particular,
the instance segmentation serves as an important tool and can
simultaneously locate and segment the cells, thus paving the
way for cell analysis [2].

Neural cell instance segmentation generally consists of
two tasks: cell detection and segmentation, and has been
widely studied in the literature. Early works, such as [5, 6, 7],
typically employ unsupervised detectors and segmentation
strategies, and are therefore sensitive to intensity variations

noise

broken

Fig. 1. The failure segmentation examples of the state-of-
the-art neural cell instance segmentation method PNCIS [2].
Black arrows point to the broken segmentation and the noise
induced by the adjacent cell within the same cropped region.

and require careful parameter tuning for every image. In
recent years, motivated by the success of deep learning tech-
niques, a number of instance segmentation methods have
been developed. These approaches integrate the detection
and segmentation modules into a single feed-forward net-
work and have achieved remarkable success in natural image
analysis. Representative works include MNC [8], FCIS [9]
and Mask R-CNN [10]. However, these state-of-the-arts
generally are ineffective under the neural cell setting for the
following reasons. First, these methods are based on region
proposal network (RPN), where the region proposals are re-
sized to a small fixed size (e.g., 7 × 7). Consequently, they
fail to preserve the tiny and slender structures of the neural
cells. Second, these methods perform segmentation mainly
based on deep feature maps, while ignoring the rich low-level
features embedded in the shallow layers, which are beneficial
to the capture of fine details of neural cells. To address such
weakness, the recent work, PNCIS [2], proposes to employ
the VGG16 [11]-based one-stage detector SSD [3, 12] for
neural cell detection. With the predicted bounding boxes,
PNCIS crops the cell ROIs from the multi-scale feature maps
and applies a u-net [13] structure for segmentation. While
improving the instance segmentation performance, PNCIS
is ineffective in separating the neighboring cells within the
same cropped region (see Fig. 1). Such false prediction oc-

2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
Venice, Italy, April 8-11, 2019

978-1-5386-3640-4/19/$31.00 ©2019 IEEE 1028

Prediction

Prediction
S Scale

M Scale

L Scale
Prediction

Neural Cell Detection Module

C0

C1
C2

C3
C4

C5

R R

In #34 channel, the adjacent

cell features are suppressed.

In #77 channel, the target

cell features are kept.

Conv 3×3

Up-sample

Concatenation

Conv 1×1

C Combination Module

R C R C C C

Conv 3×3

Conv 3×3

Project

Neural Cell Segmentation Module

Crop

Crop

Crop

Crop

ResNet50

C0: 640×512×3 C1: 320×256 ×64 C2: 160×128 ×256 C3: 80×64×512 C4: 40×32×1024 C5: 20×16×512 (Width×Height×Channel)

GMP

GAP

C

C

C/8

C

C

+

Context Refinement ModuleR

Crop

ROI

FC FC

B
B

o
x

P
re

d
ic

ti
o

n
s

×C

Example

Fig. 2. Overview of the proposed context-refined neural cell instance segmentation network. The detection and segmentation
modules share the feature maps. C0 represents the input image. C5 is from the original SSD [3]. C1-C4 are from ResNet50
[4]. The neural cell segmentation module crops the cell regions from C0-C4 according to the bounding box predictions. For
each cell instance, the segmentation module flows the semantics from the deep layers to shallow ones through the combination
modules. The context refinement module recalibrates the deep features and highlights the most salient cell.

curs when the adjacent cells are large enough to be preserved
in the deep feature maps of u-net (see Fig. 2). On the other
hand, PNCIS tends to generate broken and discontinuous seg-
mentation for the fine structures of neural cells (see Fig. 1).

To solve the issues mentioned above, in this work we
propose a context-refined neural cell instance segmentation
model. Similar to PNCIS, the proposed model employs a
joint network consisting of SSD and u-net. However, differ-
ent from PNCIS, we incorporate a context refinement module
that recalibrates the deep features and helps the model focus
on the target cell exclusively. Therefore, our model is ca-
pable of differentiating the neighboring cells. Moreover, we
apply additional three 3 × 3 convolutional layers on the top
of the segmentation module to polish the segmentation out-
put. Finally, we improve the model efficiency by adopting a
ResNet50 [4] backbone and employing bilinear up-sampling
in u-net. Compared to the existing works, the proposed model
is more efficient and accurate, indicating a great potential to
be applied to neural cell analysis.

2. METHODS

Fig. 2 illustrates the context-refined neural cell instance seg-
mentation network. In particular, the model is comprised of

two parts: a neural cell detection module and a neural cell
segmentation module. The two modules share the same back-
bone feature maps and develop two different branches for the
corresponding two tasks. In particular, the detection module
detects the cell locations from feature maps C3, C4 and C5,
where each feature map is responsible for detecting cells at a
particular scale. The predicted bounding boxes are then used
for cropping the cell instance regions from C0-C4. Afterward,
the segmentation module receives the cropped feature maps
and outputs a segmentation result for each cell instance.

2.1. Neural Cell Detection

To locate the neural cells, we utilize a one-stage object de-
tector SSD [3] to inherit its fast detection speed. To further
improve the efficiency, we employ ResNet50 [4] as the back-
bone instead of VGG16 [11]. The three feature maps C3,
C4 and C5 are utilized to detect cells at small, medium and
large scales, respectively (see Fig. 2). For each feature map,
we divide it into 1 × 1 grids. For each grid cell, we assign
N anchors with different aspect ratios and scales. The cen-
ter of the grid cell represents the center of the anchors. In
this work, we apply aspect ratio ar = {1, 1/2, 2} on C3, and
ar = {1, 1/2, 1/3, 2, 3} on C4 and C5. For C3, C4 and C5,

1029

their minimum box scales smin are 0.01, 0.1, 0.26 respec-
tively, and the maximum box scales smax are 0.1, 0.26 and
0.42. The width and height of an anchor box are w = s

√
ar

and h = s/
√
ar, where s = smin. We add additional anchor

boxes with s =
√
sminsmax when ar = 1.

Next, we encode the ground truth boxes into the anchors
and output the encoded anchors and labels. We take the en-
coded anchors and labels as the transferred ground truth. In
particular, first, we compare each anchor with all ground truth
boxes by calculating their intersection over unions (IOUs). If
an IOU is greater than 0.5, the anchor box is labeled as pos-
itive, otherwise it is labeled as negative. Next, the anchor
boxes are updated with the locations of their best-matched
ground truth boxes. Finally, the coordinates of the encoded
anchors g′ are calculated by the offsets between the updated
anchors g and original anchors d [3]:

g′cx = (gcx − dcx)/dw, g′cy = (gcx − dcx)/dh, (1)

g′w = log(gw/dw), g′h = log(gh/dh), (2)

where (cx, cy), w, h represent the center coordinates, width,
and height of an anchor box, respectively.

The cell detection module is trained by optimizing the fol-
lowing loss function:

Ldet =
1

Npos
(Llocs + Lconf), (3)

where Llocs is the box regression loss, which is defined with
smooth L1 [14] function:

Llocs =
∑
i∈pos

∑
m∈{cx,cy,w,h}

smoothL1(l
m
i − g′mi), (4)

where l is the box predictions, and i indexes the positively la-
beled anchor boxes that we denote by pos, whose total num-
ber is Npos. Lconf is the confidence loss, defined as follows:

Lconf = −
∑
i

(xi log pi + (1− xi) log(1− pi)), (5)

where x is the encoded ground truth labels, and p is the pre-
dicted box confidence.

2.2. Neural Cell Segmentation

Given a cropped cell ROI, we employ a u-net type network
to extract the cell instance. However, as discussed above, in
some cases the model tends to mistakenly consider the neigh-
boring cells as foreground cell instance (see Fig. 1). One sim-
ple strategy to get rid of such error is to keep the largest con-
nected region. However, due to imperfect segmentation, this
would cause the small unconnected but essential details to be
discarded as well. Instead, in this work, we propose to make
the model learn to suppress the background cell signals adap-
tively. To this end and inspired by [15, 16, 17], we employ a
context refinement module (CRM) for feature refinement.

Our key motivation and insights are illustrated in Fig. 2.
Particularly, the cropped regions from C0-C4 contain two
foreground neural cells: the larger one is the target cell and
the smaller one is the background. As is shown, when the
background cell is large enough in size, its signal is still pre-
served even on the small deep feature maps. Such observation
motivates us to refine the high-level semantics encoded by
deep feature layers, which are useful for object identification.
We achieve this by applying the CRMs to the deepest cropped
regions. To be specific, suppose the cropped region feature is
x ∈ RC×H×W , where C is the number of feature channels,
H and W are the region height and width, respectively. CRM
first compresses the region features with a global max pooling
(GMP) and a global average pooling (GAP), with the output
denoted by xGMP ∈ RC and xGAP ∈ RC , respectively. The
GMP encourages the network to identify the most important
features, such as those from target cell; while the GAP drives
the network to examine the extent of the cropped region and
find all distinctive parts of an object. Next, the channels of
xGMP and xGAP are squeezed into a smaller size C ′ = C/8
by a shared fully-connected (FC) layer, which captures the
most meaningful features and their variations. This is fol-
lowed by a decoder FC layer for lifting the channels of xGMP

and xGAP into the original size C. Then we combine the two
features by summation x′ = xGMP + xGAP , which high-
lights the feature channels related to the target cell. Finally
we normalize the feature vector x′ by the Sigmoid function
and perform channel-wise production between x′ and x to
generate the output features.

Apart from CRM, we also apply the combination modules
to the relatively shallow layers, in order to flow the refined
semantics from the deepest to the shallowest feature maps. As
a result, the model is able to separate adjacent cells even on
the shallowest layers, as is shown in Fig. 2. From Fig. 1 it can
be observed that our method is able to suppress the undesired
background cell and keep the target foreground cell.

The segmentation module can be trained with the follow-
ing binary cross-entropy loss [2]:

Lseg = − 1

N

∑
i,j

(tij log pij + (1− tij) log(1− pij)), (6)

where t and p represent the ground truth masks and the pre-
dicted segmentation probability maps respectively, and N is
the total number of pixels considered in computation.

3. EXPERIMENTS

We use the same neural cell dataset as PNCIS [2]. The dataset
is sampled from the time-lapse microscopy videos, and con-
sists of 386 training images, 129 validation images and 129
testing images. The size of an input image is 512 × 640. As
the dataset is small, we finetune the ResNet50 with weights
pre-trained on ImageNet. The other weights of the model

1030

(a) Input Image (b) Ground Truth (c) MNC (d) FCIS (e) Mask R-CNN (f) PNCIS (g) Ours

Fig. 3. Qualitative comparisons among different methods. White arrows indicate the prediction errors of PNCIS [2].

are initialized from a standard Gaussian distribution. We
employ data augmentation and early-stop strategies to avoid
over-fitting. The proposed model can be trained end-to-end.
However, to accelerate the training, in practice we first train
the detection module for 400 epochs with batch size 36 on 4
GPUs. Then we freeze its weights and train the segmentation
module for 120 epochs with batch size 10 on a single GPU.
The model is implemented with PyTorch [18]. We compare
our method with several state-of-the-arts, including MNC [8],
FCIS [9], Mask R-CNN [10] and PNCIS [2]. All methods are
tested on a single NVIDIA K40 GPU.

As in [2, 8, 9, 10], we use the average precision (AP)
[19] at mask-level IOU threshold of 0.5 and 0.7 (AP@0.5,
AP@0.7) to evaluate the instance segmentation performance.
The AP metric summarizes the shape of precision/recall
curve, and measures both instance detection and segmenta-
tion accuracies. We also report the average mask-level IOU
between the predicted segmentation masks and the ground
truths at threshold of 0.5 and 0.7 (IOU@0.5, IOU@0.7), as
in PNCIS [2].

Compared to the state-of-the-arts, the proposed method
achieves the best accuracy and the highest efficiency (see
Table 1). Fig. 3 illustrates the qualitative results. It can be ob-
served that both MNC and FCIS achieve rough segmentations
as they only utilize the top feature maps. Moreover, FCIS is
weak in detecting small objects. In contrast, Mask R-CNN
achieves better detection and segmentation performance be-
cause it distributes the anchors to multi-scale feature maps.
Moreover, it adopts the feature pyramid network (FPN) to
encourage the semantic communication. However, Mask
R-CNN is more computationally expensive compared to the
other methods, and due to the failure to consider the shal-
low layers which are rich in low-level details, Mask R-CNN
cannot capture the slender protrusions of the neural cells.
Compared to all these methods, PNCIS achieves much bet-

Model Time (s) AP@0.5 AP@0.7 IOU@0.5 IOU@0.7
MNC [8] 0.475 48.72 11.37 62.73 75.47
FCIS [9] 0.213 66.02 7.13 64.85 75.07
Mask R-CNN [10] 0.749 66.02 32.10 72.10 79.30
PNCIS [2] 0.381 85.70 70.94 78.84 81.22
Ours 0.092 89.15 71.48 79.13 81.47

Table 1. Comparison of the segmentation results from differ-
ent methods. Time is measured on an NVIDIA K40 GPU.

ter performance due to the u-net structure, which explicitly
utilizes the shallow layers and effectively combines the se-
mantics from different layers. However, for a given target
cell, when the neighboring cells are large enough and within
the same cropped region, in general, PNCIS is unable to sep-
arate them (e.g., those pointed by the white arrows in Fig. 3).
By comparison, with the proposed context refinement mod-
ule, our model is able to suppress such mistakes. Besides, the
segmentation results of the slender structures by our method
are more continuous with fewer breaks. Finally, our model
has fewer parameters (7M) than PNCIS (35M) and is quite
efficient. These properties indicate that our method has a
great potential to be applied to neural cell analysis.

4. CONCLUSION

In this work, we propose a context-refined instance segmen-
tation model for neural cells. With the context refinement
module, our method is able to recalibrate the deep features
and guide the model to suppress the background information
from the adjacent cells. The proposed model is efficient in
inference and achieves accurate segmentation performance.
These characteristics suggest that our model could be well
applied to and helpful for the study of neural cells.

1031

5. REFERENCES

[1] Rea Ravin, Daniel J Hoeppner, David M Munno, Li-
ran Carmel, Jim Sullivan, David L Levitt, Jennifer L
Miller, Christopher Athaide, David M Panchision, and
Ronald DG McKay, “Potency and fate specification in
cns stem cell populations in vitro,” Cell stem cell, vol.
3, no. 6, pp. 670–680, 2008.

[2] Jingru Yi, Pengxiang Wu, Daniel J Hoeppner, and Dim-
itris Metaxas, “Pixel-wise neural cell instance segmen-
tation,” in ISBI. IEEE, 2018, pp. 373–377.

[3] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg, “Ssd: Single shot multibox detector,” in ECCV.
Springer, 2016, pp. 21–37.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
CVPR, 2016, pp. 770–778.

[5] Karin Althoff, Johan Degerman, and Tomas Gustavsson,
“Combined segmentation and tracking of neural stem-
cells,” in SCIA. Springer, 2005, pp. 282–291.

[6] Amalka Pinidiyaarachchi and Carolina Wählby,
“Seeded watersheds for combined segmentation and
tracking of cells,” in ICIAP. Springer, 2005, pp.
336–343.

[7] Huiming Peng, Xiaobo Zhou, Fuhai Li, Xiaofeng
Xia, and Stephen TC Wong, “Integrating multi-scale
blob/curvilinear detector techniques and multi-level sets
for automated segmentation of stem cell images,” in
ISBI: From Nano to Macro. IEEE, 2009, pp. 1362–1365.

[8] Jifeng Dai, Kaiming He, and Jian Sun, “Instance-
aware semantic segmentation via multi-task network
cascades,” in CVPR, 2016, pp. 3150–3158.

[9] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolu-
tional instance-aware semantic segmentation,” in CVPR,
July 2017, pp. 4438–4446.

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick, “Mask r-cnn,” in ICCV. IEEE, 2017, pp.
2980–2988.

[11] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” ICLR, 2014.

[12] Jingru Yi, Pengxiang Wu, Daniel J Hoeppner, and Dim-
itris N Metaxas, “Fast neural cell detection using light-
weight ssd neural network.,” in CVPR-W, 2017, pp.
860–864.

[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” in MICCAI. Springer, 2015, pp. 234–
241.

[14] Ross Girshick, “Fast r-cnn,” in CVPR, 2015, pp. 1440–
1448.

[15] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and
In So Kweon, “Cbam: Convolutional block attention
module,” in ECCV, 2018.

[16] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef
Sivic, “Is object localization for free?-weakly-
supervised learning with convolutional neural net-
works,” in CVPR, 2015, pp. 685–694.

[17] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude
Oliva, and Antonio Torralba, “Learning deep features
for discriminative localization,” in CVPR, 2016, pp.
2921–2929.

[18] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer, “Au-
tomatic differentiation in pytorch,” in NIPS-W, 2017.

[19] Mark Everingham, Luc Van Gool, Christopher KI
Williams, John Winn, and Andrew Zisserman, “The
pascal visual object classes (voc) challenge,” Interna-
tional journal of computer vision, vol. 88, no. 2, pp.
303–338, 2010.

1032

