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Abstract—360° video on-demand streaming is a key com-
ponent of the emerging virtual reality and augmented reality
applications. In such applications, sending the entire 360° video
demands extremely high network bandwidth that may not be
affordable by today’s networks. On the other hand, sending only
the predicted user’s field of view (FoV) is not viable as it is hard
to achieve perfect FoV prediction in on-demand streaming, where
it is better to prefetch the video multiple seconds ahead, to absorb
the network bandwidth fluctuation. This paper proposes a two-
tier solution, where the base tier delivers the entire 360° span
at a lower quality with a long prefetching buffer, and the
enhancement tier delivers the predicted FoV at a higher quality
using a short buffer. The base tier provides robustness to both
network bandwidth variations and FoV prediction errors. The
enhancement tier improves the video quality if it is delivered in
time and FoV prediction is accurate. We study the optimal rate
allocation between the two tiers and buffer provisioning for the
enhancement tier to achieve the optimal trade-off between video
quality and streaming robustness. We also design periodic and
adaptive optimization frameworks to adapt to the bandwidth
variations and FoV prediction errors in realtime. Through
simulations driven by real LTE and WiGig network bandwidth
traces and user FoV traces, we demonstrate that the proposed
two-tier systems can achieve a high-level of quality-of-experience
in the face of network bandwidth and user FoV dynamics.

Index Terms—360° video, on-demand video streaming, virtual
reality.

I. INTRODUCTION

IRTUAL Reality (VR) and Augmented Reality (AR)

technologies have become popular in recent years.
Many VR/AR applications are rapidly commercialized in
different sectors, including movie and gaming, education and
training, healthcare, advertising and social media, etc. Many
VR/AR applications involve on-demand streaming of 360°
video. Therefore, the delivery of ultra high quality 360°
video is critically important for the wide adoption of VR/AR.
Compared with traditional video streaming, 360° video
streaming confronts unique new challenges. Firstly, to deliver
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an immersive VR experience, 360° video has much higher
bandwidth requirement. A premium quality 360° video with
120 frames-per-second and 24K resolution can easily consume
a bandwidth of multiple Gigabits-per-second (Gbps) [1]. For
smooth rendering, video has to be streamed consistently at
high rate. Meanwhile, 360° video streaming is constantly
driven by user Field-of-View (FoV) changes: at any given
time a user only watches a video scene within a FoV centered
at certain direction and with limited horizontal and vertical
spans; a user can change her FoV at any time, and expect
to see the video scene in the new FoV immediately after her
head movement. Recent subjective user study has suggested
that if the video rendering latency after a FoV change, the so-
called Motion-to-Photon (MTP) latency, is above twenty
milliseconds, users will experience motion sickness [1]. This
imposes stringent latency requirement for 360° video delivery.

In this paper, we propose a novel two-tier 360° video
streaming framework to maximize the rendered video quality,
while maintaining the streaming continuity and robustness
against the inherent dynamics in both user FoV and network
bandwidth. In the proposed framework, the server codes and
stores video segments in two tiers: the base tier (BT) contains
video chunks covering the full 360° span coded with a low
rate, whereas the enhancement tier (ET) includes video chunks
covering overlapping viewports with limited view spans and
are coded with multiple rates. The receiver will download the
BT chunks with a long prefetching buffer to combat bandwidth
variations, and request the ET chunks that cover the predicted
FoVs using a short prefetching buffer to ensure sufficiently
high view prediction accuracy. At the display time for each
video segment, the user’s FoV will be rendered in high quality
from the ET chunk if it is already in the buffer and the FoV
prediction is correct. Otherwise, the BT chunk will be used to
generate a low quality rendering. The base tier stream provides
robustness to both network bandwidth fluctuation and FoV
prediction errors. Note that this robustness is achieved with
a slight redundancy, as the predicted FoV region is delivered
twice: first in the base tier and again in the enhancement tier.
This redundancy can be minimized by using layered coding
between the BT and ET chunks. However, for system operation
simplicity, non-layered coding may be preferred in practice.

Within the proposed two-tier streaming architecture,
we have investigated two-tier rate allocation and chunk
scheduling to achieve the optimal trade-off between video
quality and streaming robustness. Our main contributions
are as follows.

1) We propose a novel two-tier on-demand 360° video
streaming framework which features prioritized BT
chunk downloading and opportunistic ET chunk
downloading to provide robustness to both network and
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FoV dynamics, while maximizing the rendered video
quality.

2) We analytically study the optimization of the target ET
buffer length and rate allocation between the BT and
ET. Our study brings forth important understanding
about the interplay between the key components of 360°
video streaming, including FoV prediction accuracy,
chunk delivery rate, rate allocation, and the ET buffer
length (which equals to FoV prediction horizon).

3) We develop algorithms that dynamically adjust the rate
allocation and ET buffer length based on the real-time
measurement of the network bandwidth statistics and
FoV prediction accuracy as a function of the ET
buffer length.

4) We conduct extensive experiments driven by real
WiGig 802.11ad and LTE bandwidth traces with differ-
ent levels of volatilities and real user FoV traces with
diverse head movement patterns, and demonstrate that
the proposed system provides substantial improvement
in the QoE over two benchmark systems (streaming the
entire 360° video and streaming only the predicted FoV).

Preliminary results for the proposed system have been
described in [2]-[4]. Specifically, the two-tier system was
first described in [2] without optimization of the chunk
scheduling and other system parameters; the prioritized chunk
scheduling algorithm was described in [3]; and optimization
of buffer length and rate allocation was described in [4].
This paper brings these prior results together, and also for
the first time presents dynamic optimization of the buffer
length and rate allocation based on real-time measurement
of the network and user behaviors, which is critical for
the adoption of the proposed system in a practical dynamic
network.

The rest of the paper is organized as follows. Background
and related work on 360° video streaming are reviewed in
Sec. II. The optimization of the buffer length and rate alloca-
tion is studied in Sec. III. Dynamic adaptation is presented in
Sec. III-D. Experimental results are presented in Sec. V. The
paper is concluded in Sec. VI.

II. BACKGROUND AND RELATED WORK

In recent years, numerous solutions have been proposed to
address 360° video compression and delivery, as categorized
into the following two major categories:

A. Source Representation

In a typical 360° video compression and delivery frame-
work, the input 360° videos, represented in a native projection
format, e.g., equirectangular (ERP), are sometimes converted
into another projection format, e.g., cubemap (CMP) [5],
octahedron (OHP) [6], etc. and frame-packed before being fed
into existing video codecs. The intermediate projection format
is important and would potentially improve the representation
efficiency and coding performance. For example, Facebook
proposed to use the cube-map [5] and pyramid [7] projection
methods and encoding schemes in 2016, to specifically
address the on-demand 360° video streaming, with 25%
and 80% reported compression improvements, respectively.
The Joint Video Exploration Team (JVET) and others also
proposed a few projection solutions for next-generation video
coding for 360° video, including Icosahedral projection
(ISP) [8], Segmented Sphere Projection (SSP) [9], Truncated

Square Pyramid Projection (TSP) [10], Octahedron Projection
(OHP) [6], Hybrid Cubemap Projection [11], [12], etc.

B. Viewport-Adaptive Streaming

Facebook proposed a FoV-adaptive encoding and streaming
framework [7] using a pyramid projection solution, in which
the base of the pyramid is the full-resolution FoV and the
sides of the pyramid represent non-FoV region in gradually
lower resolutions. The top of the pyramid corresponds to
the point directly opposite from the center of the predicted
FoV. In their system, 30 pyramid videos covering different
viewports are generated and each is encoded at 5 differ-
ent rates to accommodate different viewing directions and
different network conditions. Each viewport video in the
pyramid representation is unwrapped and frame-packed into
a rectangular format to feed into video encoder. An 80% file
size reduction is reported compared with ERP representation.
In [13], multi-resolution ERP and CMP videos are generated
with different rate allocations for FoV and non-FoV regions to
realize adaptive viewport streaming. Similar viewport adaptive
360° video streaming solutions can be found in [14]-[16],
etc. In recent years, the tile-based solutions become popular
and widely used for viewport adaptive streaming and provide
flexible rate allocation and delivery prioritization. In tile-
based solutions, usually the entire 360° video is divided into
non-overlapping small rectangular regions (i.e., “tiles”), and
coded independently at different bitrates. For example, in [17],
a High Efficiency Video Coding (HEVC) compliant approach
is proposed for efficient coding and streaming of stereoscopic
VR contents, in which video pictures are partitioned into
tiles and only the required tiles corresponding to the FoV
regions are transmitted in high resolution, while the remaining
tiles are transmitted in low resolution. In [18], several tile-
based encoding solutions are proposed, including both scalable
coding scheme and simulcast coding scheme. In [19], a view
prediction based framework is proposed by only fetching
the video portions desirable to the end user to reduce the
bandwidth consumption. A dynamic video chunk adaptation
scheme is implemented to adjust tile coverage based on the
view prediction accuracy. An estimated 80% maximum rate
reduction (compared with naive full-360° video delivery) is
reported without considering the coding efficiency loss due
to video tiling. Additional tile-based solutions can be found
in [20]-[27], etc.

We would like to clarify that there is a fundamental dif-
ference between the proposed two-tier system and the above-
mentioned viewport-based systems. Although these systems
are designed to stream tiles/regions which are not under
predicted FoV in lower quality to prevent “black" screens
when the FoV prediction is wrong, these regions are requested
together with the predicted FoV regions for the same video
segment. To reach sufficiently high FoV prediction accuracy,
these systems have to limit the prefetching to a very short
time. Under very dynamic network conditions, the requested
chunks may not arrive before the display deadline, leading
to video freezing. Our two-tier system, by transmitting the
BT and ET streams using different buffers, can ensure with a
high probability that the user’s FoV can always be rendered
smoothly, albeit sometimes at a lower quality. Besides, our
system is source-representation-agnostic, and can work with
any effective methods for coding the viewport videos at the
ET and 360° videos at the BT. Our system can also utilize
any efficient FoV prediction algorithms.
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Fig. 1. Two-tier 360° video streaming framework.

III. TWO-TIER STREAMING FRAMEWORK

A. System Overview

As illustrated in Fig. 1, in the proposed two-tier framework,
a 360° video is partitioned into non-overlapping time segments
with each segment encoded as a BT chunk and multiple
ET chunks. A BT chunk encodes the entire 360° view span
(360° x 180°) at a low bitrate to provide the basic quality. BT
chunks for future time segments are pre-fetched into a long
streaming buffer to cope with network bandwidth variations
and guarantee that any desired FoV can be rendered with
minimum stalls at the client. Each ET chunk encodes video
within a viewport (VP) with a certain view coverage (VC)
(e.g., 135° x 135°) centered at a certain direction. To pro-
vide quality differentiation and adaptation to varying network
bandwidth, multiple ET chunks are generated for the same
viewport, but coded at different bitrates. For complete cover-
age and smooth transition, the viewports of all ET chunks in
the same time segment are overlapping and cover the whole
360° view span. An ET chunk can be used for rendering at
the client side only if it covers (completely or partially) the
user’s actual FoV. Since it is difficult to predict a user’s view
direction far into the future, only ET chunks in the near future
will be pre-fetched. All the pre-coded BT and ET chunks are
stored in the streaming server. During the streaming, the client
dynamically requests the precoded chunks from BT or ET
to download, according to the predicted viewing direction,
the predicted download bandwidth for the next request interval,
and the buffer status of each tier. Our current system uses a
fixed view coverage for the ET viewports. More generally,
viewports with different view coverages can also be coded
and stored in the server. Depending on the anticipated FoV
prediction accuracy, the client can choose between ET chunks
with different view coverages.

Compared with the traditional single-tier solution, in the
proposed framework, the ET and BT video chunks are stored
in two dedicate buffers. The longer BT buffer provides addi-
tional robustness against network variation to maximally avoid
video freeze, whereas the shorter ET buffer guarantees a
higher view prediction accuracy to minimize the tiles needed
to be transmitted. At the client-side, the player decodes,
synchronizes the BT and ET chunks (according to chunk
offset) and combines the two tiers (according to the pre-defined
viewport direction and viewport span) for the final rendering
and display. Though there is a slight system complexity
introduced, for example, during parallel tier decoding and
cross-tier chunk synchronization, however, as presented later

in Sec.V-E, the achieved QoE improvement can significantly
justify and outweigh such complexity overhead.

Under the two-tier framework, multiple challenging prob-
lems need to be addressed, including video coding (how to
partition the 360° span into overlapping viewports and how to
code BT and ET chunks?), chunk scheduling (from which tier
and at what rate to request the next chunk?), rate allocation
(what rates to use for coding the BT and ET chunks?), buffer
setting (what target buffer length to use for the BT and ET
streams?), and FoV prediction. Our solutions to these problems
are presented in the following subsections.

B. Video Coding

We assume that a 360° video is represented in the equirec-
tangular projection (ERP) format, although similar approaches
can be derived for other projection formats. To code a 360°
video segment in the BT, we will code the entire ERP plane
as a 2D video. For coding the viewports in the ET, there
are multiple choices, including tile-based vs. viewport-based,
layered vs. non-layered coding (also known as simulcast).
We discuss the pros and cons of these options in this section.
The proposed system can work with any one of these options.
However, tile-based, non-layered coding is used in our exper-
imental studies reported in Sec. V. In Appendix, we describe
the operational quality-rate points obtained from our coding
experiments and show that they can be approximated well
by logarithmic quality-rate models, which are assumed in our
derivation of the optimal rate allocation solution in Sec. IV-A.

1) Tile vs. Viewport Based Coding for the Enhancement
Tier: In tile-based coding, we divide an entire ERP frame
into multiple non-overlapping tiles, each covering a small
rectangular region on the ERP. Each tile is coded independent
of the others. At the enhancement tier, we will send all the
tiles necessary to cover a desired viewport. Note that generally,
the number of tiles needed to cover different viewports differs
depending on the viewport direction. One benefit of tile-
based coding is that one can easily construct viewports of
increasing view spans by adding additional tiles. However,
because spatial and temporal prediction must be limited within
a single tile, the coding efficiency is compromised (requiring
more transmission bandwidth to achieve a similar quality).

In viewport-based coding, each viewport is coded in its
entirety to allow spatial and temporal prediction over a larger
spatial span, so as to maximize the coding efficiency and
consequently reduce bandwidth consumption for transmitting
a requested viewport. However, it is important to note that
the region corresponding to an arbitrary viewport is not a
rectangular region on the ERP plane. One option is to render
the 2D view corresponding to a viewport, and code the
rendered video. However, if the actual viewing direction of
a user is not the same as the viewport center, the delivered
2D view needs to be projected back to the ERP plane and
merge with the decoded ERP from the BT data, and this
merged ERP will then be used to render the desired 2D view.
This extra projection can add unnecessary distortion and also
incur additional complexity. Another option is to find the
minimal rectangular region in the ERP that covers the desired
viewport and set all unneeded pixels to zero, and then code
the zero-padded rectangular region. Such an approach may
lead to coding overhead similar to tile-based coding and yet
is more complex. Because of these issues, we have chosen
to use tile-based coding in the experimental study reported in
this paper.
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2) Layered Coding vs. Simulcast Across Tiers: With simul-
cast, the video in each tier is coded independently. When a
user receives an ET chunk and the chunk covers the user’s FoV
completely for this video segment, the receiver only needs to
decode this ET chunk to render the desired FoV. In this case,
the corresponding BT chunk is not used. Otherwise, if either
the ET chunk does not arrive in time or it does not overlap
with the user’s FoV, the receiver can decode the BT chunk
for the same video segment. If the ET chunk is available
but only partially covers the user’s FoV, the receiver needs
to decode the BT and ET chunks, each to the ERP plane,
and merge them (with the ET decoded pixels overwriting
the BT decoded pixels). With layered coding, an ET chunk
will be coded relative to the corresponding portion in the
decoded ERP video from the BT chunk. With this approach,
if the arrived ET chunk covers the user’s FoV either com-
pletely or partially, the receiver must decode both the BT and
ET chunks to render the video at the desired FoV. Therefore,
both encoding and decoding is more complex with layered
coding.

At the outset, one may think that layered coding will
improve network bandwidth utilization, as BT bits are never
wasted, and ET bits are used to improve the quality provided
by the BT bits. However, in practice, layered coding incurs
coding overhead (i.e. more bits are needed to reach the same
quality). Denote the normalized rates (bits/second/degree) for
the BT chunk and ET chunk respectively as Rj, and R, sc,
with simulcast. If we use layered coding, to reach the same
quality at the ET, the total rate R, + R.,.c can be expressed
as (1 4+ J)Re,sc, where J represents the bitrate overhead of
layered coding compared to non-layered coding. The relative
difference in the rate by the two systems is thus (R, sc —
Iée, Lc)/ Iée’sc = ﬁb / Iéejsc — 0. Therefore the potential band-
width savings by layered coding depends on the overhead
0 and the ratio R,/R, sc. Using the latest HEVC scalable
coding extension model (SHVC) [28], 0 has been reported
to be about 14% for SNR scalability and higher for spatial
scalability. Note that because the entire ERP is coded as
a single unit in the BT, while a viewport in the ET is a
subregion in the ERP, which can be coded either together or in
separate tiles, one cannot perform layered coding directly in
the bitstream domain as in the SNR or spatial scalability
mode of SHVC. This will further increase the layered coding
overhead. On the other hand, as shown in Sec. IV-A, the ratio
Ry /R, under optimal rate allocation is typically quite small.
From the experimental results shown in Table V and VI,
on average, this ratio ranges between 7% to 14%. In general,
this ratio can be close to (either larger or smaller than) the
expected range of J. Therefore, layered coding is not likely to
bring bandwidth savings, in spite of the added complexity for
encoding and decoding.

Another complication with layered coding is that ET encod-
ing depends on the BT coding rate. Different sets of ET chunks
need to be generated for each BT rate. Because the BT chunks
are typically fetched much earlier than the ET chunks for
the same video segment in the two-tier system, one cannot
independently adapt the BT and ET rates, in response to the
network bandwidth dynamics. On the other hand, with simul-
cast, because BT and ET chunks are coded independently,
they can be decoded separately at the client, which will greatly
simplify dynamic rate adaptation of the system, as will become
clear in Sec. III-D. Because of these reasons, simulcast is
adopted in our system design.

C. Prioritized Chunk Scheduling Algorithm

To guarantee the delivery of the BT chunks before their
display deadlines, we propose the prioritized chunk scheduling
strategy shown in Algorithm 1, which is motivated by the
2D streaming algorithm [29], and first described for two-
tier streaming in [3]. Essentially, at time ¢ when a new
chunk needs to be requested, if the BT buffer length Bj(¢) is
below the target buffer length BbT , the client will sequentially
download BT chunks until the target length BbT is reached;
otherwise, an ET chunk will be requested at the predicted
direction P,, and the rate of the ET chunk R, is regulated by
a P-I controller, driven by the estimated real-time bandwidth
BW;, the current ET buffer length B.(¢) and target ET buffer
length BY. The rate of ET chunk to be downloaded at time 7 is:

u(t) = Kp(Be(t) = B))+ K1 D~ (Be(i) — Bl), (1)

]-BW,, o)

R@) = min [u(®) + 1, %
where Kp and K; are the proportional and integration gain
control factors, respectively, m is the integral interval and
u(t) is the control signal determined by both the current
and historical ET buffer status. A, is the remaining time
till the display deadline of the ET chunk to be downloaded,
and 7 is the chunk duration. Eventually, the largest available
ET rate that is equal or less than R(r) will be chosen.
In addition, if both BT and ET buffer lengths are greater
than their respective upperbound, the system will stay idle
for some duration ;. dp or J, refers to the downloading
time of BT or ET chunk. Experimental results in [3] and [4]
demonstrate that this chunk scheduling algorithm can achieve
good trade-off between the delivered video quality and
the robustness against bandwidth variations and user view
dynamics, even when the other system parameters (e.g. rate
allocation and target buffer length) are not optimized.

Algorithm 1 Two-Tier 360° Video Streaming

1: Initialization at ¢ = O;

2: while (One chunk downloading is finished or ¢+ = 0) and
display is not terminated do

3 if By(t) <= B} then

4 Download next BT chunk Cp;

5: t < t+ 0p;

6:  else

7

8

9

if B.(t) <= Be(T) then
Predict bandwidth BW;
Predict FoV P, for next ET chunk C,;

10: Choose the rate version following Eq. (1) and (2)
based on BeT, B.(t) and BW;;

11: Request for next ET chunk C,;

12: t < t+0,

13: else

14: t < t—+0d;

15: end if

16:  end if

17: end while

18: return
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D. Trajectory-Based FoV Prediction

A critical component of the proposed system is FoV pre-
diction. However, chunk scheduling and system parameter
optimization will work with any FoV prediction algorithm.
As illustrated in Fig. 2, a simple approach is to use the view
direction for the most recent frames to derive the prediction for
a few frames ahead, i.e., the Last Sample Replication (LSR).
To better exploit the continuity in head movement, we can
use regression approach to extrapolate. One approach is linear
regression based prediction (LP) illustrated by blue imaginary
line in Fig. 2. In LP, all the samples covered by the imaginary
box (from i — 4 to i) are utilized for the regression. To
accommodate the occasional sudden head turning, we have
developed a truncated linear prediction (TLP) method in
which we only take into account the past samples that are
monotonically increasing or decreasing for extrapolation. For
instance, as the red line in Fig. 2 shows, the points in the
dashed window are past ground-truth samples collected for
view prediction. In this case, only the last three samples
inside the window (i.e., from i-2 to i) are monotonically
increasing and used to make view prediction for future chunk.
The three prediction schemes are illustrated in Fig. 2. The
TLP algorithm is used in the simulation results presented in
Sec. V. Development of more advanced FoV prediction algo-
rithms is beyond the scope of this paper. Readers are referred
o [30]-[33] for recent papers on FoV prediction.

During a streaming session, the FoV center for each future
segment to be downloaded is predicted based on the FoV
center of the last and several previously displayed frames.
The predicted FoV center angle is then quantized (with
30° interval for each direction), and the ET viewport with
the quantized FoV center is requested. In our experimental
studies, each viewport covers 135° x 135° angle span for all
the frames in one second. In general, due to FoV prediction

1 ; ‘

—FoV Trace 1
—FoV Trace 2

0.9+

3 0.8r
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0.6
1 2 3
Prediction Horizon (s)

Fig. 4. FoV Hit Rate vs. prediction horizon using the truncated linear
prediction method. During actual streaming, the prediction horizon at any
time equals to the prefetching buffer length plus half of a chunk length.

error, only a portion of each decoded ET viewport will
overlap with the user’s FoV for all the frames in a video
segment. We use the FoV hit rate, denoted by a, to evaluate
the accuracy of FoV prediction, which is the overlapping
ratio between the view coverage for a video segment and
user’s true FoVs over all frames in this segment. Figure 3
shows two sample FoV traces obtained from [34], which
are the recorded traces of two users for the same 360° video.
Figure 4 shows the average hit rates vs. prediction horizons
for these two traces using the TLP method.

IV. JOINT OPTIMIZATION OF RATE ALLOCATION
AND ET BUFFER LENGTH

One critical design problem for the proposed two-tier sys-
tem is how to allocate the rate between the two tiers and how to
set up the target ET buffer length such that the rendered video
quality is maximized. The optimal decision has to consider the
target bit rate R; (determined based on the available network
bandwidth BW), the ET chunk delivery ratio y, and the FoV
hit rate a, with the last two terms dependent on the target ET
buffer length. In this section, we study the joint optimization
of rate allocation and ET buffer length through a sequence of
sub-problems with increasing complexity.

A. Optimal Rate Allocation for Given R;, a. and y

We start with the basic problem of determining the opti-
mal rate allocation with known statistics of the available
network bandwidth, ET chunk delivery ratio and FoV hit
rate. Adaptation of rate allocations under dynamic network
environment will be considered in the following subsections.

Given the prioritized chunk scheduling algorithm,
we assume that the BT chunks are always delivered before
their display deadlines. Consequently, for each video segment,
we either receive only the BT chunk or both the BT and
ET chunks. The BT chunks are coded to cover the entire
area of 360° video with the total rate of R, (in bits/second)
and the normalized video rate is therefore R, = Rp/Ap
(bits/second/degree), where A, is the coverage area of
the 360° video, with A, = 360° x 180°. Let R, and A,
denote the average ET rate (bits/second) and the coverage
area of each ET chunk, respectively. In the following
derivation, we assume the ET video and BT video are
independently coded. Therefore, the normalized rate of
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the ET chunk is R, = R./A..!
A, = 135° x 135°.

As described in Sec. III-D, we use the FoV hit rate,
denoted by a, to describe FoV prediction accuracy, which
is the overlapping ratio between the angle coverage for a
video segment and user’s true FoV over all frames in this
segment, averaged over many video segments and users. It can
be considered the probability that a pixel to be rendered is
decodable from a received ET chunk. We further introduce
y to denote the average ET chunk delivery rate, namely the
likelihood that a requested ET chunk can be successfully
delivered before its display deadline. This can be determined
by the ratio of the number of ET chunks that are delivered
before the display time vs. the total number of chunks in
a video. For a pixel in the user’s FoV to be decodable
from a ET chunk, it has to be within the viewport of the
delivered viewport, with probability «, and the chunk has to
be delivered before the display deadline, with probability y .
Therefore, the probability that a rendered pixel is covered by
an ET chunk is ay. Assuming the BT and the ET coders
can be characterized by their respective quality-rate (Q-R)
functions (averaged over a variety of video contents and
various viewports) Qp(R) and Q.(R), where R is normalized
bits per second per degree, the expected rendered video quality
under the constraint Ry + R, = R; can be formulated as:

O(Rp; a7, R) = ay Qc(Re) + (1 — ay) Qp(Rp)

R, — R R
ZGML(JZ—£)+U—aﬂQb&£)

3)

With given y and a values, the optimal R, can be solved

In this paper, we assume

by setting g RQ,, = 0, which yields
0 0 1-— A
Qe 9 withﬁ:( ‘”)—e. ()
oR OR | iy ay ) Ap

Eq. 4) 1mphes that Rj, should be chosen such that the
Q-R slope at R, should be f times the slope at R;. Fig. 5
demonstrates the optimal R* and R* relations for two different
p values for a hypothetlcal but typlcal Q-R curve:? f; = 0.03
resulting from assuming ay = 0.9 and A,/A, = 0.34, and
f> = 0.15 from assuming ay = 0.7. We see that if & and y are
both large, then f is very small, and the optimal allocation is
to let R, be very low. This corresponds to the case that view
and bandwidth prediction are both very accurate, so that a
rendered pixel can almost always be covered by a delivered ET
chunk. Under such circumstance, it is desirable not to waste
bits to send entire 360° scope in the base tier. When view
and/or bandwidth prediction is less accurate (ay is lower), it is
better to spend more bits on the base tier, to ensure that pixels
that are rendered from BT chunks have sufficient quality.
In pragtice, we should bound the BT rate from below as R, =
max(Rp,min, R}), to ensure that any FoV region that are not
covered by ET chunks due to either view prediction or delivery
errors can be rendered with a basic quality of Rp ix.

The above analysis demonstrates that the optimal bit allo-
cation between the two tiers depend on ay, with higher ay

I layered coding is used to generate the ET chunks, relative to the coded
BT chunks, the effective bitrate for ET pixels can be expressed as R, =
Rp/Ap + Re/Ae, and the remaining derivation can be revised accordingly,
as described in [4].

2Here we assume the Op (R) and Q. (R) curves follow the same model.

Quality (Q)

aq
dR

Rp(B1)

Ry(B) Ry (B2) Ro(B2) R.(B)

Fig. 5. Illustration of optimal rate allocation based on the Q-R slope. Two
example allocations are shown, for two different £ values, with f; < f».

Bitrate (R)

leading to higher ET quality and lower BT quality. Besides
the ay factor, the optimal operation point also depends on the
Q-R models for the BT and ET chunks.

As shown in Appendix, the Q-R relation for both BT and
ET chunks can be well approximated by a logarithmic function
described in (11), in general with different parameters. Let
ap and by denote the parameters for the BT Q-R function
Q»(R), and ae, b, the parameters for Q. (R). With this model,
the Q-R slopes for the BT and ET are simply b,/ Ry, and
be/Re., respectively. Furthermore, let BW denote the average
network bandwidth and # the target network utilization ratio.
The target bitrate is then R; = nBW. The optimal rate
allocation between the two tiers, represented by R} and R}
(in bits/second) must satisfy:

R, = 4BW, 5)

R+ R =R, ©)
Apb 1— b

Rf = B'R:, with g =gl = 420 (g

A.b, oy b,

Solving the above equations yields the optimal rate alloca-
tion solution:

. P
Ri = ke ®)
. 1
Re _— WR{. (9)

Note that with the logarithmic Q-R model in Eq. (11), the
optimal rate allocation only depends on the ratio of model
parameters by and b, and is independent of the parameters ay
and a.. As shown in Appendix, Fig. 16 and Fig. 17, the ratio
by /b, is quite similar for two very different 360° videos, one
with large motion and another one fairly stationary. Therefore,
for practical implementations, one may derive the average
value for this ratio from a large variety of video contents,
and the optimal rate allocation does not need to be adapted
based on actual video contents. This is a pleasant surprise for
practical implementation of our proposed two-tier streaming
system!

B. Iterative Offline Optimization of Rate Allocation
and ET Buffer Length

The optimal rate allocation solution in Eq. (8,9) depends on
the chunk delivery rate y and FoV hit rate o, both dependent
on the target ET prefetching buffer length B eT , for given chunk
scheduling and FoV prediction algorithms. To prefetch an ET
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chunk at a future time, one has to predict the user’s FoV
center at that time. In general, the longer the ET prefetching
buffer (measured in video time), the lower the FoV hit rate a
(see Fig. 4 for sample a curves). On the other hand, a longer
prefetching buffer can better absorb network bandwidth vari-
ations, leading to higher chunk delivery rate y, as shown
in Fig. 7. From Eq. (3), it is apparent that the expected
quality Q is maximal when the product ay is maximized,
for any given rate allocation. Therefore, we should choose
an optimal BeT to maximize the product oy . However, the y
curve also depends on the actual rate allocation. Therefore
the optimization of BeT , Ry and R, are intertwined. We can
numerically solve this complex optimization problem offline,
for given bandwidth traces and FoV traces. Based on the given
FoV traces and a chosen FoV prediction algorithm, we first
determine the a curve by determining the FoV hit rate for
each candidate prefetching time. Then we iterate between
optimizing rate allocation and deriving the y curve. Given an
initial rate allocation (we used R, = 0.2 R; and R, = 0.8R;,
and we generate three possible ET rates with R,; = 0.8R,,
R = R, and R.3 = 1.2R,), streaming simulations using
given bandwidth traces are repeated with different target buffer
lengths BeT (ranging from 1 to 4 seconds). For each BeT ,
the average y is calculated. The y values for all the possible
Bl make up the y curve for the current rate allocation.
The buffer length that maximizes the product ay is chosen
as the target buffer length for the next iteration. Optimal
rate allocation is determined based on the maximum value
of ay by solving Eq. (6) and (7). We then start the next
iteration using the updated B!, R, and R, rates. This process
continues until the solution converges or the maximum number
of iteration is reached. In our simulations, convergence is
reached usually within four iterations.

The optimization of the rate allocation and ET buffer length
described above requires the knowledge of the dynamics of
network bandwidth and user’s viewing behavior. The former
is characterized by the average bandwidth BW and the chunk
delivery rate y as a function of target ET buffer length B!
for a given rate allocation. The latter is described by the
FoV prediction hit rate a as a function BeT . To operate the
iterative optimization offline, we assume typical bandwidth
traces and FoV traces can be collected, which reflect the
expected network and FoV dynamics, from which BW and
the o and y curves can be calculated.

However the actual bandwidth and FoV dynamics in a
particular streaming session may be quite different from what
are assumed for the static optimization, and in fact these
dynamics may change substantially within the same streaming
session. In practice, one should dynamically estimate BW and
y and a functions based on the observed network and user
FoV dynamics in the recent past, and use them to adapt the ET
buffer length and rate allocation. We assume that the average
bandwidth BW can be estimated fairly accurately by averaging
the throughputs for downloading previous chunks.

We will first study how to dynamically update the y and «
functions in Sec. IV-C and Sec. IV-D. We then present
two online optimization methods: periodic optimization and
adaptive optimization in Sec. IV-E and IV-F, respectively.

C. Online Estimation of y Function

In operational networks, the bandwidth available to a video
streaming session is subject to various interferences, such as
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Fig. 6. Bandwidth variations of five sessions over a WiGig link under
different levels of blockages.

TABLE I
5G WIRELESS TRACES INFORMATION
Throughput (Mbps)
Traces Mean SD Max Min Med
BW 1 734.34 22.51 832.50 662.0 729.5
BW 2 | 722.80 85.92 911.40 | 205.05 | 731.20
BW 3 | 719.03 | 154.81 830.80 83.37 796.40
BW 4 | 659.67 | 206.73 | 866.50 0 735.50
BW 5 | 585.31 | 277.10 874.5 0 715.25

radio interference on a wireless link or time-varying cross
traffic injected by other competing flows sharing the same
wired bottleneck link, etc. All these factors not only change the
average bandwidth for the session, but also introduce different
levels of bandwidth variations to it. For example, Fig. 6 shows
the bandwidth variations of five sessions over a WiGig link
subject to different levels of blockages. The blockage level
gradually increases from session 1 to 5. The detailed statistics
about the bandwidth traces can be found in Table I.
Dynamically estimating the y function is hard because
video streaming session operates with a specific target ET
buffer length at any given time, so we can only get the y
value for the current buffer length. Therefore, we need a way
to estimate the y function for the entire range of B eT on the fly.

To understand how the average bandwidth BW and band-

width variation pattern affect the y functions, we have eval-
uated these functions for various bandwidth traces as well
as their scaled and shifted versions. In these simulations,
we choose the BT and ET rate R, and R, so that R, + R, =
nBW and we fix 5 to a conservative value, i.e., 7 = 0.85.

Through these evaluations, we have identified some inter-

esting patterns of the y function:

o If the average bandwidth becomes larger or smaller but
the relative bandwidth variations remain at the same
level, the resulting y function typically remains the same
as long as we use the same utilization # for the rate
allocation. This means that, with a conservative network
utilization ratio, the y curve will not be significantly
affected by the individual R, and R, values, nor the
average bandwidth BW.

o« When the relative bandwidth variation changes dramat-
ically, the y function could be much different. For
example, when the average bandwidth is the same, but
bandwidth fluctuates with a larger standard deviation,
the y value increases much slower with the ET buffer
length.

From the above observations, we have decided to use the

relative standard deviation of bandwidth, ¢,, to characterize
the bandwidth dynamics, with ¢, £ o/u, where o is the
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Fig. 7. ET chunk delivery rate for networks with different dynamics.
standard deviation and u is the mean value of the bandwidth
over the observed period. The y curves for the five network
traces summarized in Table I are illustrated in Fig. 7 with
their corresponding ¢, values. Even though we conclude that
y curve is not significantly affected by the rate allocation,
to ensure the y curves can represent network traces perfectly,
for each individual network trace, we generate multiple y
curves under different rate allocations and use the average
among these curves. We precompute and store a set of y
functions for a discrete set of ¢, values through offline
simulations. When a streaming session starts, we measure
the instantaneous bandwidth when downloading each BT/ET
chunk. The average bandwidth and the standard deviation
are dynamically updated using the instantaneous bandwidth
measurement over the past T chunks. Then at the beginning
of each adaption interval, we calculate the relative standard
deviation for the last time period and choose the stored y
function with the closest relative standard deviation as the
current estimate of y function.

D. Online Estimation of o Function

Similarly, the o function depends on the FoV dynamics of
users and the video content. We need to dynamically estimate
the current o function as the streaming session progresses.
In order to update the a function, FoV prediction for the fol-
lowing k seconds is conducted after the display of each second
of video. For example, assuming the current time is . New
FoV prediction P; for (r + 1 to ¢ 4 k) is generated. We name
each value in prediction P; as P;; and i ranges from 1 to k
which is represented as the bottom part in Fig. 8 (k = 4).
After displaying video of each second (with the actual user
FoV), the FoV hit rate for previous FoV predictions can be
computed. As illustrated in Fig. 8, at time 7, FoV hit rate of
all the previous FoV predictions from ¢ — 1 to ¢ — k, including
Pi-1),1> Put-2),2, Pi=3),3, -+, Pu—),k» are calculated. All
the gray shadow areas represent FoV predictions that have
been already validated and predictions without validation are
represented as boxes of blue slash. So at time 7, we can update
the a(7),) by averaging the hit rates for P,_;7,, for those
predictions that have been validated over past 7 seconds.

E. Periodic Online Optimization of Rate Allocation
and ET Buffer Length

In this approach, we periodically update the average band-
width BW, the y and o functions and determine the optimal
solution for the rate allocation and ET buffer length based on
the updated information following Eq. (6) and (7).
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Fig. 8. FoV accuracy function estimation through progressive FoV prediction
and validation.

We set the initial rate allocation and target ET buffer length
based on some expected average bandwidth, y function and «
function (R, = 80Mbps, R.; = 450Mbps, R.» = 550Mbps,
R.3 = 650Mbps and BeT is set to 2s). After working with this
initial setting for a period of 77, a new optimization is trig-
gered. The a and y functions are updated using measurements
in the previous 77 seconds, following the procedures outlined
in Secs. IV-C and IV-D.

In practice, we only code the BT and ET videos at a finite
set of discrete rates, and the optimal rates will be quantized
to their nearest rate neighbors in this finite set. Furthermore,
the optimal ET rate represents the average ET rate, and
several adjacent ET rates in the finite set will be chosen so
that their average is close to the optimal ET rate. As described
earlier, the ET video can be coded independently, or relative
to the BT video using layered coding, to improve the system
efficiency. However, when using dynamic rate adaptation,
layered coding causes additional complexity. First of all,
if layered coding is used, the server has to generate and
store a different set of ET chunks for each possible BT rate.
Furthermore, as we have two independent buffers for BT
and ET, respectively, at the beginning of each adaption, there
might be prefetched BT and ET video chunks in the buffers.
If the newly selected rate set for BT and ET are different from
the previous one, the newly download ET chunks cannot be
decoded with the previously downloaded BT chunks for the
same video time. Using non-layered coding will completely
avoid such problems, making it more attractive for practical
systems with dynamic adaptation. For this reason as well as
other reasons explained in Sec. III-B(b), simulation results
presented in Sec. V-E are all based on non-layered coding.

F. Adaptive Online Optimization of Rate Allocation
and ET Buffer Length

In 360° video streaming, the network status and the user’s
viewing behavior could change suddenly at random time.
Periodic adaption may not be able to adapt fast enough to
the sudden changes on the one hand, and may waste a lot
of computation resources when the environment is relatively
stable on the other hand.

To cope with this, we also propose an adaptive optimization
approach. In this case, adaption is triggered by significant
changes in the network status or FoV direction. In particular,
BW, ¢, and a curve are updated after downloading each
chunk based on the measured bandwidths and FoV prediction
accuracy for the past 7> chunks. A threshold on the relative
change is preset to determine whether the change in any
one of BW, ¢, or a is significant enough to trigger a new
optimization. The threshold value is an important system
parameter to be tuned, as improper setting of the threshold
might lead to an either oscillating or unresponsive system.
Based on our experience, the threshold is set to 10% for
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Fig. 9. Concatenated bandwidth trace with different levels of dynamics.

BW and 0.1 for ¢,. As a values for four different prediction
intervals are evaluated in realtime, we calculate the Euclidean
distance d, between current o curve and the one for last
period. Threshold for d, is set to 0.2.

Note that we choose not to trigger the optimization based
on the change in short-term FoV prediction accuracy, because
the FoV prediction accuracy is not very stable. However,
we still continuously update the a function as described in
Sec. IV-D, and uses the latest o function in the newly triggered
optimization. The same initial setting of rate allocation and
target ET buffer length with Sec. IV-E is used for adaptive
optimization.

V. EXPERIMENTAL EVALUATION

We conduct trace-driven simulations of the proposed two-
tier streaming system with dynamic adaptation of system
parameters, and compare it with several benchmark systems.
Our experiments mainly consider the very high-bandwidth 5G
wireless networks, which has the potential to deliver high res-
olution 360° video (e.g. 24K x 12K and 120 Hz). We also show
the results for low-bandwidth LTE networks, to demonstrate
that the proposed framework is efficient for both scenarios.

A. Bandwidth and FoV Traces

1) WiGig Bandwidth Traces: We perform simulations using
five WiGig bandwidth traces collected by transmitting data
via TCP in iperf. We choose to examine the performances
with 5G networks because they afford high bandwidths
necessary for high quality 360° video streaming. Blockages
by different materials, e.g., metal, human body, or books,
are introduced to interrupt the transmission with different
durations to emulate networks with different levels of
dynamics. The bandwidth evolution of the five traces are
summarized in Fig. 6 and Table I. To simulate a streaming
session with time-varying dynamics, we concatenate three
network traces with very different dynamics to create a
synthesized trace shown in Fig. 9. The 450s bandwidth trace
is composed of parts of the three original bandwidth traces.
The first 150 seconds is from Trace 3 with medium bandwidth
variations, the middle 150 seconds is from the stable Trace 1,
and the last 150s is from the most fluctuating Trace 5.

2) FoV Traces: We use two FoV traces for two different
videos in the public dataset [34]. Fig. 3 shows the FoV records
for the horizontal and vertical directions.

B. System Parameter Setting

For the two-tier system, the BT chunk view coverage is
360° x 180°, ET view coverage is 135° x 135°. We assume
the user FoV for any frame is 105° x 105° and we set the ET
span to be larger than the FoV to accommodate FoV changes
within the duration of a chunk and the likely FoV prediction
errors. Video chunk duration is set to 1 second and the total
video length is 450 seconds, the same length as the synthesized
network trace. The value of k, and k; in P-I controller are
0.6 and 0.01, respectively, and buffer length record for the past

TABLE 1I
THE SET OF DISCRETE RATES (MBPS) USED BY THE TWO-TIER SYSTEM

10, 30, 50, 80, 120, 160, 200, 250
300, 350, 400, 450, 500, 550, 600, 650, 700

Base Tier
Enhancement Tier

10 seconds is utilized by P-I controller. For rate allocation
optimization, the candidate target ET buffer lengths range from
1 to 4 seconds, ET buffer length upper bound is 2 seconds
larger than the chosen target buffer length.

Given the high throughput of 5G networks (e.g., up to
800 Mbps), our experiments target at very high resolution 360°
videos (e.g., 24K in resolution, 90-120 Hz, and 12-bit video
source). Instead of actually generating the video bitstreams,
we assume the videos can be coded into a set of BT rates and
ET rates, as summarized in Tab. II. These rates are chosen
to cover the bandwidth range of the synthesized bandwidth
trace. We also assume accurate encoder rate control, such that
each BT or ET chunk can be coded exactly at one of the rates
defined in Tab. II.

For periodic optimization, the update interval is 73 =
30 seconds. The average bandwidth BW, relative standard
deviation ¢, and FoV hit rate curve a (B eT ) are calculated based
on the records for the past 30 seconds. For the adaptive opti-
mization, the observed bandwidth in the past 75 = 10 seconds
are used to compute BW and c,, and optimization will be
triggered if BW increases or decreases by 10% or the absolute
change in ¢, is more than 0.1 or if the change in a curve d,
exceeds 0.2.

C. Benchmark Systems

We compare the proposed two-tier system with dynamic

optimization with the following benchmark systems:

o Naive 360° DASH Streaming: This system covers
the entire 360° video content in each video chunk.
Each 360° video segment is precoded into several avail-
able rates ranging from 100Mbps to 850Mbps with gap
of 50Mbps. The chunk scheduling is accomplished by
a P-I controller based algorithm for 2D planar video
streaming [29] with a target buffer length of 10 second
and buffer upper-bound of 20 seconds.

o Predictive Single-Tier Streaming: In this system,
the client predicts the user FoV for the video segments
to be requested and requests the chunks covering the
predicted FoV. This system is a special case of the two
tier system but without the base tier. The chunks cover
135° x 135° view span and are coded into multiple rates,
ranging from 100Mbps to 850Mbps with gap of 50Mbps.
Obviously, due to FoV prediction error, “black™ regions
may appear when users suddenly change their view
directions. We also use the P-I controller approach [29]
to schedule the chunk request. We tried different target
buffer lengths, and found that using 3 seconds leads to
the highest QoE for both FoV traces.

o Static Two-Tier Streaming: In this case, target ET
buffer length and rate allocation are fixed throughout the
streaming session (450s). We present results from two
different settings. The first setting uses the network trace
and the FoV trace in the first 150 seconds to determine the
optimal operating parameters for the entire 450 seconds
streaming session (Static 1). The second setting uses the
entire bandwidth and FoV traces to determine the optimal
parameters (Static 2). Note that either approach is not
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practical, but we include results from these two cases to
examine the potential gain from dynamic adaptation.

D. Quality of Experience Metric

To evaluate and compare the performances of various sys-
tems, we consider three primary factors affecting the users’
quality of experience. i) Average rendered video quality for
pixels that arrive before display time and are within user’s
FoV, to be denoted by Q,. ii) The influence of video freezing
due to late arrival of some chunks. We use Qy to denote
the perceived quality due to freezing, which we assign a
negative number to emphasize its negative impact. We use p r
to denote the percentage of times during an entire streaming
session that freezing occurs. iii) In general, the decodable
area from the received chunks (before display deadline) for a
video segment may not completely cover user’s FoV over all
frames in this segment. The missing region may be rendered
“black”. We use Q) to denote the perceived quality resulting
from these “black” pixels, which we also assign a negative
number. We use pj to denote the percentage of pixels during
an entire streaming session that are black. Note that with the
two-tier system, because the base-tier covers the entire 360°
span, “black” regions will not occur, as long as the BT chunks
are received in time. When the BT chunks are late, they will
lead to “freezing”. However, with the benchmark single-tier
system, because delivered chunks only cover the predicted
FoV, “black” region will appear if the prediction is inaccurate,
which could happen when users change FoV direction sud-
denly. Overall, we define the QoE over a streaming session as

QoE =(—pp)(1 = pp)Or+pr Qs+ —pr)ppQp (10)

To determine the rendered video quality Q,, we average
the quality over all the displayed segments in non-black
regions. With our two-tier system, a rendered pixel may be
decoded from either an ET or BT chunk. The quality for video
segment n when both the ET and BT chunks are available can
be expressed as

Orn = anQ, (Re,n/Ae) + (1 —an) Qb (Rb,n/Ab) >

where a,, is the FoV hit rate of the ET chunk for this segment
(i.e., the percentage of pixels covered by the ET chunk) and
R., and Ry, are the rates (in bits/second) of the ET and BT
chunks, respectively. The quality when only the BT chunk is
available is

Qr,n = Qb (Rb,n/Ab) .

Note that by averaging over all chunks, Q, is equivalent to
the expected quality described in Eq. (3).

The naive 360° DASH system and the single-tier system can
be considered special cases of the two-tier system without the
ET or BT chunks, respectively. For the naive 360° system, for
the chunks arrived before the display deadline with rate R,,
Qrn = Op(R,/Ap). For the single-tier system, Q,, =
Q. (R,/A,). We assume the perceived quality for rendered
pixels in a FoV is logarithmically related to the normalized
bitrate of the rendered pixels, as in Eq. (11). Instead of per-
forming actual coding to determine parameters a and b for the
Q-R function, which is not feasible as we do not have access
to 24K 360° video, we determine these parameters by letting
the quality at a large rendering bitrate Rpmax to be 10, and the
quality at a small rendering rate Rpin to be 0. Specifically,
we set Rpax = 700 x 103Kbps/Ae, Rumin = 10 x 103Kbps/Aj,.
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Fig. 10. Received and rendered video rate of benchmark systems. (a) Naive
360° DASH Streaming under WiGig. (b) Predictive Single-Tier Streaming
under WiGig.
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This yields @ = 3.72 and b = 1.72. We set the “perceived”
quality during freezing and for “black” region to the same
negative value, i.e., Oy = Qp = —1. The same Q-R function
is used for all the comparison systems. Note that because our
coding experiments in Appendix demonstrate that the parame-
ters of the Q-R functions for the BT and ET chunks are quite
similar, for simplicity, we apply the same Q-R model parame-
ters for the BT and ET chunks in the experimental study.

E. Performance Comparison in WiGig Network

We compare the performances of the proposed two-tier
streaming system with two different dynamic optimization
strategies and two benchmark systems. For naive 360° and
predictive single-tier streaming, the received and rendered
video bitrates are illustrated in Fig. 10. Received bitrate is
defined as the total bitrate of the received chunks for that
particular time and rendered bitrate is the rate rendered within
user FoV. In naive 360° system, even though the received
video bitrate is high, the effective rendered video rate is
only about 17.01% of it; on the contrary, about 60.5% of the
received video rate is effective in single tier system as long as
the FoV prediction is accurate. However, single-tier system is
not robust and stable enough due to the fluctuating bandwidth
and sudden user FoV change. The performance of the static
two-tier is similar as [4], so no detailed figures are shown.

For each of the dynamic optimization strategies, three
metrics are illustrated: buffer length, video bitrate and rate
allocation. Fig. 11 illustrates the performance with periodic
optimization. As shown in Fig. 11(a), with periodic optimiza-
tion, BT buffer length mostly stays at a safe level except
for at time of 300s when bandwidth migrates from stable
to fluctuating. As expected, the ET buffer length varies with
the network environment and FoV dynamic, and follows the
target ET buffer length determined by dynamic optimization.
In the first two phases, the ET buffer is around 1-2 seconds
due to the dynamic FoV traces. The purpose is to improve a as
value of y can be guaranteed even with a short buffer length.
During the third phase, the target buffer length increases to
3 or 4 seconds to adapt to the fluctuating bandwidth. However,
the ET buffer still runs out for some periods of time. Fig. 11(b)
illustrates how the delivered and rendered video rate changes
in time. Blue curve represents the bitrate of the received video
chunks; Red curve is the bitrate of video that can be potentially
rendered to the user without considering missing deadline
(y = 1) and FoV prediction error (a = 1); Green curve is the
eventual rendered bitrates for the user. The received bitrate is
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Fig. 11.  Performance of periodic optimization under WiGig network trace
and FoV trace 1. (a) Buffer length. (b) Video rate. (c) Rate allocation.
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Fig. 12. Performance of adaptive optimization under WiGig network trace
and FoV trace 1. (a) Buffer length. (b) Video rate. (c) Rate allocation.

mostly stable, the reason why the rendered bitrate is lower is
either FoV prediction is not accurate (o is low) or ET chunk
is not delivered in time (y is low), or both. Different from the
first two phases, even the received bitrate becomes fluctuating
in the third phase, due to the oscillating network environment.
To show how dynamic optimization is operated, the quantized
optimal rates for BT and ET chunks after each optimization
are shown in Fig. 11(c). After each optimization (indicated
by the gray lines), BT and ET rates will be adjusted based
on historical information. For instance, during time of 0 to
170 seconds, FoV hit rate a is low, a significant portion of the
available rate is assigned to the BT; however, when the FoV
prediction is accurate, e.g., around 400 seconds, the system
allocates most rate to ET.

For adaptive optimization, both buffer lengths and video
rates perform similarly to periodic optimization. However,
Fig. 12(c) shows that the optimization of the rate allocation
and target ET buffer length is remarkably different from the
periodic optimization. Adaptive optimization is only triggered

TABLE III
PERFORMANCE UNDER WIGIG NETWORK TRACE AND FOV TRACE 1
Strategies
Metrics - . . Two Tier System
Naive 360 | Single Tier g Saric 2 | Periodic | Adapiive
Ave QoE 7.03 733 7.55 7.50 757 7.84
Rendered Quality Q- 7.03 771 7.55 7.50 7.57 7.84
Ave Display Rate (Mbps) 110.27 281.94 236.73 | 222.03 | 242.83 244.86
Ave Received Rate (Mbps) 648.11 627.56 646.89 609.44 641.56 631.04
Freezing Ratio 0 578 % 0 0 0 0
Average Black Ratio 0 25.31 % 0 0 0 0
Number of Optimizations| 0 0 1 1 15 32
TABLE IV
PERFORMANCE UNDER WIGIG NETWORK TRACE AND FOV TRACE 2
Strategies
Metrics . . . Two Tier System
Naive 360 | Single Tier Static I | Static 2 [ Periodic | Adaptive
Ave QoE 7.03 6.67 7.23 7.13 7.36 )
Rendered Quality @ 7.03 715 7.23 7.13 736 T4
Ave Display Rate (Mbps) 110.27 239.59 175.24 176.82 184.62 180.94
Ave Received Rate (Mbps) 648.11 627.56 635.78 | 60222 | 632.33 620.55
Freezing Ratio 0 5.78 % 0 0 0 0
Average Black Ratio 0 36.87 % 0 0 0 0
Number of Optimizations 0 0 1 1 15 31
TABLE V
Two TIER SYSTEMS DETAIL UNDER FOV 1
Metrics Static 1 | Static 2 | Periodic | Adaptive
Ave BT Rate (Mbps) 120.0 120.0 127.77 139.37
Ave ET Rate (Mbps) 526.89 489.44 513.78 491.67
Ave Fov Hit Rate o 0.75 0.74 0.77 0.81
Ave Chunk Delivery Rate v 0.87 0.89 0.92 0.94
TABLE VI
Two TIER SYSTEMS DETAIL UNDER FOV 2
Metrics Static 1 | Static 2 | Periodic | Adaptive
Ave BT Rate (Mbps) 200.0 160.0 207.55 218.22
Ave ET Rate (Mbps) 435.77 442.22 424.77 402.33
Ave Fov Hit Rate o 0.63 0.63 0.68 0.70
Ave Chunk Delivery Rate v 0.87 0.89 0.88 0.87

by specific events. For example, during the second phase
(200 to 300 seconds), optimization is seldom triggered because
the network bandwidth and FoV direction are almost constant.
Meanwhile, optimization is operated almost every 10 seconds
in the third phase.

Tables III and IV compare the overall QoE and individual
performance metrics of all systems. In all cases, the four
two-tier systems outperform the benchmark systems, and the
adaptive optimization is better than periodic optimization,
which is better than static optimization (even when statistic
optimization is based on the network statistics calculated from
the underlying network trace). For FoV trace 1, which is less
dynamic, the single tier system is better than the naive system,
because FoV prediction is mostly accurate. However for FoV
trace 2, the single-tier system performs the worst among
all the systems. Except for the single-tier system, no video
freezing and black screen occurs. It further shows that single-
tier streaming is not stable. While comparing performances
between the two tables, as expected the two-tier systems have
better performance with the more stable FoV trace 1.

Tables V and VI show the detailed information about the
four two-tier systems. The two dynamic optimization systems
outperform the two static system in terms of FoV hit rate o
for both FoV traces and chunk delivery rate y for FoV trace 1,
as the target buffer length is adjusted in real-time. From the
comparison between the two tables, we find BT is allocated
with higher rate when o value is low. For each system, y value
are roughly the same for different FoV traces, even though
BT and ET are allocated with different rates.



54 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 1, MARCH 2019

IS ] —  LTE Bandwidth [

TABLE VIII
PERFORMANCE UNDER LTE NETWORK TRACE AND FOV TRACE 1

T A
o)
= 5 Strategies
""""""""""" Metrics . . . Two Tier System
Naive 360 | Single Tier Static 2 | Periodic | Adaptive
50 100 150 200 250 300 350 400 450 Ave QoE 6.06 633 6.33 6.73 6.73
Second Rendered Quality Q- 6.06 6.65 6.33 6.73 6.73
. - : Ave Display Rate (Mbps) 0.99 2.59 212 225 222
Fig. 13.  Dynamic LTE bandwidth trace. Ave Received Rate (Mbps) 580 550 549 584 575
Freezing Ratio 0 733 % 0 0 0
TABLE VII Average Black Ratio 0 17.64 % 0 0 0
THE SET OF DISCRETE RATES (MBPS) USED BY THE TWO-TIER SYSTEM Number of Optimizations 0 0 1 15 41
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Fig. 14. Performance of periodic optimization under LTE network trace and
FoV trace 1. (a) Buffer length. (b) Video rate. (c) Rate allocation.

FE. Performance in LTE Network

To demonstrate that the proposed system also works in
other dynamic networks, we conduct experiments similar to
Sec. V-E on LTE bandwidth traces collected by a LTE mobile
phone on a bus, illustrated in Fig. 13. We find that LTE
bandwidth evolution is quite different from WiGig. Therefore,
we manually select four typical LTE traces, and compute y
curve offline using the same method as Sec. IV-C. The
corresponding BT and ET rates are pre-defined in Table VII.
Because the bandwidth range for LTE is relatively large, for
the static variant of the two-tier system, once the optimal
rate R, is determined, we generate three ET rates as:
R.1 = 0.5R., R.,» = R, and R.,3 = 1.5R,. We use the FoV
trace 1 to evaluate the two-tier system performance in dynamic
LTE network using the trace shown in Fig. 13. The Q-R
model parameters are chosen so the the quality ranges from
0 to 10 in the normalized rate range corresponding to the bit
rate range in Table VII, which yields a = 6.34 and b = 1.517.

Both periodic and adaptive optimization strategies are
tested, and the results are demonstrated in Fig. 14 and Fig. 15,
respectively. As expected, BT buffer length is stable without
freezing, and ET buffer length varies with the target ET buffer
length generated from optimization. The received and rendered
video bitrates shown in Fig. 14(b) demonstrate that during
the period from 30s to 75s, with relatively high available
bandwidth, the highest ET rates are delivered in most cases.
However, due to the dynamic FoV change, even though high
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Fig. 15. Performance of adaptive optimization under LTE network trace and
FoV trace 1. (a) Buffer length. (b) Video rate. (c) Rate allocation.

bitrate chunks are available, the eventual rendered bitrates
are still low. And this further explains why target ET buffer
length keeps at one second within this time period. Fig. 15(b)
illustrates the adaptive strategy behaves in a similar way.
In LTE network, the adaptive strategy conducts one rate opti-
mization almost every 10 seconds to adapt to the dynamic LTE
bandwidth and FoV change, and results in 41 optimizations in
total during the entire 450 seconds, which is more frequent
than the periodic one. As a consequence, the rate allocation
with adaptive strategy changes much smoother.

We also compare the performance among different stream-
ing strategies. In Table VIII, Naive 360° and single-tier have
13 available bitrates ranging from 0.1 to 15.0Mbps. All the
three two-tier systems share the same initial and streaming
setting. The results demonstrate that the adaptive approach
that has frequent rate optimization generates the highest QoE,
and followed by the periodic optimization.

VI. CONCLUSIONS

In this paper, we developed a novel two-tier 360° video
streaming framework to maximize the rendered video quality,
while maintaining the streaming continuity and robustness
against the inherent dynamics in both user FoV and net-
work bandwidth. We analytically studied the optimization of
the target ET buffer length and rate allocation between the
BT and ET. We further developed algorithms that dynamically
adjust the rate allocation and ET buffer length based on the
real-time measurement of the network bandwidth statistics
and FoV prediction accuracy. Through experiments driven
by real 5G 802.11ad and LTE bandwidth traces and real
user FoV traces, we demonstrated that the proposed two-tier
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Fig. 16. Base-tier WS-PSNR vs. normalized rate curves for two test
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Fig. 17. Enhancement-tier WS-PSNR vs. normalized rate curves for different
viewports.

systems substantially outperform the regular DASH streaming
and single improvement in quality of experience over two
benchmark systems.

APPENDIX
VIDEO CODING EXPERIMENTS AND
QUALITY-RATE MODELING

To quantify the differences in the achievable quality-rate
(Q-R) performances between the BT and ET, and the influence
of the viewport directions on the ET coding efficiency,
we have conducted coding experiments as follows. We choose
two 8K JVET sequences: “Trolley” (8K-8bit), a static scene
captured by fixed camera and “Chairlift” (§K-10bit), a moving
scene captured by a mounted camera, both represented in the
ERP format with 8192 x 4096 pixels and 30 frames/second.

For the BT, we code the first 30 frames of each ERP video
using the HEVC reference software (HM) [35], following the
JVET common test condition (CTC), using four quantization
parameters (i.e., 22, 27, 32, 37) in random access (RA)
configuration. For the lack of well accepted subjective quality
metrics for 360° video, we will assume the perceptual quality
is proportional to the weighted-to-spherically-uniform peak-
signal-to-noise ratio (WS-PSNR), which is a 360° video objec-
tive metric recommended by JVET, in which the geometrical
distortion of ERP is taken into account by assigning different
weights to different pixel locations in the ERP [36]. The
WS-PSNR vs. normalized rate points corresponding to differ-
ent QPs are shown in Fig. 16, where the normalized rate has a
unit of Kbits/second/degree, determined by dividing the total
bitrate (in kbits/second) by the total degree area covered by the
BT, which is A = 360° x 180°. We have found that these Q-R
curves can be represented quite well by a logarithmic model

QR)=a+b-logR, (11)

where a and b are content-dependent. We would like to
note that the logarithmic Q-R relationship has been widely
observed for 2D video, when the quality is evaluated by
PSNR. The fact that this is also true for 360° video when the
quality is measured by WS-PSNR is thus not a coincidence.

For the ET, we assume each viewport covers a view span of
135° x 135°. To realize tile-based coding, we divide the entire
ERP region into 16 x 8 tiles, each with 512 x 512 pixels.
We code each tile using the same configuration as for the
BT. For each viewport, we determine all the tiles needed to
cover the viewport by projecting the FoV corresponding to
each viewport center back to the ERP. We evaluate the total
rate and the average WS-PSNR for each QP. The resulting
WS-PSNR vs. normalized rate R for six viewport directions
(front, back, left, right, top, and bottom) are shown in Fig. 17.
The normalized rate is determined by dividing the total bitrate
(in Kbits/second) by the total degree area covered by an ET
chunk, which is A, = 135° x 135°.

We see that the Q-R curves for the middle viewports are
quite similar, but the Q-R curves for the top and bottom
viewports are quite different, and furthermore the top view can
be coded more efficiently than the other views, as expected.
Figure 17 shows that Q-R curves for different viewports can
also be fitted very well by the logarithmic model, and the
parameters “a” and “b” generally are viewport dependent.
However the “b” values for different viewing directions are
relatively close.

Although the Q-R curves for the top and bottom view-
ports are quite different from those for the middle viewports,
the probability that a user will look at the top and bottom
directions is relatively small. From the FoV trace data [34],
we have found that the total probability that the latitude
direction of the FoV center fall in the range of 7 /4 to 7 /2
and —z /2 to —x /4 is less than 10%. Therefore, we can safely
use the WS-PSNR vs. rate points corresponding to the middle
view directions to derive the average Q-R curve, which is also
shown in Fig. 17. Comparing the Q-R curves for the BT and
ET viewports, we see that BT coding is more efficient. This is
as expected as the entire ERP is coded together. However,
the difference between the model parameters for the same
video is relatively small.
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