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Compositional planning in Markov decision processes: Temporal
abstraction meets generalized logic composition

Xuan Liu and Jie Fu

Abstract—1In hierarchical planning for Markov decision
processes (MDPs), temporal abstraction allows planning with
macro-actions that take place at different time scale in form
of sequential composition. In this paper, we propose a novel
approach to compositional reasoning and hierarchical planning
for MDPs under co-safe temporal logic constraints. In addition
to sequential composition, we introduce a composition of poli-
cies based on generalized logic composition: Given sub-policies
for sub-tasks and a new task expressed as logic compositions of
subtasks, a semi-optimal policy, which is optimal in planning
with only sub-policies, can be obtained by simply composing
sub-polices. Thus, a synthesis algorithm is developed to compute
optimal policies efficiently by planning with primitive actions,
policies for sub-tasks, and the compositions of sub-policies, for
maximizing the probability of satisfying constraints specified
in the fragment of co-safe temporal logic. We demonstrate
the correctness and efficiency of the proposed method in
stochastic planning examples with a single agent and multiple
task specifications.

I. INTRODUCTION

Temporal logic is an expressive language to describe
desired system properties: safety, reachability, obligation,
stability, and liveness [18]. The algorithms for planning
and probabilistic verification with temporal logic constraints
have developed, with both centralized [2], [7], [17] and
distributed methods [10]. Yet, there are two main barriers to
practical applications: 1) The issue of scalability: In temporal
logic constrained control problems, it is often necessary
to introduce additional memory states for keeping track
of the evolution of state variables with respect to these
temporal logic constraints. The additional memory states
grow exponentially (or double exponentially depending on
the class of temporal logic) in the length of a specification
[11] and make synthesis computational extensive. 2) The lack
of flexibility: With a small change in the specification, a new
policy may need to be synthesized from scratch.

To improve scalability for planning given complex tasks,
composition is an idea exploited in temporal abstraction
and hierarchical planning in Markov decision processes
(MDPs) [24], [1]. To accomplish complex tasks, temporal
abstraction allows planning with macro-actions—policies for
simple subtasks—with different time scales. A well-known
hierarchical planner is called the options framework [20],
[26], [22]. An option is a pre-learned policy for a subtask
given the original task that can be completed by temporally
abstracting subgoals and sequencing the subtasks’ policies.
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Once an agent learns the set of options from an underlying
MDP, it can use conventional reinforcement learning to learn
the global optimal policy with the original action set aug-
mented with the set of options, also known as sub-policies or
macro-actions. In light of the options framework, hierarchical
planning in MDPs is evolving rapidly, with both model-free
[15] and model-based [24], [25], and with many practical
applications in robotic systems [13], [14]. The option-critic
method [1] integrates approximate dynamic programming [3]
with the options framework to further improve its scalability.

Since temporal logic specifications describe temporally
extended goals and the options framework uses tempo-
rally abstracted actions, it seems that applying the options
framework to planning under temporal logic constraints is
straightforward. However, a direct application does not take
full advantages of various compositions observed in tem-
poral logic. The options framework captures the sequential
composition. However, it does not consider composition for
conjunction or disjunction in logic. In this paper, we are
interested in answering two questions: Given two options
that maximize the probabilities of ¢; and 9, is there
a way to compose these two options to obtain a “good
enough” policy for maximizing the probability of ¢; A 2,
or 1 V @o? If there exists a way to compose, what shall
be the least set of options that one needs to generate?
Having multiple ways of composition enables more flexible
and modular planning given temporal logic constraints. For
example, consider a specification & ((R1V R2) A< Rg), i.e.,
eventually reaching the region R3 after visiting any of the
two regions R; and Rs. With composition for sequential
tasks only, we may generate an option that maximizes the
probability of reaching R; V Rs and an option that maximizes
the probability of reaching R3. With both compositions of
sequencing, conjunction, and disjunction of tasks, we may
generate options that maximize the probabilities of reaching
R1, Ro, and Rg, respectively, and compose the first two
to obtain the option for & Ry V O Ry, In addition, we can
compose options to not only for & Ry V & Ry but also have
& R1VEO Rs, O R1VEO RV Rg, etc. When the task changes
to O ((Ry V R3) A< Rg), the new option for & Ry V <O R
needs not to be learned or computed, but composed.

In a pursuit to answering these two questions, the contri-
bution of this paper is two-fold: We develop an automatic
decomposition procedure to generate a small set of primi-
tive options from a given co-safe temporal logic specifica-
tion. We formally establish an equivalence relation between
Generalized Conjunction/Disjunction (GCD) functions [8]
in quantitative logic and composable solutions of MDPs



using entropy-regulated Bellman operators [24], [19]. This
equivalence enables us to compose policies for simple formu-
las/tasks to maximize the probability for satisfying formulas
obtained via GCD composition of these simple formulas.
Last, we use these novel composition operations to develop
a hierarchical planning method for MDPs under co-safe
temporal logic constraints. We demonstrate the efficiency and
correctness of the proposed method with several examples.

II. PRELIMINARIES

Notation: Let N be the set of nonnegative integers. Let X
be an alphabet (a finite set of symbols) Given k € N, xF
indicates a set of strings with length k, =" indicates a set of
finite strings with length smaller or equal to k, and X9 = X
is the empty string. >* is the set of all finite strings (also
known as Kleene closure of ¥). Given a set X, let Dist(X)
be a set of probabilistic distributions with X as the support.

In this paper, we consider temporal logic formulas for
specifying desired properties in a stochastic system. Given a
set AP of atomic propositions, a syntactically co-safe linear
temporal logic (sc-LTL) [16] formula over AP is inductively
defined as follows:

@ = truelp|=ple1 A palp1 V @] O ¢lp1 Ups.

The above formula is composed of unconditional true
true, state predicates p and its negation —p, conjunction
(A) and disjunction (V), temporal operators “Next” (), and
“Until” (U ). Temporal operator “Eventually” (<) is defined
by: & ¢ = true U ¢. However, temporal operator “Always”
cannot be expressed in sc-LTL. A detailed description of the
syntax and semantics of sc-LTL can be found in [21]. An
sc-LTL formula ¢ is evaluated over finite words. In addition
to the above notation, we use a backslash (\) between two
propositions to represent the logic exclusion, i.e., rewriting
1 A g2 to p1\pa.

Given an sc-LTL formula ¢, there exists a deterministic
finite-state automaton (DFA) that accepts all strings that
satisfy the formula ¢ [11]. The DFA is a tuple A, =
(Q,%,6,q0, F), where Q is a finite set of states, ¥ = 247 is
a finite alphabet, § : Q) X 3 — @Q is a deterministic transition
function such that when the symbol o € ¥ is read at state
q, the automaton makes a deterministic transition to state
5(g,0) =¢', qo € Q is the initial state, and F C @ is a set
of final, accepting states. The transition function is extended
to a sequence of symbols, or a word w = ogo1... € X¥,
in the usual way: 6(q,ogv) = §(6(q,00),v) for op € ¥
and v € ¥*. A finite word w satisfies ¢ if and only if
d(go, w) € F. The set of words satisfying ¢ is the language
of the automaton A, denoted L(A,).

We consider stochastic systems modeled by MDPs. The
specification is given by an sc-LTL formula and related to
paths in an MDP via a labeling function.

Definition 1 (Labeled MDPs). A labeled MDP is a tuple

= (S, A, uo, P, AP, L) where S and A are finite state
and action sets. po € Dist(S) is the initial state distribution.
The transition probability function P : S x A x S — [0,1]

is defined such that ), g P(s,a,s") € {0,1} for any state
s € S and any action a € A. AP is a finite set of atomic
propositions and L : S — 247 is a labeling function which
assigns to each state s € S a set of atomic propositions
L(s) C AP that are valid at the state s. L can be extended to
state sequences in the usual way, i.e., L(p1p2) = L(p1)L(p2)
for p1,p2 € S™.

A finite-memory, stochastic policy in the MDP is a func-
tion m : S* — Dist(A). A Markovian, stochastic policy
in the MDP is a function © : S — Dist(A). Given an
MDP M and a policy m, the policy induces a Markov chain
M™ = {s;|t =1,...,00} where s, as the random variable
for the k-th state in the Markov chain M™ and it holds that
So ~ Mo and Si+1 ™~ P("Si,aqj) and a; ~ 7T('|S7;).

Given a finite (resp. infinite) path p = sgs1...sy € S*
(resp. p € S“), we obtain a sequence of labels L(p) =
L(so)L(s1)...L(sn) € T* (resp. L(p) € X¥). A path
p satisfies the formula ¢, denoted p = ¢, if and only if
L(p) € L(A,). Given a Markov chain induced by policy
m, the probability of satisfying the specification, denoted
Prob(M™ | ¢) is the sum of the probabilities of paths
satisfying the specification.

Prob(M™ |= ¢) =

o0
Z pr = ]
t=0
where p; = s0s71 ... 5S¢ is a path of length ¢ in M™.

We relate each subset o € 247 of atomic propositions to
a propositional logic formula Apcop A (Vypreap\o—p'). A set
of states satisfying the propositional logic formula for o is
denoted [o]. Given a subset of proposition set C' C 247, let
[C] = U.eclc]. Slightly abusing the notation, we use o to
refer to the propositional logic formula that o corresponds
to. The optimal planning problem for MDPs under sc-LTL
constraints is defined as follows.

Problem 1. Given an MDP and an sc-LTL formula o, design
a policy m that maximizes the probability of satisfying the
specification, i.e., m < arg max, Prob(M, = ¢).

Problem 1 can be solved with dynamic programming
methods in a product MDP. The idea is to augment the state
space of the MDP with additional memory states—the states
in the automaton A, and reformulate the problem into a
stochastic shortest path problem in the product MDP with
the augmented state space. The reader is referred to [7] for
more details. In this paper, our goal is to develop an efficient
and hierarchical planner for solving Problem 1.

Remark 1. The extension from sc-LTL to the class of LTL
formulas can be made by expressing the specification formula
using a deterministic Rabin automaton [9], [12] and perform
two-step synthesis approach: The first step is to compute the
maximal accepting end components, and the second step is to
solve the Stochastic Shortest Path (SSP) MDP in the product
MDP (assigning reward 1 to reaching a state in any maximal
accepting end component). The details of the method can
be found in [4], [7], [6]. Particularly, the tools facilitate
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symbolic computation of maximal accepting end components
have been developed [5]. In the scope of this paper, we
only consider sc-LTL formulas. Yet, the generalization can
be made to handle planning for general LTL formulas with
a similar two-step approaches.

III. HIERERACHICAL AND COMPOSITIONAL PLANNING
UNDER SC-LTL CONSTRAINTS

In this section, we present a compositional planning
method for solving Problem 1. First, we propose a task
decomposition method to identify a set of modular and
reusable primitive options. Second, we establish a relation
between logical conjunction/disjunction and composition of
primitive options. Building on the options framework, we
develop a hierarchical and compositional planning method
for temporal logic constrained stochastic systems.

A. Automata-guided generation of primitive options

We present a procedure to decompose the task ¢ in sc-
LTL into a set of primitive tasks. These primitive tasks will
be composed in Sec III-B to generate the set of options in
hierarchical planning.

Given a specification automaton A, = (Q, %, 6, go, F), let
the rank of a state be the minimal number of transitions to
the set F' of final states. Let L; be the set of states of rank
k. Thus, we have

e Log=F, and

e L, = {q | 3w € ¥*,6(q,w) € F and V¢ < k,Yw €

¢ 8(q,w) ¢ F}.

By definition, if DFA A, is coaccessible, i.e., for every state
q € @ there is a word w that takes us from ¢ to a final state,
then for any state g € @, there exists L with a finite rank &
that includes state q. Any DFA can be made coaccessible by
trimming [23]. Finally, for a coaccessible DFA, we introduce
a sink state to make it complete: For a state ¢ and symbol
o €%, if §(q,0) is undefined, then let §(q, o) = sink.

Based on the ranking, for each state ¢ € ), we distinguish
two types of transitions from the state:

o A transition is progressing: ¢ = ¢ and if ¢ € L;, then

q € Lip—1.

o A transition is unsafe: ¢ = sink, where sink is a non-

accepting state with self-loops on all symbols.

Note that the DFA may have self-loops which are not
included in either progressing transition or unsafe transitions.
However, we shall see later that ignoring these self-loops will
not affect the optimality of the planning algorithm.

A state may have multiple progressing and unsafe transi-
tions. Let Unsafe(q) be the set of labels for unsafe transitions
on ¢. Let Prog(q) be the set of labels for progressing
transitions on q. A conditional reachability formula is defined
for q as:

TPUnsafe(q) u PProg(q)»

where PUnsafe(q) — /\annsafe(q)U and PProg = \/UEProg(q)U
and o € X. This subformula is further decomposed into:

©! == “Punsafe(q) Ui,  for each o; € Prog(q).
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We define the decomposition of ¢ as the collection of
conditional reachability formulas

" ={pl,qeQ|i=1,...,|Prog(q)|}.

Next, we prune " to obtain the set & C ®°" of primitive
tasks: ¢ € ® N ®°" if and only if there does not exist a set
of formulas ¢; = =¥ Uo; ¢« = 1,...,k, such that ¢ =
_‘w U /\5»6:1 ;.

For each primitive task, the policy for maximizing the
probability of satisfying a conditional reachability formula
¢! € @ can be solved through stochastic shortest path
problem in the MDP M, referred to as an SSP MDP, with a
formal definition follows.

Definition 2. A (discounted) SSP MDP is defined as a tuple
M = (S, A, P,r,~, Goal, Unsafe, sg) where Goal C S is a
set of absorbing goal states and Unsafe C S is a set of
absorbing unsafe states. The transition probability function
P satisfies P(s|s,a) =1 for all s € Goal U Unsafe, for all
a € A. The planning problem is to maximize the (discounted)
probability of reaching Goal while avoiding Unsafe. This
objective is equivalent to maximizing the total (discounted)
reward with the reward function r : S x A — R defined as:
For each s € Goal U Unsafe, r(s,a) = 0 for all a € A,
r(s,a) = Eg lgoa(s') for s ¢ Goal. v € (0,1] is the
discounting factor.

Given ¢] = “PUnsafe(q) U 03, the corresponding SSP MDP
shares the same state and action sets with the underlying
MDP M that models the system. The transition function is
revised from the transition function in the original MDP M
by making Goal = [o;] and Unsafe = [@uynsate(q)] absorbing
states. Recall that [¢] is a set of states satisfying the proposi-
tional logic formula ¢. Note when «y # 1, the solution of SSP
MBDP is the solution of a discounted stochastic shortest path
problem. The expected total reward becomes the discounted
probability of satisfying the conditional reachability formula.

For stochastic shortest path problems, there exists a de-
terministic, optimal, Markov policy. However, to compose
policies, we use a class of policies called entropy-regulated
policies, where softmax Bellman operator is used instead
of hardmax Bellman operator. Given 7 as the temperature
parameter, the optimal value function with softmax Bellman
operator satisfies:

V*(s) = 7log Z exp{(r(s,a) + Egp(|s,a) V*(s'))/T}.
acA
The Q-function is:

Q*(Sv (Z) = T(Sa a‘) + Es’~P(~|s,a) V*(S/)7
and the entropy-regulated optimal policy is:

m*(als) = exp ((Q*(s,a) = V7(s))/7)
__ exp(Q7(s,a)/7)
2o exp(Q*(s,a’)/7)
In the following, by optimal policy/value function, we mean
the entropy-regulated optimal policy/value function unless
otherwise specified.
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‘Primilivc task options: O(o1,C'), O(02,C),0(03,C) ‘

‘ Non-primitive task options: O(o2 A a3, C), O(02\03,C), O(03\02,C) ‘

Fig. 1: The simplified DFA translation of the task
-C'U (<> (0’1 AN (<> o9 N\ <>O'3))).

It is noted that the softmax Bellman operator is also proved
equivalent to the following form [19]:

V*(s) = Z m*(als)[r(s,a) — Tlog7*(a|s)

acA
+7 ESINP(.ls’a) V*(S/)],

which means in softmax optimal planning the objective has
to trade off maximizing the reward and minimizing the total
entropy of the stochastic policy—such a trade off is reflected
in the choice of 7. In this case, the construction of reward
function needs to be different from the reward defined in
Def. 2 to reduce the value diminishing problem, which means
the entropy of the stochastic policy outweights the total
reward for small reward signals in softmax optimal planning.
In this paper, we define the reward function for the entropy-
regulated MDP as:

r(s,a) = a-Eg 1goa(s’), Vs ¢ Goal, (1)

where o > 0 is a large constant.

For each conditional reachability subtask ¢, the optimal
policy 7 in the corresponding stochastic shortest path MDP
is an option o := (I, m, 3), following the definition in [26],
[22] in which I C S is an initiation set and is the domain
of w and 8 : S — [0,1] is the termination function, defined
by B(s) =1 only if s € Unsafe U Goal. We refer the option
for task =) U o as O(o, ).

Definition 3. The option O(o,v) for subtask -y Uo is a
primitive option if and only if o is an atomic proposition and
1 is the co-safe constraint in the given task DFA.

Example 1. Consider the
the  corresponding  sc-LTL  task  specification is
“CU (O (01 A (Co2NOo3))) (reach [o1] and  then
reach regions [o3] and [os], always avoid [C]). The set
of atomic propositions are {o1,09,03,C}. The level sets
are Lo = {q4}, L1 = {q1,92,q3}, and Ly = {qunit}. For a
given state, for example, qi1, the set of labels for progressing

transitions are {q MS—% qa}. According to Def. 3,
the set of primitive tasks are ~C'Uoq,-CUoy,~CUos.
Therefore, three primitive options are computed as:
O(o;,C), for i = 1,2,3. In addition, -C'U (o3 A 03),

—C' U (02\o3) and =C' U (c3\02) are not primitive tasks.

DFA in Fig. 1 and
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B. Composition of options with disjunction and conjunction

For a given state ¢ € (), we have obtained a set of
conditional reachability formulas ¢, for i = 1,...,n where
n is the total number of primitive tasks generated from q.
However, a progress transition can be made by satisfying
any of the conditional reachability formula. That is to say,
we may be interested in synthesizing option that maximizes
VI o, or potentially the conjunction/disjunction of a subset
of all primitive tasks ®. A naive approach is to take the
new specification Vi, o7, construct a DFA, and synthesize
the optimal policy using methods [7], [2] for MDPs under
temporal logic constraints. However, we are interested in
finding a “good enough” policy given the new specification
via composing existing policies. The problem is formally
stated as follows.

Problem 2. Given two conditional reachability formulas
01 = “Qunsafe U1, and @3 = —punsate U 02, construct
a good enough policy given the goal of maximizing the
probability of satisfying the disjunction: 1 V @3, or b) the
conjunction: p1 A pa; or ¢) the exclusion @1\@a or v2\p1.

The definition of “good enough” policies will be provided
later. Here, we consider the case when ¢; and @y share
the same set of unsafe states. Particularly, if ¢1 = ¢, and
o = @? for some ¢ # j and ¢ € @, then it is always
the case that ¢; and (o share the same set of unsafe states.
Next, we propose a method for policy composition based on
generalized logic conjunction/disjunction [8], which is briefly
introduced below.

Generalized  conjunction/disjunction: ~ Generalized
Conjunction-Disjunction (GCD) was introduced in [8]
for quantitative reasoning with logic formulas. GCD is a
mapping A : [0,1]" — [0,1], n > 1, that has properties
similar to logic conjunction and disjunction. The level of
similarity is adjustable using a parameter 7, called the
conjunction degree (andness). Formally, let zi,...,z,
be variables representing the level of truthfulness for
a set of logic formulas ¢q,...,p,, the GCD formula
A1, ..., x,|n), which unifies conjunction and disjunction,
is defined as,

1 n
Nz1,. .. xq|n) = 51og(j£:mexp(nxi)), 2)

=1
0 <[n| < +oo,

where when 77 — 00, limy, 00 A(Z1, 22, ..., Tn|N) = z1 V2V
...Vx,, recovers the conventional disjunction, and when 7 —
—00, limy, 5 oo A(T1, T2, ..., Tn|N) = T1 A2 A...AZ,;, TECOV-
ers the conventional conjunction. For any 7 € (—o0, +00),
Az, xa, ..., xy|n) returns a level of truthfulness of a GCD.
In addition, parameter W; is the corresponding weight (or
relative importance) of the i-th formula, for i = 1,...,n. In
this paper, we select W; = 1 by assuming that all formulae
are equally important.

We use GCD to compose a “good enough” policy, that is,
the optimal policy in semi-MDP planning.



Definition 4. [26], [22] Given an MDP M = (S, A, P,~,r)
and a set O = {o0; = {Z;,7;,B:},i = 1,...,n} of options
where I; is a set of initial states, B; : S — [0,1] is a
termination condition and m; : S — Dist(A) is a policy
in the MDP M. An option policy in M is a function

©: S — Dist(O). let T1° be the set of option policies in M.
Given a reward function v : S X A — R, an option policy
is optimal if and only if it maximizes the total discounted
reward:

o0
79" = arg max, E,. Z 7r(s¢,04) 3)
where r(sg,0¢) = E., [Tt+1 +YTipo .y *1rt+k] is

the total accumulated rewards when the policy m,, of option
o is applied to the MDP for the duration of k steps.

Assumption 1. Given a conditional reachability subtask
i, the optimal policy m that maximizes the probability of
satisfying @; induces in M an absorbing Markov chain M™.

In other words, with probability one, the system will visit
an absorbing state.

Lemma 1. Assuming 1, given a set O = {o; =
{Z;,m,B:},i = 1,...,n} of options where T; = S, 7; is
the softmax optimal policy for maximizing the probability
of satisfying p; = —unsafe U 04, i.e., the SSP MDP M, =
(S, A, P,y v, [oi], [punsatell; So) Bi(s) = 1x(s) where X =
U;;l[[aj]] U Unsafe is the termination function. In the MDP
M, the optimal option policy for maximizing the GCD
A1,y 0n | M58 )for any s € S, with unit weights, i.e.,

W,=11=1,. is

WO(S)[]] _ Z?:l eXP(WQi(S»OJ))
Zok (0] Z:I:l eXp(UQi (37 Ok)) ’ (4)

where Q;(s,0;) is the evaluation of policy 7; with respect
to specification ;.

Proof. For state s and an option o}, by definition of GCD,
we have
1 n
A1, on | m55,05) = #Og(z exp(nE;[1(s | @i))))-
i=1
where the expectation E;[] is taken over paths in the
Markov chain M™. Given the option o;, E;1(s k=
i) = Qi(s,0j)—the evaluation of policy 7; with respect
to specification ; and thus A(e1,...,0n | 1;8,05) =
+log(3oi; exp(nQi(s, 0;))-

Next, we distinguish two cases between conjunction and
disjunction:

Case I (Disjunction): > 0: To maximize A(¢1,...,¢n |
7;8) given an option-only decision rule 7°(s) : O — [0, 1],
based on the softmax operator, when n > 0, 7°(s)[j]
exp(A (@1, ..., ¢n | M;8,05)/T) where 7 > 0 is a tempera-
ture parameter. When 7 = 1/7, then

T exp(@i(s.0))
U = T exp (@i (s, 00))
forj=1,...,n

(&)

forj=1,...,n.

which is the same as in (4).
Case II(Conjunction): n < 0: In this case, we have

/\(‘Pla--~7@n|7];3 Oj)

=Tl L Log Zexp —[lE;[1(s = wi)]). (6)
To maximize Moty oson |
minimize log(3>-7_; exp(—|n|x;)) where z; is the
level of truthulness for formula ¢;. Further, minimiz-
ing W log(>=", exp(—|n|z;)) is equivalent to minimizing
log(>_" , exp(nz;)) as m = —[n|, which is exactly the
opposite case to that of disjunction. Thus, the optimal option
policy satisfies 7°(s)[j] o< exp(—A(@1,...,¢n | 155,05)/T)
(softmin operator) where 7 > 0 is a temperature parameter.
When 7 = —1/n, then given A(¢1,...,¢, | 1;8,05) =
Qi(s,0), forj=1,...,n
WO(S)[j] _ Z:L:I eXp(_Qi(S’Oj)/T)

ZokEO > ey exp(—Qi(s, 0x)/7)
_ i exp(Qi(s, 05))

o Sy exp(nQi(s. 01))

which is the same as in (4). Thus the proof is completed. [J

n;s) is equivalent to

Intuitively, for the case of disjunction, this policy makes
sense because given m; is the optimal policy for satisfying
@;, m°(s) selects policy j with a likelihood proportional
to exp(nQ;(s, 0;)) plus some bonus 3, .. exp(nQ;(s,0i))
obtained by satisfying other specifications. Given two spec-
ifications ¢; and @9, since the disjunction can be satisfied
by satisfying only one of these two, then this policy expo-
nentially prefers m; to 7o if ¢1 has a higher probability to
be satisfied.

The situation is complicated for conjunction. The con-
junction of two formulas, @1 = —@ynpsafe U1 and o =
“PUnsafe U 02, is (_‘@Unsafe U 01) A (_‘<PUnsafe U 0'2)~ For any
state, the planner will select the option 7 with a proba-
bility that is inverse proportional to Q(s,o0;), ie., if ¢
has a lower probability to be satisfied, then option 1 has
a higher probability to be chosen. Once it reaches [o1],
it will select option 2 with a higher probability because
Q(s,02) < Q(s,01) = 1 for s € [o1] to force a visit to
[o2]. However, without memory, the planner will alternate
between two options indefinitely, or until it reaches an unsafe
region. Thus the conjunction on multiple memoryless options
will require additional memory to manage the switching
condition of terminating function among goals. However,
when the intersection [o; Aos] # @ and either option
has a nonzero probability of reaching the intersection, a
memoryless composed option may eventually reach a state
in [o; A o3]. Thus, we may approximate the solution of
—punsafe U (01 A 02) with a memoryless composed option
for the conjunction. In this paper, we only focus on the
memoryless option, further discussions on the additional
memory method will be included in the future work.

Based on the proof of Lemma 1, we can further show
that the GCD method is indeed invertible to compute the
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exclusion ¢1\¢s. Since (p1 A @a) V (p1\p2) = p1, we can
apply generalized disjunction in Eq. (2) to the MDP M, then

exp(nE1[1(s = ¢1)]) ~ exp(nA(p1 A @2, 01\@2|1; 5, 01)
= exp(nE1[1(s = 1 A 92)))
+exp(nE1[1(s = ¢1\¢2)]).

Therefore, the Q function of task exclusion can be computed
by

Q(s,01) = E1[1(s = p1\p2)]
~ ﬁ log(exp(nE1[1(s = ¢1)])
—exp(nE1[1(s = o1 A p2)]))-

Finally, the set of options O includes both primitive
options—one for each primitive tasks and composed options
using GCD. The set of actions A is now augmented with
options (O, and the optimal policy can be obtained by solving
the following planning problem in the product MDP with an
augmented action space.

Definition 5. Given a labeled MDP M = (S, A, P, uo, L)
and an sc-LTL formula o, represented by a DFA A, =
(@,%,9,q0, F), a set O of options, the product MDP with
macro- and micro-actions is defined by

MIXA@:(SXQaAU(vaaﬂO)v

where the probabilistic transition function is defined by:

P((s',4)|(5,0),0) = P(s|s,0) if d' = 6(q, L(s")), a € A,
D((o k
and P((s',q")|(s,q),0) = [[;_o P(st41]|5¢, ar) where sg =
s and sip11 = S, k is the number of steps that are taken
under the (policy) of option o before being interrupted by
triggering a discrete transition in the automata, {s;,a;,t =
0,...} is Markov chain induced by the policy of option
o, and ¢ = 0(q,L(s")). The reward function is defined
by r((s,q),a) = B g)1(¢" € F), when ¢ ¢ F, and
r((s,q),0) = Eg, [Zi:ol Yir(se, ar)| is the total accumu-
lated rewards when the policy m, of option o is applied to
the MDP for the duration of k steps before it is interrupted.

Note that when the chain is absorbing for any policies of
options, then the discounting factor y can be set to 1. By
setting v # 1, we will encourage the behavior of satisfying
the specification in a less number of steps.

Remark 2. The planning is performed in the product MDP
with both actions and options. It is ensured to recover the
optimal policy had only actions being used. Having options
helps to speed up the convergence. Note that even if self-
loops in the DFA have not been considered in generating
primitive and composed options, the optimality of the planner
will not be affected.

Remark 3. For the labeled MDP in Def. 5, let
Ng,Ng,Na,No denote the size of S,Q,A,O. In value
iteration algorithm, the space complexity of the planning
performed with actions only is O(NsNqgNa), while the
planning performed with both actions and options consumes

Fig. 2: The state space setting for the task cases in a 2-D

grid world.
‘

0(03,C) 60

0(0,,C) ‘

‘ Option Composition ‘

0(0, V 03,C) ‘ 0(0; A3, C)

1
Fig. 3: The figure shows the converging distribution of
entropy regularized value functions of primitive options

O(o2,(C), O(03,C) and their compositions to approximate
general conjunction and disjunction.

O(NsNg(Na + No) + NsNaNo) of memory, for storing
the policy with both action and options and these option
policies. If we assume O(Ng) = O(Na) = O(No) =
O(N), and O(Ng) > O(N), the two methods will have
the same space complexity, that is O(N?Ny).

IV. CASE STUDY

This section illustrates our compositional planning method
using robotic motion planning problems. All experiments
in this section are performed on a computer equipped with
an Intel® Core™ i7-5820K and 32GB of RAM running a
python 3.6 script on a 64-bit Ubuntu® 16.04 LTS.

The environment is modeled as a 2D grid world, shown
in Fig. 2. The robot has actions: Up, Down, Left, and Right.
With probability 0.7, the robot arrives at the cell it intended
with the action and has a probability of (1—-0.7)/(]Adj| —1)
to transit to other adjacent locations, where |Adj| is the
number of adjacent cells, including the current cell when
the action is applied. Especially, when the transition hits the
boundary of the grid world, the probability under that tran-
sition adds to the probability of staying put. The discounting
factor -y is fixed 0.9. Fig. 2 shows a grid world of size 6 x 8.
In this grid world, there are a set of obstacles (unsafe grids)
marked with cross signs and several regions of interests,
marked with numbers. The cell marked with number ¢ is

564



labeled with symbol o, for ¢ = 1,2, 3. Region marked with
number 2, 3 is the nonempty intersection satisfying o5 A o3.
We consider three sc-LTL tasks ¢ = {1, ¢2, 93} where

Y1 = -CU (<> (0’1 /\(<>0'2/\<>O'3))),

(reach [o1] and then reach regions [o3] and [o3], while
avoiding [C1].)

Yo = -CU (<> ((0'1 \/0'3) /\002)),

(reach either [o;] or [os] and then reach [os], while
avoiding [C1].)

Y3 = —|OU (<> ((0’1 V 0'2) A O (0'2 A 0'3))),

(reach either [o1] or [os] and then reach either [os] or [os],
while avoiding [C1].)

Figure 1.a shows the DFA of ;. We omit the DFAs for
2 and 3 given the limited space. Based on the set of tasks,
the following set of primitive tasks are generated:

¢1 = —\C\VLJO']‘7 ¢2 = —\CUO'2’ ¢3 = _\CUU3

For each conditional reachability specifications, we formulate
the SSP MDP and compute the softmax optimal policy using
temperature parameter 7 = 1 and the reward function defined
in Eq. 1, where parameter « is selected to be 100 to prevent
the reward being outweighted by the entropy term.

Our first experiment is to demonstrate the composition of
policies based on GCD.

Policy composition: We use composition of ¢o
-C'Uoq, ¢35 = =C Uos to generate the options ~C' U (o2 ®
o3) where & € {A,V}. To validate that the composed
policies are “good enough”, we compare the values of the
optimal policies for these two formulas, computed using
standard value iteration, and the values of the composed
policies obtained via Lemma 1. For comparison, we consider
relative errors ez g V= — v/ IV™"?||, and
oo = V™ = V™ /IV™" |ls. We have ey ~
1074, Coo,v R 1074, ea n N 1073, N 1073,

Figure 3 shows heat maps comparing two option value
functions for the case of disjunction or conjunction. The
shaded areas represent globally unsafe regions with V' values
always fixed zero during the iteration. In Fig. 3, all value
distributions are in the range between 0 to 100 because
we scaled the reward of 1 by 100 to avoid entropy term
outweighing the total reward. From Fig. 3 (c), it is shown
that the value of regions marked by either 2 or 3 is highest,
corresponding to the disjunction. In the case of conjunction
in Fig. 3 (d), the intersection of regions marked by 2 and 3
has the highest value.

Next, we compare the convergence between three different
planning methods for three task specifications: planning
with only micro-action (action), planning with macro-actions
(primitive and composed options), and planning with both
micro- and macro-actions (mixed). In addition, we compared
the optimality of these planners with optimal planning with
only micro-action using hardmax Bellman operator as the
baseline. The results to be compared are the speed of
convergence and the optimality of the converged policy.
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Fig. 4: Value iteration of four different planners for task ¢;.

Figure 4 shows the convergence of value function evalu-
ated at the initial state with so = (3,3) given specification
1. It shows that among all three methods, the mixed planner
converges the fastest. Both option and mixed planners con-
verge much faster than action planner: The action planner
converges after about 20 iterations, while the other two
converges after 6-9 iterations. It is also interesting to notice
that the policy obtained by the mixed planner achieves a
higher value comparing to the action planner. This is because
the entropy of policy weighs less in the policy obtained by
the mixed planner comparing to that obtained by the action
planner in softmax optimal planning. Moreover, the influence
of entropy can also be observed between softmax action
planner (action) and hardmax action planner (optimal), where
the two planners converge almost at the same rate but to
different values since softmax adds additional policy entropy
to the total value.

Table I compares the performance of three planners in the
given three tasks. The entry p refers to the probability of
satisfying the specification from an initial state sy under the
optimal policies obtained by three planners. Number n is the
number of value iterations taken for each method to converge
with a pre-defined error tolerance threshold 0.001. Number
t shows the CPU time costs.

In converging iteration numbers and CPU times, the ad-
vantage of option planner outperforms the other two signif-
icantly. Considering the additional time cost from learning
the primitive options, the experiment shows that every single
option takes in average 30 iterations to converge in a 6 X 8
option state space, and in total costs 0.5 seconds to compute
all the options for primitive tasks. However, these options
only need to be solved for once and are reused across three
tasks. The composition of options takes negligible computa-
tion time (0.001 seconds on average for each composition).
The performance loss of option planner, comparing with the
global optimal planner (using hardmax Bellman), is only
13% of the optimal value for task ¢; and negligible for
tasks @9 and 3. Composition makes temporal logic planning
flexible: If we change a task from ¢; to @9, then the option
and mixed planner can quickly generate new, optimal policies
without reconstructing primitive option.

Last, we evalute and compare policies generated by option,



TABLE I: Comparison: Performance, convergence rate, and
computation cost

(¢ls0) iteration(n,) runtime(t : sec)

® e1 [ w2 [ o3 |1 [e2 9| w1 ]| 92 | 3
Optimal | 054 | 0.88 [ 089 [ 46 | 24 [ 24 | 0.6 | 0.28 [ 0.22
Action 035 | 0.87 | 0.87 | 45 25 23 0.6 | 032 | 0.21
Option 047 | 0.88 | 0.88 8 6 5 0.1 | 0.03 | 0.02
Mized 041 ] 0.88 | 0.87 | 34 | 18 15 ] 04 [ 017 | 0.12

TABLE II: The error (2-Norm and co-Norm) between poli-
cies obtained with different methods

Option 71 vs Action g Mixed 71 vs Action 7o

) ©1 P2 ©3 p1 P2 ©3
2-Norm 0.0076 | 0.0345 | 0.0394 | 0.0022 | 0.0009 0.001
oo-Norm | 0.0249 | 0.1755 0.17 0.0088 | 0.0071 0.0067

mixed and action planners. Table II shows the relative errors
in 2-norm and infinite-norm, ie., e(m,m) = |[V™ —
V™2|/|[V™2||. Both the option planner and mixed planner
have negligible deviation to (less than 3%) to the action
planner, while the option planner is clearly less similar to the
action planner comparing to the mixed planner, especially on
the co-norm error.

V. CONCLUSIONS

This paper presents a compositional method for MDP
planning constrained by sc-LTL specifications. The method
formally relates the composition of stochastic policies
for logical task specifications and generalized conjunc-
tion/disjunction (GCD) in logic. We show that the compo-
sition based on GCD is equivalent to the semi-MDP plan-
ning under the softmax Bellman operator. The semi-MDP
planning with both primitive options and composed options
achieves much faster convergence, comparing to planning
with actions, or a mixture of actions and options, with a
relatively small performance loss. Besides, our compositional
planning method brings in more flexibility in re-using and
composing options for one task in a different task in the
same stochastic system with the same labeling function.

Although composed options may not be optimal, the
convergence to the global optimal policy is guaranteed as
the options framework uses both macro-actions/options and
micro-actions (actions in the original MDP). The future
direction along this line of work is to exploit the composi-
tional planning in model-free reinforcement learning and to
improve the scalability of the planning method by replacing
value/policy iteration with approximate dynamic program-
ming [3]. We will further investigate finite-memory policy
composition to handle the issue raised from conjunction-
based composition.
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