
Journal of Computational Physics 374 (2018) 121–134
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Bi-directional coupling between a PDE-domain

and an adjacent Data-domain equipped with multi-fidelity

sensors

Dongkun Zhang, Liu Yang, George Em Karniadakis ∗

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2017
Received in revised form 17 July 2018
Accepted 20 July 2018
Available online 24 July 2018

Keywords:
Gaussian process regression
Domain decomposition
Multi-fidelity
Machine learning

We consider a new prototype problem in domain decomposition with the solution in one
domain governed by a known partial differential equation (PDE) whereas the solution in an
adjacent domain is reconstructed by information gathered from distributed sensors (data)
of variable fidelity. The PDE-domain and the Data-domain are tightly coupled, as the PDE
solution is driven by the collected data, while the information gathered from its associated
sensors is influenced by the PDE solution. Our overall methodology is based on the Schwarz
alternating method and on recent advances in Gaussian process regression (GPR) using
multi-fidelity data. The effectiveness of the proposed domain decomposition algorithm is
demonstrated by examples of Helmholtz equations in both one-dimensional (1D) and two-
dimensional (2D) domains.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

There has been substantial progress in the last ten years on data inference models, but in many practical situations the
data can only be collected in a restricted area from a number of scattered and heterogeneous sensors of variable fidelity.
In subsurface applications, for example, we may have such measurements in one region, where we may or may not know
the physics of the process, and this data domain may be adjacent to a more homogeneous domain in which we know the
physical process and hence the mathematical model in the form of a PDE. We assume here that we have bi-directional
coupling, such as the dispersion in porous media, between the data domain and the PDE domain. Currently, there is no
scientific method to model this bi-directional propagation of information and the existing data inference techniques, e.g., for
streaming data, are relying on very accurate high-fidelity input. Here we address, for the first time, such hybrid data-PDE
problems and develop a method that propagates the information through the data and PDE domains. This new concept is
schematically shown in Fig. 1, where we allow a bi-directional coupling between the data domain (right, yellow) and the
PDE domain (left, blue). In addition, we assume that we have available on the data domain diverse sensors depicted by
green and red to represent different fidelities of the data. In particular, we have only a few green data points that we fully
trust whereas the majority of the data is represented by red crosses to denote less accurate or potentially even misleading
information. This algorithm would naturally fall into the scope of domain decomposition methods, which have already been
studied extensively within a deterministic problem setup [1–6], based on the classical Schwarz alternating algorithm [7].

* Corresponding author.
E-mail address: george_karniadakis@brown.edu (G.E. Karniadakis).
https://doi.org/10.1016/j.jcp.2018.07.039
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.07.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:george_karniadakis@brown.edu
https://doi.org/10.1016/j.jcp.2018.07.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.07.039&domain=pdf

122 D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134
Fig. 1. The physical domain D is decomposed into non-overlapping subdomains D1 and D2, where D1 is the PDE-domain and D2 is the Data-domain
equipped with high-fidelity sensors (green circles) and low-fidelity sensors (red crosses). Information from the PDE-domain and the Data-domain propagates
in both directions across the interface �s . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

This domain coupling is also a natural extension of the previous work on propagation of stochastic solutions across domains
[8–11].

Various methods [12–14] for solving a PDE based on machine learning tools have been developed recently, among which
GPR [15] serves as an effective means for designing such data-driven algorithms. Raissi et al. [16] have proposed a GPR
based algorithm for inferring solutions of differential equations from noisy multi-fidelity data, where the cheap, frequent
but low-fidelity observations could help with the expensive, scarce and high-fidelity observations to obtain solutions with
better accuracy. Inspired by such previous work in GPR and domain decomposition methods, we develop a new algorithm
that reconstructs the solution from scattered sensors in the data subdomain coupled with an adjacent PDE subdomain, and
we arrive at a converged global solution using an iterative method, similar to the Schwarz alternating method [7].

The organization of this paper is as follows. In section 2, we set up the domain decomposition problem and specify
the two types of subdomains. In section 3, we introduce the Schwarz iterative method and the numerical GPR method for
solving PDEs, using data of single- and multi-fidelity; the core algorithm of this paper is also described in this section. In
section 4, we demonstrate the performance of the proposed algorithm in both 1D and 2D examples, and we conclude with
a brief summary in section 5.

2. Problem setup

Suppose D is the entire physical domain and is divided into two non-overlapping subdomains D1 and D2 as depicted in
Fig. 1, where �s represents the interface shared by those two subdomains. We refer to D1 as the PDE-domain, because the
quantity of interest (QoI) u(x) is governed by a known PDE in D1,{

Lxu(x) = f (x), x ∈ D1,

Bxu(x) = g(x), x ∈ ∂D1\�s,
(1)

where Lx is the partial differential operator, f (x) is the forcing term, Bx is a proper boundary condition operator acting
on all boundaries of D1, except for �s , and g(x) is the prescribed boundary condition. We refer to D2 as the Data-domain,
where we place sensors of the solution u(x) at sparse locations, and collect data from the sensors. In another scenario, we
may have some sparse measurements of the forcing (right-hand-side) term f (x) of a known PDE, and hence we will sub-
sequently solve the PDE using numerical GPR[16] instead of the classical discretization method as in domain D1. Moreover,
these sensors provide information of variable fidelity.

Since a physically admissible solution u(x) should satisfy some continuity conditions at the interface �s , such as the
continuity of u(x) and ∇u(x), the value of u(x) on �s , which may be undetermined at first, depends on u(x) in both D1
and D2. Our goal is to design a domain decomposition algorithm that imposes the aforementioned continuity constraints
and will make use of both the PDE in D1 and the sparse multi-fidelity sensors data in D2 to solve for u(x) in the entire
domain D.

3. Methodology

3.1. Alternating Schwarz algorithm

As an example, consider the elliptic Helmholtz equation,

−∇2u + λ2u − f (x) = 0, x ∈ D,

u = 0, x ∈ ∂D.
(2)

For a 1D domain, consider the decomposition in Fig. 2, where we refer to Dm as the dominus domain for which we impose
a Dirichlet type interface condition at xb , and Ds as the servus domain with a Neumann type interface condition.

D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134 123
Fig. 2. 1D domain decomposition diagram, where Dm is the dominus domain with length lm , and Ds is the servus domain with length ls . The two
subdomains share the boundary point xb .

Fig. 3. 2D domain decomposition diagram, where Dm is the dominus domain, Ds is the servus domain, and n is the outer norm of Ds at the interface.

We employ a relaxed version of the alternating Schwarz algorithm for non-overlapping subdomains, first proposed by
Funaro et al. [2] and modified in [5]:
dominus domain:

− (uxx)
n
m + λ2un

m = f (x), onDm,

u(xL) = 0,

un
m(xb) = ηun−1

s (xb) + (1 − η)un−1
m (xb), η ∈ (0,1],

(3)

servus domain:

− (uxx)
n
s + λ2un

s = f (x), onDs,

u(xR) = 0,

(ux)
n
s (xb) = (ux)

n
m(xb).

(4)

In Equations (3) and (4), un
m and un

s denote the solutions for their respective subdomains during the nth iteration. A proper
relaxation parameter η is imposed when updating the Dirichlet boundary condition to guarantee and speed up the con-
vergence [6,17]. The iterative process stops when the change of solution at the interface between successive iterations is
smaller than a designated threshold ε , i.e.,

|un
m(xb) − un−1

m (xb)| + |un
s (xb) − un−1

s (xb)| < ε. (5)

Similarly, for a 2D domain decomposition, e.g. Fig. 3, we apply the following iterating boundary conditions:

un
m = ηun−1

s + (1 − η)un−1
m , n · ∇un

s = −n · ∇un
m, (6)

where n is the outward unit normal vector of the servus domain at the interface.

3.2. Numerical Gaussian process regression

The general form of a linear PDE is,⎧⎪⎨
⎪⎩
Lxu(x) = f (x), x ∈ �,

u(x) = p(x), x ∈ �D ,
∂
∂nu(x) = q(x), x ∈ �N ,

(7)

where L(·) is a linear operator (here Lx means that the operator acts on the variable x), f (x) is the external forcing term,
p(x) and q(x) are the Dirichlet and Neumann boundary conditions on their respective boundaries �D and �N , and n is the
unit outer normal. Assuming that the PDE solution u(x) belongs to C1(�), the solution space can be approximated using
Gaussian random processes with a covariance kernel characterized by tunable hyper-parameters θ , while the actual solution
is one of the possible Gaussian process trajectories. We shall infer the actual solution using a machine learning strategy,
given the sensors’ data of f (x) and u(x) at sparse locations and possibly other boundary information. The hyper-parameters
θ in the covariance kernel can be estimated using a maximum likelihood estimation, and after that the solution u(x) for
any provided x shall be predicted via the Bayesian estimation. In practice, the sensors’ data might be polluted by random

124 D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134
measurement error, which could be modeled by independent zero-mean Gaussian random variables with standard deviation
σu and σ f that are either known constants, or could be learned together with θ from the data.

To be more specific, let x = (x1, x2, ..., xN0) be the locations where we place our u(x) sensors. Assuming a Gaussian
process prior of the solution u(x), i.e.,

u(x) ∼ GP(0, g(x, x′; θ)), (8)

where g(x, x′; θ) is the covariance kernel that takes the form of, for example, the squared exponential kernel

g(x, x′; θ) = σ 2
l exp

(
−1

2

D∑
d=1

(x(d) − x′ (d))2

l2d

)
. (9)

Non-stationary kernels, such as the neural network covariance function [15,18,19], can also be applied, and the main algo-
rithm to be proposed does not restrict itself to stationary kernels either. For demonstrative purpose we will use the squared
exponential kernel described here for our numerical tests. In Equation (9), x(d) is the dth dimensional coordinate of x and
D is the dimension of the Data-domain, and the hyper-parameters to be optimized are θ = (σl, l1, l2, ..., lD). The Dirichlet
boundary conditions can be viewed as noiseless sensors (sensors that return the exact value) on its respective boundary
and they will be handled in the same way as the other u(x) sensors inside the domain. Thus we only need to consider
the situation when we have Neumann boundary conditions. Let z = (z1, z2, ..., zN1) be the locations where we place f (x)
sensors and y = (y1, y2, ..., yM) be the locations of sampling points on the Neumann boundary. Since the derivatives and
linear combinations of Gaussian processes are still Gaussian processes, we have

u′(y) ∼ GP(0,k(y, y′; θ)),

f (z) ∼ GP(0,h(z, z′; θ)),
(10)

where

k(y, y′; θ) = ∂

∂n1

∂

∂n2
g(y, y′; θ),

h(z, z′; θ) = LzLz′ g(z, z′; θ).

(11)

In Equation (11), n1 and n2 are the unit outer normal of the first and second entries of the covariance kernel function.
Moreover, the joint distribution of u(x), u′(y) and f (z) is

U =
⎡
⎣ u(x)
u′(y)
f (z)

⎤
⎦ ∼ N

⎛
⎝0,

⎡
⎣ K00 K01 K02
K10 K11 K12
K20 K21 K22

⎤
⎦

⎞
⎠ , (12)

where

K00 = g(x, x; θ) + σ 2
u I , K01 = ∂

∂n2
g(x, y; θ), K02 = Lz g(x, z; θ),

K10 = K T
01, K11 = k(y, y; θ), K12 = ∂

∂n1
Lz g(y, z; θ),

K20 = K T
02, K21 = K T

12, K22 = h(z, z; θ) + σ 2
f I .

(13)

In Equation (13), the additional variances due to the measurement error are included in K00 and K22 as σ 2
u I and σ 2

f I .
The sensors’ data and sample points on domain boundaries serve all together as the training data set. The covariance

kernel hyper-parameter θ (including σu and σ f , if they are not given) will be estimated by minimizing the negative log
marginal likelihood defined by

NLML := − log p(U |x, y, z; θ,σu,σ f), (14)

which can be explicitly written as

NLML = 1

2
Y T K−1Y + 1

2
log |K | + n

2
log(2π), (15)

where Y := [u(x), u′(y), f (z)]T , and n is the total number of training points [15].
Given the assumption that the solution is a Gaussian process, the value u(x0) at x0 ∈ � and all the training data follow

a multi-variant Gaussian distribution,[
u(x0)
Y

]
∼ N

([
0
0

]
,

[
g(x0, x0;σu,σ f) a

aT K

])
, (16)

D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134 125
where a = [g(x0, x; θ), ∂
∂n2

g(x0, y; θ), Lz g(x0, z; θ)]. The posterior distribution of u(x0) given all the training data is then
calculated from the Bayesian formula,

p(u(x0)|Y) = N (aK−1Y , g(x0, x0; θ) − aK−1aT). (17)

Therefore, the maximum a posteriori estimation of u(x0) is aK−1Y , with the prediction variance g(x0, x0; θ) − aK−1aT .

3.3. Inferring solutions of PDEs from multi-fidelity data

Here we consider a realistic situation where the information gathered by the sensors is of variable fidelity due to pri-
marily different sensor qualities, for example, different resolutions. Typically, the availability of high-fidelity data is quite
limited, while the low-fidelity data is much easier to collect. In general, low-fidelity data could come from inexpensive
sensors or uncalibrated measurements, e.g., satellite data, or even from computations, e.g., using inexpensive reduced-order
models. We denote the high-fidelity model of u(x) by uh(x), and the low-fidelity model of u(x) by ul(x). The auto-regressive
model in [20,16,21] reads

uh(x) = ρul(x) + δ(x), (18)

where ul(x) and δ(x) are two independent Gaussian processes with

ul(x) ∼ GP(0, g1(x, x
′; θ1)), δ(x) ∼ GP(0, g2(x, x

′; θ2)). (19)

Here, g1(x, x′; θ1) and g2(x, x′; θ2) are covariance functions, θ1, θ2 denote their hyper-parameters and ρ is the cross-
correlation parameter to be learned from the data. Therefore, from Equation (18) we can get

uh(x) ∼ GP(0, g(x, x′; θ1, θ2)), (20)

where

g(x, x′; θ1, θ2) = ρ2g1(x, x
′; θ1) + g2(x, x

′; θ2). (21)

Given that the operator Lx is linear, we arrive at the auto-regressive structure f h(x) = ρ f l(x) + γ (x) on the forcing, where
γ (x) = Lxδ(x) and f l(x) = Lxul(x) are two independent Gaussian processes. We note that the low-fidelity model ul(x) and
f l(x) satisfies the same equation as the high-fidelity model.

Suppose we have two types of f (x) sensors, where the highly accurate but expensive sensors are placed at location zh ,
while the sensors low accuracy are placed at zl . Thus, the joint distribution of all training data is

⎡
⎢⎢⎣

uh(x)
u′(y)
f h(zh)
f l(zl)

⎤
⎥⎥⎦ ∼ N

⎛
⎜⎜⎝

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
K00 K01 K02 K03
K10 K11 K12 K13
K20 K21 K22 K23
K30 K31 K32 K33

⎤
⎥⎥⎦

⎞
⎟⎟⎠ . (22)

In Equation (22), term K00, K01, K02, K10, K11, K12, K20, K21, K22 are defined in the same way as in Equation (13), with
g(x, x′; θ) replaced by Equation (21). Due to the independence assumption of ul(x) and δ(x), we can write down the rest of
the matrix explicitly,

K03 = ρLzl g1(x, z
l; θ1), K13 = ρ

∂

∂n1
Lzl g1(y, zl; θ1),

K23 = ρLzhLzl g1(z
h, zl; θ1), K33 = LzlLzl g1(z

h, zl; θ1) + σ 2
f l
I ,

(23)

and K30 = K T
03, K31 = K T

13, K32 = K T
23. The training and predicting procedures resemble those in the single-fidelity situation.

We note that if possible, it is desirable to use nested sensors so that the high-fidelity sensors are at the same location as
the low-fidelity sensors to reduce the computational cost [22], however, it is appreciated that may not possible in a real
situation.

126 D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134
3.4. Domain decomposition algorithm with Gaussian process regression

Algorithm: GPDD
1: Initializing u0

m(xb) with 0.
2: Set k = 0;
3: while ‖uk−1

m (xb) − uk
m(xb)‖ ≤ εtol do

4: Solve for uk
m(x) with the given solver in Dm;

5: Calculate u′
m
k
(xb) as the Neumann boundary condition in Ds ;

6: Predict uk
s (x) with GPR in Ds;

7: Set uk+1
m (xb) = uk

s (xb);
8: k = k + 1;
9: end while

As the core of this work, we introduce the hybrid domain decomposition algorithm with Gaussian process regression
(GPDD). Suppose we are provided with a PDE solver in the dominus domain Dm , which we call the PDE-domain, while in the
servus domain Ds , also referred to as the Data-domain, we have access to sensors data. The GPDD algorithm serves to couple
the data together with the PDE solver via the Dirichlet–Neumann type Schwarz iterative method. We note that a reversed
version of interface conditions could also be applied, i.e., imposing a Dirichlet boundary condition to the Data-domain and
a Neumann boundary condition to the PDE-domain. A comparison between both versions in terms of the solution accuracy
is displayed in section 4. For simplicity, we set the PDE-domain to be the dominus domain and the Data-domain to be the
servus domain unless it is specified otherwise. Depending on the type of sensors we have in Ds , this GPDD algorithm can
be applied in the following two cases:

Case 1: We have a PDE solver in the PDE-domain, while in the Data-domain we have access to the sensors’ data of u. We
assume that we do not know the PDE in the Data-domain.

Case 2: We have a PDE solver in the PDE-domain, while in the Data-domain we have access to the sensors’ data of the
forcing term f , which could be of variable fidelity. In this case, we know the exact form of the PDE left-hand-side
operator Lx in the Data-domain. No other information about u, except for the boundary conditions, is needed in the
Data-domain.

4. Numerical results

4.1. 1D Helmholtz equation

We solve the 1D Helmholtz equation

−uxx + λ2u = f (x), x ∈ [0,1], u(0) = u(1) = 0, (24)

where λ = 1 is a constant, f (x) is the forcing term, and u(x) is the QoI. The entire domain D : [0, 1] is divided into two
non-overlapping subdomains: the PDE-domain D1 : [0, 0.6], and the Data-domain D2 : [0.6, 1.0]. The numerical PDE solver
in D1 is implemented using a spectral/hp element method [6,23] with 6 spectral elements and the 10th order polynomial
but will only be accessed as a black box. We manufactured the reference solution so that it displays two different length
scales in different subdomains:

u(x) =

⎧⎪⎨
⎪⎩
3 sin

(
10πx
3

)
, x ∈ D1,

sin
(
45π
2 (x− 0.6)

)
− 5

2 sin(5π(x − 0.6)), x ∈ D2.
(25)

The resulting forcing term f (x) is

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
− 100π2

3 + 3
)
sin

(
10πx
3

)
, x ∈ D1,(

− 2025π2

4 + 1
)
sin

(
45π
2 (x− 0.6)

)
+ 5

2 (25π2 − 1) sin(5π(x − 0.6)), x ∈ D2.

(26)

The GPDD solution is denoted by ũ(x). Both cases in Section 3.4 will be considered, and we set the Schwarz iteration
terminating threshold ε in Equation (5) to be 10−7. We test our GPDD algorithm performance using both noiseless and
noisy sensor data.

D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134 127
Fig. 4. Case 1: The GPDD solutions of the 1D Helmholtz equation using (a) noiseless sensors data, and (b) noisy sensors data polluted by the Gaussian noise
of standard deviation σu = 0.2. The left-hand side is the PDE-domain and the right-hand side is the Data-domain. The interface between them is denoted
by the vertical dashed red line. The Data-domain contains 15 u(x) sensors, marked by the blue dots. The dashed lines mark the 95% confidence interval of
the prediction.

Table 1
Case 1: Number of iterations needed for the Schwarz iterations to converge,
using ε = 10−7 threshold.

Number of sensors 20 25 30 35 40

Noiseless (σ = 0) 17 15 15 14 13
Noisy (σ = 0.2) 18 17 17 17 16

4.1.1. Case 1
For demonstration purpose, we distribute the u(x) sensors uniformly in the Data-domain D2. To generate noisy sensors

data, we deliberately add independent Gaussian noise of a fixed standard deviation σu to each sensor. In Figs. 4a and 4b, we
compare the GPDD solution ũ(x), calculated with both noiseless and noisy sensors, and the reference solution u(x). As we
can see, even if the exact solution displays a multi-scale property, for both cases, the GPDD solution ũ(x) can approximate
u(x) very well. Although the problem to be solved is deterministic, predicting the solution in D2 is indeed the progress
of maximum likelihood estimation, and therefore, for every x ∈ D2 there exists a Gaussian distribution associated with
the predicted solution ũ(x). Therefore, we can feed the PDE-domain D1 with a Dirichlet interface condition of a Gaussian
distribution, instead of a single value. Due to the linearity of the PDE, solving the equation in D1 generates a Gaussian
distributed Neumann boundary condition at the interface, which shall be passed to the numerical GPR solver in D2 naturally
as a “noisy” boundary condition measurement. By repeatedly solving for ũ(x) in both subdomains with Gaussian distributed
boundary conditions, we manage to propagate the uncertainty back and forth between these two subdomains. We can
observe that in Fig. 4a the exact solution falls into the 95% confidence interval around the predicted solution generated by
noiseless sensors.

Table 1 shows the number of iterations needed for the Schwarz iterative scheme to converge when an “optimal” relax-
ation parameter η = 0.58 (calculated from the formula derived in [6]) is employed. Ideally, if both subdomains are equipped
with traditional PDE solvers, the serial iterations should converge after two steps, but when we have a GPR solver in the
Data-domain, we observe that more iterations are needed to converge, due to the fact that the estimated solution cannot
be simply characterized by a fixed PDE during iterations, especially when the sensor data are polluted by the random mea-
surement error (noise). Nevertheless, we can observe the trend that given more sensors, less iterations are needed for the
GPDD algorithm to converge at least for noiseless data.

The accuracy of the numerical solution ũ is measured by the relative L2 error εr , defined by

εr = ‖ũ − u‖
‖u‖ , (27)

where ‖ · ‖ denotes the L2 norm taken in the entire domain. Fig. 5a compares the relative error of the solutions obtained
from the proposed GPDD algorithm and the algorithm of reversed boundary conditions, i.e., feeding the PDE-domain with a
Neumann boundary condition and the Data-domain with a Dirichlet boundary condition. Both algorithms produce solutions
of similar accuracy, and obviously, we get the most accurate solutions with the noiseless sensors. If we put more u(x)

128 D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134
Fig. 5. Case 1: (a) The relative L2 error in the entire domain of the predicted solution versus the number of u(x) sensors in the Data-domain D2 for
different levels of sensor’s noise. Both the proposed GPDD algorithm and the algorithm with reversed interface conditions are implemented here. (b) The
relative error of the predicted magnitude of noise σ̃u (from the GPDD algorithm), with respect to the input (nominal) noise σu .

Fig. 6. Case 2: (a) The relative L2 error in the entire domain of the predicted solution versus the number of f (x) sensors in the Data-domain D2 for
different levels of sensor’s noise. Both the proposed GPDD algorithm and the algorithm with reversed interface conditions are implemented here. (b) For
different levels of sensor noise, the iterative process of the GPDD algorithm converges within 5 iterations. In this example, 25 sensors are used in the
Data-domain.

sensors in D2, we would generally obtain solutions with slightly better accuracy. This makes sense because the more data
we collect, the better knowledge we have about the pattern of the solution. Also, as demonstrated in Fig. 5b, the standard
deviation of sensors’ noise, σu , is learned with the GPDD algorithm, and by increasing the number of sensors we learn the
sensors’ noise better.

4.1.2. Case 2
In this case, the sensors for f (x) are placed in the Data-domain D2, and the linear operator Lx is known a priori:

Lx := − d2

dx2
+ I. (28)

We test the GPDD algorithm in both situations using either noiseless or noisy sensors. Similarly, the noisy f sensor are
manufactured by adding independent Gaussian random noise of standard deviation σ f to each sensor.

In Fig. 6a we compare the accuracy of the GPDD algorithm and the algorithm of reversed boundary conditions for
different numbers of f (x) sensors and different levels of sensors’ noise. Again, both algorithms display similar accuracy. It is
evident that the relative L2 error decreases when we place a greater larger number of less noisy sensors in the Data-domain.

D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134 129
Fig. 7. Case 2: (a) The standard deviation of u(xb) is reduced when more f (x) sensors are used. (b) The standard deviation of u(xb) is reduced when less
noisy f (x) sensors are being used.

Fig. 8. Case 2: The solution profile of the 1D Helmholtz equation, using 25 noisy (σ f = 1.0) sensors in D2. The 95% confidence interval of predicted solution
is reduced quickly in less than 10 Schwarz iterations.

By using the noiseless sensors, we achieve a very accurate solution with the relative L2 error less than 0.01%. Even when
we use noisy sensors of standard deviation σ f = 1.0, we still obtain solutions with relative error less than 1%. Fig. 6b
shows the convergence of the GPDD algorithm after a few iterations when 25 f (x) sensors are uniformly placed in the
Data-domain and an optimal η = 0.58 is adopted. The relative error of the GPDD solution decays to reach a stable level
within 5 iterations, indicating very fast convergence of the GPDD algorithm for this case.

We are also interested in the uncertainty associated with our GPDD solution. Fig. 7a shows that when more sensors
are placed in D2, the standard deviation of the predicted ũ(xb) decays, indicating that we are more confident with our
solution. Fig. 7b also confirms that less noisy sensors would result in more confident prediction of solution. In Fig. 8 we

130 D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134
Fig. 9. The 2D physical domain and its decomposition for case 1: dominus domain: D1 := [0,1] × [0,1], and servus domain: D2 := [1,1.5] × [0,1].

plot the 95% confidence interval of the predicted solution ũ(x), obtained with 25 noisy sensors (σ f = 1.0) in D2. Here we
intentionally choose the boundary relaxation parameter η = 0.3 to suppress the convergence rate. The confidence interval
shrinks rapidly within the first few iterations, indicating that we are gaining confidence of our predictions through this
Schwarz type iteration.

4.2. 2D Helmholtz equation

We extend our demonstration example into the 2D physical space, and solve the 2D Helmholtz equation:

−
(

∂2

∂x2
+ ∂2

∂ y2

)
u + λ2u = f (x, y), (x, y) ∈ [0,1.5] × [0,1]. (29)

In this section, we also demonstrate the useful information that can be extracted from a network of multi-fidelity sensors.

4.2.1. Case 1
We enforce a homogeneous Dirichlet boundary condition for the global domain D:

u(1.5, y) = u(0, y) = u(x,0) = u(x,1) = 0. (30)

The global domain D is divided into two non-overlapping subdomains as depicted in Fig. 9, while the PDE-domain D1

serves as the dominus domain, equipped with a Dirichlet interface condition at the interface �s , and the Data-domain D2 is
the servus domain with a Neumann interface condition. The manufactured reference solution is:

u(x, y) = sin

(
4

3
πx

)
sin(π y), (31)

and by choosing λ = 1,

f (x, y) =
(

λ2 + 25

9
π2

)
sin

(
4

3
πx

)
sin(π y). (32)

As shown in Fig. 10a, the u sensors (green dots) are uniformly distributed in the Data-domain D2 to form a 10 ×5 lattice
grid and the Neumann interface condition is sampled at the red diamonds. We use a relaxation parameter η = 0.3 and a
stopping threshold ε = 10−5 for the Schwarz iterations. A visualization of the GPDD solution generated by noiseless sensors
is displayed in Fig. 10a. Fig. 10b shows that the relative L2 error decays after a few iterations, where less noisy sensors lead
to more accurate predicted solutions.

4.2.2. Case 2 with multi-fidelity data
We test our GPDD algorithm under the situation where we have two sources of f sensors data of different fidelity, using

a new 2D domain decomposition paradigm displayed in Fig. 11. For this test we enforce a homogeneous Neumann boundary
condition on the global domain D := [−1, 1] × [−1, 1], i.e.

ux(1.5, y) = ux(0, y) = uy(x,0) = uy(x,1) = 0. (33)

The manufactured reference solution is:

u(x, y) = sin

(
3πx

2

)
(2+ cos(π y)) . (34)

As for the forcing term, the high-fidelity function is

D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134 131
Fig. 10. Case 1: (a) The GPDD solution of the 2D Helmholtz equation using 50 u sensors (marked in green). The sample points for the Neumann boundary
conditions are marked in red. The black dotted line indicates the subdomain interface. (b) The relative L2 error of solution in the entire domain versus the
number of iterations.

Fig. 11. The 2D physical domain and its decomposition for case 2: servus domain: D2 := [−0.5, 0.5] ×[−0.5, 0.5], dominus domain: D1 := [−1, 1] ×[−1, 1] \
D2.

f h(x, y) =
((

1+ 9π2

4

)
(2+ cos(π y)) + π2 cos(π y)

)
sin

(
3πx

2

)
, (35)

while the low-fidelity function is chosen to be a scaling of the high-fidelity function combined with a non-trivial noise:

f l(x, y) = 4

5
f (x, y) + 2πx

15
sin(π y). (36)

In order to evaluate the effectiveness of our method with multi-fidelity data, we compare the error of the GPDD solutions
when different numbers of low-fidelity and high-fidelity f sensors are placed in the Data-domain. For the first experiment,
we fix the number and position of the high-fidelity sensors and investigate the effect of using an increase number of
low-fidelity sensors. Positions of the sensors are illustrated in Fig. 12, where we intentionally choose a nested setup of
the low-fidelity sensors so that the information from the previous tests is kept intact in the succeeding tests. Since the
Data-domain is fed only with information of the derivatives of u, the predicted solution can vary by any constant. Therefore
in addition to the sensors for f , we place 4 anchor points for u in the Data-domain to pin the solution. The relaxation
parameter η is set to be 0.2. To avoid the influence of the initialization of hyper-parameters, in practice, we conduct 50
independent runs for each setup with randomly initialized hyper-parameters, and the errors are calculated using an average
of the 15 runs with minimum NLMLs.

Fig. 13b indicates the decay of relative L2 error in our predicted solution with different sensor setups. We compare in
Fig. 13c the error of the numerical solutions after the iteration converges, as the number of low-fidelity sensors increases,
the error shows a decreasing trend at first. However, when we continue adding more low-fidelity sensors, the error starts
increasing; this is an indication that we reached the point of “diminishing return” from the low-fidelity sensors. Instead, for

132 D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134
Fig. 12. Positions of the high-fidelity and low-fidelity sensors. The number of high-fidelity sensors is fixed at 4 while the number of low-fidelity sensors
varies: 0, 4, 25, 121. The black dotted line indicates the subdomain interface.

the second experiment, we put just another high-fidelity sensor (Fig. 13a), the error could be further decreased (indicated
by the yellow triangle in Fig. 13c. The general strategies of selecting a proper number and the positions of high-fidelity and
low-fidelity sensors are important issues and are related to active learning so we plan to investigate it systematically in the
future work.

4.3. Computational cost

Here we provide a rough estimation of the computational cost in the Data-domain. Note that in each iteration, NLML is
minimized and a prediction is conducted in the Data-domain. During each minimization, NLML is repeatedly evaluated,
and we denote the number of evaluations as E . Assume N to be the total number of sensors and boundary condition
points in the Data-domain, then the size of the covariance matrix used for computing NLML will be N by N . As a
consequence, during each evaluation of NLML, the computational cost of generating the covariance matrix is O (N2),
and the computational cost of calculating NLML with the covariance matrix is O (N3) if we use Cholesky decomposition
to invert the covariance matrix. The covariance matrix and its inverse could be reused in the prediction stage. The total
computational cost for each NLML evaluation is O (N3), and hence the total computational cost for each minimization is
O (EN3).

Suppose that we need to make predictions at M points in the Data-domain. During the iterations, we only need to
make predictions on the Neumann boundary condition points for the sake of information fusion. The computational cost of

D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134 133
Fig. 13. (a) An illustration of adding an extra high-fidelity sensor (5 high-fidelity sensors in total) to the 25 low-fidelity sensors setup. (b) The relative L2
error of solution decays after a few Schwarz iterations and remains at a stable level, showing convergence. (c) Error of the numerical solution at the end of
the iteration versus the number of low-fidelity sensors. Using an extra high-fidelity sensor improves the accuracy.

generating covariance matrices, i.e., g and a in Equation (16), is O (MN) + O (M2), and the computational cost of making
predictions with the matrices is O (MN2) + O (M2N). Therefore, the cost of making predictions is O (MN2) + O (M2N).

We conclude that, roughly the computational cost in the Data-domain in each iteration is O (EN3) + O (MN2) + O (M2N).

5. Summary

In this paper we address the issue of coupling a solution in two types of domains, one with a traditional PDE solver,
and the other one with sparse sensor data. We proposed a GPDD algorithm where the PDE-domain and the Data-domain
are synchronized by the Schwarz type iterative method that can propagate information across the subdomain interface in
both directions. The uncertainty in the GP prediction is spread and results in a distribution of the predicted global solution.
The PDE-domain acts as the dominus domain where we impose a Dirichlet boundary condition at the interface, while the
Data-domain acts as the servus domain where numerical GPR is used to infer the solution subject to the Neumann interface
condition. The sensor data in the Data-domain can be either noiseless (exact) or noisy (with measurement error). Two
specific situations were considered:

1. We have sensor data of the QoI in the Data-domain but we do not have a governing PDE. In this situation, GPR is
performed in the Data-domain.

134 D. Zhang et al. / Journal of Computational Physics 374 (2018) 121–134
2. We have sensor data of the forcing term and we also know the governing PDE in the Data-domain. In this situation, we
build a joint distribution of the solution and the forcing term. The solution in the Data-domain can be inferred using
the numerical GPR.

The GPDD algorithm is proved to be reliable for solving linear equations in both 1D and 2D physical domains. The
iterative process helps with the training of GP, as the error in solution and the variance of prediction decays fast after just
a few iterations, which is a non-trivial result. We also observed that by using noiseless sensors and by using larger amount
of sensors, we obtain more accurate and more trustworthy results. Moreover, multi-fidelity sensors could be incorporated
with the GPDD framework. A combination of cheap low-fidelity sensors and expensive high-fidelity sensors can contribute
to better solutions, which is of great significance in practice, especially because in most applications one has to operate at
limited budget and resources.

There are several open questions and challenges related to the GPDD algorithm. For example, measurements in practice
could be collected at a scale distant from that of the PDE model, and the small-scale behavior of the QoI would be extremely
difficult to resolve and would be easily attributed to the sensor’s noise without careful treatment. To deal with this situation,
a sufficiently large number of sensors should be employed and we should also use the non-stationary GP kernels because
they are more adapted to the locally small-scale changes. Moreover, this data-driven domain decomposition method could be
integrated with the non-linear information fusion algorithm [24] and time-dependent non-linear GPR algorithm [18] to learn
the complex space and time dependent cross-correlations in multi-fidelity data sets, and to safeguard our computations
against erroneous data or the low-fidelity models that may provide wrong trends. Those are indeed very interesting research
topics for future investigation.

Acknowledgements

We gratefully acknowledge support from the ARO grant W911NF-18-1-0301, the NSF grant DMS-1736088 and the UTAH-
ARL. We would also like to thank Dr. Raissi and Dr. Perdikaris for their sample code and guidance.

References

[1] C. Canuto, D. Funaro, The Schwarz algorithm for spectral methods, SIAM J. Numer. Anal. 25 (1988) 24–40.
[2] D. Funaro, A. Quarteroni, P. Zanolli, An iterative procedure with interface relaxation for domain decomposition methods, SIAM J. Numer. Anal. 25 (1988)

1213–1236.
[3] P.-L. Lions, On the Schwarz alternating method. I, in: First International Symposium on Domain Decomposition Methods for Partial Differential Equa-

tions, SIAM, Paris, France, 1988, pp. 1–42.
[4] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University

Press, 2004.
[5] R. Henderson, G.E. Karniadakis, Hybrid spectral-element-low-order methods for incompressible flows, J. Sci. Comput. 6 (1991) 79–100.
[6] G.E. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford University Press, 2013.
[7] H.A. Schwarz, Uber einige Abbildungsaufgaben, J. Reine Angew. Math. 70 (1869) 105–120.
[8] Y. Chen, J. Jakeman, C. Gittelson, D. Xiu, Local polynomial chaos expansion for linear differential equations with high dimensional random inputs, SIAM

J. Sci. Comput. 37 (2015) A79–A102.
[9] Q. Liao, K. Willcox, A domain decomposition approach for uncertainty analysis, SIAM J. Sci. Comput. 37 (2015) A103–A133.

[10] H. Cho, X. Yang, D. Venturi, G.E. Karniadakis, Algorithms for propagating uncertainty across heterogeneous domains, SIAM J. Sci. Comput. 37 (2015)
A3030–A3054.

[11] D. Zhang, H. Babaee, G.E. Karniadakis, Stochastic domain decomposition via moment minimization, SIAM J. Sci. Comput. 40 (2018) A2152–A2173,
https://doi .org /10 .1137 /17M1160756.

[12] T. Graepel, Solving noisy linear operator equations by Gaussian processes: application to ordinary and partial differential equations, in: ICML’03, AAAI
Press, 2003, pp. 234–241.

[13] S. Särkkä, Linear operators and stochastic partial differential equations in Gaussian process regression, in: Artificial Neural Networks and Machine
Learning, ICANN 2011, 2011, pp. 151–158.

[14] I. Bilionis, Probabilistic solvers for partial differential equations, arXiv preprint, arXiv:1607.03526, 2016.
[15] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, vol. 1, MIT Press, Cambridge, 2006.
[16] M. Raissi, P. Perdikaris, G.E. Karniadakis, Inferring solutions of differential equations using noisy multi-fidelity data, J. Comput. Phys. 335 (2017)

736–746.
[17] M.J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal. 44 (2006) 699–731.
[18] M. Raissi, P. Perdikaris, G.E. Karniadakis, Numerical Gaussian processes for time-dependent and nonlinear partial differential equations, SIAM J. Sci.

Comput. 40 (2018) A172–A198.
[19] G. Pang, L. Yang, G.E. Karniadakis, Approximation and PDE solution Neural-net-induced Gaussian process regression for function approximation and

PDE solution, arXiv preprint, arXiv:1806 .11187, 2018.
[20] M. Kennedy, A. O’Hagan, Predicting the output from a complex computer code when fast approximations are available, Biometrika 87 (2000) 1–13.
[21] P. Perdikaris, D. Venturi, G.E. Karniadakis, Multifidelity information fusion algorithms for high-dimensional systems and massive data sets, SIAM J. Sci.

Comput. 38 (2016) B521–B538.
[22] L.L. Gratiet, J. Garnier, Recursive co-kriging model for design of computer experiments with multiple levels of fidelity, Int. J. Uncertain. Quantificat. 4

(2014) 365–386.
[23] D.A. Kopriva, Spectral Element Methods, Springer Netherlands, Dordrecht, 2009, pp. 293–354.
[24] P. Perdikaris, M. Raissi, A. Damianou, N.D. Lawrence, G.E. Karniadakis, Nonlinear information fusion algorithms for data-efficient multi-fidelity mod-

elling, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 473 (2017).

http://refhub.elsevier.com/S0021-9991(18)30500-X/bib63616E75746F31393838s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib66756E61726F31393838s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib66756E61726F31393838s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib6C696F6E7331393838s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib6C696F6E7331393838s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib736D69746832303034s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib736D69746832303034s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib68656E646572736F6E31393931s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib6B61726E696164616B697332303133737065637472616Cs1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib7363687761727A3138363975626572s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib446F6E6762696Es1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib446F6E6762696Es1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib4B6172656E57696C6C636F78s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib48657972696Ds1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib48657972696Ds1
https://doi.org/10.1137/17M1160756
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib6772616570656C32303033s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib6772616570656C32303033s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib7361726B6B6132303131s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib7361726B6B6132303131s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib62696C696F6E697332303136s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib7261736D757373656E32303036676175737369616Es1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib72616973736932303137s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib72616973736932303137s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib67616E646572323030366F7074696D697A6564s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib5261697373695F6E6F6E6C696E656172s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib5261697373695F6E6F6E6C696E656172s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib50616E6732303138s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib50616E6732303138s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib4B656E6E6564795F4F686167616Es1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib50657264696B617269733230313661s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib50657264696B617269733230313661s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib6C656772617469657432303134s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib6C656772617469657432303134s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib4B6F707269766132303039s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib70657264696B61726973323031376E6F6E6C696E656172s1
http://refhub.elsevier.com/S0021-9991(18)30500-X/bib70657264696B61726973323031376E6F6E6C696E656172s1

	Bi-directional coupling between a PDE-domain and an adjacent Data-domain equipped with multi-ﬁdelity sensors
	1 Introduction
	2 Problem setup
	3 Methodology
	3.1 Alternating Schwarz algorithm
	3.2 Numerical Gaussian process regression
	3.3 Inferring solutions of PDEs from multi-ﬁdelity data
	3.4 Domain decomposition algorithm with Gaussian process regression

	4 Numerical results
	4.1 1D Helmholtz equation
	4.1.1 Case 1
	4.1.2 Case 2

	4.2 2D Helmholtz equation
	4.2.1 Case 1
	4.2.2 Case 2 with multi-ﬁdelity data

	4.3 Computational cost

	5 Summary
	Acknowledgements
	References

