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ABSTRACT

This review describes recent advances by the authors and others on the topic of incorporating
experimental data into molecular simulations through maximum entropy methods. Methods which
incorporate experimental data improve accuracy in molecular simulation by minimally modifying the
thermodynamic ensemble. This is especially important where force fields are approximate, such as
when employing coarse-grain models, or where high accuracy is required, such as when attempting to
mimic a multiscale self-assembly process. The authors review here the experiment directed simulation
(EDS) and experiment directed metadynamics (EDM) methods that allow matching averages and
distributions in simulations, respectively. Important system-specific considerations are discussed such
as using enhanced sampling simultaneously, the role of pressure, treating uncertainty, and
implementations of these methods. Recent examples of EDS and EDM are reviewed including
applications to ab initio molecular dynamics of water, incorporating environmental fluctuations inside
of a macromolecular protein complex, improving RNA force fields, and the combination of enhanced
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1. Introduction

A common task in molecular simulation is ensuring that obser-
vables of the simulation match experimentally measured values.
For example, in simulations of protein structure [1] or liquids
[2], quantitative agreement with experiments is the standard
for assessing correctness of a model. When there is no quantitat-
ive agreement, changing the potential energy function or adding
additional components to the simulation are possible ways to
improve the fit. Making such changes can be an ambiguous
and challenging process, especially if the potential energy func-
tion has multiple terms that can be modified. Minimal biasing
techniques are a class of methods that modify a potential energy
function to improve quantitative agreement with experimental
values while minimizing the the change in the potential energy
function. The definition of ‘minimal’ and the way the potential
energy function is modified vary from method to method.

Recent reviews of minimal biasing methods can be found in
[3-5]. Table 1 in [4] provides an overview of 28 minimal biasing
methods, categorizing them by whether they maximize entropy,
maximize parsimony, or use Bayesian inference. These three cat-
egories correspond broadly to the criteria used to ensure that the
biasing function introduces a minimal change to the potential
energy function. This review focuses on two techniques devel-
oped by the authors that are categorized as maximum entropy
methods: experiment directed simulation [6] (EDS) and exper-
iment directed metadynamics [7] (EDM). EDS is for matching
ensemble average scalars and EDM is for matching free energy
surfaces (probability distributions of observables).

EDS, like other minimal biasing methods, modifies a poten-
tial energy function to change ensemble averages of observables

to match a specific value. These observables are typically equiv-
alent to collective variables, but are intended to be only those
that area experimentally verifiable quantities. What separates
EDS from other methods is that it does not use replicas and
can be used to construct a continuous NVE trajectory. For
example, the Bayesian landscape tilting method of [8] relies
on post-processing so that there cannot be a continuous NVE
trajectory. Another example is the replica method of [9]
which relies on replica-exchange of biasing forces and thus can-
not result in a continuous trajectory. This does not mean EDS is
‘better’; indeed these two methods appear to provide better
sampling and scaling than EDS. However, the ability to compute
an NVE trajectory allows dynamic observables like hydrogen-
bonding lifetimes to be computed. The key results from EDS
have been to improve thermodynamic observables and indirectly
improve dynamic observables. For example, EDS was recently
used to create a state-of-the-art DFT water model that gives
near perfect agreement with X-ray scattering results, water diffu-
sivity, and proton-hopping behavior by improving only the
water oxygen-oxygen coordination number [10].

EDM is a maximum entropy method that matches ensemble
probability distributions, or equivalently free energy surfaces,
using prescribed functions. So far, EDM has proved most useful
for matching radial distribution functions (RDFs), e.g. to then
do coarse-grained modeling. EDM is less often used because it
is rare to have experimental data that gives a probability distri-
bution, other than a normal distribution (which is better trea-
ted with methods like in [11]). Other groups have since arrived
at the same approach as EDM and typically it is now called ‘tar-
geted metadynamics’ because it uses the method of
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metadynamics to arrive at a target free energy surface [12,13].
EDM is also equivalent to variationally enhanced sampling
metadynamics [14], although there the target is a tool to
improve sampling, and the biased simulation is not the goal.
The name EDM was chosen by the authors because at the
time there were new metadynamics methods that could target
a collective variable domain [15]. Now the term ‘targeted’
seems to apply exclusively to target distributions, and EDM is
probably best described as falling under the umbrella of tar-
geted metadynamics methods.

Here, we review the maximum entropy derivations that
underpin both EDS and EDM, describe some of the recent
research benefiting from these methods, and discuss implemen-
tation details such as understanding the effect of EDS and EDM
on the virial and accounting for uncertainty in the experimental
data.

2, Theory

EDS minimally modifies an ensemble so that the ensemble
average of some scalar matches a desired value, such as a
value obtained from an experiment. The EDS bias is minimal
because the resulting biased ensemble maximizes entropy
[16,17]. Maximum entropy and minimum relative entropy
are equivalent approaches to derive these minimal biasing
equations [18]. We will use the minimum relative entropy
approach because it has an intuitive interpretation as a distance
metric. Figure 1 illustrates how the biased ensemble is one of
many choices that matches our constraints, but is as close as
possible to the unbiased ensemble as measured via relative
entropy.

Consider an unbiased potential energy function, U(r), which
has a probability distribution of P(#) under the NVT ensemble,
following the Boltzmann distribution: P(#) oc exp ( — BU(7)). 7
is the set of coordinate vectors of the N particles of the ensem-
ble and B = 1/kT. k is the Boltzmann constant and T is absol-
ute temperature. We would like to find a biased ensemble P'()
which is as similar as possible to the unbiased ensemble.

ASrel PO (7;»)

Figure 1. (Colour online) A schematic of the minimum relative entropy derivation.
Po(r) is the unbiased probability distribution from the unbiased potential energy.
We are finding a biased probability distribution, P(r), that is consistent with
Equation (2). There is a hypersurface of possible such probability distributions.
With the condition that we minimize relative entropy, or ‘distance’ in this sche-
matic, we find a unique point in the hypersurface P'(r).

Similarity can be defined via the relative entropy:

/
AS.q = jdf’F(r‘) ln%
where P'(7) is the biased ensemble probability distribution, and
the integral is taken over all coordinates. Having a lower AS,
means that the biased and unbiased ensembles are more simi-
lar. The biased ensemble should also have an observable aver-
age that matches a target value, which could be obtained from
an experiment. This constraint is represented as

(1)

<s(r) >= jdf’F(F)s(r‘) =5 (2)
where s(7) is an instantaneous value for our observable (collec-
tive variable) which we are matching to §, the desired scalar
value. This is sometimes called a forward model and depends
only on positions. We will relax this assumption below.

These equations represent (1) a constraint (to have our aver-
age simulation value match the target §), and (2) a scalar to
minimize (the relative entropy). When these conditions are
present, we can find the optimal value via the method of
Lagrange multipliers. The Lagrange funtion is

CPOP O] =50 - AP O -5)

Equation (3) can be minimized by taking the functional
derivative equal to zero: 6£/6P () = 0. Solving for P'(r) gives
this expression for the biased ensemble:

P = % o~ BUPAS(7) (4)
where Z' is a normalization constant. This gives an expression
for the biased potential energy as U'(r) = U(¥) 4+ As(7). This
result shows that if the bias is linear in the instantaneous obser-
vable, the ensemble is minimally biased. This derivation can be
repeated for multiple dimensions [16] and for functions instead
of scalars [7]. The general result is

UM =UR+Y As®)+ Y wlv)] (5)
i J

where i is the index of ensemble averages that are matched to a
desired value and j is the index of free energy surfaces that are
matched to desired functions. ,uj[v(f)] is a bias added that
depends on v(7), another instantaneous observable, and causes
the biased ensemble to match a specific distribution in the free
energy surfaces F,[v(7)]. Specifically,

[ 473067 = V1) = ) ®
where § is the Dirac delta function and q(v') is a desired prob-
ability distribution for v(r) (i.e. g[v(r)] = —1/BInF[v()]).
q(v) could be obtained for example from a scattering or
FRET experiment [19].

The derivation above gives the form of the biased potential
energy that is minimally biased, but it does not enable calcu-
lation of the Lagrange multipliers. That is the purpose of the
EDS and EDM methods. EDS and EDM are time-dependent
methods that change the potential energy of a simulation to



arrive at the bias in Equation (5). EDS is intended to be used in
a two-step process: finding the Lagrange multiplier (adaptive)
and then running a standard MD simulation using the
modified force field given by Equation (5).

During the adaptive phase of EDS, the Lagrange multipliers
are called coupling constants to distinguish from the time-inde-
pendent Lagrange multipliers. These are indicated as «,; where
7 is a discrete step index. The Lagrange multipliers are set to be
the average of a,. a is defined as

Ory] = Qr + N:8r (7)
2B

Gr=—(<s> =< >, —<s>2) (®)
w

where w is an arbitrary constant used to ensure unit homogen-
eity, < - > is the ensemble average between step 7— 1 and 7,
and 7, is

A
T =—r=r
\/Zigiz

where A is a user-defined constant that controls the size of the
first step. The point of 1) is to reduce the size of the steps over
time. Note that because g is in the sum, |ag| = A. Typically,
the gradients should be clipped for stability and A is a natural
upper/lower bound for clipping it. Thus, a user of this method
must choose A and the time between updates. This update pro-
cedure is derived in [6] and is based on per-coordinate infinite
horizon stochastic gradient descent [20]. Hocky et al. [21]
recently found that Equation (8) can be modified to use covari-
ance in multiple dimensions to improve convergence and that
replacing Equation (7) with Levenberg-Marquardt optimiz-
ation further improves convergence.

The EDM method finds the w[v(r)] bias function in
Equation (5). For compactness, we will now omit the depen-
dence on 7. Unlike EDS, EDM consists of a single phase
where u(v) changes less over time. The update equation is

)

W) oir = BV)s + ——exp (0 )Gvvs)  (10)

q(vs)
where v, is the value of v(7) at time 7, G is a kernel function (e.g.
Gaussian), q(v,) is the probability at position v, from the target
probability distribution and 6(v,,v), is a function which con-
trols convergence. Following the above update rule causes the
simulation to converge to the following distributions [7,22],
depending on the choice of 6:

L, non-convergent
[LT, q(v)
BATW(v,),/T,  q)T/AT+Dp()T/ATHD)

(11)

where AT is the ‘tempering factor’ [7], P(v) is the marginal
unbiased distribution for v(7), and f is the total or average of
all previous .. The first condition, # = 1, is similar to normal
metadynamics; it reaches a distribution similar to q(v) but may
oscillate due to a lack of dampening in the update size. Condition
two, called globally tempered, converges correctly to g(v). The
last condition, locally tempered, converges to an adjustable mix-
ture of the unbiased and target distribution. EDM is traditionally

0(vz, v), =
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implemented as globally tempered, so that the final distribution
is indeed the target. The first condition is good for tuning par-
ameters, since it makes progress more quickly. The final con-
dition, locally tempered, allows a pseudo-Bayesian tuning of
prior belief in the unbiased ensemble. It is pseudo-Bayesian
because the ratio of influence from the prior belief to evidence
is computed, not set, in Bayesian modeling.

An important consideration of both EDS and EDM is that
they add potential energy during the update step which quickly
becomes kinetic energy. Thus, it is important that the thermo-
stat used to maintain constant temperature in the NVT can dis-
sipate energy faster than it is added by the update steps. This is
necessary during the adaptive phase of EDS and EDM prior to
convergence.

2.1. Treating uncertainty in experimental data

One complication of minimal biasing methods is uncertainty in
the experimental data. For example, the experimental data
could be the radius of gyration of a polymer with a reported
uncertainty in the mean of 5 nm. Should the radius of gyration
be matched exactly, or only to within 5 nm? It is possible to stop
the adaptive phase of EDS early, for example when the average
is within the uncertainty of the experimental data. An early stop
is ad-hoc and not part of the maximum entropy derivation
unlike other methods which are built to address uncertainty
[11,23].

Cesari et al. [24] proposed a modification to the maximum
entropy derivation above to address experimental uncertainty.
Instead of the constraint in Equation (2), this constraint is used

jdf’P”(F,e)[s(F) +€ =3 (12)
where ¢ is an auxiliary variable that allows deviations in the
average of s() and P”(-) is the probability distribution that
will be solved after maximizing entropy. ¢ is a random variable
from a prior distribution Py (€) that describes the uncertainty in
the experimental data. For example, Py(€) could be a normal
distribution or a Laplace distribution. Cesari et al. [24] show
that P"(7€) = 1/Z"P'(r)Py(e)e*s. This leads to a different
update step of

2
g=Licix 1a@r -9
x << >+ dlar) _ <s >§) (13)
o
where &(a;) is the analytic posterior of :
dePy(e)e *€e
oy = [ AT (14)

f de Py(€)e— €

Returning to the radius of gyration example above, if the uncer-
tainty, Py(€), is assumed to be a normal distribution normal
with o = 5nm, then &«,;) = —25a,. This new update-step
can be used to rigorously include experimental uncertainty in
to the EDS method.

EDM is able to tune the relative importance of the target dis-
tribution and the unbiased ensemble with the locally tempered
variant in Equation (11). This could be used to match intuition.
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For example, if you believe that the target distribution which
comes from experimental data is twice as accurate as the mol-
ecular  dynamics  simulation, you could choose
AT/(AT + T) = 0.66 giving about twice as much weight to
the target distribution.

3. Applications of EDS and EDM

A model 1-D system is shown in Figure 2 as a probability dis-
tribution function, P(r). EDS is being used to modify the aver-
age value of r to match a new set point, 7. EDS adds a linear
bias, whose strength is indicated with the red dot, to create
the biased PDF P'(r) according to Equation (5). Notice how
the features of P(r) are mostly maintained in P'(r). The bottom
plot shows how each value of # corresponds to a unique biasing
strength.

A more sophisticated system which demonstrates the capa-
bilities of improving dynamic observables is the recent work on
EDS ab initio molecular dynamics (AIMD) simulations of
water [10]. DFT water with the BLYP exchange functional
poorly represents water structure as seen in Figure 3 (black
line). It is over-structured and has water self-diffusion coeffi-
cients that are too high (0.005-0.005 A% ps) [25] compared
with the experimental value of 0.23 A% ps [26]. EDS was
used to improve the coordination number of the oxygen—oxy-
gen (O,,-0,,) water molecules and resulted in good agreement

|
0.6 ! — P(n)
! P/(r)
T 0.4 : .
Y ! '
0.2
0.0
o 2 4 6 8 10
r
2
o AP
[
0
r<
-2
o 2 4 6 8 10

7N

r

Figure 2. (Colour online) A 1-D EDS calculation where the mean of a probability
distribution function (PDF) is being biased to match the dash vertical orange
line. The top plot shows the unbiased and biased PDFs. The biased PDF shows
as much of the shape of the unbiased PDF as possible while matching the new
biased mean. The bottom shows the Lagrange multipliers that give all possible
biased means. The red dot indicates the current Lagrange multiplier for the biased
PDF. There is a unique A for all possible biased means, as discussed in the Theory
section.

with experimental radial distribution function (Figure 3). A
number of other observables improved as well, including
RDFs and the water self-diffusion coefficient, which increased
to 0.06+ A®/ps. White et al. [10] further demonstrated that
the EDS bias could be transferred to excess proton-water simu-
lations and that when combined with DFT dispersion correc-
tions [28], the agreement further improves. The accuracy
improvement with the dispersion corrections shows that EDS
is general in its applicability to DFT methods.

Cortina et al. [29] used EDS to study the KPC-2 carbapene-
mase enzyme, which is responsible for drug resistance in the
majority of carbapenem-resistant Gram-negative bacteria [30].
They used EDS to modify protein-protein distances while
doing a committor analysis [31] to identify transition states in
the carbapenem-enzyme complex. Cesari et al. [24] used a
method similar to EDS (modified update step) to improve agree-
ment with experimental NMR’] coupling data for RNA oligonu-
cleotides. After biasing, they used the simulation results to
improve the underlying Amber force field and thus create a
transferrable model. Cesari et al. [24] also developed a novel
approach to account for experimental data uncertainty by adding
auxiliary variables to the EDS update step.

EDM has been used less than EDS due to the rarity of exper-
imental data giving an exact probability distribution. One
example explored in the original EDM paper was to construct
a mean field bias that mimics an alanine dipeptide being in the
backbone of a protein [7]. This was done by computing a
potential of mean force (PMF) for ¢,y dihedral angles from
PDB crystallography data for the alanine-alanine sequence in
protein structures. This corresponds to a probability distri-
bution and a molecular dynamics simulation of alanine dipep-
tide was done with its ¢,y dihedral angles biased to match the
desired values. The result was a molecular dynamics simulation
where the dipeptide was biased to behave as part of a longer
protein structure. A similar approach was later used by [21]

- = BLYP
\ BLYP-D3
Fl_ —— Experiment [Skinner et al.]
3.0 i —— BLYP-EDS
= i !
o t
z t
(@] y
IE
O 15
0.0 -

r[A]

Figure 3. (Colour online) Water oxygen-oxygen radial distribution function from
ab inito molecular dynamics at 300 K NVT and experiments from [27]. BLYP and
BLYP-D3 are from DFT with and without dispersion corrections with the BLYP
exchange functional. Note that BLYP-D3 is typically done at 330K, which gives
much better agreement [25]. See [10] for complete system details. The BYLP-
EDS line is DFT with EDS bias added to the water oxygen-oxygen coordination
number. EDS shows near quantitative agreement with experiment. Reproduced
from White AD, Knight C, Hocky GM, et al. Communication: improved ab initio mol-
ecular dynamics by minimally biasing with experimental data. J Chem Phys.
2017;146(4), ISSN 00219606., with the permission of AIP Publishing.



with EDS to built a pseudo-mean field model for actin
filaments.

Another example of EDM can be found in [13] who used it
(called targeted metadynamics) to improve agreement of RNA
oligonucleotides’ dihedral angles with PDB crystallography
data. They similarly built dihedral angle PMFs using the crys-
tallography data and biased molecular dynamics simulations
of RNA to adopt the dihedral angle probability distribution
functions. Gil-Ley et al. [13] then took the converged EDM
bias and transferred it to a different simulation of an RNA tet-
ramer and found little to no improvement of agreement with
the crystallography data. This may have been due to the under-
lying assumption that a PMF derived from crystallographic
data is not representative of the room temperature ensemble.
Nevertheless, EDM is a promising technique for incorporating
experimental data as a type of auxiliary potential energy func-
tion in simulations.

3.1. Coarse-grained modeling

EDS and EDM are well-suited for coarse-grain (CG) modeling
because they guarantee that a CG model matches experimental
data. Dannenhoffer-Lafage et al. [32] showed that EDS can be
applied before force-matching (a CG method) and the
improvements of agreement with experimental data is main-
tained. Dannenhoffer-Lafage et al. [32] began with all atom
molecular dynamics simulations of Ethylene carbonate with
the force field from [33], which is known to not match cen-
ter-of-mass coordination numbers from more accurate DFT
calculations from [34]. Dannenhoffer-Lafage et al. [32] biased
the all-atom simulations with EDS to match these known
coordination numbers. They then used force-matching to cre-
ate multiple CG models with one, two, and three site CG beads,
using either biased all-atom or unbiased all-atom simulation
data. The biased all-atom simulations showed better agreement
with coordination numbers, indicating that the improvement
in all-atom simulations translates to improvement in the CG
model with EDS. Of course, EDS could be used directly on
the CG model but that can lead to complications in how obser-
vables are calculated on CG models [35].

EDS has been applied to CG simulations of the G- and F-actin
proteins as monomers and trimers [21]. Actin proteins are glob-
ular proteins that can polymerize into long semi-flexible
filaments. Their hypothesis was that they could model a subsys-
tem from within the polymerized actin structure by incorporat-
ing information about structural fluctuations from simulations
of the larger system via EDS. By biasing the first and second
moment of two important collective variables in actin monomer
structure, they were able to observe filament-like conformations,
and importantly, the fluctuations of these observables for an
actin monomer, even in the system which contained only a
single monomer solvated in water. Hocky et al. [21] also studied
a number of questions about the EDS method in their system
and found the following conclusions: (1) the linear term of
EDS better matches target values and maintains system fluctu-
ations than harmonic biases; (2) replacing the variance term in
Equation (8) with a covariance matrix for all biased dimensions
has faster convergence; (3) Levenberg-Marquardt [36] con-
verges faster than stochastic gradient descent. This paper also
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derived a simple equation that can be used to guess the value
of A without doing a stochastic minimization (whose accuracy
depends on the distance of the target observables from the
unbiased observables), and hence can serve as a good initial
guess for starting an EDS simulation.

3.2. Enhanced sampling

EDM may require enhanced sampling if there are slow degrees
of freedom orthogonal to the biased collective variable. This is
most conveniently treated via the extensive literature on
enhanced sampling with metadynamics, since EDM is a type
of metadynamics and typically implemented within a metady-
namics code. EDS is not as simple because it requires that the
< . >, term in Equation (8) be taken over an NVT ensemble.
This limits the enhanced sampling techniques to those that still
give correct NVT ensemble averages. One example is parallel-
tempering replica-exchange. It is possible to use metadynamics
if an appropriate estimator [37] is done to compute the
averages but this has not been explored in practice.

Amirkulova and White [38] demonstrated the use of
enhanced sampling and EDS with the parallel-tempering
well-tempered ensemble (PT-WTE) [39]. The PT-WTE
method is a enhancement of enhanced parallel-tempering
replica-exchange that improves exchange rates and reduces
the required number of replicas [40]. PT-WTE satisfies the
observable that the ensemble averages, < - >;, can be com-
puted during the course of the simulation because PT-WTE
only changes the magnitude of potential energy fluctuations,
not their expectations. One apparent drawback is that the
method loses the one-replica observable of EDS that allows
computation of dynamic observables. However, this only
applies to the adaptive phase. During the fixed-bias second
phase of EDS, one replica can again be used to allow analysis
of dynamic observables.

Amirkulova and White [38] studied the GYG peptide with
the EDS plus enhanced sampling approach. Eight simulations
were conducted, each with 1, 8, or 16 replicas. The simulations
had EDS, PT-WTE, and/or parallel-tempering. EDS was used
to bias proton chemical shifts to improve agreement with
experimental NMR data. The simulation results showed that
PT-WTE improves sampling in the EDS method and does
not change agreement with experimental data. PT-WTE also
converged the EDS bias with fewer replicas than the PT
method. One consideration in all EDS simulations is the
effect on unbiased observables. The Ramachandran plots of
the simulations with and without EDS bias are compared in
Figure 4. When EDS and enhanced sampling are used (Figure
4 (a)), the simulation explores a larger region of configurational
space relative to the control simulation (Figure 4 (b)). Also, the
global minimum changes when using EDS in Figure 4, bringing
it closer to what was found in [41] for the GYG sequence.

4. The role of pressure

Thus far, we have discussed NVT and NVE ensembles. EDM
and EDS add new forces to the simulation and affect the system
virial and pressure. This can lead to undesirable density
changes when the bias is subsequently used in an NPT
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Figure 4. (Colour online) Free energy surface of GYG peptide along dihedral angles (Ramachandran plot) from [38]. (a) EDS and enhanced sampling with PT-WTE and (b)
no EDS and no enhanced sampling. The difference between panels (a) and (b) shows that EDS changes the global free energy minimum, which better matches data from
[41], and PT-WTE improves sampling based on explored regions. Republished with permission of World Scientific Publishing Co., Inc., from Combining enhanced sampling
with experiment-directed simulation of the GYG peptide, Amirkulova DA and White AD, 17, 3 and 2018; permission conveyed through Copyright Clearance Center, Inc.

simulation. It may be possible to rectify this change in pressure,
and thus density, by adding a further constraint that the contri-
bution to the pressure from potential energy be unchanged
while still maximizing entropy. As shown in the Appendix,
this leads to an unsolvable equation or requires changing chan-
ging density to constrain pressure. One intuitive reason for this
is that the Clausius virial theorem requires the average virial be
proportional to average temperature:
<T>=-1/2 va< 13, - 1; >. Therefore, if we tried to bias
an ensemble with fixed density so that its average virial is con-
strained to a new value, then the average temperature would
change, violating our constrained average temperature.

(@]
~

E a — —— CV-0 Virial
% ) v 0 ——— CV-1 Virial
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One way around this challenge lies in the correlation
between biased observables in EDS. When biasing multiple
observables which are correlated, there is in fact no longer a
unique set of Lagrange multipliers [16]. These extra degrees
of freedom in the choice of Lagrange multipliers that maximize
Equation (3) enable us to choose the Lagrange multipliers that
minimally change the virial. Equation (8) can be modified so
that our coupling constants minimize the additional pressure
which they exert [42]:
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Figure 5. (Colour online) EDS applied to water coordination number moments 0 through 3 in molecular dynamics simulation of over-structured SCP/E water model. The
columns show increasing strength of virial minimization. Each plot is collective variable scaled by its set-point. The vertical dashed line spearates the NVT adaptive simu-
lation and a fixed bias NPT phase. The results show that increasing the strength of the virial minimization actually improves convergence by reducing large-magnitude
changes in biasing force. Without virial minimization, EDS can produce nonphysical densities when the NVT bias is transferred to NPT. The change in density moves the

CVs. For v* = 0, this meant CV values beyond the y-limits of the plot.
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o
Ap, = SE—
P wdV

Z (ﬁ %) (16)
where v is a parameter that controls the importance of mini-
mizing the virial, Ap; is the change in the system virial pressure
due to the EDS bias, ds/dv;; is the partial derivative of the obser-
vable with respect to one component of the triclinic box matrix,
and dv;;/0V can be computed from the adjugate of the triclinic
box matrix. When biasing multiple observables, Ap, should be
the total over all observables. g, is in units of s* per energy, so v
must be in units of volume squared times s> per energy squared.
Practically, we can choose a unitless v*, which is defined from

_ *W2:82
V=V >
1%

w

(17)

Equation (15) was used in a molecular dynamics simulation
of 128 modified SPC/E water molecules. This modified SPC/E
water has increased charges (qo = —0.94) to distort its coordi-
nation number. EDS was then applied to correct the coordi-
nation number using experimentally derived coordination
numbers from [27] with varying strengths of the virial correc-
tion. The coordination number moment definition may be
found in [6]. Figure 5 shows that coordination number and
its moments are still correctly biased with the virial term. The
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EDS parameters were a range (A) of 50 kj/mol, a period of
25fs, and the Levenberg-Marquardt optimization procedure.
A Nose-Hoover thermostat with a time constant of 25 fs and
a timestep of 0.5 fs were used for the molecular dynamics in
the LAMMPS simulation engine [43]. The NPT barostat was
Parrinello-Rahman.

Figure 6 shows the effect of the virial penalty term on the
EDS virial contribution. The virial contribution plotted and
computed here is the mean per-particle virial energy contri-
bution. That is Ap,/p/kT which removes the effect of particle
number and energy scale. Panel (a) shows the cumulative
mean virial contribution of each collective variable with
v* = 0 (no virial minimization). The net average virial contri-
bution is 39.2 KT. Panel (b) shows v* = 10 and there is a much
lower contribution of 5.02 kT. Panel (c) compares the instan-
taneous net virial contribution of three different v* values.
The lack of virial minimization shows large swings in the virial
contribution, even after EDS has converged longer timesteps.

Figure 5 shows the impact on the convergence of the biased
coordination number and its moments with the virial minimiz-
ing terms. Interestingly, adding a virial minimization term
actually improves convergence. This is due to the well-known
effect of regularization, which improves convergence in optim-
ization [44]. The virial minimization term is proportional to a,
so it brings down the magnitude of «,. This prevents the large
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Figure 6. (Colour online) The EDS contribution to virial as EDS is applied to water coordination number moments 0 through 3 in molecular dynamics simulation of over-
structured SCP/E water model. Panels (a) and (b) compare the cumulative mean virial contribution in a normal EDS and EDS with virial minimization strength of v* = 10
broken out by individual CV. There is lower per collective variable mean virial contribution with virial minimization. Panel (c) shows the effect of different v* values on the

instantaneous net virial contribution from EDS.
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swings seen in the v = 0 system. Thus, adding the virial mini-
mization term not only reduces the virial contribution but can
improve convergence by minimizing magnitudes of the coup-
ling constants. The true test can be seen in the NPT portion
past 20ps where the bias is fixed but the box dimensions are
free. EDS with v* = 0 gives poor densities in NPT with a bias
computed in NVT. The virial minimization reduces the change
in density with a trade-off in match to the bias set-points. Virial
minimization is in general recommended due to its enhanced
convergence and better representation of virial forces.

5. Implementations

There are three implementations of EDS available: Colvars [45],
Plumed1.3 [46], and Plumed?2 [47]. The Colvars and Plumed1.3
implementations match the original EDS manuscript. The
Plumed2 implementation is actively maintained as a plugin
[47] and has features from more recent EDS articles [21]. For
example, the covariance term in Equation (8) can be computed
using the full sample covariance matrix or the sample variance.
The update steps can also be computed using the Levenberg-
Marquardt method [21,36], instead of Equation (7). The
Plumed?2 implementation is recommended.

EDM is implemented in Plumed2 as well, under the ‘tar-
geted metadynamics’ keyword within the metadynamics bias-
ing class. One of the common use-cases for EDM is to bias
RDFs, which is not exactly a collective variable. RDFs are ‘func-
tion collective variables’ in the sense that there is a distribution
at each timestep. Thus the bias update equation, shown in
Equation (10), applies to each observed point in the RDF at
each step (see [7] for equations). This can lead to thousands
of updates per timestep on even small systems. To improve per-
formance and scaling, we have created an implementation in
LAMMPS that is more tightly integrated with the simulation
engine than Plumed2 [7]. Note that the addition of hills is par-
allelized here, which is unusual and enables the scaling as a
function of particle size. Hill addition is 90% of the CPU util-
ization. This was the implementation used in [7] for an ethyl-
ene carbonate electrolyte simulation and Lennard-Jones
benchmark systems.

6. Conclusions

Minimal biasing techniques are an emerging area that improve
the accuracy of molecular simulation and better utilize compar-
able experimental data. There are many proposed methods for
minimal biasing [3-5]. EDS and EDM are two maximum
entropy techniques developed by the authors that minimally
bias an ensemble so that average observables or probability dis-
tributions of observables match set values. EDS and EDM both
converge the potential energy of a simulation to Equation (5),
allowing a subsequent NVE simulation with fixed potential
energy in a single replica so that dynamic observables can be
computed. EDS and EDM can bias multiple observables simul-
taneously and be combined with enhanced sampling methods.
It is possible to treat uncertainty in experimental data using
methods from [24]. Explicitly setting pressure is not possible
in general for maximum entropy biasing as shown in this
work. However, it is possible to minimize the change to

pressure when biasing multiple collective variables in EDS.
This minimization can actually improve convergence of EDS
by acting as a regularization. A variety of example systems
have been presented here and there are implementations avail-
able in most simulation engines for both EDS and EDM.
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Appendix Minimal biasing pressure derivation

We would like to constrain the average contribution to virial pressure from
potential energy while minimizing relative entropy in a biased ensemble.
The goal is to modify the potential energy while keeping temperature,
number of particles and volume the same. We define the virial contri-
bution from potential energy to be —(dU’/dV) where V is volume and
U’ is the potential energy of our biased ensemble. We can rewrite this as

1dlnP(7) _1d _du’
g dv T~ Bdv dv

where Vis volume and Z = f d7’P(7). The constraints for this ensemble are

[-BU'(F) —InZ] =

(A1)

jd?P’(F) =1 (A2)

which enforces normalization and to set the average =4 to be equal to the

v
scalar p,:

dln P'(7)
or

drr-

! /
dU'__1_dinP@__ 1 j (7

>—— -
v BT av 3BV
Ljdﬁ. VP () = p.

T3V (43)

where we have taken the d1n P(r)/dV|; term, which describes change in
potential energy with fixed atom positions, to be zero. The quantity to
be minimized is relative entropy of the biased probability distribution
with respect to the unbiased probability distribution:

P'(7)
P(7)

To solve this system, we compute the functional derivative of the
Lagrange function with respect to the biased probability distribution

S = jP’(f) In (A4)
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P/(7). This requires a functional derivative of Equation (A3), which is

o< v’ >
—dv©_ L __3N
P gy =gy (45)

Some intuition for Equation (A5) can be gained from the definition of
the functional derivative. Equation (A5) says that adding an arbitrary test
function ¢() to the probability distribution scaled by ¢, where ¢ is small
has the following result:

jd??- VIP() + ed(7)] — de?- VP(7) ~ —B—I\‘I/ j dred()  (A6)

The right-hand side is independent of the probability distribution, so
changing the probability distribution decreases the virial by N regardless

of where the change occurs. With the functional derivative of the virial
being constant, the functional derivative of the Lagrange function is

oL

W = lnP/(f) — lnP(?) + )\1 —

P/(7) = A P(Pe A (48)

which has no solution if N and V are not variables because A; and A, are
colinear. Thus, there is no way constrain the potential energy contribution
to pressure. This argument does not apply to constraining pressure by
changing volume or density, which is the definition of an NPT ensemble

or a grand canonical ensemble.
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