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Ecological disturbances (i.e. pests, fires, floods, biological invasions, etc.) are a critical challenge for natural
resource managers. Land managers play a key role in altering the rate and extent of disturbance propagation.
Ecological disturbances propagate across the landscape, while management strategies propagate across social
networks of managers. Here we use an agent-based model to examine the joint diffusion of ecological dis-
turbances and management strategies across a social-ecological network, accounting for the fundamental role of
social-ecological feedbacks. We examine the management of a generic ecological disturbance as a function of

different learning strategies and the social-ecological network. Our approach provides a general scaffold that can
be modified to examine a variety of processes in which both social and ecological flows propagate across a social-
ecological network. Our findings highlight the importance of full and accurate information to assess successful
strategy, limited clustering and alignment between the social and the ecological system.

1. Introduction

Ecological disturbances, defined broadly to include invasive species,
agricultural pests, fires, floods, urbanization and land use change, affect
biodiversity and are a fundamental challenge in our interconnected and
fast-changing world (Chapin, 2009; Pimentel, 2011). The decisions of
land managers play an important role in constraining or promoting the
spread of these disturbances (Baird et al., 2016). Management decisions
spread across an informational network via learning while ecological
disturbances spread across the landscape. While much research has
examined these two processes in isolation, relatively little has explored
the simultaneous propagation of a disturbance and the management of
that disturbance across a linked social-ecological network (Rebaudo
and Dangles, 2011, 2015). Yet examining these processes in isolation
misses the important role of reciprocal feedbacks in these complex
systems. In this paper, we propose to integrate the analysis of social-
ecological networks using the tools developed to analyze multiplex
networks, and agent based models designed to capture the fundamental
characteristics of the decision-making process as well as the ecological
disturbance and the feedbacks between the two.

In general, managers adopt practices that they view as better than
available alternatives (Rogers, 2003). Managers can compare strategies
using experiential, or individual, learning, in which they conduct trials

of different strategies and observe the results to inform their future
decisions (Ghadim and Pannelli, 1999). Individual learning, however, is
constrained when outcomes are difficult to observe or delayed over
long periods (as is the case, for example, in perennial cropping systems
or with catastrophic events that occur very infrequently), or if the re-
sults from individual learning are unproductive (Giraldeau and
Beauchamp, 1999). Given the challenges of relying exclusively on in-
dividual learning, managers also employ social learning: they seek out
and use information from peers (Baird et al., 2016; Isaac et al., 2007).

Especially when unsatisfied with current strategies (Schlag, 1998),
when constrained by authority, or when outcome uncertainty is high
(Morgan et al., 2012), managers rely on information transmitted
through social networks to shape their decision making (Baggio and
Hillis, 2016; Baumgart-Getz et al., 2012; Bodin and Crona, 2009; Bodin
and Tengo, 2012; Crona and Bodin, 2006; Cumming, 2016; Kininmonth
et al., 2015; Prokopy, 2011). Managers acquire knowledge via peer-to-
peer interactions, local and regional organizations, or other managers
with greater authority. While formal or legal authority constrain deci-
sion making in important ways, informal social networks are also cri-
tical, particularly across fragmented jurisdictions or when formal power
dynamics are less prominent (Cumming, 2016; Kininmonth et al.,
2015). Managers learn socially from network neighbors using various
strategies (Collins, 2005; Laland, 2004). Two important strategies
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include 1) a success bias, where individuals preferentially copy the
strategies of other successful individuals (Boyd and Richerson, 1988;
Schlag, 1998), and 2) a conformist bias, in which individuals are dis-
proportionately likely to adopt the most common strategy within a
population, independent of the actual success of that strategy (Henrich
and Boyd, 1998).

Some ecological disturbances are easily observable and their effects
are immediate (e.g. fires, and floods). However, sometimes dis-
turbances can be hard to detect and their effects can be cumulative yet
catastrophic (Chades et al., 2008; Chades et al., 2011; MacKenzie et al.,
2002). The management of ecological disturbances is further compli-
cated by increased ecological and social fragmentation (Epanchin-Niell
et al.,, 2010; Rebaudo and Dangles, 2011; Sayles and Baggio, 2017a;
Schoon et al., 2014). Due to the fact that ecological processes often
unfold at a different spatial scale than social processes, efficient man-
agement requires adoption of strategies at the appropriate ecological
scale (Ager et al., 2017; Crowder et al., 2006; Cumming et al., 2006;
Folke et al., 2007; Galaz et al., 2008; Sayles and Baggio, 2017b).

Given the complexity of managing ecological disturbances, em-
pirical research can be productively complemented with computational
models that explicitly couple social and ecological networks, thereby
examining the simultaneous diffusion of ecological disturbances and
the strategies used to manage them. This endeavor can benefit from the
combined use of network theoretical tools, agent based modeling, and
specific case studies that can illustrate and guide the dynamics pre-
sented in models. A number of recent studies have examined trans-
mission across networks connected via multiple types of relationship
(i.e. multiplex networks), and the robustness of such multiplex net-
works to social and ecological perturbations (Baggio et al., 2016; De
Domenico et al., 2016; Lima et al., 2015). Agent based models (ABMs)
have been increasingly applied in social and ecological systems
(DeAngelis and Mooij, 2005; Fischer et al., 2013; Rebaudo and Dangles,
2015), uncovering emergent properties of systems represented from the
bottom-up by agent behavior. Here we propose an integration of con-
cepts relating to multiplex networks and agent based models in order to
more realistically portray decision-making processes on fragmented
social-ecological landscapes. Our analysis is designed to capture the
important characteristics of both social and ecological processes of
diffusion across a landscape, allowing us to assess the influence of
network structural properties on a generic disturbance. While our
model is highly abstract, the general approach can be modified to more
realistically apply to any number of processes in which multiple flows
diffuse across a multiplex network.

We examine the management of ecological disturbances as a func-
tion of learning, and the disturbance itself, on a social-ecological net-
work. Our study aims to provide some theoretical insight into the re-
lationship between learning on social networks and ecological
disturbances propagating on a landscape. We build an ABM in which
managers can adopt strategies to counter ecological disturbances at a
specific cost. Managers make decisions based on information they ac-
quire via individual or social learning, through feedbacks from the
ecological patch they are managing. We proceed by first explaining the
model in detail. We then highlight our results, providing insights into
the relationship between network connectivity, learning type and dis-
turbance management. The discussion and conclusion of the paper
focus on these relationships within the wider context of ecological
disturbances. While we consider the primary contribution of this work
to be developing a methodological approach for the study of coupled
social-ecological systems using an approach integrating agent-based
modeling and network analysis, in the discussion we also highlight the
importance of extending these findings, that use an idealized landscape,
to real-world management practices and data.

2. Methods

In order to assess the relationship between social-ecological
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network structure, the spread of ecological disturbances and the
adoption of management strategies, we developed an agent based
model comprised of N connected social and ecological agents (i.e. a
social-ecological network). Social agents are able to adopt treatment
strategies that stop the spread of the disturbance and cure affected
ecological patches. Each social agent has the authority to manage, ex-
clusively, one ecological patch. Ecological disturbances can propagate
through the ecological landscape. The model, however, can be easily
extended to assess situations in which social agents are able to manage
multiple ecological patches, as well as cases in which multiple social
agents are managing the same ecological patch.

2.1. The ecological system

We specify the ecological landscape as an unweighted and un-
directed network in which N, = 100 patches (i.e. ecological nodes) are
connected via geoproximity. The ecological nodes are scattered ran-
domly on a 2-Dimensional grid. Edges are added, connecting each pair
of most closely-connected edges first (where closest refers to the
Euclidean distance between the patches on the grid), until the pre-de-
fined number of edges, E., is reached, as described (Baggio et al.,
2011). All patches are assigned a base utility (y) and at the beginning of
each simulation 10% of patches are considered affected by a generic
ecological disturbance. The disturbance can propagate via edges that
link the ecological patches. Patches can be either treated or untreated.
Treated patches are protected from the disturbance while untreated
patches always become disturbed if neighboring patches are disturbed.
In other words, an ecological patch becomes disturbed if it is connected
to a disturbed ecological patch and it is not treated. Once disturbed, the
utility of that patch decreases at each time-step by a specific amount
(see supplementary material, Table S2 input values).

2.2. The social system

Social agents are connected via an unweighted, undirected network
and represent Ny = 100 social nodes. More specifically, social agents
are connected via 6 different network generating processes: a) matching
the ecological connectivity (scale match), b) randomly, c) representing
a small world with rewiring probability (i.e. py, = 0.2) or d) small
world with rewiring probability (p,., = 0.3), e) representing a scale
free network with low preferential attachment (p,.; = 0.6) or f) a scale
free network representing high preferential attachment (pp.s = 1) (see
also Figure S7).

Each social agent is able to exclusively manage one patch. Agents
are able to adopt a treatment at a specific cost. Agents make their
adoption based on their payoff, the type of learning they employ, the
feedback from the ecological patch they are managing, and the in-
formation they acquire from their social network. Further, each agent
can misinterpret signals (or commit judgment errors) and adopt either
strategy with probability mu.

Payoff is given by utility (affected by the ecological disturbance)
and whether a manager has adopted treatment or not: m;; =y, — Ay*cls
where cls = cost of adopting treatment, A indicates whether treatment
has been adopted or not, and y, =y, , if the ecological node is not
disturbed, and y, = y,_, — eff if the ecological node is disturbed where
eff = effect of disturbance on utility (see supplementary material for the
actual values used in the simulations).

Agents employ either individual or social learning, and can switch
between the two types of learning. When agents employ social learning,
they are either conformists (they adopt the strategy adopted by the
majority of their social neighbors) or success-biased imitators (they
adopt the strategy of the individual neighbor that is doing best). Agents
use either conformist or success-biased social learning; they are not able
to switch between the two.

Agents who are socially isolated (i.e. have no social connections)
always employ individual learning, and adopt treatment using the
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following algorithm:

1. An agent (S;) will average her payoff over the last mem time-steps
(where mem = memory of social agents).

2. S; will check how many times a specific strategy (treatment adoption
—NT;- or no treatment adoption —-NT)) has led to a payoff better or
equal to the average payoff calculated in the previous step.

3. The probability of choosing no treatment adoption (pr0,) is given by
the following equation: pr0; = %, hence the probability of

treatment adoption is prl; = 1-pr0;.

If agents are connected to other agents via the social network, they
have the ability to choose whether they will learn individually or so-
cially. The choice between individual or social learning depends on the
clarity of strategy success and the inherent preference of agents for
individual or social learning, as explained in the following algorithm:

1. S; checks the number of mem times a specific strategy (treatment
adoption or no treatment adoption) has led to a better or equal
payoff compared to the average payoff calculated over the last mem
times.

2. Each S; calculates if there is a clear winning strategy CW = abs (NT;
— NTp), where NT; = number of times treatment was successful, and
NT, = number of times not using the treatment was successful.

3. If CW = threshold given by social agent preference for individual vs
social learning (i.e. parameter confid) S; will employ individual
learning, otherwise, it will use social learning.

If an agent uses social learning they can either employ success or
conformist-biased learning. Success-biased learners will assess the
payoffs and management strategies of k neighboring agents. Treatment
adoption is then a function of the difference between the maximum
payoff of the k neighbors and ones' own payoff (An): A7 = max(m,) — 7
where max(7,) = maximum payoff of neighbors. If all neighbors adopt
the same strategy as ones’ own, than Am = 0. The probability of
switching to the strategy leading to the maximum payoff between
neighbors equals to 1/1 + ™7,

Conformist learners assess the strategies of k neighbors and choose
not to treat their patch with probability pr0, which is a function of the

number of neighbors that are not treating: pr0; = where

th = exponent of the function that determines the gradient of the
probability function (th = 1 corresponds to a linear increase in the
probability of not adopting and th > 8 simulates a step function (see
Salau et al. (2012) for details on the role of the parameter th)); ny and n;
represent the number of social neighbors that have not adopted (ny) or
adopted (n;) treatment. Finally, adoption of strategy (pr1,) is given by 1
- pro;.

Feedbacks between the social and ecological systems occur in the
form of general utility that a social agent receives from the ecological
patch they are managing. If the patch is disturbed, their utility is re-
duced. Social agents tend to want to keep the level of utility or to in-
crease it.

The ability of a system to successfully manage a disturbance is as-
sessed here by analyzing the average percentage of individuals em-
ploying a specific type of learning during the course of the simulation
run, the percentage of individuals adopting treatment in the 100 time-
steps preceding the end of the simulation run and in the percentage of
ecological patches that are disturbed when eradication does not occur.
For an in-depth description of the model and the parameter values used
in simulations, please see the Overview Design and Detail protocol
(ODD) (Grimm et al., 2010, 2006) presented in the Supplementary
Material. The model code and the ODD are also available at https://
www.comses.net/codebases/5502/releases/1.1.0/.
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2.3. Social-ecological network analysis — multiplex networks

The relationship between structural properties of the underlying
social-ecological system, adoption and eradication is assessed via
multiplex network metrics. To analyze the social-ecological network as
a multiplex network we need to consider the Ns and Ne agents as one
single group of agents (Nse) that are connected via two different types
of edges, social and ecological. The ensemble of the social connections
between the Nse agents thus forms the social layer, while the ensemble
of ecological connections between the Nse agents forms the ecological
layer of the multiplex network. We can analyze multiplex networks by
calculating the adjacency tensor of the social-ecological network (SEN).
The adjacency tensor can be thought of as a multi-dimensional array.
For example, a two-dimensional array can be represented by a matrix
where one needs to specify two indices (i and j) to uniquely identify an
edge (i.e. the matrix is a specific case of a rank-2 tensor). To uniquely
identify an edge in a multiplex network, one needs to specify four
different indices, two to identify involved nodes and two to identify the
involved layers: the edge between node i in layer s and node j in layer e
is uniquely identified in a rank-4 tensor, whose components are in-
dicated as M;3* (Baggio et al., 2016; De Domenico et al., 2013; Kiveld
et al., 2014; Mucha et al., 2010). Here we analyze four specific multi-
plex network metrics that reveal the structure of the underlying social-
ecological system: average degree, average local clustering coefficient,
global clustering coefficient, and inter-layer correlation.

2.3.1. Multiplex average degree

The multiplex degree (Mpx Degree) identifies the average potential
for social learning and propagation of ecological disturbances. The
multiplex degree is a result of the combination of social and ecological
connectivity.

The average multiplex degree of node i is calculated as the average
degree of node i in each layer (here s = social layer and e = ecological
layer), k; = {k/, k{} and diviced by divided by Nse (De Domenico et al.,
2013).

2.3.2. Multiplex clustering coefficient

The multiplex clustering coefficient identifies the potential for the
network to receive localized information from the ecological layer and
the potential for learning based on neighboring nodes in the social
layer. Here we assume that the ability of information and disturbance
signals have the same possibility of remaining within the same layer or
crossing layers.

Following Cozzo et al. (2015) we calculate the global clustering
coefficient (Mpx Global CC) and the average local clustering coefficient
(Mpx Local CC) based on random walks where the probability of
changing layers is equal to 0.5 (thus signals have the same probability
of crossing or remaining in the same layer). It is important to notice that
while the average local clustering coefficient, by construct, places more
emphasis on low multiplex degree nodes, the global clustering coeffi-
cient puts more emphasis on nodes with high multiplex degree.

2.3.3. Inter layer assortativity

The inter-layer assortativity can be calculated as the inter-layer
correlation of the node degrees of the two layers. Assortativity identifies
the relationship between the potential for propagation of the ecological
disturbances and the potential for adoption of strategies via social
learning. Assortativity is a key property of multiplex networks (Nicosia
and Latora, 2015). Here we employ Spearman pairwise correlation to
assess the correlation between the degree of a node in the social layer
and its degree in the ecological layer. Formally, we calculate the inter-
layer correlation as follows (see also Baggio et al., 2016):

63, [P () - rf(@)]
N(N?2-1)

Pep) =1~
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where p, ¢ = node degree and 1 is the rank of node i in layer s (see De
Domenico et al., 2013 for in depth information on multiplex metrics).

2.4. Analyzing model output

The model assesses ecological disturbances as a function of learning
and the structural properties of the underlying social-ecological net-
work. To analyze the complex interactions between learning, dis-
turbance, and structural properties of the network we evaluate the ef-
fect of various model parameters by statistically analyzing our model
output. Given that disturbance prevalence lies in the [0,1] interval,
where both 0 and 1 have a positive probability to be an actual outcome,
we follow Papke and Wooldrige (Papke and Wooldridge, 1996) and

analyze the results via the following equation: E (ylx) = f (E’;) esti-

mated via quasi-maximum-likelihood methods as explained in
(Gourieroux et al., 2016). Here, E(ylx) is the expected prevalence of

ecological disturbance (expected disturbance), Ec) is a vector of model
variables as parameterized (see input table in the supplementary ma-
terial) and f(-) represents a logistic function: f(g) = eg/(1+eg). The
model variables analyzed are: proportions of success-biased, con-
formist, and individual learners, multiplex global clustering coefficient,
multiplex local clustering coefficient and assortativity. We interact
learner types (2 at a time to avoid perfect multicollinearity, as the sum
of the proportion of success-biased, conformist and individual lear-
ners = 1) and multiplex network metrics in order to assess the relative
importance of each model variable. We assess average marginal effects
of learning type frequency and network metrics in order to assess how
their main effect on expected disturbance changes due to their inter-
actions.

3. Results

Our main objective was to understand the relationship between
adoption of treatment strategies, learning, social-ecological networks,
and expected disturbance in the overall system. There is a clear link
between adoption and eradication of ecological disturbances. On
average, adoption of treatment strategies is almost three times higher
(=2.8) when the disturbance is eradicated than when it is not (Table 1).
Treatment of disturbances and their eradication is a clear-cut re-
lationship. However, expected disturbance also depends, directly and
indirectly, on learning types and the underlying structural properties of
the social-ecological network.

The results portrayed below graphically display the relationship
between learning and expected disturbance, as well as social-ecological
network metrics and expected disturbance. In Table S1 we report the
parameter estimates for three models examining the network metrics
and interactions between success-biased and conformist learners (SC),
success-biased and individual learners (SI), and conformist and in-
dividual learners (CI). Figure S1 to S3 report further analysis of the
pairwise relationship between interacting variables and their effect on
expected disturbances (i.e. how the coefficient changes). Following we
report how expected disturbance prevalence changes depending on
learning and structural properties of the social-ecological network. We
report results for the SC model (SI when individual learners are in-
volved) as there is no qualitative difference in the multiplex metrics

Table 1
Eradication and adoption.

Expected Disturbance = 0: Eradication Treatment Adoption

mean median std.
No 0.165 0.144 0.126
Yes 0.367 0.404 0.199
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interactions between the three models (see Figure S4 and S5).
3.1. Learning

As the proportion of success-biased learners approaches 1, expected
disturbance decreases (i.e. when > 90% of the agents employ success-
biased learning, on average, expected disturbance = 0.25). On the other
hand, if conformist learners or individual learners represent more than
60% of the population, on average, expected disturbance
=~ [0.70, 0.64]or [0.70, 0.48] depending on the increased number of
conformist or individual learners respectively (Fig. 1a and b). Fig. 1c
reiterates the importance of success-biased learners as expected dis-
turbance is minimized when both the proportions of conformist and
individual learners are < 0.1.

3.2. Social-ecological networks

The relationship between the structural properties of the underlying
social-ecological network and the ability of the system to reduce the
ecological disturbance is dependent on the general connectivity of the
overall social-ecological network, how it is clustered and whether the
social and the ecological layer display inter-layer assortativity. On
average, increases in average multiplex degree reduce expected dis-
turbance (Fig. 2a, b, and 2d). On the other hand, increased clustering,
in particular local clustering, increases expected disturbance (Fig. 2a, b,
2¢, 2e, 2f).

The difference between multiplex global and local clustering is
better observed together with multiplex degree (Fig. 2a and b). A
minimum level of global clustering is necessary for lowering expected
disturbance. In fact, if global clustering is < 0.15, expected dis-
turbance is expected to be around 0.5. Further reduction occurs when
global clustering increases. Local clustering always increases expected
disturbance. Fig. 2b clearly shows that as local clustering increases,
expected disturbance also increases. At high levels of local clustering,
degree only reduces expected disturbance if it is very high.

Fig. 1 and Fig. 2 highlight the importance of success-biased learners
(Fig. 1la and b) and increased levels of average multiplex degree
(Fig. 2a, b and 2c) and assortativity (2d, 2e,and 2f) for reducing ex-
pected disturbance. On the other hand, we have observed how in-
dividual and conformist learners (Fig. 1), as well as local clustering
constrain the reduction of expected disturbance (Fig. 2f, b and 2c). At
the same time, while global clustering has a negligible effect at higher
degree levels (Fig. 2a), it clearly influences the effect of assortativity
(Fig. 2e).

3.3. Learning and social ecological networks

Given the results so far, it is important to disentangle the effect of
learning and social-ecological network metrics on expected dis-
turbance.

An increased frequency of success-biased learners (Fig. 3a-d) is
associated with a reduction in expected disturbance. Further, a higher
proportion of success-biased learners decreases the need for higher
average multiplex degree, or assortativity (Fig. 3a and d). However,
success-biased learners are negatively affected by global and local
clustering. In fact, clustering reduces the effect that success-biased
learners have on reducing expected disturbance (Fig. 3b and c). Con-
formist learners, however, do not have a strong effect on disease pre-
valence. Across changes in proportions of conformist learners, the main
drivers of expected disturbance are the social-ecological network me-
trics (Fig. 3e through h). We find similar patterns for individual learners
(Fig. 3i through 1), with some important exceptions. Individual learners
benefit from increases in local clustering, and are negatively affected by
increases in assortativity. Individual learners, thus, seem to reduce
expected disturbance at higher levels of clustering and lower levels of
scale matching across the social and ecological sub-systems.
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Fig. 1. Expected ecological disturbance prevalence as a function of frequency of learner types. Success-biased learners reduce disturbance. Both conformist and

individual learners, on average, increase expected disturbance.

4. Discussion

When managers adopt the treatment, they eliminate the disturbance
in the area they are managing, thereby decreasing the probability of
transmission and reducing the overall prevalence of the ecological
disturbance. While straightforward, this result highlights the im-
portance of understanding the structural and institutional conditions
that promote action on the part of managers. Our model allows us to
examine the network structures and learning strategies that promote

adoption.

Success-biased learners are critical for the reduction of ecological
disturbances. However, this depends on agents being able to access
more information than any other type of learner. While all agents have
information about their own behavior and payoffs, conformist learners
also have information about the behaviors of other individuals in their
network, and success-biased learners have information about both the
behaviors and payoffs of other individuals in their network.
Interestingly, the additional information about others’ behaviors
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Fig. 2. Structural properties and expected ecological disturbance prevalence. While an increase in multiplex degree and assortativity reduce expected disturbance,
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multiplex degree reduces expected disturbance. Clustering increases expected disturbance. However local clustering in the presence of individual learners actually

reduces expected disturbance.

actually harms conformist learners in that they are less able to control
ecological disturbances. Conversely, the additional information im-
proves the decisions of success-biased learners. This finding is con-
sistent with theoretical expectations that predict a mix of conformity
and success-biased learning produces adaptive outcomes (Boyd and
Richerson, 1988). Conformity alone, however, can lead to systematic
maladaptation with groups of individuals converging on the wrong
behavioral outcome. These findings are also consistent with empirical
evidence that individuals use success-biased learning to guide their own
behavioral decisions in the real world. For example, experiments have
shown that people employ success-biased and conformist learning
strategies, as predicted, but that a success bias is often preferred to
conformity and leads to better outcomes (McElreath et al., 2008;
Mesoudi, 2011; Morgan et al., 2012).

The structure of the underlying social-ecological network influences
disturbance prevalence in important ways. Specifically, increased as-
sortativity, associated with social-ecological scale match, multiplex
degree and global clustering all result in reduced disturbance pre-
valence. On the other hand, local clustering increases the prevalence of
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ecological disturbances. The important role of aligning structures across
the social and ecological sub-systems is well known (Bodin et al., 2016;
Sayles and Baggio, 2017a; Treml et al., 2015). Our results reiterate that
when the connectivity of the social system adequately reflects that of
the ecological system, ecological disturbances can be reduced and
eradicated. However, scale matching alone is not sufficient for effective
management; the overall connectivity of the system is also important,
as shown by the relationship between multiplex global clustering,
average degree and disturbance levels.

On the other hand, local clustering hinders the system's ability to
reduce disturbances. The role of local clustering is related to the ex-
istence of close knit communities, and in the case of a multiplex net-
work, is related to a redundancy in information sharing and probability
of disturbance propagation, hence why local clustering increases dis-
turbance prevalence. (Bodin, 2017). According to our findings, close
knit communities, redundancy in information sharing, and scale mis-
matches provide conditions in which individual learning can reduce
ecological disturbances. We can speculate that managers are better off
trying new strategies when knowledge is redundant due to the closeness



J.A. Baggio, V. Hillis

of the community.

This interaction between social-ecological connectivity and learning
strategy is an important area of potential further exploration. For ex-
ample, Hillis et al. (2017) posit that in the preventive management of
trunk diseases among perennial crop farmers, an inability to engage in
success-biased learning limits the adoption of preventive disease con-
trols. The reason for the inability lies in the long latent period (several
years) between infection and symptom expression in the trunk disease
complex. This latent period effectively disassociates plant health from
management behavior, at least temporarily, in the sense that farmers
who are not preventively managing their vines may still have produc-
tive yields. The mismatch in temporal scales at which ecological me-
chanisms and management actions unfold prevents farmers from ef-
fectively engaging in a success bias by observing both the payoffs and
strategies of their neighbors. Consequently, this real-world system ex-
hibits high rates of ecological disturbance (Hillis et al., 2016), analo-
gous to our model findings when farmers are unable to correctly imitate
successful strategies.

Our findings generate a number of insights that inform outreach and
policy intended to promote action on the part of land managers. The
model underscores the importance of the structural properties of the
social-ecological system. Because degrees of ecological connectivity
vary substantially across disturbance types and ecosystems, under-
standing the social structures and learning strategies best suited to
promote effective management in that ecological setting is critical. In
other words, understanding the relationship between social-ecological
connectivity and learning is key to promoting effective management
strategies that can control ecological disturbances. These results un-
derscore the importance of promoting social connections among in-
dividuals, with the important caveat that connections in and of them-
selves are not necessarily enough to promote appropriate action
(Valente, 2012). Connections that allow for success-biased imitation, or
those that allow individuals to observe both the behavior and payoffs of
their decisions, are most likely to effectively promote adoption.

Policies that promote the sharing of information about both beha-
viors and their consequences are more likely to be effective than those
that share merely information about the most common strategies. This
type of information sharing, often the result of collaborative ap-
proaches, can be a challenge in environments that are inherently
competitive, such as in the case of firms competing in a particular in-
dustry. As a substitute for or complement to facilitating success-biased
learning, decision-makers might reduce the clustering of the overall
system, by reducing ecological connectivity, and at the same time im-
prove alignments in spatial scale such that highly connected ecological
areas are managed by highly connected managers.

5. Conclusion

There has been considerable progress in the past few years in un-
derstanding dynamic processes on multiplex networks and the robust-
ness of multiplex networks to specific disturbances (Baggio et al., 2016;
De Domenico et al., 2014; Granell et al., 2013; Lima et al., 2015). Most
studies addressing structural properties of social-ecological systems
focus either on understanding how social networks (or their origin)
influence the management and policies affecting the ecological system
(Berardo and Scholz, 2010; Bodin et al., 2006; Lubell et al., 2014;
Sayles and Baggio, 2017b; Schoon et al., 2017; Vignola et al., 2013), or
employ a network perspective to examine and identify spatial scale
mismatches existing in social-ecological systems (Ernstson et al., 2010;
Guerrero et al., 2013; Sayles and Baggio, 2017a; Treml et al., 2015).
Research on how social-ecological network structural properties influ-
ence the ability of social-ecological systems to adapt and transform is
still in its infancy (Bodin, 2017).

Here we developed an agent based model to address the relationship
between learning, social-ecological structural properties and the
adoption of treatment strategies that counter ecological disturbances.
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While our model is relatively abstract and general, it provides some
basic insights into the interactions between the relationship between
social and ecological processes and how structural properties may come
into play. The framework we use to integrate social and ecological
process propagating on a social-ecological network can be modified and
extended to examine specific questions, or to assess particular empirical
patterns observed in specific case studies.

While any number of extensions are possible, we focus on three here
that we believe are particularly promising, in part because they move
our model towards empirical realism. First, our model does not consider
spatial heterogeneity either in disturbance transmission or management
efficacy. Yet this type of environmental variation across the landscape is
often a natural and important part of real-world systems. Second, our
model assumes negative perturbations being transmitted across the
ecological network, and management strategies are thus aimed at re-
ducing the overall ecological connectivity. However, in future work this
assumption might be relaxed in order to account for beneficial ecolo-
gical factors flowing across the network, as species migration, pollina-
tion, ecosystem flows like water quality and quantity or nutrients. In
this latter context, management strategies would aim at increasing the
overall ecological connectivity to favor the diffusion of ecological
processes (see also Schoon et al., 2014). Third, while we don't vary the
costs and benefits of adoption, these are undoubtedly important, in
particular with regards to changing the nature of the decision such that
it embodies a social dilemma. Because we expect motivations and
processes of learning to differ in important ways in the strategic en-
vironment of a social dilemma, we expect that we might observe im-
portant differences in the relationship between learning and reduction
in disturbance prevalence in those environments. These suggestions
underscore the fact that our modeling framework can be parameterized
in ways that more closely represent specific real-world study systems in
order to examine the relationship between structures and processes in
those particular systems.

We present this model as an important preliminary step in re-
presenting the relationships between learning and decision-making in
linked social-ecological systems. While many further complexities await
formalization we provide a framework for other modelers interested in
representing explicitly the dynamic nature of both the social and eco-
logical systems.
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