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Abstract

The 1969 review by J. R. Melcher and G. I. Taylor defined the field of

electrohydrodynamics. Fifty years on, the interaction of weakly con-

ducting (leaky dielectric) fluids with electric fields continues to yield

intriguing phenomena. The prototypical system of a drop in an uniform

electric field has revealed remarkable dynamics in strong electric fields

such as symmetry–breaking instabilities (e.g., f rotation), and stream-

ing from the drop equator. This review summarizes recent experimental

and theoretical studies in the area of fluid particles (drop and vesicles)

in electric fields, with focus on the transient dynamics and extreme

deformations. A theoretical framework to treat the time evolution of

nearly-spherical shapes is provided. The model has been successful in

describing the dynamics of vesicles (closed lipid membranes) in elec-

tric field, highlighting the broader range of applicability of the leaky

dielectric approach.
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1. INTRODUCTION

The electric field induced fluid flows around a droplet (Melcher & Taylor 1969) excited

long-standing interest in the field of electrohydrodynamics. In his pioneering paper, G. I.

Taylor formulated the leaky dielectric model (LDM) and predicted the steady drop shape

in the small-deformation limit (Taylor 1966). Subsequent body of work, reviewed in (Lac

& Homsy 2007, Saville 1997), experimentally tested the validity of the model, derived more

accurate analytical solutions, and developed numerical simulations to explore large drop

deformations, stability and break-up. This review focuses on the latest developments in

understanding electrohydrodynamics, in particular, the unsteady dynamics of drops and

vesicles (non-spherical capsules made of lipid bilayer membranes). Electrosprays are not

discussed here as the topic merits a separate review (de la Mora 2007, Ganan-Calvo et al.

2018).

2. THE LEAKY DIELECTRIC MODEL

Electrohydrodynamic flows are driven by electric stresses shearing fluid interfaces. The

tangential electric stresses are due to the electric field acting on free charges accumulated at

boundaries separating media (fluids) with different permittivities and conductivities. Here,

we formulate the LDM for a drop in an electric field, the prototypical electrohydrodynamic

problem (Taylor 1966). In Section 3 we summarize the analytical solution for small drop

deformations, and numerical and experimental results for drop behavior in strong fields. In

Section 4 we extend the LDM to vesicles, which are biomimetic capsules made of a lipid

bilayer membrane. The details of the small deformation theories of drops and vesicles are

available in the supplemental Mathematica file.

2.1. Governing equations

Consider a neutrally buoyant drop with radius a and no net charge. The drop and the

continuous phase are Newtonian fluids, with viscosities η̂ and η, permittivities ε̂ and ε, and

conductivities σ̂ and σ, respectively ( ˆ denotes quantity associated with the drop fluid).

The interfacial tension γ is only affected by surfactants. The mismatch in fluids properties

is characterized by the three ratios

R =
σ̂

σ
, S =

ε̂

ε
, λ =

η̂

η
. 1.

The drop is placed in a uniform electric field with magnitude E0,

E∞ = E0ẑ . 2.

The LDM assumes irrotational electric field (hence E = −∇Φ, where Φ is the electric

potential), electroneutral bulk fluids and that the electric current obeys Ohm’s law

∇ · (σE) = 0 , ∇ ·
(
σ̂Ê
)

= 0 . 3.

Fluid motion is described by the Stokes equations, since the Reynolds number for the fluids

and small drops typically studied are small. The velocity, u, and dynamic pressure, p,

satisfy

η∇2u = ∇p , ∇ · u = 0 , η̂∇2û = ∇p̂ , ∇ · û = 0 . 4.
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The assumption of charge-free fluids decouples the electric and hydrodynamic fields in the

bulk. The coupling occurs at the drop interface, through the boundary conditions for (a)

mechanical equilibrium, and (b) conservation of surface charge.

The hydrodynamic and electric tractions at the interface are discontinuous and balanced

by interfacial stresses ts

n ·
[(

T− T̂
)

+
(
Tel − T̂el

)]
= ts , 5.

where n is the outward pointing normal vector. Tij = −pδij + η(∂jui + ∂iuj) is the hydro-

dynamic stress and δij is the Kronecker delta function. The electric stress is given by the

Maxwell stress tensor T el
ij = ε (EiEj − EkEkδij/2). In the case of a drop, ts = γ n (∇ · n)

is the capillary stress due to curvature along the deformed drop interface (assuming con-

stant interfacial tension, i.e., surfactant-free interface). The interfacial stresses can be more

complex due to interfacial viscosity, Marangoni stresses (when surfactants are present), or

shear and bending elasticity (in case of capsules and bilayer vesicles).

Charge conservation at the drop surface requires that

σn ·
(
E− RÊ + Rs∇s ·E

)
= −∂Q

∂t
−∇s · (uQ) , 6.

where Rs = σs/σa is the surface conductivity. The formulation is completed by assuming

continuity of the electric potential and velocity across the drop surface: Φ = Φ̂ and u = û.

If charge convection is neglected, then for a given drop shape the electrostatic system yields

the electric field and electric stresses. For a spherical drop the electric field is given in the

sidebar titled A sphere in a uniform electric field. Once the electric stresses are known, the

fluid flow and drop shape are determined from the stress balance Eq. 5. Accounting for the

charge convection is challenging as it requires that the electrostatic and flow problems are

solved simultaneously. Finally, the induced charge Q is determined from the jump in the

displacement field

Q = εn ·
(
E− SÊ

)
. 7.

2.2. Characteristic time-scales and dimensionless parameters

In describing the shape evolution, all variables are nondimensionalized using the radius of

the undeformed drop a, the field strength E0, a characteristic applied stress τc = εE2
0 , and

the properties of the suspending fluid. Accordingly, the time scale for the electrohydrody-

namic flow is tc = η/τc and the velocity scale is uc = aτc/η. The conduction process in

the suspending fluid occurs on time scale given by the charge relaxation time te = ε/σ.

The charge relaxation time in the drop is t̂e = ε̂/σ̂. Drop relaxation towards equilibrium

spherical shape occurs on the surface tension time scale tγ = ηa/γ. These four time scales

form the three nondimensional parameters that are most commonly used to quantify elec-

trohydrodynamic flows

R

S
=
te

t̂e
, Ca =

tγ
tc

=
εE2

0a

γ
, ReE =

te
tc

=
ε2E2

0

ση
. 8.

Ca and ReE are the capillary and electric Reynolds numbers.

It is instructive to estimate the magnitude of the characteristic time scales involved in

the electrohydrodynamics of leaky dielectric drops in strong fields. Typical experimental
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A SPHERE IN A UNIFORM ELECTRIC FIELD

Here we summarize the electrostatics of a spherical drop when charge convection is negligible. In a spherical

coordinate system centered at the drop, the electric potential is

Φ = aE0Re
{

Ψeiωt
}

cos θ , where Ψ = −(r + Pr−2) , Ψ̂ = −Ppr ,

where θ is the angle with the applied field.

In a uniform AC field, E = E0 cos(ωt)ẑ,

P (ω) ≡ PAC (ω) = Pp (ω)− 1 =
ks − kp − 2Rs

2ks + kp + 2Rs
, kp = R + iωS , ks = 1 + iω .

Upon application of a uniform DC field, E = E0ẑ, the free charge at the drop surface builds up on a

time scale given by the Maxwell-Wagner polarization time tmw,

P (t) = Pp(t)− 1 = PAC(ω = 0)
(

1− e−t/tmw

)
, tmw =

ε

σ

S + 2

R + 2Rs + 2
.

Induced dipole

The effective dipole P due to the induced free surface charge Q is

P =4πεa3
[
PAC(0)− PAC(∞)

] (
1− e−t/tmw

)
E ,

Q =εE0

[
PAC(0)− PAC(∞)

] (
1− e−t/tmw

)
cos θ ,

where PAC(0) and PAC(∞) are the low- and high-frequency drop fluid susceptibilities

PAC(0)− PAC(∞) = 3
R + 2Rs − S

R + 2Rs + 2
.

conditions involve electric fields of the order of E0 ∼1kV/cm and fluids with conductivities

in the range σ ∼ 10−10 − 10−12 S/m, viscosity η ∼ 1 Pa.s, and γ ∼ 10−3 N/m. Hence,

the flow, capillary and charge time scales can be comparable, ∼ 0.1 − 10 s. The interplay

between these time scales gives rise to a rich phenomenology of drop dynamics in strong

electric field.

3. DROPS

LDM predicts that in weak uniform electric fields a drop adopts a spheroidal shape axisym-

metrically aligned with the applied field. As the field strength increases, the drop undergoes

various types of instabilities.
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3.1. Transient deformation in weak fields, Ca � 1

Drop shape remains nearly spherical if Ca� 1. Analytical solutions for drop electrodefor-

mation in this regime and for negligible charge convection have been developed by Esmaeeli

& Sharifi (2011), Lanauze et al. (2013). If fluid inertia and polarization relaxation are

neglected, this theory predicts a monotonic approach to the steady shape. If polarization

relaxation occurs on a time scale comparable to the shape evolution (tmw ∼ tc), in the case

R/S < 1, a transient prolate shape can form before the ultimate oblate shape (Lanauze

et al. 2013, 2015). The effect of charge convection on transient drop deformation has been

analyzed by (Das & Saintillan 2017b). The main results from the linear deformation theory

are summarized in the sidebar Drop deformation in a uniform electric field.

Drop deformation in nonuniform field (e.g., axisymmetric quadrupolar field) has been

analyzed by (Deshmukh & Thaokar 2013) assuming instantaneous polarization and no

charge convection, i.e., steady current balance Eq. 6.

In this Section we provide the leading-order small-Ca evolution equations for arbitrary

drop shape (ellipsoidal, quadrupolar etc.). Interfacial viscosity is included in the model. For

small deviations from sphericity, the instantaneous shape is described as the radial position

of the interface rs = a(1 + f(t, θ, ϕ)). It is convenient to expand all variables in spherical

harmonics f =
∑
fjm(t)Yjm (θ, ϕ), where Yjm = (−1)mPmj (cos θ) eimϕ. A uniform electric

field is described by j = 1 spherical harmonic and directly excites j = 2 deformation.

The shape evolves in a general electric field as (Vlahovska 2016):

∂fjm
∂t

=
αj0

(
τ el
jm0 + τsjm0

)
+ αj2

(
τ el
jm2 + τsjm2

)
c2λ2 + c1λ+ c0

, 9.

where

αj0 = j(j + 1) (2(j + 1)jλmm
κ + 3(j + 1)λ+ 3j) 10.

αj2 = j(j + 1)
((
j2 + j − 2

)
λmm
η + (j + 1)jλmm

κ + (2j + 1)λ+ 2j + 1
)

11.

c2 =2
(
2j4 + 4j3 + j2 − 4j − 3

)
c1 =8j4 + 16j3 + 4j2 − 4j + 3 +

(
2j4 + 5j3 + 3j2 − 5j − 5

)
jλmm
κ

+
(
2j5 + 5j4 + 3j3 + j2 − 5j − 6

)
λmm
η

c0 =j(j + 2)
[(

4j2 + 2
)

+ λmm
κ

(
4
(
j2 − 1

)
λmm
η +

(
2j3 + j2 + j + 2

))
+λmm

η

(
2j3 + j2 + j − 4

)]
NOTE : TY PO!

12a.

λmm
κ = ηκ/aη and λmm

η = ηs/aη are the dimensionless surface dilatational and shear vis-

cosities. The interfacial stresses on the drop are

τsjm0 = 0 , τsjm2 =− Ca−1 (−2 + j(j + 1)) fjm . 13.

The electric stresses for a DC field that is a combination of uniform and linear field E =

eu∇ (rY10) + eq∇(r2Y20) are listed below. eq = 0 and eu = 1 specifies a uniform electric

field along the z direction, and eu = 0 and eq = ε (ε being the dimensionless field gradient)

defines an axisymmetric (around the z axis) quadrupole electric field ε(−x,−y, 2z).

τ el
200 = e2

u
3 (R− S)

(R + 2)2 + e2
q

50

7

R− S

(2R + 3)2 , τ el
400 = e2

q
90

7

R− S

2R + 3
,

τ el
202 = e2

u3
1 + R2 − 2S

(R + 2)2
− e2

q
25

7

3− 4R2 + S

(2R + 3)2
, τ el

402 = e2
q

180

7

1 + R2 − 2S

(R + 2)2

14.
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DROP DEFORMATION IN A UNIFORM DC ELECTRIC FIELD, Ca � 1

Shape evolution:

The shape of the drop is an axisymmetric ellipsoid parametrized by rs = a(1 + s(t)P2(cos θ)). Drop

deformation is usually characterized by the Taylor deformation parameter D = (a||− a⊥)/(a||+ a⊥), where

a|| and a⊥ are the drop axes parallel and perpendicular to the applied field direction; D = 3s/4. Upon

application of an uniform electric field, shape evolution is described by

∂s

∂t
=

40(1 + λ)

(3 + 2λ)(16 + 19λ)

[
3

4
F (R,S, λ, t)− Ca−1 s(t)

]
,

where

F (R,S, λ, t) =
(16 + 19λ)

45(1 + λ)

(
1− S− (1 + 2S)P (tδmw) +

(
13 + 7λ

(16 + 19λ)
− S

)
P 2(tδmw)

)
where

P (τ) =
(1− R)

(2 + R)

(
1− e−τ

)
.

δmw = tc/tmw is the ratio of the electrohydrodynamic and polarization time scales. If polarization relaxation

is instantaneous (tmw � tc, i.e., δmw � 1), then the steady shape is monotonically approached

D(t) = DT
(

1− e−t/tr
)

where tr =
ηa

γ

(
(3 + 2λ)(16 + 19λ)

40(1 + λ)

)
and

DT =
9Ca

16
FT (R,S, λ) , FT =

1

(2 + R)2

[
R2 + 1− 2S + 3(R− S)

2 + 3λ

5(1 + λ)

]
.

If the dipole evolves on a time scale comparable to the flow time scale (tmw ∼ tc) the approach to steady

state may be nonmonotonic.

Interfacial velocity

At steady state, the fluid undergoes axisymmetric flow about the drop. The velocity at the drop surface

r = a is

uT =
aεE2

0

η

9(S− R)

10(1 + λ)S(R + 2)2
sin(2θ)θ̂ ,

Classification of drop shape and electrohydrodynamic flow configurations:

The Taylor discrimination function, FT , and the direction of the interfacial flow defined three cases:

Prolate A: (FT > 0, R/S > 1) flow is from the equator to the pole, drop elongates along the field direction

Prolate B: (FT > 0, R/S < 1) flow is from the pole to the equator, drop elongates along the field direction

Oblate: (FT < 0, R/S < 1) flow is from the pole to the equator, drop compresses along the field direction
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τ el
300 = 4τ el

300 = eueq
12 (R− S)

(R + 2)(2R + 3)
,

τ el
102 = −eueq

6
(
3− 4R2 + S

)
(R + 2)(2R + 3)

, τ el
302 = eueq

18
(
1 + R2 − 2S

)
(R + 2)(2R + 3)

15.

Eq. 9-Eq. 15 provide a unified description of drop deformation in combined uniform and

linear fields, and enable compact derivation of some published results. The equations can

be further applied to study analytically unexplored problems such as the transient drop

deformation in linear fields.

For example, the monotonic evolution towards steady drop shape reported by Esmaeeli

& Sharifi (2011) and listed in the sidebar titled Drop Deformationin a Uniform Direct

Current Electric Field (Ca� 1) is obtained from these equations with eq = 0. The results

of Deshmukh & Thaokar (2013) for a drop axisymmetrically centered in a quadrupolar

field are obtained by setting eu = 0 . If the drop is off-center, i.e., eu 6= 0 and eq 6= 0,

it undergoes dielectrophoresis (translation towards or away from the field minimum). If

the drop is displaced along the axis of symmetry (z) of the quadrupolar field component,

the drop translational velocity is Vz = ∂f10/∂t. Thus, from Eq. 9 one can obtain the

dielectrophoretic velocity of a spherical drop in a straightforward manner, including the

surface viscosity (Mandal & Chakraborty 2017b)

Vdep =2eueq
2λ (R− 1) (3 + 2R) + 4R2 + R− 6

(2 + 3λ)(2 + R)(3 + 2R)

+ 4eueqλ
mm
κ

6 + R− 4R2 − 3S

3(2 + 2λmm
κ + 3λ)(2 + R)(3 + 2R)

16.

The limit of high surface viscosity recovers the result for a rigid sphere Vdep = eueq
4
3
(R −

1)/(2 + R); in the absence of surface viscosity, Eq. 16 reduces to the clean drop expression

derived by (Feng 1996).

3.2. Electroheology

Electric fields are often used to control the flow and structure of colloidal suspensions (Bharti

& Velev 2015, Dobnikar et al. 2013, Sheng & Wen 2012, van Blaaderen et al. 2013). Of

particular interest is how fluid properties such as viscosity are affected by an electric field.

For example, application of an electric field perpendicular to the shear flow can enhance the

fluid viscosity thousands-fold (this is the so called positive electrorheological effect, PER)

(Larson 1999). However, negative electrorheological effect (NER), i.e., viscosity decrease

with increasing electric field strength, has also been reported (Huang et al. 2011, Lemaire

et al. 2008).

Theoretically, the effective stress Teff of a sheared dilute suspension, in which hy-

drodynamic interactions between the particles are negligible, is found from the individual

particle stresslet S (Kim & Karrila 1991)

Teff = ηγ̇ (2Γs + φS) , 17.

where φ is the particle volume fraction, Γs is the symmetric part of the gradient velocity

tensor describing the extensional component of the shear flow, Γs · x = (y, x, 0)/2. Rheo-

logical properties of interest are the suspension shear viscosity is ηeff = η (1 + φSxy) and

normal stress differences, N1 = φ(Sxx − Syy) and N2 = φ(Syy − Szz).

www.annualreviews.org • Electrohydrodynamics of drops and vesicles 7



ELECTRORHEOLOGY OF A DILUTE EMULSION

Analytical solutions are available in the limit of small drop deformations. An electric field applied in

a direction perpendicular to the shear flow (along the velocity gradient) modifies the emulsion stresses

depending on the flow conditions.

Weak flows: Caγ̇ � 1 with λ = O(1)

Shear viscosity is unaffected and normal stresses arise solely from the electric field

Sxy =
5λ+ 2

2(λ+ 1)
, N1 = −N2 = φMn

27(R− S)

5(λ+ 1)(R + 2)2

where Caγ̇ = ηγ̇a/γ and Mn = Ca/Caγ̇ = εE2
0/ηγ̇, γ̇ is the shear rate.

High viscosity drops and weak flow, λ,Ca−1 � 1

Both shear viscosity and normal stresses are shear-rate dependent

Sxy =
5

2
+λ−1

[
−25

4
+

19

4[1 + (19C̄a/20)2]

(
1 + C̄aelG

(
R,S, C̄a

))]
+O

(
λ−2, λ−1Mn

)
where C̄a = λ−1ηγ̇a/γ is the dimensionless shear rate and C̄ael = λ−1Ca. In the absence of electric

field, Cael = 0, the emulsion is shear thinning. The electric field can cause either shear-thinning or shear-

thickening depending on R and S:

G
(
R,S, C̄a

)
=

9
(

2528 + 361C̄a
2
) (

5R2 + 9R− 19S + 5
)

212800(2 + R)2
.

The corresponding expressions for the normal stresses can be found in (Vlahovska et al. 2009a).

The effects of electric fields on emulsion flow have been studied only to a limited extent

experimentally (Ha & Yang 2000b, Pan & McKinley 1997, Tadavani et al. 2016, Varshney

et al. 2016) and via numerical simulations (Fernandez 2008a,b). Analytical solutions for

the emulsion rheology were developed by (Mandal & Chakraborty 2017a,c, Vlahovska et al.

2009a) in the limit of small drop deformations and are summarized in the sidebar titled

Electrorheology of a dilute emulsion. These results show that application of an electric

field perpendicular to the shear flow gives rise to normal stresses and may lead to shear–

thickening or –thinning depending on the electric properties of the fluids. In weak flows,

the effects of electric field and external shear flow are additive: the shear viscosity is con-

stant and given by (Taylor 1932) for spherical drops; the normal stresses are only due to

the electric field. In the case of high-viscosity drops, drop rotation couples the shear– and

electric–field–induced deformation leading to shear-rate dependent viscosity and normal

stresses. For an electric field applied in the velocity gradient direction, emulsion viscosity

depends on the drop polarization, e.g., R/S > 1 leads to prolate deformations, greater resis-

tance to the applied shear and hence increase in effective viscosity (PER). In the opposite
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case, R/S < 1, drops adopt oblate spheroidal shapes, which offer less resistance to the

imposed flow and therefore the viscosity decreases (NER).

3.3. Drop dynamics in strong electric fields

Drop response to strong electric fields (Ca ' 1) depends on R/S (the ratio of charge

relaxation times).

3.3.1. Prolate drops, R/S > 1. Drops with R/S > elongate in the direction of the applied

field. The shapes are described using models assuming ellipsoidal (Nganguia et al. 2013,

Zabarankin 2013, Zhang et al. 2013a) or slender, cigar-like shapes (Yariv & Rhodes 2013).

Above a critical field strength, the prolate drop eventually disintegrates (Karyappa et al.

2014, Lac & Homsy 2007, Pillai et al. 2016). Two main modes of break-up have been

identified: (i) end pinching, where the drop develops bulbous ends that eventually detach,

and (ii) electrohydrodynamic streaming (or cone-jetting), where the drop develops conical

tips (Taylor cones) emitting thin jets (Collins et al. 2008, 2013, de la Mora 2007, Ganan-

Calvo et al. 2016), see Figure 1. The mode selection has a complex dependence on the

system physical parameters, such as viscosity ratio λ, and field strength, Ca. Inertia and

surface charge convection can also play significant role. For example, (Sengupta et al.

2017) recently found via simulations that charge convection can cause transition in the

drop breakup mode from end pinching to formation of conical ends.

Figure 1

(a) Images of different types of shapes of a conducting drop suspended in a dielectric oil
(Karyappa et al. 2014). (b) Numerical simulations of EHD tip streaming (Collins et al. 2013).
The last snapshot zooms into the about-to-form electrospray droplet. (c) Transition from
end-pinching to tip-streaming mode with increasing charge convection as observed in simulations
(Sengupta et al. 2017) .

www.annualreviews.org • Electrohydrodynamics of drops and vesicles 9



3.3.2. Oblate drops, R/S < 1. The dynamics of oblate drops in strong fields is illustrated

in Figure 2 on the example of a silicone oil drop in castor oil. There are three distinct

modes:

Figure 2

Oblate drop dynamics in a strong uniformDC electric field: Quincke electrorotation (black, image
(b)), dimpling (blue, image (c)) for λ > 0.1, EHD equatorial streaming (red, image (d)) for
λ < 0.1. (Brosseau & Vlahovska 2017)

(i) Electrorotation (Ca > CaQ, any viscosity ratio λ): In this regime, the drop tilts

relative to the applied field direction. This symmetry-breaking is due to Quincke electroro-

tation (Ha & Yang 2000a, Salipante & Vlahovska 2010, 2013, Tyatyushkin 2017, Vlahovska

2016, Yariv & Frankel 2016), see Section 3.3.3.1, which gives rise to a rotational flow about

the drop. The Quincke effect suppresses drop deformation and stabilizes the drop against

break-up (Das & Saintillan 2017a, He et al. 2013). The threshold for electrorotation, EQ is

estimated from the value for a rigid sphere (Jones 1984) (see Section 3.3.3.1)

E2
Q =

2ση (R + 2)2

3ε2(S− R)
. 18.

(ii) Dimpling (R � 1, Ca ≈ 1, λ ' 0.1): In this mode, the drop deforms into a bicon-

cave disc with rounded rim and pinches in its center to form a torus; the torus subsequently

breaks into several, relatively large drops (Ghazian et al. 2014, Pairam & Fernández-Nieves

2009, Torza et al. 1971). The critical capillary number for dimpling is Ca ∼ O(1), cor-

responding to distorting electric stresses overcoming the interfacial tension. The dimpling

behavior for viscosity ratios λ ' 1 has been seen also in numerical simulations (Lac &
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Homsy 2007, Zabarankin et al. 2013).

(iii) Equatorial streaming (R� 1, Ca� 1, λ ≤ 0.1): In this recently discovered mode,

the drop flattens and forms a sharp edge with thin film attached to it (edge-sheet), see

Figure 3(Brosseau & Vlahovska 2017). The edge sheet emits concentric thin rings which

break up into microdroplets. The ring shedding occurs in a steady manner and microdroplet

production has been observed for tens of seconds. The equatorial streaming is likely related

Figure 3

EHD equatorial streaming (A) observed from direction perpendicular (a-d) and along (e-h) the
applied electric field; the field direction is the axis of symmetry. (B)Close up and rendering of the
phenomenon as deduced from the experiment.

to the interfacial instabilities common in convergent flow (Tseng & Prosperetti 2015). The

interface is compressed and a local perturbation at the stagnation line (the drop equator)

gets drawn out by the flow. When the viscous stresses overcome the interfacial tension,

the perturbation grows into a fluid sheet. This is similar to the tip streaming phenomenon

commonly observed in the microfluidic co-flow geometry (Anna 2016, Castro-Hernandez

et al. 2012, Suryo & Basaran 2006), where a fluid filament is formed at a stagnation point.

However, inertia may also play role: Schnitzer et al. (2013a) suggest with analysis two

boundary layers propagate from the poles to the equator, where they collide to form a

radial jet.

www.annualreviews.org • Electrohydrodynamics of drops and vesicles 11



Figure 4

A. Charge distribution in unstable equilibrium for a sphere with R/S < 1. Above a critical field
strength E0 > EQ , where E0 = |E| and EQ is given by Eq. 18, constant rotation around an axis
perpendicular to the electric field is induced by the misaligned dipole moment of the particle. If
the sphere is initially resting on a surface, it rolls. Population of Quincke-rollers self-organize in a
band propagating along the “racetrack”. The arrows correspond to the rollers velocities. (Bricard
et al. 2013). B. Sketches illustrating drop shape and flow streamlines in a uniform direct current
(DC) electric field in the Taylor regime (E < EQ, axisymmetric compressional flow and oblate
shape) and the Quincke regime E ≥ EQ ( rotational flow and the drop is tilted with respect to the
applied field direction. (Salipante & Vlahovska 2010). C. In even stronger fields, the drop
undergoes unsteady dynamics depending on the viscosity ratio: drop tumbles (λ� 1) or
“breathes” as it rotates (λ ∼ 1). Experimental system is silicon oil drop suspended in castor oil
(Ouriemi & Vlahovska 2014, Salipante & Vlahovska 2013).

3.3.3. Electrorotational instabilities of oblate drops. While in weak fields the electrohydro-

dynamic flow induced by a uniform field is axisymmetric about the applied field direction,

in strong fields and if R/S < 1 the flow can undergo symmetry-breaking.

3.3.3.1. Quincke rotation. The spontaneous spinning of a rigid sphere in a uniform DC

electric field has been known for over a century (Lemaire & Lobry 2002, Melcher & Taylor

1969). This phenomenon has enjoyed a resurgence of interest recently as a mechanism to

“activate” particles for self-propulsion (Bricard et al. 2013, Kokot et al. 2017, Lavrentovich

2016, Snezhko 2016, Yeo et al. 2015).

For rotation to occur, the induced dipole moment of the sphere, listed in the sidebar

titled A Sphere in a Uniform Electric Field, has to orient opposite to the applied field,

which requires R/S < 1. This configuration is unfavorable and becomes unstable above a

critical strength of the electric field. A perturbation misaligns the dipole and the applied

field, and the resulting torque induces rotation around an axis perpendicular to the applied

field direction.

For rotation to be sustained, the rotation and the dipole evolution should take place on

comparable time scales. This condition ensures that while the induced free surface charge

rotates with the sphere, the exterior fluid can recharge the interface. The balance between
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surface charge convection by rotation and supply by conduction from the bulk is given by

(Lemaire & Lobry 2002)

ΩP|| = t−1
mwP⊥ , ΩP⊥ = t−1

mw

[
P|| −

(
PAC(0)− PAC(∞)

)
E
]
. 19.

The rotation rate Ω of the Quincke rotor is determined from the balance of electric and

viscous torques on the sphere (Jones 1984, Turcu 1987)

P⊥E = 8πηa3Ω , 20.

Steady state solutions of Eq. 20 and Eq. 19 are no rotation(Ω = 0, P⊥ = 0, and induced

dipole P|| given in the sidebar A sphere in a uniform electric field), and steady rotation

with an oblique dipole orientation illustrated in Figure 4

Ω = ± 1

tmw

√
E2

0

E2
Q

− 1 , P⊥ =
8πηa3Ω

E0
, 21.

where the ± sign reflects the two possible directions of rotation and EQ is given by Eq. 18.

Eq. 21 shows that rotation is possible only if the electric field exceeds a critical value given

by EQ.

Drop electrorotation is more complex, due to deformation and electrohydrodynamic

flow. The experiments show that the deformed droplet can assume a steady tilted orienta-

tion relative to the applied field (Ha & Yang 2000a, He et al. 2013, Salipante & Vlahovska

2010) or undergo irregular rotational motions (Salipante & Vlahovska 2013, Sato et al.

2006), see Figure 4. The threshold for electrorotation increases and shows hysteresis as

drop viscosity decreases (Salipante & Vlahovska 2010).

The steady tilt is well understood (Das & Saintillan 2013, He et al. 2013, Yariv &

Frankel 2016). Analytical models, which assume small-deformations and charge convec-

tion dominated by the rotational flow, agree with the experimental data for high viscosity

drops (He et al. 2013). However, these models do not capture the increased threshold of

electrorotation and unsteady dynamics of low-viscosity drops that likely arise from charge

convection due to the straining flow and anisotropy in the polarization relaxation due to the

non-spherical shape (Salipante & Vlahovska 2013). Indeed, the electrorotation dynamics

of rigid ellipsoids is richer, and includes swinging and tumbling (Brosseau et al. 2017, Ce-

bers et al. 2000, Dolinsky & Elperin 2009). Including shape variations as observed in the

case of the low-viscosity drop is analytically challenging and tractable only by fully three-

dimensional numerical simulations. Such simulations are currently unavailable as nearly all

three dimensional computational analyses of drop electrohydrodynamics are restricted to

axisymmetric geometries (Dubash & Mestel 2007, Lac & Homsy 2007, Lanauze et al. 2015,

Nganguia et al. 2015, Pillai et al. 2016)) with exception of (Das & Saintillan 2017a), which

however is limited to high viscosity drops.

3.3.3.2. Equatorial vortices. Another electrorotation-like phenomenon is the formation

of particle vortices along the equator of a particle-coated drop, see Figure 5, (Dommersnes

et al. 2013, Ouriemi & Vlahovska 2014, 2015, Rozynek et al. 2015, 2014). The mechanism

responsible for the belt break-up into rotating clusters is presently unknown. It is not clear

if this is a result of (i) self-organization emerging from the collective particle dynamics or

(ii) a purely hydrodynamic instability occurring even in the absence of particles.
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Figure 5

a-c Colloidal particles adsorbed on a drop interface accumulate at the equator and form a belt,
which breaks into rotating clusters of particles (Dommersnes et al. 2013). d-f: Vortices formed by
different kind of particles (Ouriemi & Vlahovska 2014).

Self-organization is supported by a simple model of particles trapped on the drop inter-

face (Yeo et al. 2015) . Numerical simulations of the collective dynamics of a monolayer of

spheres driven by constant clockwise or counterclockwise torques showed the emergence of

patterns resembling those seen in experiments.

Supporting an instability, a cellular interfacial flow in the form of rolls has been observed

in the case of an uniform electric field imposed tangentially to a nearly planar interface

(Malkus & Veronis 1961). The charge distribution on a drop near the equator is similar to

this unstable configuration. Malkus & Veronis (1961) analysis (assuming negligible charge

convection and instantaneous polarization) shows that the induced charge depends on the

slope of the interfacial profile

Q = εE
2 (S− R)

(R + 1)

dh

dx
, 22.

where R and S are the ratios between the top/bottom fluids (corresponding to

drop/suspending fluids) and h(x) is the surface shape. If R/S < 1 the charge distribu-

tion is such that a perturbation above a critical E field could set-up a steady cellular flow,

akin to Quincke rotation.

4. VESICLES

The electro-deformation of giant vesicles (cell-sized closed membranes made of lipid bilayers,

usually about 20 µm diameter) provides fundamental insights into the electromechanics

of biomembranes, namely the coupling of membrane shape and transmembrane potential

(Dimova et al. 2009, Perrier et al. 2017, Portet et al. 2012, Vlahovska 2015). Experiments

with vesicles in a spatially uniform electric field reveal morphological changes that closely

mimic cell behaviors, e.g., deformation into a spheroid (Aranda et al. 2008, Riske & Dimova

2005, Salipante et al. 2012, Salipante & Vlahovska 2014), pearling of a tubular vesicle

(Sinha et al. 2013), and phase–separation (“raft” formation) in multicomponent membranes

(Salipante et al. 2015). Other intriguing dynamics have also been observed: lipid flows and

mixing (Staykova et al. 2008), wrinkling (Knorr et al. 2010), and burst (Riske et al. 2009).

Electroporation and pore closure has been recently utilized as a method to measure edge

tension (Portet & Dimova 2010). Figure 6 illustrates some of the behaviors of a quasi-

spherical vesicle exposed to a uniform electric field
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Figure 6

A. Vesicle response in a square DC pulse. a). Deformation and poration. Pulse duration 200 µs.
(Riske & Dimova 2005). The suspending fluid is salt–free. b),c) “Squaring” Vesicle in salt solution
deforms into a spherocylinder with long axis parallel and perpendicular to the field depending on
the conductivity ratio of the inner and outer solutions. b- R > 1 c- R < 1. d). Vesicle burst (Riske
et al. 2009). e). Vesicle electrofusion induced by 150 µs DC pulse (Haluska et al. 2004). B. a)
Alternating electric (AC) fields induce circular patterns of lipid transport in membranes of giant
vesicles. The flow is visualized by fluorescently labelled lipid domains. (Staykova et al. 2008). The
yellow dashed arrows indicate the trajectories of selected domains. b). 3D confocal scans of the
lower vesicle hemisphere illustrating lipid mixing induced by AC field. Before applying the field,
the vesicle has only two domains, which break apart after continuous field exposure of 2 min and 3
min. c). Domain dissolution and reappearance upon increase and decrease of electric field
strength (Salipante et al. 2015).

4.1. Electromechanics of the vesicle membrane

The thickness of the lipid bilayer (about 5 nm) is much smaller than the typical giant

vesicle size (radius of about 10 µm). Accordingly, the membrane can be treated as a two–

dimensional surface embedded in a three–dimensional space.

4.1.1. The vesicle membrane is a capacitive interface. In contrast to fluid-fluid interfaces,

the lipid bilayer is impermeable to ions, so in an electric field it acts as a capacitor. The

accumulation of ions at the membrane surfaces sets up a potential difference across the

membrane, Φ̂ − Φ = Vmm. The charging of the membrane capacitor modifies the current

balance equation Eq. 6 (DeBruin & Krassowska 1999, Grosse & Schwan 1992, Seiwert et al.

2012)

Cmm
dVmm

dt
+GmmVmm = σn ·E = Rσn · Ê . 23.

where Cmm is the membrane capacitance and Gmm is the membrane ohmic conductance

(e.g., due to pores and ion channels or pumps). Charge convection is neglected. The

charging dynamics obtained from Eq. 23 in the case of a spherical capacitor is illustrated

in Figure 7 and the main results are summarized in the sidebar titled A spherical vesicle

in a uniform DC electric field. Vesicle deformation is strongly affected by the capacitive
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charging.

• At short times (or equivalently, intermediate frequencies in an AC field) t � tmm

(ω > ωc) the membrane capacitor is short-circuited and there is charge imbalance

between the inner and outer membrane surfaces. If the enclosed solution is more

conducting than the suspending fluid, R > 1, the vesicle is pulled into a prolate

ellipsoid. The polarization is reversed in the opposite case, R < 1, and the vesicle

deforms into an oblate ellipsoid.

• At long times (or similarly for low frequencies in an AC field) t � tmm (ω < ωc)

the membrane capacitor is fully charged and vesicle shape is an prolate ellipsoid at

any R.

A vesicle with R < 1 subjected to a DC uniform field may initially deform into an oblate

spheroid but eventually adopts a prolate shape (Salipante & Vlahovska 2014, Schwalbe et al.

2011b). Similar transition in an AC field is readily observed by lowering the field frequency

(Aranda et al. 2008, Vlahovska et al. 2009b) below a critical value ωc (Yamamoto et al.

2010)

ωc =
σ

aCmm
[(1− R)(R + 3)]−1/2 . 24.

For systems with typical solution conductivity σ ∼ 0.1µS/cm, a ∼ 10µm and membrane

capacitance Cmm ∼ 1µF/cm2 the charging timescale is tmm ∼ 1ms and ωc ∼ 1kHz. For

applied electric field of E ∼ 1kV/cm, Vmm is around 1V .

0.4 ms 20 ms 50 ms0 ms

Ε
a

a

Figure 7

(A) Electric field lines and net charge distribution at the interface as the membrane capacitor
charges (a) R > 1, and (b) R < 1. (c) At long times, if the membrane is perfectly insulating

Gmm = 0, the electric potential is uniform and Ê = 0 in the vesicle interior and deformation is
independent of the conductivity ratio R. Note that since the enclosed and suspending fluids are
aqueous solutions S ≈ 1. The dashed lines indicate the vesicle deformation. (B) Shape evolution
of a vesicle in a DC field illustrating the oblate-prolate transition for R < 1(Salipante & Vlahovska
2014)
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A SPHERICAL VESICLE IN A UNIFORM DC ELECTRIC FIELD

The vesicle is modeled as a spherical capacitor of radius a. The potential jump between the inner and outer

membrane surfaces is

Vmm(t) = aE0V̄ (t) cos θ ,

where θ is the angle between the electric field direction and position at the interface. The time dependence

after application a uniform DC field, E = E0ẑ , t > 0,is

V̄ (t) =
3

2
(

1 +Gmm

(
1
2

+ 2

R

)) (1− e−t/tmm

)
,

where the capacitor charging time is

tmm =
aCmm

σ

(2 + R)

2R +Gmm(2 + R)
.

The electric potential is described by (Schwalbe et al. 2011b, Vlahovska 2010)

Φ = −aE0

(
r + P (t)r−2) cos θ , Φ̂ = −aE0P̂ (t)r cos θ

where

P (t) =
1− R + RV̄ (t)

2 + R
, P̂ (t) =

3− 2V̄ (t)

2 + R
.

4.1.2. The vesicle membrane is a flexible, area-incompressible fluid interface. The lipid

bilayer contains a fixed number of molecules, which are free to move within the membrane.

True stretching (increase per area of lipid) occurs only at very high stresses; the lipid

membrane fails above area strain of 4 % (Evans & Rawicz 1990). Accordingly, the lipid

bilayer can be treated as an incompressible two-dimensional fluid. The tension, Σ, is not

a material property (unlike the surface tension of fluid-fluid interfaces) but a Lagrange

multiplier enforcing the local area incompressibility. Under stress, the bilayer responds by

(i) bending rather than stretching, and (ii) developing nonuniform tension, which adapts

itself to the forces exerted on the membrane in order to keep the local area constant.

The interfacial stresses according to the standard Helfrich membrane model (Seifert

1997) are

tmm = κ
(
4H3 − 4KH + 2∇2

sH
)
n + 2ΣHn−∇sΣ , 25.

where H = − 1
2
∇s · n is the mean curvature and K is the Gaussian curvature. Membranes

are very soft, κ is about 10kBT , where kBT ∼ 10−21 J is the thermal energy. At equilibrium,

the membrane tension is uniform and low, Σ ∼ 10−9 − 10−6 N/m. As a result of the low

bending rigidity and tension, vesicle shapes fluctuate due to thermally driven membrane

undulations.

Area–incompressibility implies that the total area A of a vesicle is constant. Hence, a

spherical vesicle can not deform, because the sphere is a shape with minimum area. The

vesicle must be non-spherical in order to deform. The vesicle asphericity is characterized
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by the excess area ∆, A = a2(4π + ∆); the total excess area ∆ is a fixed parameter for a

given vesicle.

Vesicles, however, even though appearing spherical under the microscope, deform under

stress (an example of such deformations in an electric field are shown in Figure 7.B). The

increase of apparent area, a2(4π + ∆̄), comes from smoothing suboptical membrane undu-

lations. During vesicle deformation, the (fixed) total area, ∆, gets redistributed between

the experimentally measured apparent area, ∆̄ and the area stored in shape fluctuations,

∆f , ∆ = ∆̄ + ∆f . The latter is (Seifert 1999)

∆f

(
Σ̄
)

=
kBT

2κ
ln

(
j2
max + jmax + Σ̄

6 + Σ̄

)
≈ kBT

2κ
ln

(
j2
max

Σ̄

)
, 26.

where jmax = a/d ∼ 1000 is the ratio of the vesicle radius to the membrane thickness and

Σ̄ = Σa2/κ is the membrane tension. The approximation is valid in the so called “entropic

regime” j2
max � Σ̄� 6.

The membrane tension is coupled to the excess area and varies during vesicle deforma-

tion. For a quasi-spherical vesicle, whose apparent excess area at equilibrium is ∆̄ = 0 Eq.

26 in the entropic regime yields the widely used relation (Seifert 1997)

Σ̄ = Σ̄0 exp

(
2κ

kBT
∆̄

)
, 27.

where Σ0 is the equilibrium tension. This equation can be used to study the relaxation of

a deformed vesicle towards its equilibrium (apparently) spherical shape (Yu et al. 2015).

4.2. Vesicle deformation in a uniform electric field

The shapes of vesicles in uniform AC and DC fields have been analyzed theoretically (Ngan-

guia et al. 2013, Schwalbe et al. 2011b, Vlahovska et al. 2009b, Yamamoto et al. 2010, Zhang

et al. 2013b) and numerically (Kolahdouz & Salac 2015a,b, McConnell et al. 2013, 2015a,b,

Veerapaneni 2016) .

Using the spherical harmonic parametrization introduced in Section 3.1, the shape evo-

lution of a quasi-spherical vesicle is described by

∂fjm
∂t

=j(1 + j)
(τ el
jm2 + τsjm2) + 2(τ el

jm0 + τsjm0)

2j3 + 3j2 + 4 + 4 (j2 + j − 2)λmm
η + (2j3 + 3j2 − 5)λ

. 28.

This equation is the analogue of the shape evolution Eq. 9 for drops. The expression is,

however, simpler due to the area-incompressibility. The surface stresses are

τsjm0 = 0 , τsjm2 = −B−1 (j − 1) (j + 2)
(
j(j + 1) + Σ̄

)
fjm , 29.

where B = ηE2
0a

3/κ and Σ̄ = Σa2/κ. In a uniform electric field, the electric stresses are

τ el
202 =

1

3

(
2− 2SP̂ (t)2 − 2P (t) + 5P (t)2

)
, τ el

200 =
1

3

(
1− SP̂ (t)2 − P (t)− 2P (t)2

)
,

30.

where P (t) is the induced dipole coefficient (see the sidebar titled A spherical vesicle in a

uniform direct current electric field). Because in the case of vesicles P (t) and P̂ (t) depend

on the potential discontinuity Vmm(t), the electric stresses are different than the ones for

drops. Only if the membrane is highly conducting Gmm � 1 does Vmm = 0 and the electric
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stresses are the same as the one derived in Section 3.1, Eq. 14. The shape evolution derived

from Eq. 28 is listed in the sidebar titled Vesicle deformation in a square electric pulse.

A difference between the modeling of the deformation dynamics of vesicles and drops is

the treatment of the tension. While for drops the tension a material property, for vesicles

the membrane tension Σ̄ needs to be determined self-consistently with deformation because

of its dependence on the apparent excess area discussed in Section 4.1.2 (Seifert 1999).

Under stress, a quasi-spherical vesicle deforms by pulling excess area stored in fluctuations.

The area constraint requires that the total excess area ∆ (stored in fluctuations, ∆f , and

apparent deformation, ∆̄) is constant. Accordingly, given ∆, ∆ = ∆̄ + ∆f must be solved

numerically at each time step to determine Σ̄. ∆f is calculated from Eq. 26. The excess

area corresponding to the apparent deformation is calculated form the shape modes fjm as

∆̄ =

jmax∑
j=2

j∑
m=−j

(j + 2) (j − 1)

2
f̄jmf̄

∗
jm , 31.

where f̄jm solves Eq. 28 with ∂fjm/∂t = 0.

VESICLE DEFORMATION IN A SQUARE ELECTRIC PULSE

The shape is an axisymmetric ellipsoid parametrized by rs = a(1 + s(t)P2(cos θ)). The shape evolution is

described by
∂s

∂t
=

24

32 + 23λ+ 16λmm
η

(
C(t)− B−1(6 + Σ̄)s(t)

)
,

where the forcing term is

C(t) =
1

12(2 + R)2

[
9(1 + R)2 − 36S− 6(R + R2 − 8S)V̄ (tδm) + (R2 − 16S)V̄ 2(tδm)

]
and V̄ (t) is listed in the sidebar A spherical vesicle in a uniform DC electric field. For an insulating

membrane, Gmm = 0,

V̄ (τ) =
3

2

(
1− e−τ

)
,

Note that time is nondimensionlaized by the electrohydrodynamic time-scale tc; δm = tc/tmm is the ratio of

the electrohydrodynamic and capacitor charging time scales.

Unlike emulsions, the electrorheology of vesicle suspensions has not been studied exper-

imentally. Only few studies address the dynamics of vesicles in a combined electric field

and shear flow. The contribution to the effective viscosity of a dilute suspension of vesicles

is predicted to be (Vlahovska 2016)

Sxy =
5

2
(

23λ̂+ 32
) [23λ̂− 16 + 48 (Λ sin(2ψ))2

]
. 32.

λ̂ = λ+16λmm
η /23 is the effective viscosity ratio which accounts for both bulk and membrane

viscosities, ψ and Λ are calculated from the shape parameters as f2m =
√

∆
2

Λ exp(−imψ).

ψ is the angle between the vesicle major axis and the flow direction. Eq. 32 shows that
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the effective viscosity of the vesicle suspension depends on the vesicle orientation relative

to the flow, ψ, which is determined by the competition of the flow and electric field torques

(Schwalbe et al. 2011b).

4.3. Membrane instabilities

Electric pulses are used deliver exogenous molecules (such as drugs and DNA) into living

cells. The electric stresses create pores in the cell membrane, through which the molecules

enter the cell. Ideally, these pores should reseal after the field is turned off. However, often

the membrane collapses leading to cell death.

The mechanisms of membrane poration and collapse have been investigated using linear

stability analyses. Earlier models have mainly focused on thickness fluctuations (peristaltic

modes) (Weaver & Chizmadzhev 1996). The bending (undulation) modes were also found

to be unstable (Lacoste et al. 2007, Schwalbe et al. 2011a, Sens & Isambert 2002, Young &

Miksis 2015, Young et al. 2014).

Equilibrium shape fluctuations with wavenumber q of a planar bilayer membrane sepa-

rating fluids with viscosity η and λη are stable with relaxation rate s(q) = −(κq3+γq)/2(1+

λ)η (Brochard & Lennon 1975, Seifert & Langer 1993). Electric fields affect the membrane

undulations (Seiwert et al. 2012, Sens & Isambert 2002, Ziebert & Lacoste 2011). Loubet

et al. (2013), Sens & Isambert (2002) showed that the mechanism for that is that electric

field induces an effective negative tension in the membrane −γm ∼ E2
0 . An instability oc-

curs above a threshold electric field at which the negative tension exceeds the initial tension

in the membrane. Another source of instability found by (Lacoste et al. 2007, 2009, Ziebert

et al. 2010, Ziebert & Lacoste 2010) is electrokinetic (ICEO) flows near the membrane,

which give rise to a positive q2 term in the relaxation rate. However, in the limit of strong

electrolytes which have zero Debye thickness this term vanishes and the negative tension

is the only source of instability. Most stability analyses considered a membrane separating

fluids with the same permittivity and conductivity. In asymmetric system,(Schwalbe et al.

2011a) discovered that a transient instability can develop when the membrane capacitor

is charging, e.g., after a step increase in the DC field, if there is difference in the conduc-

tivities R 6= 1 of the embedding solutions; however, in a steady DC field, a fully charged

insulating membrane is linearly stable. In contrast to the purely capacitive membrane, in

a steady DC field a conducting membrane is unstable to long-wavelength perturbations if

Gmm(R−1)(R2−S) > 0 (Seiwert et al. 2012) Furthermore, while an insulating membrane is

linearly stable in DC electric fields, in AC fields the membrane can always be made unstable,

except for the symmetric case of a membrane separating the same fluids R = S = 1 (Sei-

wert & Vlahovska 2012). At intermediate frequencies (ω−1 ∼ tmm), where the membrane

capacitor is short-circuited, the instability develops when (R− 1)(R2 − S) > 0.

SUMMARY POINTS

1. G.I.Taylor’ pioneering study of drop electrohydrodynamics derived the steady shape

of a drop in a uniform DC electric field. Here, we review the generalization of the

Taylor’s result to describe the transient response of drops and vesicles to applied

electric fields.

2. In strong uniform DC electric field, the axisymmetric flow about drops with R/S < 1

can undergo symmetry breaking due to the Quincke rotation effect. The global flow
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can acquire rotational component resulting in drop tilt or tumbling; in the case of

low viscosity drops, surface electrocovection-like rolls form at the equator. Another

instability is the equatorial streaming, which creates visually striking Saturn-rings

around the equator of a drop.

3. In the case of vesicles, the capacitive interface gives rise to different dynamics than

drops, e.g., oblate-to-prolate shape transition with increasing time/ decreasing fre-

quency. Capacitive charging destabilizes the membrane.

FUTURE ISSUES

1. The leaky dielectric model neglects diffuse charge and double layers near the in-

terface. The derivation of the LDM from electrokinetic theory for fluid/fluid inter-

faces is an ongoing effort (Mori & Young 2018, Pascall & Squires 2011, Saville 1997,

Schnitzer et al. 2013a,b, Schnitzer & Yariv 2013, Zholkovskij et al. 2002).

2. The mechanisms responsible for the EHD equatorial streaming and vortices are

unknown. Numerical simulations to aid undertanding are challenging due to de-

velopment of charge shocks on the interface (steep charge gradients near the drop

equator). An in-depth investigation may reveal additional instabilities.

3. Electrokinetics of particles trapped at interfaces is largely unexplored. There are

only few experiments (Zhang et al. 2018), and models of particle motion (Doerr &

Hardt 2015) and electrostatic forces on a particle (Danov & Kralchevsky 2013, Hu

et al. 2018).

4. Drops with more complex interfaces, e.g., coated with surfactants (Ha & Yang

1995, 1998) or particles (Dommersnes et al. 2013, Mikkelsen et al. 2017, Ouriemi

& Vlahovska 2015), are likely to display additional rich electrohydrodynamics and

merit further investigation.

5. Vesicles extreme deformations in electric pulses, e.g., the transient sharp edges

(Riske & Dimova 2006) and poration (Portet & Dimova 2010), remain poorly under-

stood. The electromechanics of multicomponent membranes, e.g., phase transitions

and domain motions, is an important open research area.

6. The effects of electric fields on the collective dynamics and rheology of drops and

vesicles are virtually unexplored. A recent numerical study predicts intriguing pair-

wise interactions and rheology of vesicles in a uniform electric field that warrants

further investigation (Wu & Veerapaneni 2018).
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