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the presence of an applied electric field. The method can simulate interacting 3D drops
(no axisymmetric simplification) in close proximity, can consider different viscosities, is
adaptive in time and able to handle substantial drop deformation. For each drop global
representations of the variables based on spherical harmonics expansions are used and

Iéf,’ffggﬁ; integral method the spectral accuracy is achieved by designing specific numerical tools: a specialized
Spherical harmonics quadrature method for the singular and nearly singular integrals that appear in the
Stokes flow formulation, a general preconditioner for the implicit treatment of the surfactant diffusion
Surfactant and a reparametrization procedure able to ensure a high-quality representation of the
Electric field drops also under deformation. Our numerical method is validated against theoretical,

Small deformation theory numerical and experimental results available in the literature, as well as a new second-

order theory developed for a surfactant-laden drop placed in a quadrupole electric field.
© 2019 Elsevier Inc. All rights reserved.

Introduction

There is currently a growing interest in the applications of electric fields to manipulate suspensions of deformable par-
ticles. Biomedical applications span from separation and detection (for example of infected blood cells, DNA and protein
molecules [19,20,39]), to selective manipulation and drug delivery (e.g. electroporation based therapies [8]). Other engineer-
ing applications are represented by mixed emulsions where a specific material needs to be isolated. A typical example is a
water-in-oil emulsion: high-viscosity oils combined with asphaltenes or resins make it hard to extract the water; an electric
field can then be applied for accelerating the sedimentation process [14]. Asphaltenes, resins, waxes and similar are natural
surfactants that can be found in these kinds of systems, but often surfactants are also added to the emulsion to act as a
demulsifier. These surface active agents are substances that modify the surface tension of the droplets and are widely used
in several engineering applications to stabilize the emulsions [38]. In this context numerical methods offer a great oppor-
tunity to better understand the physics of these systems by testing several physical situations that are often very hard to
reproduce in laboratories.

Independently, both the influence of surfactants and electric fields on drops have been largely studied in 2D, whilst
in 3D the literature is more limited. The combined effect of surfactants together with electric fields is a completely new
and almost unexplored area of research in terms of numerical experiments, especially when considering multiple drops
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interacting. This is due to the numerous computational challenges associated with the complex moving geometries and the
multi-physics nature of the problem.

The effect of surfactant has been previously studied in 3D using either a boundary integral method [7,15,51], or a
diffuse-interface-method [44] or again a front-tracking method [29], but in all these cases no interactions with electric fields
were considered. The effect of electric fields on a single clean drop has been studied numerically firstly for axisymmetric
configuration by Miksis [28], Sherwood [37] and later by Feng and Scott [17], who included also viscosity contrast in the
model. More recently, Lac and Homsy [24] presented a survey of the different behaviors obtained for a wide range of
resistivities and permittivities using a boundary integral method for an axisymmetric configuration and in 2015 Nganguia et
al. developed a numerical scheme based on the immersed interface method for simulating the electrohydrodynamics of an
axisymmetric viscous drop [30]. Feng [16] also found that considering the full Melcher-Taylor leaky dielectric model with
charge convection can lead to enhanced prolate deformations and reduced oblate deformations as compared to the simplest
model used otherwise, where unsteady terms and surface charge convection are neglected in the conservation equation
for the charge density. This kind of study has been continued by Das and Saintillan who investigated theoretically [10]
(using the small deformation theory) and numerically [9] (using a three-dimensional boundary element method) the effect
of charge convection.

Later, the interaction between a single surfactant-covered drop with a uniform electric field has been studied by Teigen
and Munkejord using a level-set method in an axisymmetric, cylindrical coordinate system [43]. When considering non-
uniform electric fields the available literature is even more scarce: Deshmukh and Thaokar studied theoretically and
numerically the deformation, breakup and motion of a single clean drop in a quadrupole electric field [11,12] and Man-
dal considered also the case of a surfactant covered drop, but the range of applications is strongly limited to the case of
extremely weak fields due to the assumption that the drop remains spherical [27].

The interaction of multiple clean drops placed in electric fields has been studied experimentally [13,45] but also theo-
retically and numerically by Baygents et al. [6], who addressed the basic two-drop problem using integral equation methods
to follow the changing drop shapes and the relative motion of the drops for an axisymmetric geometry. To our knowledge
there are no previous numerical studies of multiple surfactant-covered drops interacting with electric fields in a general
configuration.

Since the numerical and experimental literature is so limited, the first step for the validation of our numerical method is
to compare with theoretical results for small deformations. As previously mentioned, a theoretical approach can be applied
to study the steady drop shape in the presence of a weak electric field using small perturbation analysis. The pioneer of
this kind of study is Taylor who developed a first order theory for a clean drop subjected to a weak uniform electric field
[42], later extended to second order by Ajayi [3]. When considering also the effect of an insoluble surfactant, first and
second order small deformation theories are available for a uniform electric field [22,31], and a first order theory has been
developed by Mandal et al. [27] for the case of a quadrupole field. In the present work we will also present an extension
to the second order to enable comparisons of our numerical results with a more accurate theory also for quadrupole fields.
A recent review that summarizes experimental and theoretical studies in the area of fluid particles (drops and vesicles) in
electric fields with a focus on the transient dynamics and extreme deformations is also available [47].

In the presence of an electric field, the interfacial force will depend not only on the geometry and surfactant concentra-
tion, but also on the electric stresses acting on the drop surfaces which need to be computed by solving the corresponding
partial differential equation; for doing this, we will extend the numerical method presented in [40] to include the effect of
the electric field.

The paper is organized as follows: in section 1 we introduce the model and the boundary integral formulation used;
in section 2 we discuss the numerical method used to solve the system for the evolution of the drops and in section 3 a
summary of the small perturbation theories available in literature for clean and surfactant covered drops in electric fields
is given with an extension to the second order theory for surfactant covered drops in a quadrupole field. The numerical
method is validated in section 4 against the small perturbation theories, the spheroidal model [31], numerical experiments
[43] and experimental results [23]. In this section we also show the spectral convergence of our method and a three drops
interaction numerical experiment. Conclusions and future work are discussed in the last section.

1. Mathematical formulation
We consider N drops suspended in an ambient fluid. The Stokes equations read

—HiAuX) + VP(x) =0

V.-ux)=0 (1)

for every x inside the i-th drop (i =1, ..., N) or in the exterior region (i = 0), where u is the fluid velocity, P is the pressure
and pu; is the viscosity. The fluid motion is coupled to the interface motion via the kinematic boundary condition,

x =u(x), forallx € §*, (2)
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where X is the membrane position and $* =(_J; S; denote the union of all drop surfaces. The permittivity ¢ and the con-
ductivity o are discontinuous across the interface. A stress balance at the interface establishes the flow and electric field
interaction:

[[n' (x4 Ehd)]] —f 3)

S*

where [[-]ls« denotes the jump across the interface (e.g., [0 ]ls, = 0o — 0i), n is the outward pointing unit normal, ¢ is the
electric stress, "¢ is the hydrodynamic stress.
Denoting by y the interfacial tension, the interfacial force is defined by:

f=2y X)HX)nX) — Vsy, (4)

where H = %VS -n denotes the mean curvature and Vs = (I — nn)V is the surface gradient. For a clean drop, the surface
tension coefficient y (x) will be constant, and the second term in (4), the so-called Marangoni force, will vanish.
The electric stress ¢ is given by the Maxwell stress tensor, defined as,

- 1
= =é(EQE— - [EJ*D (5)
where € is the permittivity of the vacuum; the hydrodynamic stress tensor is given by

M = _pI 4 uw(Vu+ vu’). (6)

To solve for the drop evolution under flow and electric fields, we use a boundary integral equation (BIE) method. Letting
a and po be, respectively, the radius of an undeformed spherical droplet and the viscosity of the ambient fluid and defining

Eo — CagYeq
o0 = aegé

, where Cag is the electric capillary number, we can non-dimensionalize by taking the characteristic length
€€E2.a
Mo
T= % [6], where yeq is the equilibrium surface tension. Using the corresponding non-dimensionalized variables, equations

(1) and (3) can be reformulated as a boundary integral equation [33]. For all X € S; (i=1,...,N),

to be a, the characteristic electric field to be E.,, the characteristic velocity to be U = and the characteristic time

N

1 f
<Ai+1>u(xo>=—2(5 / (%—ﬁx)) ~G(xo,x)d5(x)>

j=1

Y i1
+ ; <? f u(x) - T(Xo,X) - n(x)dS(x)),

Sj

(7)

where f was defined in (4), ff is the electric force on the interface ff = [[n- 2] o and A; = % denotes the viscosity
contrast of the i-th drop. The tensors G and T are the Stokeslet and the Stresslet,

G(x0,X) = I/r +X&/r>, T(X0,X) = —6XRX/1°, (8)

with X =Xp — X and r = |X|. Note that we are assuming there is no far-field velocity so that the motion of the drops is
driven only by the electric field, but the extension considering also a background flow is straightforward [33,40].

The evolution of the drops is influenced by the effect of the electric field that we will study using the leaky-dielectric
model, in which the electric charges are assumed to be present only at the interface and not in the bulk. The boundary
value problem for the electric field can be written as:

—V-E=0 in R?\S* (9a)
[0 Enlls« =0 (9b)
EX) > Ex(X) as |x]| — oo (9¢)

where E, =E-n and E; = (I —nn) - E=E — E;n are respectively the normal and tangential components of E. In the present
paper we consider that the surfactant-covered drops are subjected to the electric field E, applied far away from the drop
due to an electric potential of the form

$oo = —[EuTP1(1)) + EqF2P2(0)],

where T is the radial coordinate and E, and E; represent the strength of uniform and quadrupole component respectively.
Pn(n) is the Legendre polynomial of degree n with argument 7 = cos(6), where 6 is the zenith angle. Note that the boundary
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condition (9b) is obtained by neglecting unsteady terms and surface charge convection to the conservation equation for the
charge density g =[[€E,]ls« [9].

For simplicity we will assume the viscosity ratio A = % the conductivity ratio R = g—é and the permittivity ratio Q = j—(’)
to be the same for all the drops, i =1, ..., N. Using these definitions, eq. (9b) implies

E0 = REL. (10)

We will henceforth omit the superscript 0 for the normal component of the electric field.
The electric force on each interface i can be written in terms of E, and E; [24]:

e éeo Q - Q
ff = [[n » ']]5* = S0 = 23)E7 — (1= QEZIn + &eo(1 — =) ExEe. (11)

The electric force on the membrane needs to be computed by solving (9) for a given drop shape. Since (9) is a linear partial
differential equation, similar to the fluid problem, we can recast it using a boundary integral formulation [6,24]:

N 4 E if xo inside S*,
Eco(X0) — Z/ 2073 [En0]dSe0 = § 3 [EC +E] ifxo € S*, (12)
i=1g; E°€ if Xg outside S*.

Eq. (12) exactly satisfies the far-field condition (9c) and gives an integral equation for E, by taking its inner product with
the normal vector and using (10):

RriEe n(XO)+—Z/ ———5 En(X)dS(x) = —E n(Xo). (13)

The tangential component of the electric field is given by

E°+E  1+R
E: = - Enn. 14
‘ 2 2R " (14)
The presence of an insoluble surfactant on the drop surface will affect the interfacial tension y. It is related with the
surfactant concentration by the equation of state. Different equations of state can be used [32], as the Langmuir equation of

state which is given, in dimensionless form, by

Yy () =yo(1+ BIn(1 —xsI) (15)

where yy is the surface tension of a clean drop, g is the elasticity number and x; is the surface coverage, 0 < x; <1, or the
linear equation of state:

y@=1+1-1) (16)

ym,

where 8 = ye;/eq = CagMa, Ma denotes the Marangoni number Ma =
number based on the clean drop [31,48].

The equation governing the evolution of the surfactant concentration is a convective-diffusion equation which can be
derived stating the conservation of surfactant mass; it is given in dimensionless terms by [40,41]:

, Cag = Ca%(1 + B) with Ca) being the capillary

Cag

al’ 1
— 4+ Vs - (Tuy) — — V%F—l—ZH(x)F(u-n):O, (17)
at Pe
where Pe is the Péclet number.

The steps involved in evolving the drop can now be summarized. Given E,, the drop shape and the surfactant concen-
tration:

i. Solve the system (13) for the unknown Ep;

ii. Evaluate the integral (12) to compute ﬁ,

iii. Compute the tangential component of the electric field E; using eq. (14);

iv. Compute the electric force on the interface with eq. (11);

v. Compute the surface tension using eq. (15) and then the interfacial force using eq. (4);
vi. Substituting both the interfacial and the electric force into (7), solve for updated velocity;
vii. Compute the new interface position, eq. (2);

viii. Update the surfactant concentration, eq. (17).
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2. Numerical method

In this section we will describe the numerical method that we will use for simulating 3D drops covered by an insoluble
surfactant placed in an electric field. The method is an extension of our previous work [40], where surfactant-covered drops
but not electric fields were considered. The presence of an electric field requires the solution of an extra integral equation
(step i. in section 1) and the evaluation of the mean electric field (step ii.). We will follow the general framework introduced
in [40], where a more detailed explanation of each specific numerical tool can be found.

Assuming the surface S; of each drop to be smooth and of spherical topology, spherical harmonics expansions will be
used to represent the surfactant concentration I and each component of the position vector x and the electric field E. The
order of truncated spherical harmonic expansion will be denoted by p, and all the previous variable will be represented by

p

n
Yp@.0)=>" > yi¥un(®, ), (18)
n=0m=-—n
where ¢ and 6 represents a Gaussian spherical grid: in the longitudinal direction we discretize ¢ € [0, 27r) using 2p + 2
2p+1
equidistant points {qﬁi = W}- - while in the non-periodic direction 6 € [0, 7] we set {6; :cos”(tj)}jLO,
1=l =l
[—1,1] are the Gauss-Legendre quadrature nodes with corresponding Gaussian quadrature weights WJG. The normalized
scalar spherical harmonic function of degree n and order m is given by

Yom (6, ¢) = | 2(';)] %?nm, with Ypm = P™(cos(9))e™, —n<m<n, (19)

where the associated Legendre function is defined by

t! where t; €

P,C”<x>=(—1>’"(1—xz)m”%m(xx m>0, (20)
and

Pim0 = (1" pniy, m=0 1)

n X)= m n X)), m=0.

Py is the Legendre polynomial of degree n

Pp(x) = (2"n))~! (f’—"n[(»c2 - 1" (22)
X

The whole machinery for computing the evolution of the drops is solved using a Galerkin formulation as suggested in
[35], where a similar approach is used to simulate the evolution of vesicles.

Let (-,-) denote the inner product (y, Ynm) = ng yYnmds, then the Galerkin method seeks the solution to the original
system by

N
A+ D, Yom) = Z[(Sj[f], Yom) + ((A — 1)D;[u], Yom)], (23)
=1
X Yum) = (0, Y (24)
(55 nm)—(ua nm)7
or Yoim)=—(V,, - T Y, ! V2T, Y 2HT Y, 25)
(W, nm) = —(Vy - Tuy, nm)+ﬁ( yls nm) — ( u-n, Yom), (

where the electric stress that contributes to the forcing term in (23) is also computed using a Galerkin formulation. To be
more precise, for the normal component of the electric field we solve the following system:

N
(EnYom) = —— (Bog 1. Yom) + 1 3 (0 Enl. Yom) (26)
5 (s Yom) = o7 (oo - ML Yom R+1j_1]n,nm-

The operators S, D denote the single and double layer Stokesian operators and L is the Laplace double layer operator:

1 1
Silfl(xo) = i /f(X) -G(X0,X)dS(X), D;j[f](xo) = E/U(X) - T (X0, X) - n(X)dS (X) (27)
Sj Sj
1
Li[En](X0) = i / En (%) L(X0, X) - n(X)dS(X), (28)

Sj
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where G and T have been defined in (8) and £;(Xg, X) = % This approach results to be cheaper compared to a standard
approach as observed already in [35,40] thanks to the orthogonality and symmetry properties of the spherical harmonics
[5]. Indeed the systems to solve (for computing the velocity field - eq. (23) -, the electric field - eq. (26) - and the surfactant
concentration - eq. (25) - ) reduce to almost half of the original size: (p + 1)(p + 2) for the spherical coefficients instead of
2(p + 1) for the physical variables.

The derivatives of any physical variable are computed using analytical expressions for the spherical harmonic coefficients
(see Appendix A in [40]). An upsampling and de-aliasing procedure is needed to accurately compute geometrical quantities
involving non-linear manipulations and for this reason we will use the adaptive algorithm proposed by Rahimian et al. [35]
which is based on the decay of the spectrum of the mean curvature.

2.1. Regular, singular and nearly-singular integration

The quadrature rule for regular integrals is defined as follows:

p 2p+1
fydy ~ N wiyO). e W ). o). (29)
S j=0 k=0
bid ng

where w; = and W (0}, ¢) is the infinitesimal area element of the surface S.

sin(6;
When corrtl)put(ilig the integrals in (7), (12), and (13) we need a special treatment for the case Xy = x (where we have a
singularity), and for the case limy,—.x (where we have a so-called nearly-singular integral). These two situations have a very
different nature: in the first case it is an analytical problem while in the second case it is a purely numerical issue. For this
reason we will treat the two situations separately.
For the singular case, we will make use of the fact that the spherical harmonics are eigenfunctions of the Laplace operator
on the sphere [18]. This property can be extended to the case of the single and double layer kernels using symmetries and
smoothness properties to build modified weights that ensures exponential convergence [35,46]. The modified weights are

given by

p
WT"d = WjZZSin(Qj/Z)Pn(COS(Qj)) (30)
n=0

and they are made for the target point Xo to be the north pole of the parametrization. Hence, for a general target point
different from the north pole, the coordinate system will be rotated such that the target point becomes the north pole and
then the special quadrature rule can be applied. Analytical expressions for rotating the coefficients of the spherical harmonic
expansion are available [40] and a fast algorithm for spherical grid rotation with application to singular quadrature is given
by Gimbutas and Veerapaneni [21] where the computational complexity for all targets on the surface is O (p*log p).

For the nearly-singular case we will use an approach based on interpolation: the idea is that we can accurately compute
the on-surface integrals using the modified weights in (30) and, using the regular quadrature (29) with a reasonable upsam-
pling rate, also the integrals where the target point is far enough from the surface. We can do that in a number of aligned
points and then perform a 1D Lagrange interpolation at the original target point. This procedure was firstly proposed by
Ying et al. [50] and then optimized and tailored to our specific setting in [40].

2.2. Time-stepping and reparametrization

We recall that the system of ODEs (drop/surfactant) we are considering is given by

‘é_’t‘ =u(x, o), (31)
= grx,u, 1) + g (x. 1),

where g and g; represents respectively the convective and the diffusion component of the equation for the surfactant,

ge=—Vy - (Nw,) = 2HXT(u - ),
1
= —V2r.

&1 Pe 'V
These two terms need to be treated differently: an implicit scheme is a good choice for the diffusion term and an explicit
method for the convective term [4]. The system is evolved in time using the combination of the Midpoint Rule for the
evolution of the drop with an Implicit-Explicit (IMEX) second-order Runge-Kutta scheme for the evolution of the surfac-
tant concentration. To make the implicit part of the solver efficient also for large diffusion coefficients, a preconditioner
is designed taking advantages of spherical harmonics eigenfunction properties [40]. The overall scheme is adaptive with
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respect to drop deformation and surfactant concentration; in [34] we showed the efficiency in minimizing the number of
BIM computations while still meeting the set tolerance.

While simulating surfactant-covered drop in electric field, significant distortions of the point distributions representing
the drops surfaces may arise, especially for long time simulations or in the case of strong electric field. This can introduce
unresolvable high-frequency spherical harmonic components and lead to aliasing errors and numerical instabilities. For this
reason a reparametrization procedure is absolutely needed. In order for this procedure not to ruin the overall method accu-
racy, we developed a spectrally accurate algorithm to ensure good quality of the surface representation also for long-time
simulations [40]. It is based on an optimization procedure previously developed in [46] combined with the global repre-
sentation of both the drop position and the surfactant concentration. We will apply it to the current numerical method
at the end of every time-step; this technique is fundamental not only in the presence of high distortions due to strong
electric fields, but e.g. also in the simple case of a weak field where the drop reaches a steady state but there is a non-zero
tangential velocity. In these cases the reparametrization procedure avoids numerical instabilities, and it is also fundamental
to ensure spectral convergence.

The overall procedure to simulate surfactant-covered drops in electric field is summarized in Algorithm 1.

Algorithm 1 Evolution of surfactant-covered drops in electric field.

while t < Tjex do

Given x©, 1 ®:
- Compute the interfacial force f, eq. (4)
- Compute the electric force ff, eq. (11) > see steps (i)-(iv) in Section 1

- Compute the velocity u® by solving eq. (23)
U

X(E+H/2) = x(© | diy©

Compute intermediate values:
{F(t+dt/2) =Tt + %[gE(X(O, l.l(t), 1"([‘)) + ﬁVSF(FH’t/Z)]

- Compute the interfacial force, eq. (4)
- Compute the electric force, eq. (11) > see steps (i)-(iv) in Section 1

- Compute the velocity u*+4t/2) by solving eq. (23)

Based on these quantities, update:

X+ — g (+dt/2) 4 qpy(t+dt/2)
r+dn — ot +dt[gk (x(t-s-dt/z)’ u(H‘dt/z), F(t+dt/2)) +g (x(t—s-dt/z)’ F(t+dt/2))]

Adaptivity in time:
err = max(ertarop, €T surfactant)
if err < tol then
Reparametrization
t=t+dt;
end if
dt = de(0.912)1/2

end while

3. Small perturbation theory

In the limit of small deviations from sphericity, drop shape is parametrized relative to the equilibrium spherical shape.
The position of the interface is given by
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Table 1
Summary of small perturbation theories for a single drop in a uniform or quadrupole electric field. The
surface diffusivity of the surfactant is set by the Péclet number (Pe), where Pe = co means no diffusion.

Clean drop Surfactant-covered drop
UNIFORM 1st order Taylor [42] Ha and Yang (Pe =~ Cag) [22]
Nganguia et al. (Pe = 00) [31]
2nd order Ajayi [3] Ha and Yang (Pe ~ Cag) [22]

Nganguia et al. (Pe = o0) [31]

QUADRUPOLE 1st order Deshmukh and Thaokar [11,12] Mandal et al. [27]

2nd order Present work Present work (Pe = 00)
oo j
Xs=a(1+F(@©,¢,0)F, where F0.¢,0=Y Y  Fum(®)Yum(0,¢) (32)
n=0m=—j

where Yun = ei’"‘f’P,'}1 (cos®) are the unnormalized spherical harmonics defined in eq. (19) and t denotes the unit radial
vector. Analytical results for the shape parameters F,;, are obtained as perturbation expansions in the small parameter Cag:

Fam = CagF\}) + Ca2F2) + 0 (Ca? (33)
E E

where n < 8 in the case of a uniform E., = (0,0, Ey) = E,V (rY10), and a linear (quadrupole), Eoc = Eq(—x, —y,22) =
EqV(r2 Y»0), electric fields. Drop shapes are axisymmetric (around the z axis), thus only the m = 0 shape modes are nonzero.
Note also that Cag is defined based on the equilibrium surface tension, so the surfactant enters implicitly.

The shape of the drop is often described in terms of the deformation parameter D, introduced by Taylor in his linear
theory of drop deformation in a uniform electric field [42].

D= aH —ay
aH +ay
5
—CaE <3F§})’ + 4F“)) (34)
1 3 55 19 5 21 93
Te 3 (Fm (Fm) D ROED | 3p@ 20 F F2 |,
+4af[ 4 20) 64 8 %0 3 a0 T g e g a0

where aj; and a; are the drop lengths in direction parallel and perpendicular to the applied field. Due to the axial symmetry,
at steady state the electric stresses are balanced by Marangoni stresses. Accordingly, there is no flow and the stationary drop
shape is independent of the viscosity ratio 1.!

Table 1 references the small perturbation theories (SPT) developed for uniform and quadrupole electric fields for clean
and surfactant-laden drops. In the case of a uniform field, Ha and Yang [22] studied the small deformation of a surfactant-
covered drop with significant surfactant surface diffusion (small Péclet number, Pe ~ Cag), while Nganguia et al. [31]
considered the case of a drop covered with non-diffusing surfactant. In the case of quadrupole electric field and non-
diffusing surfactant (Pe = oo), the second order theory for drop deformation in a linear field is developed by us. We have
also reexamined the clean drop problem. Our leading order result for the quadrupole field recovers the expressions re-
ported by Deshmukh and Thaokar [12], however, we found discrepancies with the second order coefficients. This issue will
be further investigated in a forthcoming paper.

3.1. Linear theory

At leading order, the drop shape in a uniform electric field is an oblate or prolate spheroid described by [31]

,3((1+R)? —4Q)
u 4(2 + R)?

where R and Q have been defined before eq. (10). The electric stresses responsible for the drop deformation are quadratic
in the electric field, hence at leading order drop shape in a uniform electric field is an ellipsoid parametrized by a single

shape parameter corresponding to a harmonic of order n = 2. However, the shape in a quadrupole electric field involves two
shape parameters, n =2,4 [27]:

1
Fsy) = E : (35)

1 This is true only for the surfactant-covered case and not for a clean drop; in the Appendix we list the coefficients also for the special case of a clean
drop with A =1 and we will extend the theory for general viscosity ratio in a forthcoming paper.
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@ _ 225(2R-1)(3+2R)-5Q)
Fyy =Eg 2
28 (34 2R)
,10(1+R+R?-3Q)
a 7 (3 + 2R)?
At this order, deformation is independent of surfactant elasticity.

For the sake of completeness, here we also list the expressions for a clean drop with no viscosity contrast, A = 1. In the
uniform field [42],

’

Py =t

32+3R+2R*>-7Q)

(1) 2
F, =E 37
20 u 82+ R)2 (37)
and in the linear field [11,12],
25(=3+3R+4R?> -4 5(4+3R+4R% - 11
FSB):E(? (-3+3R+ Q) , Fﬂ)):Ez (4+3R+ Q) (38)
112(3 4+ 2R)? q 56(3 + 2R)2
3.2. Higher-order theory
The quadratic corrections to the shape in a uniform electric field are [3]:
£@ _ g3 (79R® + 144R* + R(51 — 396Q) + 216Q — 94)
20 7020 140(R +2)3 ’ (39)
@ _ .13 (13R* +28R —54Q +13)
Fyo =Fyo 2
70(R +2)

As mentioned above, a useful parameter to characterize the shape of the drop is the deformation number D defined in
eq. (34). The shape parameter D can be easily calculated once the shape parameters Fy; are known and for the uniform
electric field it is given by [31]:

9(1+R)?2—-4 R(R(139R + 264) — 696 111) +336Q — 154
D— (1+R) Q) Ca + Ca? (R( +264) Q +111)+336Q ' (40)
16(2 + R)? 80(R +2)3
For the clean drop with viscosity ratio A =1 [3,42]:
9(24+3R+2R?>—-7 3(—308 +293R? + 278R3 + 184R — 1157R 710
D— 24+3R+ Q) Ca + a2 ( + + + Q +710Q) . (41)
32(2 + R)2 640(R + 2)3

Using a similar technique as in [31,48,49] we can derive’ the quadratic corrections for the quadrupole electric field. In this
case the coefficients are rather lengthy so we list them in Appendix A.

4. Numerical experiments

In order to validate our code, we will compare our method with theoretical, experimental and numerical results available
in literature and perform a convergence test to show the spectral accuracy of the method.

4.1. Single drop in a uniform electric field

We will start by validating our method in the presence of a weak uniform electric field, considering an initially spherical
clean drop of radius a =1.

As shown in Fig. 1a, our results are in good agreement with the small perturbation theory, better with the second order
theory than the first order one.

A simplified model to predict the evolution in time for small-perturbation is given by [10]:

D(t)=Dr(1 —e /™) (42)
where tp = ‘”7” W and Dr is the steady first-order deformation parameter obtained by Taylor [42]. It is a good

test to check the time-scaling of our numerical method, which is in good agreement with the theory as shown in Fig. 1b.

2 The detailed derivation for the second-order theory in quadrupole electric field as well as the transient drop deformation is shown in a forthcoming
paper.
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Fig. 1. Small deformation theory for a clean drop in a uniform electric field with Q =1 and A = 1. a) Comparing numerical experiment (red crosses) with
1st and 2nd order by Taylor [42] and Ajayi [3] for different values of R and Cag. b) Comparing the evolution in time - eq. (42) - for the case Cag =0.1,
where the crosses denote the numerical simulation with p = 9. (For interpretation of the colors in the figure(s), the reader is referred to the web version

of this article.)
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Fig. 2. A surfactant-covered drop in a uniform electric field (E, =1, Eq = 0) with (Q, R, 1) = (1,3, 1). The deformation number is shown for a) xo = 0.3
and b) xo = 0.7, for Pe = oo (comparison with theoretical results by Nganguia et al. [31]) and for Pe = 10. The surface tension and surfactant concentration
are shown respectively in c) and d) where the crosses denote the case Pe =10 and the circles the case Pe = oo for x; = 0.3 (black) and x; =0.7 (blue).

We will now proceed to test the method on a surfactant-covered drop and compare our results with the spheroidal
model by Nganguia et al. [31] valid also for higher deformation. Note that in [31] the diffusion is neglected (Pe = oco); for
completeness we also run the experiment in Fig. 2 with Pe = 10 to compare it with the numerical results by Teigen and
Munkejord, Fig. 6 in [43]. The conductivity and permittivity ratio are set as R=3 and Q =1 with A =1 and the spherical
harmonics order for the numerical experiment is set to p =9, which shows good agreement with both the theoretical and
numerical results mentioned.

The highly-diffusive case is shown in Fig. 3 for two different values of the viscosity ratio, . =1 and A = 0.01. Here we
compare the numerical experiment with the small perturbation theory developed by Ha and Yang [22] that follows very
close our numerical result.

Ha and Yang performed also laboratory experiments with surfactant-covered drops, with a high surfactant coverage value
(xs =0.96) and a low elasticity number (8 = 0.04). Our method shows good agreement also in this case as shown in Fig. 4a;
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Fig. 3. Comparing numerical experiment using p =9 (circles) with SDT by Ha and Yang [22] (solid lines) for a surfactant-covered drop in a uniform electric
field (Ey =1, Eq =0). The deformation number is shown for A =1 (blue) and 1 = 0.01 (red). The other parameters are R =3, Q = 3.5 for the electric field
and Pe =0.4 and B =0.2 for the surfactant.
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Fig. 4. a) Comparison with spheroidal model [31] and experimental results [23] for a non-diffusive surfactant-covered drop in a uniform electric field
(Ey =1, Eg =0) with (Q, R, 2) = (1.3699, 10, 0.08) and (8, xs) = (0.04,0.96); b) The surfactant-covered drop at steady-state for Cag = 0.2, the greyscale
denotes the surfactant concentration.

the deformed surfactant-covered drop is shown in Fig. 4b, while in Fig. 4a we show the comparison between our numerical
experiments with both the experimental data and the spheroidal model previously mentioned.

4.2. Single drop in a quadrupole electric field

We will now test our method against the second order small deformation theory developed in section 3 for surfactant-
covered drops in a quadrupole electric field. We ran several test cases and once again we find good agreement between
the theory and the numerical simulations. Fig. 5 shows two different simulations comparing the deformation of the clean
and surfactant covered drop. To better visualize how the first and second order theories differ, we also show in Table 2
the relative difference in the deformation number obtained by numerical simulations as compared to these theoretical re-
sults for the case shown in Fig. 5a. As expected, the best agreement is obtained for the smallest capillary number, as the
small perturbation theory gets less accurate as the capillary number is increased. That said, the second order theory clearly
matches the numerical results better than the first order theory for all the capillary numbers considered.

For the physical parameters set in Fig. 5b the second order contribution is not so important, but a sharper difference
between the clean and the surfactant-covered case is shown.

Observe also that the surfactant-covered drop cases have been run for three different values, A =0.1, 1, 2 but the defor-
mation number is not affected by the viscosity ratio as already discussed in section 3, so the three simulations coincide;
the only difference is the time needed for reaching the steady state that depends on A. For these cases we also checked
numerically that the tangential component of the velocity is zero when the steady state is reached, which is not true for
the clean case, where the tangential velocity is kept active even when the steady state is reached.

4.3. Convergence test for drop position and surfactant distribution
In Fig. 7 it is shown the convergence of our method for a test case where we consider the combination of linear and

quadrupole fields with R =6, Q =2, Pe =100, 8 =0.2, x; = 0.5 and B = 1. The time-step tolerance is set to tol = 10~
and the reference solution is obtained with p = 31. The shape and surfactant concentration of the drop at the final time
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Fig. 5. Comparison with first (dotted lines) and second-order (solid lines) SDT for a surfactant-covered drop in a quadrupole electric field presented in
section 3, E; =0, Eq = 1. The circles represent the numerical simulation obtained with p =13 for the clean drop (black) and the surfactant-covered drop
(blue) with no diffusion. a) R=2, Q =0.01, f=1;b)R=1, Q =1.5, =0.5.

Table 2

Relative difference between the numerical and the theoretical val-
ues for the deformation number D of the experiment shown in
Fig. 5a. The theoretical values from small perturbation theory
(first/second order) are only expected to be accurate for small
electric capillary numbers.

Cag 0.03 0.06 0.09
Clean drop
1st order 1.4696% 3.0262% 4.6807%
2nd order 0.3517% 0.8255% 1.4361%
Surfactant-covered drop
1st order 2.1193% 4.3641% 6.7063%
2nd order 0.3972% 0.9989% 1.7821%
0.55 1.5
1.5 0.54
' T=0.1
1 053 1 =0
o— 052
0.5 051 0.5
0 05
0.49 0
-0.5 0.48
P 047 -0.5
1 0.46
0 1
1 0 0.45 -1
-1 1 0 1
(a) (b)

Fig. 6. The combined effect of linear and quadrupole fields on a single surfactant-covered drop with R =6, Q =2, Pe =100, 8=0.2, x; =0.5 and 8 = 1.
a) The surfactant-covered drop at time T = 0.1. The colorbar denotes the surfactant concentration. b) A section of the drop, comparing the shape and the
surfactant concentration at time T =0 and T =0.1.

are shown in Fig. 6a whilst in Fig. 6b we compare a section of the drop at initial and final times. We can observe that,
in this special case, the drop is not only deforming but also translating. This is due to the combined effect of a linear
and a quadrupole electric field. The translation sweeps the surfactant towards the back (bottom) of the drop, while the
electrohydrodynamic flow pushes the surfactant towards the drop poles (in the considered case R/Q > 1). This gives rise
to the peculiar behavior that we see in Fig. 6, with a slight increase in the surfactant concentration at the front (top) of the
drop, in addition to the surfactant accumulation at the drop bottom.

In Fig. 7 we show the L, error for the same simulation run with and without reparametrization: it is clear that the spec-
tral convergence is immediately lost, even for such a short numerical simulation if we remove the special reparametrization
procedure described in Section 2.2.
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Fig. 7. L, error for the position vector (solid line) and for the surfactant concentration (dotted line) for the test case R=6, Q =2, Pe =100 and B =1.
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Fig. 8. Translation velocity for a drop pair vs centroid separation, comparison with the predicted slope by Baygents et al. [6].

4.4. Multiple drops

In this section we want to see how multiple drops interact in the presence of an electric field. Baygents et al. [6] pre-
dicted how the relative velocity for a drop pair should scale with respect to the centroid separation. For the leaky-dielectric
case, they predict that the translation velocity UT should scale as:

€eoE2.a’

ul=o0

), (43)
where h is the distance between the two drops centroids. Note that the previous expression doesn’t take into account how
the electric parameters affect the scaling, but only how the distance between drops affects the translation velocity. We
performed an experiment with two drops aligned on the z-axis and we checked that the scaling is correct, see Fig. 8.

We now perform a simulation where three aligned drops on the x-axis are interacting in a non-uniform electric field.
The main purpose of this numerical simulation is to show the robustness of our method, but of course further studies on
multiple interacting drops are needed in order to better understand the electrohydrodynamics of these systems, and we will
extend this kind of analysis in the near future. For this simulation R =4.5, Q =5 up to time T =1, when the electric field
is switched off and the particles relaxed to their spherical shape with uniform surfactant concentration. In Fig. 9a we can
see how the three particles react differently to the quadrupole field. To further understand how the interaction between
particles and how the non-uniform field are affecting the simulation, we consider the same experiment for clean drops (so
that the surfactant is not interfering), for which we run the simulation both for the three particles and also for a single
particle, the particle on the right. We compare the results in Fig. 9b, where we can see that the shape of the drop is due
to the quadrupole field that acts differently depending on the drop position. The interaction of the three drops results in an
attractive effect between the particles (we can see the translation of the solid line in Fig. 9a).

Setting the time-step tolerance to tol = 1e—06 and the order of the spherical harmonics expansion to p = 15, we obtain
a relative error in surfactant conservation (measured between time zero and the final time T = 30) lower than 3e—05 for
all the three particles, and a relative error for the volume less than 7e—08 for both the clean and the surfactant-covered
case.
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Fig. 9. Three surfactant-covered drops interacting in a non-uniform electric field with (Q, R, 1) =(5,4.5,1), Cap =0,Caq =1,Cag =0.1 until time T =1,
then Cap = 0. a) The surfactant-covered drops at different times t = 0, 1,30. b) Splitting the effect of the quadrupole field and the interaction between
drops at time t = 1. The solid line is the contour of the drop on the right in a) but without surfactant, the dotted line is the same clean drop but for the
simulation run with no other drops present. c) The points corresponding to ¢ = 0, used to show the surface tension in d), for the drop on the right (solid
line), in the middle (dotted line) and on the left (v-line).

5. Conclusions and future work

We investigated the behavior of surfactant-covered drops in electric field both theoretically and numerically. We intro-
duced a new second-order small deformation theory for the deformation of a drop placed in a weak quadrupole field in
the presence of insoluble surfactant. In order to study also higher deformation and multiple drop configurations, we intro-
duced a 3D highly accurate numerical method based on a boundary integral formulation. We validated the method against
theoretical, experimental and numerical results, in all cases obtaining good agreement with the existing literature. The high
accuracy of the method is achieved thanks to the special numerical tools used for the quadrature and for the reparametriza-
tion needed for maintaining a good quality of the surface representations. The method is able to handle different viscosity
ratios and close interactions of drops; no simplification in terms of axisymmetric configuration is assumed, so we are able to
handle multiple drops in a general setting. The adaptivity in time together with the spherical harmonics based representa-
tion makes the code efficient for a single drop or for a limited number of drops; fast methods have already been developed
in our group [1,2,26] and can be implemented in case of large numbers of particles.

With the present paper we have introduced and validated the numerical method which can be now used for more
extensive numerical investigations to answer different fundamental physical questions. In terms of further numerical devel-
opments we would like to include geometries (e.g. walls, solids, etc.) and, as already mentioned in the introduction, consider
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also the equation for the surface charge conservation. Including charge convection is challenging due to the non-linearity
of the coupling between the charge distribution and the resulting fluid flow as shown by Das and Saintillan [9,10]. It is a
complicated subjected to study numerically due to the unsteady chaotic dynamics observed experimentally [36] and to the
charge shocks that may arise in these kinds of simulations [25], but it would be very interesting to see how including the
surface charge would affect the multiple drop interactions.
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Appendix A. Second-order small deformation theory for a drop in a quadrupolar electric field: the shape parameters

A.1. Surfactant-covered drop with Pe = co

F$2 =[68302088(2R +3)° (4R +5)] ' {1255* (B (R (8072507 — 2R(796000R? + 421836R — 3212985))Q
+ 198(R(3124R — 15439) — 24000)Q *
+ R(2R(2R(2R(16R(6619R + 20507) + 78307) — 1450283) — 3261593) — 469541)
+ 615(3769Q + 2447)) — 12(2R + 3)(4R + 5)(R — Q)(36R* — 710R +1001Q — 327))},
F{Y =[36996968(2R +3)° (4R +5)] ' {55* (B(135(16R(17273R + 15407) — 134085) Q >
— R(R(4R(8850472R + 20123595) + 48389841) — 23699929) Q
+ R(R(8R(R(R(998636R + 3648867) + 5130720) + 1972471) — 19371375) — 18396837)
+ 35611530Q — 3750015) + 30(2R + 3)(4R + 5)(8R(120R +431) — 4081Q —327)(R — Q))}.
F = [47811456B(2R + 3)*(4R +5)] ' {255*(B(—R(26872424R? + 53198046R + 32804787)Q
+ 27(1109908R + 916985)Q * + R(2R (4R (R(700708R + 2159279) + 2778484) + 6293339) + 868415)
+ 5(684607Q — 767350)) + 546(4R + 5)(84R* + 338R — 407Q — 15)(R — Q))},
F$2) = [166486328(2R +3)*] ' {255*[ f(R(98888R + 121059) — 318835Q +98888) (R> + R —3Q + 1)
+ 459(R(6R +43) —55Q +6)(R — Q)]}
(A1)

A.2. Surfactant-free (clean) drop with viscosity ratio > =1

FS2) =[13660416(2R +3)° (4R + 5)]‘1 125s* (1432192R6 +3288416R> —
8R*(174680Q + 242639) + 10R>(414304Q — 1246403) +

(A2)
R? (—584672Q2 1 16072364Q — 11634545) +R (—8185408Q2 +13647766Q + 113294) -

9220200Q % + 3514830Q + 3215505)

F2) =[29597568(2R + 3)°(4R + 5)] ' 55 (64383232R6 +203157536R°
+ R*(251051632 — 251193984Q) + R* (61496714 — 498730704Q)

, , (A3)
+R (230840192Q —242910304Q — 156343191)

+2R (91644014Q2 +92491121Q — 60629679) —15 (9376026Q2 —17391806Q + 1933249))
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@ 4 -1 4 5 4
P& =[47811456(2R +3)*4R +5)|  255* (5710688 + 15161920R
+ R3(17871454 — 24878432Q ) + R%(9427895 — 43762456Q) (A4)
+R (24695000Q2 —24601697Q + 395633) +5 (3990800Q2 +788917Q — 783718))

@ _ pn 55 (28772R? + 31281R — 88825Q -+ 28772)
80 7740 339768(2R + 3)2

In the above expressions s =2 corresponds to the linear field (—x, —y, 22).

F (A5)
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