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Abstract. We derive a new formulation of the relativistic Euler equa-
tions that exhibits remarkable properties. This new formulation consists
of a coupled system of geometric wave, transport, and transport-div-curl
equations, sourced by nonlinearities that are null forms relative to the
acoustical metric. Our new formulation is well-suited for various appli-
cations, in particular, for the study of stable shock formation, as it is
surveyed in the paper. Moreover, using the new formulation presented
here, we establish a local well-posedness result showing that the vorticity
and the entropy of the fluid are one degree more differentiable compared
to the regularity guaranteed by standard estimates (assuming that the
initial data enjoy the extra differentiability). This gain in regularity is
essential for the study of shock formation without symmetry assump-
tions. Our results hold for an arbitrary equation of state, not necessarily
of barotropic type.
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1. Introduction

The relativistic Euler equations are the most well-studied PDE system in rel-
ativistic fluid mechanics. In particular, they play a prominent role in cosmol-
ogy, where they are often used to model the evolution of the average matter-
energy content of the universe; see, for example, Weinberg’s well-known mono-
graph [40] for an account of the role that the relativistic Euler equations play
in the standard model of cosmology. The equations are also widely used in
astrophysics and high-energy nuclear physics, as is described, for example,
in [28]. Our main result in this article is our derivation of a new formulation
of the relativistic Euler equations that reveals remarkable new regularity and
null structures that are not visible relative standard order formulations. The
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new formulation is available for an arbitrary equation of state, not necessar-
ily of barotropic! type. Below we will describe potential applications that we
anticipate will be the subject of future works. We mention already that our
new formulation of the equations provides a viable framework for the rigorous
mathematical study of stable shock formation without symmetry assumptions
in solutions to the relativistic Euler equations; for reasons to be explained,
standard first-order formulations are not adequate for tracking the behavior of
solutions (without symmetry assumptions) all the way to the formation of a
shock or for extending the solution (uniquely, in a weak sense tied to suitable
selection criteria) past the first singularity.

We derive the new formulation by differentiating a standard first-order
formulation with various geometric differential operators and observing re-
markable cancellations.? The calculations are rather involved and make up the
bulk of the article. We have carefully divided them into manageable pieces; see
Sects. 4-8. Readers can jump ahead to Theorem 1.2 for a rough statement of
the equations and Theorem 3.1 for the precise version.

As we alluded to above, the relativistic Euler equations are typically
formulated as a first-order quasilinear hyperbolic PDE system. In our new for-
mulation, the equations take the form of a system of covariant wave equations
coupled to transport equations and to two transport-div-curl systems. The new
formulation is well suited for various applications in ways that first-order for-
mulations are not. In particular, the equations of Theorem 3.1 can be used to
prove that the vorticity and entropy are one degree more differentiable than one
might naively expect (assuming that the gain in differentiability is present in
the initial data). This gain in differentiability is crucial for the rigorous math-
ematical study of some fundamental phenomena that occur in fluid dynamics.
In particular, this gain, as well as other structural aspects of the new formula-
tion, is essential for the study of shock waves (without symmetry assumptions)
in relativistic fluid mechanics; see Sect. 1.2 for further discussion. Although the
gain in differentiability for the vorticity had previously been observed relative
to Lagrangian coordinates [13,15], Lagrangian coordinates are inadequate, for
example, for the study of the formation of shock singularities because they are
not adapted to the acoustic characteristics, whose intersection corresponds to
a shock. Hence, it is of fundamental importance that our new formulation al-
lows one to prove the gain in differentiability relative to arbitrary vectorfield
differential operators (with suitably regular coefficients). In this vein, we also
mention the works [9-11] on the non-relativistic compressible Euler equations,
in which a gain in differentiability for the vorticity was shown relative to La-
grangian coordinates, and the first author’s joint work [12], in which elliptic

1Barotropic equations of state are such that the pressure is a function of the proper energy
density p alone.

2In observing many of the cancellations, the precise numerical coefficients in the equations
are important; roughly, these cancellations lead to the presence of the null-form structures
described below. However, for most applications, the overall coefficient of the null forms is
not important; what matters is that the cancellations lead to null forms.
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estimates were used to show that for the non-relativistic barotropic compress-

ible Euler equations, it is possible to gain one derivative on the density relative

to the velocity (again, assuming that the gain is present in the initial data).
We also highlight the following key advantage of our new formulation:

It dramatically enlarges the set of energy estimate techniques that
can be applied to the study of the relativistic Euler equations. More
precisely, the new formulation partially decouples the “wave parts”
and “transport parts” of the system and unlocks our ability to apply
the full power of the commutator and multiplier vectorfield methods
to the study of the wave part; see Sect. 9.6 for further discussion.

For applications to shock waves, it is fundamentally important that one is able
to use the full scope of the vectorfield method on the wave part of the system;
see the introduction of [23] for a discussion of this issue in the related context
of the non-relativistic barotropic compressible Euler equations with vorticity.
In particular, our new formulation of the equations allows one to derive a
coercive energy estimate for the wave part of the system for any multiplier
vectorfield that is causal relative to the acoustical metric g of Definition 2.6
and on any hypersurface that is null or spacelike relative to g; see Sect. 9.6.1
for further discussion. In contrast, for first-order hyperbolic systems (a special
case of which is the relativistic Euler equations) without additional structure,
there is, up to scalar function multiple, only one? available energy estimate on
each causal or spacelike hypersurface.

Our second result in this article is that we provide a proof of local well-
posedness for the relativistic Euler equations that relies on the new formula-
tion; see Theorem 9.12. The new feature of Theorem 9.12 compared to standard
proofs of local well-posedness for the relativistic Euler equations is that it pro-
vides the aforementioned gain in differentiability for the vorticity and entropy.
Although many aspects of the proof of the theorem are standard, we also rely
on some geometric and analytic insights that are tied to the special struc-
ture of our new formulation of the equations and thus are likely not known to
the broader PDE research community; see the end of Sect. 1.2.3 for further
discussion of this point.

3Here we further explain how standard first-order formulations of the relativistic Euler
equations limit the available energy estimates. In deriving energy estimates for the relativistic
Euler equations in their standard first-order form, one is effectively controlling the wave and
transport parts of the system at the same time, and, up to a scalar function multiple, there is
only one energy estimate available for transport equations. To see this limitation in a more
concrete fashion, one can rewrite the relativistic Euler equations in first-order symmetric
hyperbolic form as A%(V)9,V = 0, where V is the array of solution variables and the A%
are symmetric matrices with A° positive definite; see, for example, [27] for a symmetric
hyperbolic formulation of the general relativistic Euler equations in the barotropic case.
The standard energy estimate for symmetric hyperbolic systems is obtained by taking the
FEuclidean dot product of both sides of the equation with V and then integrating by parts
over an appropriate spacetime domain foliated by spacelike hypersurfaces. The key point
is that for systems without additional structure, no other energy estimate is known, aside
from rescaling the standard one by a scalar function.
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For convenience, throughout the article, we restrict our attention to the
special relativistic Euler equations, that is, the relativistic Euler equations on
the Minkowski spacetime background (R'*2 1), where 1 is the Minkowski met-
ric. However, using arguments similar to the ones given in the present article,
our results could be extended to apply to the relativistic Euler equations on
a general Lorentzian manifold; such an extension could be useful, for exam-
ple, in applications to fluid mechanics in the setting of general relativity. For
use throughout the article, we fix a standard rectangular coordinate system
{z*}a=0,1,2,3, relative to which n,g := diag(—1,1,1,1). See Sect. 2.1 for our
index conventions. We clarify that in Sect. 9, we prove local well-posedness for
the relativistic Euler equations (including the aforementioned gain in regular-
ity for the vorticity and entropy) on the flat spacetime background (R x T3,7),
where the “spatial manifold” T? is the three-dimensional torus and we recy-
cle the notation in the sense that {%},=0,1,2,3 denotes standard coordinates
on R x T? (see Sect. 9.1.1 for further discussion) and 1 again denotes the
Minkowski metric; the compactness of T2 allows for a simplified approach to
some technical aspects of the argument while allowing us to illustrate the ideas
needed to exhibit the gain in regularity for the vorticity and entropy.

Our work here can be viewed as extensions of the second author’s previous
joint work [22], in which the authors derived a similar formulation of the
non-relativistic compressible Euler equations under an arbitrary barotropic
equation of state, as well as the second author’s work [33], which extended the
results of [22] to a general equation of state. However, since the geo-analytic
structures revealed by [22,33] are rather delicate (that is, quite unstable under
perturbations of the equations), it is far from obvious that similar results hold
in the relativistic case. We also stress that compared to the non-relativistic
case, our work here is substantially more intricate in that it extensively relies
on decompositions of various spacetime tensors into tensors that are parallel
to the four-velocity u and tensors that are n-orthogonal to u. In particular, we
heavily exploit that many of the tensorfields appearing in our analysis exhibit
improved regularity under u-directional differentiation or contraction against
u.

1.1. Rough Statement of the New Formulation

In this subsection, we provide a schematic version of our new formulation of the
equations; in Sect. 1.2, we will refer to the schematic version when describing
potential applications. In any formulation of the relativistic Euler equations,
there is great freedom in choosing state-space variables (i.e., the fundamental
unknowns in the system). In this article, as state-space variables, we use the
logarithmic enthalpy h, the entropy s, and the four-velocity w, which is a
future-directed timelike vectorfield normalized by nasu®u® = —1. Other fluid
quantities such as the proper energy density p, the pressure p will also play
a role in our discussion, but these quantities can be viewed as functions of
the state-space variables; see Sect. 2 for detailed descriptions of all of these
variables as well as the first-order formulation of the equations that forms the
starting point for our ensuing analysis.
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As we mentioned earlier, our new formulation comprises a system of co-
variant wave equations coupled to transport equations and to two transport-
div-curl systems. Roughly, the wave equations correspond to the propagation
of sound waves, while the transport equations correspond to the transporting
of vorticity and entropy along the integral curves of u. The transport-div-
curl systems are needed to control the top-order derivatives of the vorticity
and the entropy and to exhibit the aforementioned gain in differentiability. In
addition to the state-space variables h, s, and u, our formulation also involves a
collection of auxiliary? fluid variables, including the entropy gradient one-form
Sq := 048 and the vorticity w®, which is a vectorfield that is n-orthogonal to
u (see Definition 2.2). Among these auxiliary variables, of crucial importance
for our work is that we have identified new combinations of fluid variables that
solve transport equations with unexpectedly good structure. These structures
can be used to show that the combinations exhibit a gain in regularity com-
pared to what can be inferred from a standard first-order formulation of the
equations. We refer to these special combinations as “modified variables,” and
throughout, we denote them by C* and D; see Definition 2.8.

The remaining discussion in this subsection relies on some schematic
notation and refers to some geometric objects that are not precisely defined
until later in the article:

143

e The notation “~” below means that we are only highlighting the maxi-
mum number of derivatives of the state-space variables that the auxiliary
variables depend on. We note, however, that in practice, the precise struc-
ture of many of the terms that we encounter is important for observing
the cancellations that lie behind our main results.

e “0” schematically denotes the spacetime gradient with respect to the rect-
angular coordinates, and “02?” schematically denotes two differentiations
with respect to the rectangular coordinates.

e g = g(h,s,u) denotes the acoustical metric, which is Lorentzian (see
Definition 2.6).

e @ ~ Ju + Oh is the vorticity vectorfield (see Definition 2.2).

e S, := 0,5 is the entropy gradient one-form.

o C% ~ Q%u + 0°h is a modified version of the vorticity of w, that is, the
vorticity of the vorticity (see Definition 2.8).

e D ~ 9%s is a modified version of 9,5% (see Definition 2.8).

e Q(ATy,...,0T,,) denotes special terms that are quadratic in the ten-
sorfields 971, ...,0T,,. More precisely, the Q(9T1,...,9T,,) are linear
combinations of the standard null forms relative to g; see Definition 1.1
for the definitions of the standard null forms relative to g and Sect. 1.2.2
for a discussion of the significance that the special structure of these null
forms plays in the context of the study of shock waves.

e £(9Th,...,0T,,) denotes linear combinations of terms that are at most
linear in 977, ...,0T),,; see Sect. 1.2.2 for a discussion of the significance
of the linear dependence in the context of the study of shock waves.

4By “auxiliary,” we mean that they are determined by h, s, and u.



Vol. 20 (2019) Relativistic Euler 2179

Before schematically stating our main theorem, we first provide the def-
initions of the standard null forms relative to g.

Definition 1.1 (Standard null forms relative to g). We define the standard null
forms relative to g (which we refer to as “standard g-null forms” for short) as
follows, where ¢ and 1 are scalar functions and 0 < pu < v < 3:

Q9 (96, 0¢) = (971)*"(9a9) (Ip¢),
QW(8¢75¢) = (au(b)(au'(/}) - (8V¢)(8Mw) (1'1)

We now present the schematic version of our main theorem; see Theo-
rem 3.1 for the precise statements.

Theorem 1.2 (New formulation of the relativistic Euler equation (schematic
version)). Assume that (h,s,u®) is a C® solution to the (first-order) relativistic
Euler equations (2.17)-(2.19) + (2.20). Then h, u®, and s also verify the
following covariant® wave equations, where the schematic notation “~” below
means that we have ignored the coefficients of the inhomogeneous terms and
also harmless (from the point of view of applications to shock waves) lower-
order terms, which are allowed to depend on h, s, u, S, and w (but not their
derivatives):

Oyh ~ D+ Q(0h, 0u) + £(0h), (1.2a)
Ogu” ~ C* + Q(0h, 0u) + £(0h, 0u), (1.2b)
Ogs ~ D + £(0h). (1.2¢)

In addition, s, S, and w® verify the following transport equations:
u®0,s =0, (1.3a)
u”0,8% ~ £(0u), (1.3b)
w0y ~ L£(0h, du). (1.3c)

Moreover, S* verifies the following transport-div-curl system:

w0, D ~ C + Q(9S, Oh, Ou) + £(dh, Ou), (1.4a)
vort®(S) = 0, (1.4b)

where the vorticity operator vort is defined in Definition 2.1.
Finally, w® verifies the following transport-div-curl system:

O™ =~ £(0h), (1.5a)
U 0,CY ~C + D+ Q(9S, 0w, Oh, du) + £(0S, 0w, Oh, Ou). (1.5b)

5Relative to arbitrary coordinates, for scalar functions f, we have

1 —1yo
01 = e (/%0
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1.2. Connections to the Study of Shock Waves

As we have mentioned, the relativistic Euler equations are an example of a
quasilinear hyperbolic PDE system. A central feature of the study of such
systems is that initially smooth solutions can form shock singularities in fi-
nite time. By a “shock,” we roughly mean that one of the solution’s partial
derivatives with respect to the standard coordinates blows up in finite time
while the solution itself remains bounded. In the last decade, for interesting
classes of quasilinear hyperbolic PDEs in multiple spatial dimensions, there
has been dramatic progress [4,8,23-25,32,34,36,37] on our understanding of
the formation of shocks as well as our understanding of the subsequent behav-
ior of solutions past their singularities [5,7] (where the equations are verified
in a weak sense past singularities).

The works cited above have roots in the work of John [16] on singularity
formation for quasilinear wave equations in one spatial dimension as well as
Alinhac’s foundational works [2,3], which were the first to provide a construc-
tive description of shock formation for quasilinear wave equations in more than
one spatial dimension without symmetry assumptions. More precisely, Alin-
hac’s approach allowed him to follow the solution precisely to the time of first
blowup, but not further. His work yielded sharp information about the first
singularity, but only for a subset of “non-degenerate” initial data such that
the solution’s first singularity is isolated in the constant-time hypersurface of
first blowup; in particular, his proof did not apply to spherically symmetric
initial data, where the “first” singularity typically corresponds to blowup on
a sphere.

Subsequently, Christodoulou [4] proved a breakthrough result on the for-
mation of shocks for solutions to the relativistic Euler equations in irrotational
(that is, vorticity free) and isentropic regions of spacetime. More precisely, for
the family of quasilinear wave equations that arise in the study of the ir-
rotational and isentropic relativistic Euler equations,® Christodoulou gave a
complete description of the maximal development of an open set (without
symmetry assumptions) of initial data and showed in particular that an open
subset of these data lead to shock-forming” solutions. Moreover, he gave a
precise geometric description of the set of spacetime points where blowup oc-
curs by showing that the singularity formation is exactly characterized by the
intersection of the acoustic characteristics. In practice, he accomplished this
by constructing an acoustical eikonal function U, whose level sets are acoustic

6For solutions with vanishing vorticity and constant entropy, one can introduce a potential
function ® and reformulate the relativistic Euler equations as a quasilinear wave equation
in .

7One of the key results of [4] is conditional: For small data, the only possible singularities
that can form are shocks driven by the intersection of the acoustic characteristics. Here
“small” means a small perturbation of the data of a non-vacuum constant fluid state, where
the size of the perturbation is measured relative to a high-order Sobolev norm. Another
result of [4] is that there is an open subset of small data, perhaps strictly contained in the
aforementioned set of data, such that the acoustic characteristics do in fact intersect in finite
time. The results of [4] leave open the possibility that there might exist some non-trivial
small global solutions.
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characteristics (see Sect. 1.2.1 for further discussion), and then constructing
an initially positive geometric scalar function p ~ 1/0U known as the inverse
foliation density of the characteristics, such that @ — 0 corresponds to the
intersection of the characteristics and the blowup of QU and of the fluid solu-
tion’s derivatives too. Analytically, u plays the role of a weight that appears
throughout the work [4], and the main theme of the proof is to control the
solution all the way up to the region where u = 0. We stress that [4] was the
first work that provided sharp information about the boundary of the maxi-
mal development in more than one spatial dimension in the context of shock
formation. Roughly, the maximal development is the largest possible classical
solution that is uniquely determined by the initial data; see [29,41] for further
discussion.

To prove his results, Christodoulou relied on a novel formulation of the
relativistic Euler equations. However, since he studied the shock formation
only in irrotational and isentropic regions, he was able to introduce a po-
tential function ®, and his new formulation of the equations was drastically
simpler than the equations of Theorem 1.2. In fact, the equations are exactly
the covariant wave equation system 0;0,® = 0 (with a = 0,1,2,3), where
g is an appropriate scalar function multiple of the acoustical metric g and
g = g(0®). In particular, Christodoulou was able to avoid deriving/relying on
the transport-div-curl equations from Theorem 1.2, and he therefore did not
need to derive elliptic estimates for the fluid variables. In total, the potential
formulation leads to dramatic simplifications compared to the equations of
Theorem 1.2, especially in the context of the study of shock waves; it seems
quite miraculous that the equations of Theorem 1.2 have structures that are
compatible with extending Christodoulou’s results away from the irrotational
and isentropic case (see below for further discussion).

Although the sharp information that Christodoulou derived about the
maximal development is of interest in itself, it is also an essential ingredient
for setting up the shock development problem. The shock development prob-
lem, which was recently partially® solved in the breakthrough work [5] (see
also the precursor work [7] in spherical symmetry), is the problem of con-
structing the shock hypersurface of discontinuity (across which the solution
jumps) as well as constructing a unique weak solution in a neighborhood of
the shock hypersurface (uniqueness is enforced by selection criteria that are
equivalent to the well-known Rankine-Hugoniot conditions). Christodoulou’s
description of the maximal development provided substantial new information
that was not available under Alinhac’s approach; as we mentioned above, due
to some technical limitations tied to his reliance on Nash—Moser estimates,
Alinhac was able to follow the solution only to the constant-time hypersurface
of first blowup. In contrast, by exploiting some delicate tensorial regularity
properties of eikonal functions for wave equations (see below for more details),

8In [5], Christodoulou solved the “restricted” shock development problem, in which he ig-
nored the jump in entropy and vorticity across the shock hypersurface.
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Christodoulou was able to avoid Nash—Moser estimates; this was a key ingredi-
ent in his following the solution to the boundary of the maximal development.
Readers can consult [14] for a survey of some of these works, with a focus on
the geometric and analytic techniques that lie behind the proofs.

We now aim to connect the works mentioned above to the new formula-
tion of the relativistic Euler equations that we provide in this paper. To this
end, for the equations in the works mentioned above, we first highlight the
main structural features that allowed the proofs to go through. Specifically,
the works [4,8,23-25,32,34,36,37] crucially relied on the following ingredients:

1. (Nonlinear geometric optics). The authors relied on geometric decompo-
sitions adapted to the characteristic hypersurfaces (also known as “char-
acteristics” or “null hypersurfaces” in the context of wave equations)
corresponding to the solution variable whose derivatives blow up. This
was implemented with the help of an eikonal function U, whose level sets
are characteristics. The eikonal function is a solution to the eikonal equa-
tion, which is a fully nonlinear transport equation that is coupled to the
solution in the sense that the coefficients of the eikonal equation depend
on the solution. Moreover, the authors showed that the intersection of
the characteristics corresponds to the formation of a singularity in the
derivatives of the eikonal function and in the derivatives of the solution.

2. (Quasilinear null structure). The authors found a formulation of the equa-
tions exhibiting remarkable null structures, where the notion of “null” is
tied to the true characteristics, which are solution-dependent in view of
the quasilinear nature of the equations. These structures allow one to de-
rive sharp, fully nonlinear decompositions along characteristic hypersur-
faces that reveal exactly which directional derivatives blow up and that
precisely identify the terms driving the blowup (which are typically of
Riccati-type, i.e., in analogy with the nonlinearities in the ODE ¢ = 32).

3. (Regularity properties and singular high-order energy estimates). The
authors’ formulation allows one to derive sufficient L?-type Sobolev reg-
ularity for all unknowns in the problem, including the eikonal func-
tion, whose regularity properties are tied to the regularity of the solu-
tion through the dependence of the coefficients of the eikonal equation on
the solution. In particular, to close these estimates, the authors had to
show that various solution variables are one degree more differentiable
compared to the degree of differentiability guaranteed by standard energy
estimates.

4. (Structures amenable to commutations with geometric vectorfields). The
authors’ formulation is such that one can commute all of the equations
with geometric vectorfields constructed out of the eikonal function U,
generating only controllable commutator error terms. By “controllable,”
we mean both from the point of view of regularity and from the point of
view of the strength of their singular nature. In the works [23,34,36] that
treat systems with multiple characteristic speeds, these are particularly
delicate tasks that are quite sensitive to the structure of the equations;
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one key reason behind their delicate nature is that the eikonal function
(and thus the geometric vectorfields constructed from it) can be fully
adapted only to “one speed,” that is, to the characteristics whose inter-
section correspond to the singularity.

In the remainder of this subsection, we explain why our new formulation
of the relativistic Euler equations has all four of the features listed above and
is therefore well-suited for studying shocks without symmetry assumptions.
Readers can consult the works [22,33,35] for related but extended discussion
in the case of the non-relativistic compressible Euler equations.

1.2.1. Nonlinear Geometric Optics and Geometric Coordinates. First, to im-
plement nonlinear geometric optics, one can construct an eikonal function. In
the context of the relativistic Euler equations, one would construct an eikonal
function U adapted to the acoustic characteristics, that is, a solution to the
eikonal equation

(g7H)*P0,Ud5U = 0, (1.6)

supplemented by appropriate initial conditions, where g = g(h,s,u) is the
acoustical metric (see Definition 2.6). Note that U is adapted to the “wave
part” of the system and not the transport part. In the context of the rel-
ativistic Euler equations, this is reasonable in the sense that the transport
part corresponds to the evolution of vorticity and entropy, and there are no
known blowup results for these quantities, even in one spatial dimension.” Put
differently, U is adapted to the “portion” of the relativistic Euler flow that
is expected to develop singularities. More generally, eikonal functions are a
natural tool for the study of wave-like systems, regardless of whether or not
one is studying shocks. We also stress that introducing an eikonal function is
essentially the same as relying on the method of characteristics. However, in
more than one spatial dimension, the method of characteristics must be sup-
plemented with an exceptionally technical ingredient that we further describe
below: energy estimates that hold all the way up to the shock.

The first instance of an eikonal function being used to study the global
properties of solutions to a quasilinear hyperbolic PDE occurred not in the
context of singularity formation, but rather in a celebrated global existence re-
sult: the Christodoulou-Klainerman [6] proof of the stability of the Minkowski
spacetime as a solution to the Einstein vacuum equations. Alinhac’s aforemen-
tioned works [2,3] were the first instances in which an eikonal function was
used to study a non-trivial set of solutions (without symmetry assumptions) to
a quasilinear wave equation all the way up to the first singularity. Eikonal func-
tions also played a fundamental role in all of the other shock formation results
mentioned above. They have also played a role in other contexts, such as low-
regularity local well-posedness for quasilinear wave equations [20,21,30,39]. In
all of these works, the eikonal equation is a fully nonlinear hyperbolic PDE that
is coupled to the PDE system of interest (here the relativistic Euler equations)
through its coefficients [here through the acoustical metric, since g = g(h, s, u)].

9In one spatial dimension, the vorticity must vanish, but the entropy can be dynamic.
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As we mentioned above, in the case of the relativistic Euler equations, the level
sets of U are characteristics for the “wave part” of the system. Following Al-
inhac [2,3] and Christodoulou [4], in order to study the formation of shocks in
relativistic Euler solutions, one completes U to a geometric coordinate system

(t,U, 9, 9?) (1.7)

on spacetime, where t = 20 is the Minkowski time coordinate and the 94 are
solutions to the transport equation (g~1)*?9, U@gﬁA = 0 supplemented by ap-
propriate initial conditions on the initial constant-time hypersurface ¥j. Note
that (¢,9%,92) can be viewed as a coordinate system along each characteristic
hypersurface {U = const}.

1.2.2. Nonlinear Null Structure. We now aim to explain the role that the
nonlinear null structure of the equations played in the works [4,8,23-25,32,
34,36,37] and to explain why the equations of Theorem 1.2 enjoy the same
good structures. In total, one could say that the equations of Theorem 1.2
have been geometrically decomposed into terms that are capable of generat-
ing shocks and “harmless” terms, whose nonlinear structure is such that they
do not interfere with the shock formation mechanisms. To flesh out these no-
tions, we first provide some background material. In the works cited above,
the main idea behind proving shock formation is to study the solution rela-
tive to the geometric coordinates (1.7) and to show that in fact, the solution
remains rather smooth in these coordinates, all the way up to the shock. This
approach allows one to transform the problem of shock formation into a more
traditional one in which one tries to derive long-time estimates for the solu-
tion relative to the geometric coordinates. One then recovers the blowup of
the solution’s derivatives with respect to the original coordinates by showing
that the geometric coordinates degenerate in a precise fashion relative to the
standard rectangular coordinates as the shock forms; the degeneration is ex-
actly tied to the vanishing of the inverse foliation density u that we mentioned
earlier. Although the above description might seem compellingly simple, as we
explain in Sect. 1.2.3, in implementing this approach, one encounters severe
analytical difficulties.

We now highlight another key aspect of the proofs in the works cited
above: showing that Euclidean-unit-length derivatives of the solution in di-
rections tangent to the characteristics remain bounded all the way up to the
shock. It turns out that in terms of the geometric coordinates (1.7), this is
equivalent to showing that the % and 81;% derivatives of the solution remain
bounded all the way up to the shock. Put differently, the following holds:

The singularity occurs only for derivatives of the solution with re-
spect to vectorfields that are transversal to the characteristics and
non-degenerate'® with respect to the rectangular coordinates.

10Tn all known shock formation results, at the location of shock singularities, the geometric

a b
partial derivative vectorfield % has vanishing Euclidean length (i.e., 841 <%) <%) =0,

a
where {(%) } denotes the rectangular spatial components of % and 0, is the
a=1,2,
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In the works cited above, to prove all of these facts, the authors had to con-
trol various inhomogeneous error terms by showing that they enjoy a good
nonlinear null structure relative to the wave characteristics. A key conclusion
of the present article is that the derivative-quadratic inhomogeneous terms in
the equations of Theorem 1.2 enjoy the same good structure (which we fur-
ther describe just below). In fact, all terms on the RHSs of all equations of
Theorem 1.2 are harmless in that they do not drive the Riccati-type blowup
that lies behind shock formation. Consequently, the equations of Theorem 1.2
pinpoint the dangerous nonlinear terms in the relativistic Euler equations:

The terms capable of driving shock formation are of Riccati-type
and are hidden in the covariant wave operator terms on LHSs (1.2a)—
(1.2b). These terms become visible only when the covariant wave
operator terms are expanded relative to the standard coordinates.

In view of the above remarks, one might wonder why it is important to
“hide” the dangerous terms in the covariant wave operator. The answer is that
there is an advanced framework for constructing geometric vectorfields adapted
to wave equations, and the framework is tailored to covariant wave operators.*!
As we explain later in this subsection, this geometric framework seems to be
essential in more than one spatial dimension,'? when one is forced to commute
the wave equations with suitable vectorfields and to derive energy estimates.

We now further describe the good structure found in the terms on the
RHSs of the equations of Theorem 1.2. The good nonlinear “null structure” is
found precisely in the (quadratic) null-form terms £ appearing on the RHSs of
the equations of Theorem 1.2. More precisely, these Q are null forms relative to
the acoustical metric g, which means that they are linear combinations (with
coefficients that are allowed to depend on the solution variables—but not their
derivatives) of the standard null forms relative to g (see Definition 1.1). The
key property of null forms relative to g is that given any hypersurface . that
is characteristic relative to g [e.g., any level set of any eikonal function U that
solves Eq. (1.6)], we have the following well-known schematic decomposition:

Q(0¢,00) = T ¢- 0+ T - 09, (1.8)

where .7 denotes a differentiation in a direction tangent to 5 and O denotes
a generic directional derivative; see, for example, [22] for a standard proof
of (1.8). Equation (1.8) implies that even though Q is quadratic, it never in-
volves two differentiations in directions transversal to any characteristic. Since,

Footnote 10 continued

Kronecker delta). That is, at the shock singularities, %

rectangular coordinates. Due to this degeneracy, the solution’s % derivatives can remain

degenerates with respect to the

bounded all the way up to the shock, even though % is transversal to the characteristics.
11Roughly, these covariant wave operators are equivalent to divergence-form wave operators.
In this way, one could say that a better theory is available for divergence-form wave operators
than for non-divergence-form wave operators. This reminds one of the situation in elliptic
PDE theory, where better results are known for elliptic PDEs in divergence form compared
to ones in non-divergence form.

12In one spatial dimension, one can rely exclusively on the method of characteristics and
thus avoid energy estimates.
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in all known proofs, it is precisely the transversal derivatives that blow up when
a shock forms (since the Riccati-type terms that drive the blowup are precisely
quadratic in the transversal derivatives), we see that g-null forms are linear
in the tensorial component of the solution that blows up. This can be viewed
as the absence of the worst possible combinations of terms in Q. In terms of
the geometric coordinates (1.7), null forms do not contain any “dangerous”
terms proportional to %¢~ %1/}. We also note that, obviously, the terms £
from Theorem 1.2 cannot contain any dangerous quadratic terms since they
are linear in the solution’s derivatives. In contrast, upon expanding the co-
variant wave operator terms on LHSs (1.2a)—(1.2b) relative to the standard
coordinates, one typically encounters terms that are quadratic in derivatives of
h and u that are transversal to the characteristics; as we highlighted above, it
is precisely such “Riccati-type” terms that can drive the formation of a shock.
We stress that near a shock, such transversal-derivative-quadratic terms are
much larger than the null form terms. We also stress that for the relativistic
Euler equations, one encounters such transversal-derivative-quadratic terms
on LHSs (1.2a)—(1.2b) under any equation of state aside from a single ex-
ceptional one. In the irrotational and isentropic case (in which case the rel-
ativistic Euler equations reduce to a quasilinear wave equation satisfied by a
potential function), this exceptional equation of state was identified in [4]; it
corresponds to the quasilinear wave equation satisfied by a timelike minimal
surface graph in an ambient Minkowski spacetime, which can be expressed as

—1\apB P
follows: O, ()"0 =0
V1+ M)A (0,2)(02®)
In view of the previous paragraph, we would like to highlight the following
point:

Proofs of shock formation are unstable under typical perturbations
of the equations by nonlinear terms that are of quadratic
or higher order in derivatives. However, proofs of shock formation
for wave equations typically are stable under perturbations of the
equations by null forms that are adapted to the metric of the shock-
forming wave. By “stable,” we mean in the following sense: as the
shock forms, null form terms become “asymptotically negligible”
compared to the shock-driving terms (for the reasons described
above).

The reason that the precise structure of the nonlinearities is so important for
the proofs is that the known framework is designed precisely to handle specific
kinds of singularity-driving derivative-quadratic terms: the kind that are hid-
den in the covariant wave operator terms on LHSs (1.2a)—(1.2b). In the context
of the relativistic Euler equations, this means that if any of the equations of
Theorem 1.2 had contained, on the right-hand side, an inhomogeneous non-g-
null-form quadratic term of type (0h)?, Ou - Oh, (Ou)?, etc., or a term of type
(0h)3, (Oh)*, etc., then the only known framework for proving shock formation
would not work. The difficulty is that adding such terms to the equation could
in principle radically alter the expected blowup rate or even altogether prevent
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the formation of a singularity; either way, this would invalidate'3 the known
approach for proving shock formation. One might draw an analogy with the
Riccati ODE ¢ = y2, which we suggest as a caricature model for the formation
of shocks (in the case of the relativistic Euler equations, y should be identified
with Oh and/or du). Note that for all data y(0) = yo with yo > 0, the solution
to the Riccati ODE blows up in finite time. Now if one perturbs the Riccati
ODE to obtain the perturbed equation § = 32 & ey?, with ¢ a small positive
number, then depending on the sign of +, the perturbed solutions with yg > 0
will either exist for all time or will blow up at a quite different rate compared
to the blowup rate for the unperturbed equation.

1.2.3. Regularity Properties and Singular High-Order Energy Estimates. In
the rigorous mathematical study of quasilinear hyperbolic PDEs in more than
one spatial dimension, one is forced to derive energy estimates for the solution’s
higher derivatives by commuting the equations with appropriate differential
operators. Indeed, all known approaches to studying even the basic local well-
posedness theory for such equations rely on deriving estimates in L2?-based
Sobolev spaces. In the works [4,8,23-25,32,34,36,37] on shock formation in
multiple spatial dimensions, the authors controlled the solutions’ higher geo-
metric derivatives by differentiating the equations with geometric “commuta-
tor vectorfields” Z that are adapted to the characteristics, more precisely to
the characteristics corresponding to the variables that form a shock singularity.
As we mentioned earlier, the Z are designed to avoid generating uncontrollable
commutator error terms. It turns out that all Z that have been successfully
used to study shock formation have the schematic structure Z% ~ 9U, where
Z“ denotes a rectangular component of Z and U is the eikonal function.
Although the geometric vectorfields Z exhibit good commutation prop-
erties with the differential operators corresponding to the characteristics to
which they are adapted, the regularity theory of the vectorfields themselves
is very delicate and is intimately tied to that of the solution. We now further
explain this fact in the context of wave equations whose principal operator is
(g~ 1)es 0a0g. The corresponding eikonal equation is the nonlinear transport
equation (¢71)*?0,Ud3U = 0. The key point is that the standard regularity
theory of transport equations yields only that U is as regular as its coefficients,
that is, as regular as g.g. In the context of the relativistic Euler equations
(where the formation of a shock corresponds to the intersection of the wave
characteristics and g = g(h, s,u)), this suggests that one might expect U to be
only as regular as h, s, and u. Since, as we mentioned in the previous paragraph,
we have Z% ~ QU, this leads to the following severe difficulty: In commuting
equation the wave equation (1.2a) with Z, one obtains the wave equation

13 As is explained in [22], in the known framework for proving shock formation, one crucially
relies on the fact that the derivatives of the solution blow up at a linear rate, that is like

Toirtesomm 1 where C'is a constant and T{pifespan) > 0 is the (future) classical lifespan of

the solution; if one perturbs the equation by adding terms that are expected to alter this
blowup rate, then one should expect that the known approach for proving shock formation
will not work (at least in its current form).
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Oy(Zh) =042 - 9gh + -+ ~ 33U - Oh + - -+ (one would obtain similar wave
equations for Zs and Zu® upon commuting equations (1.2b) and (1.2¢) with
7). The difficulty is that the above discussion suggests that the factor 9°U can
be controlled only in terms of three derivatives of h, s, and u, while standard
energy estimates for the wave equations Og(Zh) = -+, O4(Zs) = ---, and
Oy(Zu®) = --- yield control of only two derivatives of h, s, and u. This sug-
gests that there is a loss of regularity and in fact, this is the reason that Alinhac
used Nash—Moser estimates in his works [2,3]. However, for wave equations,
one can in fact overcome this loss of regularity by exploiting some delicate
tensorial properties of the eikonal equation (g~1')*” 0,U0U = 0 and of the
wave equation itself relative to geometric coordinates, which together can be
used to show that in directions tangent to the characteristics, some geometric
tensors constructed out of the derivatives of U are one degree more differ-
entiable than one might naively expect. In particular, the factor 83U in the
aforementioned product 93U - Oh has special structure and enjoys this gain
in regularity. These crucial structures were first observed by Christodoulou—
Klainerman in their proof [6] of the stability of Minkowski spacetime as a
solution to Einstein’s equations, and later by Klainerman-Rodnianski in their
proof of improved regularity local well-posedness [20] for a general class of
scalar quasilinear wave equations. In total, using this gain in regularity along
the characteristics and carefully accounting for the precise tensorial structure
of the product 93U - Oh highlighted above, one can avoid the loss of derivatives
tied to the product 93U - dh.

Despite the fact that the procedure described above allows one to avoid
losing derivatives, at least in the context of wave equations,' one pays a steep
price: It turns out that upon implementing this procedure, one introduces a
dangerous factor into the wave equation energy identities, one that in fact
blows up as the shock forms. More precisely, the singular factor is 1/, where
u is the inverse foliation density mentioned earlier, with u — 0 signifying the
formation of a shock. This leads to singular top-order a priori energy estimates
for the wave equation solutions relative to the geometric coordinates. At first
glance, these singular geometric energy estimates might seem to obstruct the
philosophy of obtaining regular estimates relative to the geometric coordinates.
However, below the top derivative level, one can allow the loss of a derivative,
and it turns out that this allows one to derive improved (i.e., less singular)
energy estimates below the top derivative level. In fact, by an induction-from-
the-top-down argument, one can show that the mid-derivative-level and below
geometric energies remain bounded up to the shock. This allows one to show
that indeed, the solution remains rather smooth relative to the geometric co-
ordinates, which in practice is a crucial ingredient that is needed to close the
proof. It also turns out that many steps are needed to descend to the level of
a non-singular energy, which in practice means that one must assume that the

14 Actually, it is not known whether or not the derivative-loss-avoiding procedure can be
implemented for general systems of wave equations featuring more than one distinct wave
operator. From this perspective, we find it fortunate that the equations of Theorem 1.2
feature only one wave operator.
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data have a lot of Sobolev regularity to close the proof; see [14] for an in-depth
overview of these issues in the context of quasilinear wave equations.

The structures described above, which allow one to avoid the loss of
derivatives in eikonal functions for quasilinear wave equations, are rather deli-
cate. Thus, it is not a priori clear that one can also avoid the loss of derivatives
in eikonal functions for the relativistic Euler equations. A key advantage of our
new formulation of the relativistic Euler equations is that it can be used to
prove that one can still avoid the loss of derivatives, even though there is deep
coupling between the wave and transport equations in the new formulation.
That is, one can show that the acoustic eikonal function U [see (1.6), where
g = g(h,s,u) is the acoustical metric from Definition 2.6] for the relativis-
tic Euler equations has enough regularity to be used in the study of shock
formation; see three paragraphs below for further discussion. However, this
requires one to first prove that the fluid variables have a consistent amount
of regularity among themselves. At first thought, the desired consistency of
regularity might seem to follow from standard local well-posedness. However,
all standard local well-posedness results for the relativistic Euler equations
are based on first-order formulations, which are not known to be sufficient for
avoiding a loss of derivatives in the eikonal function U; the above outline for
how to avoid derivative loss in U implicitly relied on the assumption that h,
s, and u® solve wave equations whose source terms have an allowable amount
of regularity, which, as we will explain, for the relativistic Euler equations is
a true—but deep—fact. Moreover, the first-order formulations do not seem
to be sufficient for studying solutions all the way up to a shock; as we have
mentioned, the known framework for studying shocks crucially relies on the
special null structures exhibited by the equations of Theorem 1.2.

In view of the regularity concerns raised in the previous paragraph, one
must carefully check that (under suitable assumptions on the initial data),
all terms in the equations of Theorem 1.2 have a consistent amount of reg-
ularity. We stress that this is not obvious, as we now illustrate by count-
ing derivatives. For example, to control du® in L? using standard energy
estimates for the wave equation (1.2b), one must control, also in L2, the
source term C* on RHS (1.2b). Note that from the point of view of regu-
larity, we have the schematic relationship [see (2.16a) for the definition of C?]
C* ~ vort®(w) ~ dw. Moreover, since w solves the transport equation (1.3c),
whose source term depends on Ju and Oh, this suggests that dw should be
no more regular'® than (9%u,d?h) and thus C® should be no more regular
than (92u,0%h). In total, this discussion suggests that the wave equation for
u has the following schematic structure from the point of view of regularity:
gu® = 0%u+---. That is, this discussion suggests that in order to control du
in L? using standard energy estimates for wave equations, we must control 9%u
in L2. This approach therefore seems to lead to a loss in derivatives, which is
a serious obstacle to using the equations of Theorem 1.2 to prove any rigorous

151n the absence of special structures, solutions to transport equations are not more regular
than their source terms.
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result. Similar difficulties arise in the study of h and s, due to the source term
D in the wave equations (1.2a) and (1.2¢).

A crucial feature of the equations of Theorem 1.2 is that one can in fact
overcome the loss of derivative difficulty for the fluid variables described in
the previous paragraph. To this end, one must rely on the transport-div-curl
equations for w and S; see Sect. 9.5 and the proofs of Proposition 9.22 and
Theorem 9.12 for the details on how one can use these equations and elliptic
estimates to avoid the loss of derivatives. Equally important for applications to
shock waves is the fact that the elliptic div-curl estimates, which occur across
space, are compatible with the proof of the formation of a spatially localized
shock singularity and with the singular high-order geometric energy estimates
described earlier in this subsubsection. These are delicate issues, especially
since the elliptic estimates involve derivatives in directions transversal to the
characteristics, i.e., in the singular directions; see [22] for an overview of how to
derive the relevant elliptic estimates in the context of shock-forming solutions
to the non-relativistic compressible Euler equations.

We now return to the issue of the regularity of the acoustic eikonal func-
tion U for the relativistic Euler equations [see (1.6), where g = g(h, s,u) is the
acoustical metric from Definition 2.6]. As we explained above, in order to avoid
a loss of regularity in U, one needs to show that its regularity theory is com-
patible with the regularity of the fluid variables. It turns out that this requires
proving, in particular, that Cgh, Ogs, and Ogu® have the same regularity as
Oh, 0s, and du®. The connection between Uyh, Ogys, and Ogu® and the reg-
ularity theory of U is through the null mean curvature of the level sets of U,
a critically important geometric quantity whose evolution equation'® depends
on a certain component of the Ricci curvature tensor of the Lorentzian met-
ric g(h, s, u), whose rectangular components can be shown to depend on Ogh,
Ogs, and Ogu®. We will not further discuss this crucial technical issue here; we
instead refer readers to [14, Section 3.4] for further discussion of the regularity
theory of eikonal functions in the context of shock formation for quasilinear
wave equations. In view of the wave equations (1.2a)-(1.2¢), we see that ob-
taining the desired regularity for Lgh, Ugs, and Ogu® requires, in particular,
establishing that the source terms C* and D on RHSs (1.2a)—(1.2c) have the
same regularity as 0h, 0s, and du®. This is again tantamount to showing that
the vorticity and entropy are one degree more differentiable compared to the
regularity guaranteed by deriving standard energy estimates for first-order for-
mulations of the equations; to obtain the desired extra regularity for C* and
D, one can again rely on the transport-div-curl equations mentioned in the
previous paragraph. We prove a rigorous version of this gain in regularity in
Theorem 9.12, in which we use the new formulation of the relativistic Euler
equations to prove a local well-posedness result that, in particular, yields the
desired extra differentiability (assuming that it is present in the initial data).

16The evolution equation is in fact the famous Raychaudhuri equation, which plays an
important role in general relativity.
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Although one might view the results of Theorem 9.12 as expected conse-
quences of our new formulation of the relativistic Euler equations, we highlight
that its proof relies on a few ingredients that are not entirely straightforward:

(i) Time-continuity for the L? norms of the vorticity and entropy at top-
order, i.e., including the extra differentiability of these variables, is non-
standard in view of the necessity of invoking elliptic-hyperbolic estimates.

(ii) The transport-div-curl systems featured in the new formulation of the
equations involve spacetime divergence and curl operators, but we need to
extract L? regularity along the constant-time hypersurfaces. This requires
connecting the spacetime divergence and curl to spatial elliptic estimates,
which in turn requires some geometric and technical insights.

(iii) For the wave equation energy estimates, one cannot use the multiplier!”
0¢ when the three-velocity is large, since the corresponding energy will
not necessarily be coercive'® in this case. Consequently, one has to use
the four-velocity as a multiplier.'?

1.2.4. Structures Amenable to Commutations with Geometric Vectorfields.
A key point is that the geometric vectorfields Z described in Sect. 1.2.3 are
adapted only to the principal part of the shock-forming solution variables, e.g.,
the operator [, in the case that a wave equation solution is the shock-forming
variable. However, to close the proof of shock formation for a system in which
wave equations of the type [,- = --- are coupled to other equations, one
must commute that Z through all of the equations in the system. One then
has to handle the commutator terms generated by commuting the Z through
the other equations. It turns out, perhaps not surprisingly, that commuting Z
through a generic second-order differential operator 92 leads to uncontrollable
error terms, from the point of view of regularity and from the point of view of
the singular nature of the commutator error terms; see the work [22] on the
non-relativistic compressible barotropic Euler equations for further discussion
on this point. However, as was first shown in [22], it is possible to commute the
Z through an arbitrary first-order differential operator 9 by first weighting it
by u (where p is the inverse foliation density mentioned above); it can be shown

17See Sect. 9.6.1 for additional details regarding the multiplier method in the context of
wave equations.

8Equations (2.11), (2.20), and (2.13a) collectively imply that when 22:1 |u®| is large,
9(0%,0t) = goo = —1+ (6_2 — 1)uqu® can be positive, i.e., 9; can be spacelike with respect
to the acoustical metric g; it is well known that this can lead to indefinite energies if the
standard partial time derivative vectorfield 0; is used as a multiplier in the wave equation
energy estimates.

19The use of u as a multiplier is likely familiar to researchers who have previously studied
the relativistic Euler equations, but it might be unknown to the broader PDE community.
We also remark that in searching the literature, we were unable to find results that, given
our new formulation of the relativistic Euler equations, could be directly applied to establish
points (i) and (ii) above. Moreover, we were not able to locate a local well-posedness result
for elliptic-hyperbolic systems that can be directly applied to our new formulation of the
equations. In particular, we could not locate a result that would directly imply continuous
dependence of solutions on the initial data up to top order, i.e., a result that applies in the
case when the vorticity and entropy enjoy the aforementioned extra regularity.
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that this leads to commutator error terms that are controllable under the scope
of the approach. It is for this reason that we have formulated Theorem 1.2 in
such a way that all of the equations are of the type [;- = --- or are first-
order; i.e., the equations of Theorem 1.2 are such that the approach described
in [22] can be applied. Put differently, the geometric vectorfields Z that are
of essential importance for commuting the wave equations of Theorem 1.2 can
also be commuted through all of the remaining equations, generating only
controllable error terms.

2. A First-Order Formulation of the Relativistic Euler
Equations, Geometric Tensorfields, and the Modified Fluid
Variables

In this section, we introduce some notation, define the fluid variables that play
a role in the subsequent discussion, introduce some geometric tensorfields as-
sociated to the flow, and provide the standard first-order formulation of the
relativistic Euler equations that will serve as a starting point for our main
results. Most of the discussion here is standard and therefore, we are some-
what terse; we refer readers to [4, Chapter 1] for a detailed introduction to the
relativistic Euler equations. Section 2.2.5, however, is not standard. In that
subsubsection, we define modified fluid variables, which are special combina-
tions of the derivatives of the vorticity and entropy. The structures revealed by
Theorem 3.1 imply (see the proof of Theorem 9.12 for additional details) that
these special combinations enjoy a gain of one derivative compared to the reg-
ularity afforded by standard estimates. As we mentioned in the introduction,
this gain is crucial for applications to shock waves.

2.1. Notation and Conventions

We somewhat follow the setup of [4], but there are some differences, including
sign differences and notational differences.

Greek “spacetime” indices «, 3,... take on the values 0,1,2,3, while
Latin “spatial” indices a,b, ... take on the values 1,2, 3. Repeated indices are
summed over (from 0 to 3 if they are Greek, and from 1 to 3 if they are
Latin). Greek and Latin indices are lowered and raised with the Minkowski
metric 1 and its inverse 117!, and not with the acoustical metric g of Defini-
tion 2.6. Moreover, €,3,5 denotes the fully antisymmetric symbol normalized
by €0123 = 1. Note that 60123 1.

If X is a vectorfield and £5! 78" is a type (,711) tensorfield, then

l
(Ex)15, = X OG5, = D (BeX o )g g™

a=1
I{ Qg
+Z aﬁbX g 1 ,317 168b+1"Bm (21)
b=1

denotes the Lie derivative of £ with respect to X.
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We derive all of our results relative to a Minkowski-rectangular coordi-
nate system {2%},=0.12,3, that is, a coordinate system on R3 in which the
Minkowski metric 1 takes the form n,g = diag(—1,1,1,1). {9a}a=01,2,3 de-
notes the corresponding rectangular coordinate partial derivative vectorfields.
We sometimes use the alternate notation z° := ¢ and 0, := 0.

Throughout, d denotes the exterior derivative operator. In particular,
if f is a scalar function, then (df), := O.f, and if V is a one-form, then
(dV)ap = 04 V3 — 03V,. We use the notation V;, to denote the one-form that
is n-dual to the vectorfield V, i.e., (V})q := MNaxV".

2.2. Definitions of the Fluid Variables and Related Geometric Quantities
In this subsection, we define the fluid variables and geometric quantities that

play a role in the subsequent discussion.

2.2.1. The Basic Fluid Variables. The fluid four velocity u® is future-directed
and normalized by u,u® = —1. p denotes the pressure, p denotes the proper
energy density, n denotes the proper number density, s denotes the entropy
per particle, 8 denotes the temperature, and

H=(p+p)/n (22)
is the enthalpy per particle. Thermodynamics supplies the following laws:
op 10p dp
H=— 0=—— dH = — +60d 2.3
3n|s’ nos' ™’ n+ % (2:3)

where a% |s denotes partial differentiation with respect to n at fixed s and
3@ ,, denotes partial differentiation with respect to s at fixed n. Below we
employ similar partial differentiation notation, and in Definition 2.7, we intro-
duce alternate partial differentiation notation, which we use throughout the

remainder of the article.

2.2.2. The u-orthogonal Vorticity of a One-Form and Auxiliary Fluid Vari-
ables. In this subsubsection, we define some auxiliary fluid variables that will
play a role throughout the paper. By “auxiliary,” we mean that they are de-
termined by the variables introduced in Sect. 2.2.1.

We start by defining the u-orthogonal vorticity of a one form.

Definition 2.1 (The u-orthogonal vorticity of a one form). Given a one-form
V', we define the corresponding u-orthogonal vorticity vectorfield as follows:

vort®(V) := —e“®uz30, V. (2.4)

Definition 2.2 (Vorticity vectorfield). We define the vorticity vectorfield w® as
follows:

w® = vort®(Hu) = —e*?"%ugd., (Hus). (2.5)
We find it convenient to work with the natural log of the enthalpy.

Definition 2.3 (Logarithmic enthalpy). Let H > 0 be a fixed constant value of
the enthalpy. We define the (dimensionless) logarithmic enthalpy h as follows:

h:=In(H/H). (2.6)
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Definition 2.4 (The quantity q). We define the quantity ¢ as follows:
= —. 2.
4= (2.7)

Definition 2.5 (Entropy gradient one-form). We define the entropy gradient
one-form S, as follows:

Sa 1= 045. (2.8)
2.2.3. Equation of State and Speed of Sound. To obtain a closed system of

equations, we assume an equation of state of the form p = p(p, s). The speed
of sound is defined by

Ip
— .- 2.9
=, (29)
For reasons that will become clear in Sect. 2.3, in the rest of the article, we
view the speed of sound to be a function of A and s:

¢ = c(h,s). (2.10)

In this article, we will confine our study to equations of state and solutions
that verify

C =

0<c<l. (2.11)

The upper bound in (2.11) signifies that the speed of sound is no bigger than
the speed of light. In this article, we exploit both inequalities in (2.11). We
use the bound ¢ < 1 to ensure that we can always solve for time derivatives
of the solution in terms of spatial derivatives; see the discussion surrounding
Eq. (2.28). The bound ¢ > 0 is important because some of the equations
featured in Theorem 3.1 contain factors of ¢~ 1.

2.2.4. Projection Onto the Minkowski-Orthogonal Complement of the Four-
Velocity and the Acoustical Metric. We start by introducing the tensorfield
17 defined by

% .= (=18 4wl (2.12)

It is straightforward to see II is the projection onto the n-orthogonal comple-
ment of u. In particular, II*%u, = 0.

We now introduce the acoustical metric g. It is a Lorentzian?®
that drives the propagation of sound waves.

0 metric

Definition 2.6 (Acoustical metric and its inverse). We define the acoustical
metric g,5 and its inverse?! (g71)*# as follows:

Gop = C Map + (72 — Dugug, (2.13a)

(g7HYP = 2P —uuP = M) + (2 — DuuP. (2.13b)

20That is, the signature of the 4 x 4 matrix Jas, viewed as a quadratic form, is (—, +, +, +).
211t is straightforward to check that (g’l)"“‘gm,g = 5‘5, where 5‘5 is the Kronecker delta.

That is, g~ ! is indeed the inverse of g.



Vol. 20 (2019) Relativistic Euler 2195

It is straightforward to compute that relative to the rectangular coordi-
nates, we have

detg = —cF, (2.14a)
|detg|'2(g7 1) = 1™ + (¢ — ¢ PuP. (2.14b)

The notation featured in the next definition will allow for a simplified
presentation of various equations.

Definition 2.7 (Partial derivatives with respect to h and s). If Q is a quantity
that can be expressed as a function of (h, s), then

Q= Qulhs) =92, (2.150)
Q;s = Q;S(has) = %7? h s (2.15b)

where % |s denotes partial differentiation with respect to h at fixed s and
% | denotes partial differentiation with respect to s at fixed h.

2.2.5. Modified Fluid Variables. In our analysis, we will have to control the
vorticity of the vorticity, that is, vort®(w). The following modified version of
vort®(w), denoted by C* obeys a transport equation [see (3.11b)] with a better
structure (from the point of view of the regularity of the RHS and also the
null structure of the RHS) than the one satisfied by vort®(w). Similar remarks
apply to the modified version of the divergence of entropy gradient, which we
denote by D [see Eq. (3.9a) for the transport equation verified by D].

Definition 2.8 (Modified fluid variables).
C% := vort®(w) + ¢ 2P 0ug(0,h)ws
+ (0 —0.,)5%(0xu”) + (8 — 0.,)u*(S"0xh)
+ (8,0 — 0)S" (™) Oun), (2.16a)
D - %(GKS”) + %(s&a,@h) - %ﬂ(snaﬁh). (2.16D)
2.3. A Standard First-Order Formulation of the Relativistic Euler Equations

In formulating the relativistic Euler equations as a first-order hyperbolic sys-
tem, we will consider A, s, and {u®}4—0,1,2,3 to be the fundamental unknowns.??
In terms of these variables and the quantities defined in (2.9), (2.12), and (2.7),
the relativistic Euler equations are

uF0eh + 2Ou” =0, (2.17)
" Opu® + T h — g™ ) 0,5 = 0, (2.18)
u"0xs = 0. (2.19)

220n might argue that it is more accurate to think of u? as being “redundant” in the sense
that it is algebraically determined in terms of {u“}a=1,273 via the condition u° > 0 and
the normalization condition (2.20). In fact, in most of Sect. 9, we adopt this point of view.
However, prior to Sect. 9, we do not adopt this point of view.
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It is straightforward to see that the following constraint is preserved by the
flow of Egs. (2.18)—(2.19).

ueu™ = —1. (2.20)

Remark 2.9 (More common first-order formulations). Many authors define the
relativistic Euler equations to be the system comprising (2.20), (2.25), and the
four equations 9, 7% = 0, where T°% := (p +p)u®u” + p(m~')*" is the fluid’s
energy—momentum tensor. These equations are in fact equivalent (at least in
the case of C'! solutions with p > 0) to Eqgs. (2.17)-(2.20). We refer readers
to [4, Chapter 1] for background material that is sufficient for understanding
the equivalence.

Note that (2.19) is equivalent to
u S, = 0. (2.21)
Equation (2.18) can be written more explicitly as
U0k tiy + Oah + uqu®9ch — ¢S, = 0. (2.22)
Also, from (2.22), we easily derive
U0y (Huy) + 0o H — 05, = 0. (2.23)

Moreover, differentiating (2.19) with a rectangular coordinate partial de-
rivative, we deduce

U0k Se = —Sk(Oau™). (2.24)
In our analysis, we will also use the following evolution equation for n:
u®0xm 4+ nod,u” = 0. (2.25)

To obtain (2.25), we first use Eqgs. (2.17) and (2.19), the thermodynamic
relation dH = dp/n + 0ds, and the relation H = (p + p)/n to deduce
uF0.p + 2(p + p)dyu® = 0. We then use this equation, (2.9), and (2.19)
to deduce u"9.p + (p + p)d,u™ = 0. Next, using this equation and Eq. (2.19),
we deduce % |s u*0sn+ (p+ p)dsu” = 0. Finally, from this equation and
the thermodynamic relation p + p = n% |s, we conclude (2.25).

For future use, we also note that Eqs. (2.17)—(2.19) can be written [us-

ing (2.20)] in the form

>

A%, (2.26)

S 2 2 &
w N = o
Il
=

V)
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where for « = 0,1,2,3, A% is a 6 X 6 matrix that is a smooth function of the

solution array (h,u®, u',u? u3,s). In particular, we compute that

u? 20 0 0 0

c
ugu® w0 0 0 q
wOul 0 Y 0 0 0
A= wWe2 0 0 W 0 0|’ (2.27)
wOu? 0 0 0 0
0 0 0 0 0

and we compute that
detA? = (u”) — (W) ugu® = (1 + uqu®)* {1+ (1 — Aupu’} . (2.28)

In particular, in view of (2.11), we deduce from (2.28) that A° is invertible.

3. The New Formulation of the Relativistic Euler Equations

In the next theorem, we provide the main result of the article: the new formu-
lation of the relativistic Euler equations.

Theorem 3.1 (New formulation of the relativistic Euler equations). For C3
solutions (h,s,u®) to the relativistic Euler equations (2.17)—(2.19) + (2.20),
the following equations hold, where the phrase “g-null form” refers to a linear
combination of the standard g-null forms of Definition 1.1 with coefficients
that are allowed to depend on the quantities (h,s,u®, S% @) (but not their
derivatives).

Wave equations. The logarithmic enthalpy h verifies the following covariant
wave equation (see Footnote 5 on pg. 6 for a formula for the covariant wave
operator):

Dgh = anqD + Q(h) + £(h)» (3.1)
where Qp,y is the g-null form defined by
Qe = —¢ Lenlg™)(0:h) (Oah)
+ ¢ {(0u™) (Oru) — (Oru™) (9uu™) }, (3.2a)

and Ly, which is at most linear in the derivatives of (h,s,u®,S% w®), is
defined by

Loy ={(1 = A)g+ Pqn —ces} (S70sh) + 2q,55.5". (3.2b)

Moreover, the rectangular four-velocity components®® u® wverify the fol-
lowing covariant wave equations:

2
Ou® = _%ca + Qe + Lue), (3.3)

23We stress that on LHS (3.3), the components u® are treated as scalar functions under the
action of the covariant wave operator [g.
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where Qo) is the g-null form defined by
Quey = (71 {(8u") (Oxh) — (Dru™) (D)}

+ *u® { (0, u) (Oau”) — (Ozu™) (0 u")}

—{1+c ch} “HEX(Dh) (Oau®), (3.4a)
and Lyay, which is at most linear in the derivatives of (h,s,u*, S* w®), is
defined by

62 a (1 702) e
Lluey 7= g 71 (9guq )ws + g ¢ P10us(0,h)ews

1— 2
+7( Hc)qeo‘ﬁv‘sébuvw(;

+{q — cc.s} (S"0.u®) + q(c® — 1)u®S* (u druy)

+ 8" {02q + (e—gh)c?} (M~ H*dzuy)

+ {2cflc;hq5" + 20710;556“ — q;hSo‘} (u"0h)

+ S« {(e_fjh)CQ - q} (8u”) + Wua(smh). (3.4b)

Auzxiliary wave equation for s. The entropy s verifies the following covari-
ant wave equatzon24

Oys = nD + L), (3.5)

where £y, which is at most linear in the derivatives of (h,s,u®, S w®), is
defined by
L) = {1 = —cep} (S%0:h) — cc,s5,.5". (3.6)

Transport equations. The rectangular components of the entropy gradient
vectorfield S, whose n-dual is defined in (2.8), verify the following transport
equations:

U058 = =S, (M~ 1) Ihu”). (3.7)

Moreover, the rectangular components of the wvorticity vectorfield w®
which is defined in (2.5), verify the following transport equations:

w0y w® = —u*(@w"0:h) + w0 u" — w(J,u")
+ (0 — 0.4,)e*Pug(d,h)Ss 4 quw™S,,. (3.8)

Transport-div-curl systems. The modified divergence of the entropy gradi-
ent D [which is defined in (2.16b)] and the rectangular components vort®(S)

24The wave equation (3.5) is auxiliary in the sense that we do not use it in our proof of
Theorem 9.12. However, in applications (for example, in the study of shock formation), one
has to compute [y applied to the scalar component functions gog, and, by virtue of the
chain rule, the quantity [gs arises in such computations. It is for this reason that we have
included Eq. (3.5) in this paper.
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of the u-orthogonal vorticity of the entropy gradient vectorfield [see defini-
tion (2.4)] verify the following transport-div-curl system:

Wk, D — % [(8,5%)(Dru®) — (8xS™) (D))

e {(0,h)(038Y) — (03h) (015 )

S.CF
t— gt Q(p) + £(p), (3.9a)

vort®(S) = 0, (3.9b)

where Qpy is the g-null form defined by
1
Q('D) = 50725K {(8,111,)‘)((%\/1) — (8AuA)(6Kh)} , (3.10a)

and £(py, which is linear in the derivatives of (h,s,u®, S, w®), is defined by
Ly = %GQQVJSQUB(&MW(; + %e”‘m‘sSa(aguy)w(;

N S*ZLSA {(e —He;h) B 2q} (D)

S [ (8., —0

n SnS {( ,hH )

+2c e — A+ q} (Oxu?). (3.10b)

Finally, the divergence of the vorticity vectorfield w® (which is defined
in (2.5)) and the rectangular components C* of the modified vorticity of the
vorticity (which is defined in (2.16a)) verify the following equations:

Oqw® = —w"0h + 2qw" Sy, (3.11a)
u"0,CY = CFOu® — 2C% (D) + u®C (u Oy )
— 2e“PV0u5(8, ") (Dsus)

+ (0, — 0) {(n™ 1) + 2uu"} {(9:h)(9xS™) — (0rh)(0:5™)}
+ (0 — 0.)nu* (w0, h)D
+(8 = 0:4)gS*(9:5%) + (8;n — 8)aSx((N~)**\S™)

+ Qce) + £(coys (3.11b)
where Qcay is the g-null form defined by
Q(eey = —¢ 2 (D u)ug (9, h)ws

+ (72 +2)e*P 05 (0, h)w" (D5
+ ¢ 2eugms {(9u™) (D4 h) — (u™)(Dh)}
+ {(Osnsn — 1) +¢72(0 — 0,) fu(n 1) S x
{(0xh)(Oxug) — (Oxh)(Oxugp)}
+ (0. — 0) S u {(9u)(9rh) — (Dau™)(Dxh)}
+ (8. —0) {(n™") +u "} 7 {(Deup)(Oru?) — (Oaup)(eu’)}
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+ (0., — 0)S* {(9uut)Oru” — (Oru) (Opu”) }
+ (0 — 0) 5" {(9xu”) (Oxu™) — (9au®) (Du™) }
+ 8 Le™2(0h — O.n) + ¢ (0, — 0)} (g7 1) (Dsh) (D), (3.12a)

and £(c«y, which is linear in the derivatives of (h,s,u®,S*, @w®), is defined by

2 2
Loy = ﬁq(wﬁsﬁwa) = Ewo‘(w”&{h)

+2¢73¢.,€*P0up S, ws(urd,.h)
—2qe*P0u5S. w" (D5us) — qe®P7° Sgu. ws(D.u”)
1
+ E(G — G;h)e”m‘s(@,{u“)&guvwa + C_2q€a67655(67h)w(;
—c 2que™P1° S, ug(8,h)ws

+ (0, — 0)¢ S, S" (u*Fxu®)

+u® Sk S {(0:n — 0)g + (O5n55 — 6;5)} (UAaAh)

+594(0:s = Oinis) + (0 = O:n)gun} (S"0ih)

+ SHSK{(G;h;h - eh)q + (e;h;s - 9;8) =+ (9 - e;h)q072 + (e;h - O)Q;h}x
(M1 o\n). (3.12b)

Remark 3.2 (Special structure of the inhomogeneous terms). We emphasize
the following two points, which are of crucial importance for applications to
shock waves (see Sect. 1.2.2 for further discussion): (i) all inhomogeneous terms
on the RHSs of the equations of the theorem are at most quadratic in the
derivatives of (h,s,u®, S w®) and (ii) all derivative-quadratic terms on the
RHSs of the equations of the theorem are linear combinations of standard g-
null forms. In particular, the following are linear combinations of standard g-
null forms, even though we did not explicitly state so in the theorem: the terms
on the first and second lines of RHS (3.9a) and the terms on the second and
third lines of RHS (3.11b). We have separated these null forms, which involve
the derivatives of @ and S, because they need to be handled with elliptic
estimates, at least at the top derivative level (see the proof of Theorem 9.12).
This is different compared to the terms Q(), Que), Q(p), and Qce), which
can be handled with standard energy estimates at all derivative levels.

Proof. Theorem 3.1 follows from a lengthy series of calculations, most of which
we derive later in the paper, except that we have somewhat reorganized (using
only simple algebra) the terms on the right-hand sides of the equations of the
theorem. More precisely, we prove (3.1)—(3.2b) in Proposition 5.2.

We prove (3.3)—(3.4b) in Proposition 5.3.

We prove (3.5)-(3.6) in Proposition 5.4.

Equation (3.7) follows from raising the indices of (2.24) with the inverse
Minkowski metric.

We prove (3.8) in Proposition 7.1.
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Except for (3.9b), (3.9a)—(3.10b) follow from Proposition 6.2.
Equation (3.9b) is a simple consequence of definition (2.4) and the symme-
try property 0,53 = 0S5, [see (4.1)].

Finally, we prove (3.11a)—(3.12b) in Proposition 8.2. O

4. Preliminary Identities

In the next lemma, we derive some preliminary identities that we will later
use when deriving the equations stated in Theorem 3.1.

Lemma 4.1 (Some useful identities). Assume that (h,s,u®) is a C? solution
to (2.17)—(2.19) + (2.20), and let V,, be any C* one-form. Then the following
identities hold:

0053 = 0354, (4.1)
w"u, =0, (4.2)
KOquyx = 0, (4.3)
U 04 Sk = —S" Oy, (4.4)
U0, = —0" On iy, (4.5)
Oq = —uqu”0,; + 1170y, (4.6)
DV = —uurO\V" + 1510, Vy, (4.7)

0oV — 05Vy = eag,ﬂ;u“*vort‘s(‘/) + uu 05V, — ugu” 0,V
+ ugu”0,Vy — uqu”0, Vs, (4.8)
PTIY (9,V, — 0,V ) (05Vs — 05V5) = 21%Pvort, (V)vortg(V).  (4.9)
Moreover, if u*V, =0, then
0.V — 05V, = €a575u7V0rt5(V) — ua Vi, 0pu” + ugV,0qu”
+ ugu 0, Vo — uqu” 0, Va. (4.10)

In addition, the following identity holds, where the indices for ¢ on
LHS (4.11) are raised before Lie differentiation:

L, (e2P10) = (=0,u)e*P°. (4.11)

Furthermore, the following identities hold:
Loy(uy) o = U 0xtq = —0ah — uqu0xh + qSa, ( )
L,d(Huy,) = dL,(Huy,), (4.13)
[Cod(Huy)]ap = 0.1(0ah)0ss — 0.5,(0as)dsh, (4.14)
Oo(Hug) — 05(Hup) = €apyst’@® + 0 {Saus — Spua}, (4.15)
€199 (Hus) = wu’ — u®w® + 0e*P1° S us, (4.16)

1
aau,@ — 85ua = ﬁeam(gu'yw‘s — (8ah)u5 + (8gh)ua

+q{Saus — Spua}, (4.17)
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(uBeuy)S* = —S*0.h + ¢S, S", (4.18)
("0, S\)u* = S*9.h — qS.S", (4.19)
1
S"0qty = ST0xta + (ST0h)ua — qS"Skua + ﬁeamgS”uwwé
1
= S"0 ug — (S“u’\axu,i)ua + Eeamgsﬁiﬂwé, (4.20)
W Opttq = @ Oty — (W O0uh)ue + g™ Sk tia, (4.21)
1 1
P09 us = ﬁwauﬁ - Euo‘w'@ — P9, h)us + qe*P° S us, (4.22)
1

e 0usd us = 5= (4.23)

Oywws — 05ty = evgnAu“vortA(w) — (U Opws)uy + u" (05w, ) Uy
+(u 0wy )us — u" (04w, )us, (4.24)
e“P90, w5 = vort®(w)u’ — uvort? (w) + e*# (u*d, . Yus (4.25)

— €y (0w, )us. '

Proof. (4.1) follows from definition (2.8) and the symmetry property 0,03s =
0304 s. Equation (4.2) is a simple consequence of definition (2.2). Equation (4.3)
follows from differentiating (2.20) with d,. Equation (4.4) follows from differ-
entiating (2.21) with d,. Equation (4.5) follows from differentiating (4.2) with
0. Equation (4.6) follows directly from definition (2.12). Equation (4.7) then
follows from (4.6).

To prove (4.8), we first use definition (2.4) to express the first product
on RHS (4.8) as follows:

€ag75u7VOI’t6(V) = —€a575€69m\u7u€&iV)\. (4.26)

Next, we observe the following identity for the first two factors on RHS (4.26):

—€a[375€59NA = €aprs cOrAS
= 80,0067 — 89,6080 + 508987 — 85507 + 55838 — 556957
(4.27)

Using (4.27) to substitute on RHS (4.26), we deduce, in view of (2.20), the
following identity:

—€a376€ " M ugd VY = uqu0, Vs — uau sV, — 95V,
—ugt™ 0, Vo + ugu 0, Vi + 0, V3. (4.28)

Combining (4.26) and (4.28) and rearranging the terms, we arrive at the de-
sired identity (4.8). Equation (4.10) then follows from (4.8) and the relation
w0,V = —V,.0,u”, which follows from differentiating the assumed identity
u"V,, = 0 with 0,.
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To prove (4.9), we first use (4.8) to deduce
P9, Vs — 04 V) (95Vs — 05V5)
= Haﬁﬂv‘;ewm egguyuﬁvortA(V)u“vort”(V). (4.29)
Next, we note the following identity, which follows easily from definition (2.12):
HaﬂH’Yé€O,y,i,\6,35#V'LLNVOI‘D/\(V)UMVOI'tV(V)
= M HP M) enqmrepsmuvort (V)utvort” (V)

= P e 5 musvorty (V)utvort” (V). 4.30
B

From (4.30), the identity €****e,5,, = 26265 - 2626?), (2.20), and the simple
identity uqvort®(V) = 0 [which follows easily from definition (2.4)], we find
that RHS (4.30) = 2vort, (V)vort®(V). Again using that u,vort®(V) = 0, we
conclude, in view of definition (2.12), the desired identity (4.9). Equation (4.11)
is a standard geometric identity, as is (4.13).

To prove (4.12), we first note the Lie differentiation identity L, (up)e =
U Oplg + Uk Oqu”, which follows from (2.1). Equation (4.12) follows from this
identity, (2.22), and (4.3).

To prove (4.14), we first use (2.23) and the Lie derivative formula (2.1) to
deduce that L, (Huy)o = 60, (Hug) + HugOot™ = —00 H + 0045+ Hu Do u”.
From (4.3), we see that the last product on the RHS of this identity vanishes.
Hence, taking the exterior derivative of the identity, we obtain [dL,,(Hu,)]ag =
0.1,(0ah)0ss — 0.1,(0a$)0gh. The desired identity (4.14) now follows from this
identity and (4.13).

To prove (4.15), we first use definition (2.5) to compute that

8 SO
€a575u7w = —€apys€ F" U’Yunag(HUA).

Using the identity €,5,6€%%* = —€45,5€*% = 536[";5?; — 626%62 + 626%& —
536[’}6?{ + 6%5%62 — 6%655;\7 we deduce, in view of (2.20), that

—€a575€§'{9>\u7u,€69(HU)\) = aa(HU3) — 85(Hua)
— w0, (Hug) — uqu™0g(Huy)
+ uqu”0g (Hug) + gt 0o (Huy). (4.31)

Using (2.20), (2.23), and (4.3), we compute that the last four products on
RHS (4.31) sum to 0(uqSg — ugSy), which yields the desired identity (4.15).

To prove (4.16), we first contract e“?7° against (4.15) to obtain the
identity

1
eaﬂw&,(Hug) = §eo‘ﬁ75€v5,€,\u“w)‘ + eeaﬁ7557u5. (4.32)

(4.16) now follows from using the identity 3e*%e 5., = 828% — égéf to
substitute for the factor %eaﬁvéewm on RHS (4.32). Equation (4.17) follows
from (4.15) and simple computations.

To prove (4.18), we contract S against Eq. (2.22) and use Eq. (2.21).
Equation (4.19) then follows from (4.4) and (4.18).
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To prove the first equality in (4.20), we contract S® against (4.17) and
use Eq. (2.21). To obtain the second equality in (4.20), we use the first equality
and the identity (4.18). Equation (4.21) follows from contracting (4.17) against
w® and using (4.2).

To prove (4.22), we first use (4.17) to deduce that

11
€°‘ﬁ75afyu5 = Eﬁeaﬁweﬁmu“w}‘ - €a575(37h)u(; + qeaﬁwsS,yu(g. (4.33)

(4.22) now follows from using the identity 2e*#%e 50 = 878% — 6285 to
substitute for the product £e*#7%e. 5.\ on RHS (4.33).
To prove (4.23), we contract (4.22) against ug and use (2.20) and (4.2).
To prove (4.24), we first use definition (2.4) to express the first product
on RHS (4.24) as follows:

ewgmu'“vort’\(w) = —€y5r) e/\‘%‘ﬁu”ueaaw,g. (4.34)

Next, we use the identity —evgmewo‘ﬁ = ews,.;)\eeo‘ﬁ’\ = 635§6g — 6365"65 +
535?63 - éﬁéféﬁ + 6£5§6i — 556262‘ to substitute on RHS (4.34), thereby
obtaining, in view of (2.20), the following identity:
evgmu“vort)‘(w) = uyu"0yws — Uy u 05w, + usu” 04w, + 04ws
— 05wy — UsU" Oy 0. (4.35)
Finally, we note that it is straightforward to see that (4.35) is equivalent to

the desired identity (4.24).
To prove (4.25), we first contract (4.24) against %eaﬂvé to deduce

1
eaﬁ7687W5 = §eaﬂ”5675,§>\u“vort)‘(w) + eaﬁv‘s(u"@nwy)u(;
— e“ﬁwu”(avw,{)u(;. (4.36)

Using the identity %eaﬂ'yéevg,ﬂ,\ = %e'y‘saﬂevgm\ = 6£6§ — 6%65 to substitute in

the first product on RHS (4.36), we arrive at the desired identity (4.25). O

5. Wave Equations

In this section, with the help of the preliminary identities of Lemma 4.1, we
derive the covariant wave equations (3.1), (3.3), and (5.18).

5.1. Covariant Wave Operator

We start by establishing a formula for the covariant wave operator of the
acoustical metric acting on a scalar function.

Lemma 5.1 (Covariant wave operator of g). Assume that (h,s,u®) is a C?
solution to (2.17)—(2.19) + (2.20). Then the covariant wave operator of the
acoustical metric g = g(h, s,u) (see Definition 2.6) acts on scalar functions ¢
as follows, where RHS (5.1) is expressed relative to the rectangular coordinates:
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Oy¢ = (¢ = 1u . (u*9x9) + *(n1)*0.029)
+ (¢ = 1)(9.u™) (urOrp) + 2¢ e (uFDch) (ur Ong)
= len(g™) M (0:h) (0r0)
—cc.5(S"0x9). (5.1)

Proof. Tt is a standard fact that relative to arbitrary coordinates (and in par-
ticular relative to the rectangular coordinates), we have

Dy = e (Vi ™) 0n0).
Using this formula and (2.14a)—(2.14b), we compute that
Oy¢ = A0, {—(c_?’ — c_l)u“(u)ﬁ)\(b) + c_l((n_l)“&\(b)}
= —(1 = A)u" 0. (uOrg) — (1 — ) (D) (uOro)

+ (3¢t = ) (u"0c) (uPOn0) — c(n™)™ (D) (9r9)

+E (1) 0:000). (5.2)
The desired identity (5.1) now follows from (5.2), (2.13b), the evolution equa-
tion (2.19), and straightforward computations. O

5.2. Covariant Wave Equation for the Logarithmic Enthalpy
We now derive the covariant wave equation (3.1).

Proposition 5.2 (Covariant wave equation for the logarithmic enthalpy). As-
sume that (h,s,u®) is a C? solution to (2.17)(2.19) + (2.20). Then the log-
arithmic enthalpy h verifies the following covariant wave equation:

Oyh = nc?qD — ¢ e (g7 )M 0kh) (02h)
+ 2 {(anu”)(a,\u’\) - (8,€uk)(8,\u”)}
+ (1 = *)q(S%0.h) — cc.s(S50xh) + 2qn(S"0uh) + ¢*q.58.S". (5.3)
Proof. From (5.1) with ¢ := h, we deduce
Ogh = (¢ — D)ur0, (u*Ozh) + (M) 9,.0xh)
+ (¢ = 1)(9.u™) (urOzh) + 2¢ e (uF0ch) (u D)
= en(g™) N (9:h) (Orh)
—cc.s(S"0kh). (5.4)
Next, we differentiate Eq. (2.22) with 93, contract against (n~1)*?, and
multiply by ¢? to obtain the identity
(M H0,.00h) = = (u"0,.0zu?) — 2(du) (Oru™)
— Put0, (urOzh) — A (0.u™) (urdrh)
+ 2q(0:57) + 2qn(S"0kh) + ¢*q.sS"S,. (5.5)
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Next, we use (2.17) and the evolution equation (2.19) to rewrite the first
product on RHS (5.5) as follows:

—2 (U0, 0\u™) = ut0, (¢ 2urOzh)
= U0, (urO\R) — 2¢ e (uFDh) (U Orh). (5.6)
Using (5.6) to substitute for the first product on RHS (5.5) and then

using the resulting identity to substitute for the product ¢?(n=1)"*9,.0\h on
RHS (5.4), we deduce

Ogh = —c2(0,u™) (Oau”) — (Du™)(u*Orh)
- C_lc;h(g_l)w\(aﬁh)(‘?)\h)
—cc.5(S%0:h) + *q(0.5%) + *qn(ST0h) + q.sS" S, (5.7)
Finally, we use Eq. (2.17) to substitute for the factor u*dx\h in the second
product on RHS (5.7), and we use definition (2.16b) to express the product

c2q(0,5%) on RHS (5.7) as nc?¢D + (1 — ¢*)q(S%0,.h), which in total yields
the desired Eq. (5.3). O

5.3. Covariant Wave Equation for the Rectangular Components of the Four-
Velocity

We now derive the covariant wave equation (3.3).

Proposition 5.3 (Covariant wave equation for the rectangular four-velocity
components). Assume that (h, s,u®) is a C? solution to (2.17)—(2.19) + (2.20).
Then the rectangular velocity components u® verify the following covariant
wave equations:

2
C

O,u® = —<eo
QU’ H

¢ aBys (1 B 02) afyé
— Ee (aﬁuw)w(; + T € uﬁ(&,h)w(;

1— 2
+ 7( I{C )q €aﬁ755’gu7wC§
= (g7 (0eh) (Oau®) — ¢ Len(g ™)™ (Oh) (Oru)
+ (M) {(Bu)(Oah) — (Bru")(9:h)}
+ Pu” {(anu)‘)((%\u“) - (5‘>\u’\)(8,{u“)}
—cc,s (S0 u”) + q(S"0u®)
+ (2 = 1)qu® (S5 urOhuy) 4+ 2¢S™ (M1 Ozuy)
+2¢ e S (u k) + 2¢ e, g S (U D)
— q.nS¥(u"0h) — ¢S*(0u”)

c? c?

F(0-0,0) 58 (D) + (8- 0,0
+ (80— 0) 75" (1) Dauw). (5.8)

(§%8,.h)
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Proof. From (5.1) with ¢ := u,, we deduce
Ogtie = (¢ — 1)ut0, (urus) + (™) 9,00ua)
4+ (® = 1)(0uu”™) (U Oztig) + 2¢ 7 e (U0 h) (U Dnuig )
—c L en(gTh) M (0:h) (Orta) — cC.s(S"Onty).- (5.9)
Next, we use Egs. (2.19), (2.22), and the second line of (6.1) [where below,

we derive (6.1) using an independent argument] to rewrite the first product on
RHS (5.9) as follows:

(2 = D)u" 0 (utdrua) = (1 — ) (U 00ah) + (1 — ) {u 0, (uONh) } ua
+ (1 = ) (U dpua ) (uOrh) + (% — 1)u"0,(qSa)
= (1= ) (u$9:0ah) + (1 — ) {u 0, (u*Orh) } ua
+ (1 — ) (U Ot (u*Onh) + (% — 1) g (u"0,h) Sy
+ (1= c*)q(S"0uua) + %(1 — *)q€apys S U w®
+ (® — 1)gS™ (u Oty ) ey - (5.10)
Next, we use definition (2.16b), the identity (4.17), and the evolution

equations (2.17), (2.19), and (2.24) to rewrite the second product on RHS (5.9)
as follows:

(1) 0,0ata) = ¢*(DaDpu”)
+ cQ(Tfl)”A&{{%emwu”wé — (Oxh)tg + (Dah)us+

qS)\Ua - anUA}
— (& — 1)(u0,0uh) — (Dat®)(D,h)

+2¢7 e (0ah) (U Dh) + 2¢ .o Sa (U d.h)

1
— 62E€>\a76((ﬂ71)'€)‘3,§h)u7w5

1 — K
+ czﬁem,y(;((n DA )

+ CQ%E:)\Q,Y(;UW((n*l)”)‘&Cw‘S)

— (™) 0e0nh)ua — (™) NDh) (Oaua)

+ 2(0ah)(0,u”)

+ 2 qn(S"0xh)ua + .65 S Uy

+ 2q(0:S")ug + 2q(S"0xua)

— CQq;h(u“&gh)Sa — 2q(uF0,5,) — 2q(0.u") S,
= nc®qDug

4 (= 1)(uFB,0ah) — (Bau)(Dh)
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+2¢7 e (0ah) (U Dh)
_ c2%emé((n—l)“a,gh)mwfS

1
+ CQEG,\Ma((ﬂ_l)M&gu’Y)w‘s

4 enanst (17)0,°)

= (1) 0u0rh)ua — (™) (9:h) (Orua)
2(0ah)(0,u”)

+ gn(ST0xh)ua + 4SS o + (S Opua)

— A2qn(u0.h) Sy + ?q(0au™) S, — q(9,u™)S,

+ (1= c*)q(S"0xh)ua + 2¢ e (u"0,h) S, (5.11)

Next, we use the identity (5.1) with ¢ := h to substitute for the term

Oyh on LHS (5.3

), which yields the identity

(71 0,0xh) = ¢ {(Du™) (Oau™) — (Oxu") (D) }

From (5.12),

+ (1 = A0 (urh) + (1 — ) (9eu™) (u rh)

— 20_1c;h(u“8Nh)(uA8Ah)

+ncqD

+ (1 —c*)q(S"0xh) + ?qn(ST0:h) + q.sS.5". (5.12)

it follows that the product —c?((M~1)**0.0\h)us on

RHS (5.11) can be expressed as
—A (M0 0\h)ug = {(0xu M) (Opu”) — (aAu/\)(&gu”)} Ug,

+( c? -1 {u 3,.{(u)‘3A }ua

(¢ — 1)(0eu”) (1w Onhug

+ 2¢ ey (U0 h) (uOrh)ug

— nctqDug,

+ (2 = 1)q(S"0xh) e — qn(ST0.h)ug

— ch;SSRS“ua. (5.13)

Using (5.13) to substitute for the term —c?((n~1)"*9.0r\h)u, on
RHS (5.11), we obtain the identity

A(m™!

)20 Ozte) = (2 — 1) (u"0,0ah) — (Bat”)(Dh)

+2¢7 e (Ouh) (U 0 h)
1

- c2ﬁe,\a75((n’1)“)‘8,.{h)u7w5

1 —1\k
+62E€)\a75((1] 1) *anm)w?
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+ 02%6)\(175117((1’]71)”)‘6”735)

+ 2 {(0:uM) (Oau”) — (Oxu?) (0uu™) } ua

+( c -1 {u”(“) u’\6>\h }ua

+(¢? = 1)(9uu”) (uPOrh)uq

+2¢7 e, (U0 h) (uOrh ) ug,

—c*(n —1)“(8 h)(Oxtie) + ¢ (Dah)(Du”)

+ (S5 0uy)

— 2qn(u0.h)Se + q(0au™) S, — c*q(0xu™) S,

+2¢ e s (U0, h) S (5.14)

Using (5.10) and (5.14) to substitute for the first and second products on
RHS (5.9), and reorganizing the terms, we deduce [where we have added and
subtracted (9,u")(0oh) on the third and fourth lines of RHS (5.15)]

1 —1\k
Ogue = CQﬁeAa,ﬂ;uV((n 1) *8Hw5)

+ (1 = A) (U 0puq) (U Onh) — (M1 9h) (Orua)

(u
+ {(0:u")(0ah) = (Dau”)(O:h)}
+(¢? = 1)(0pu™)(@ah) + (¢* = 1)(9u”) (W Orh)uq
+(¢? = 1)(0pu") (uOrua)

+2¢7 e (0ah) (U 0,h) + 2¢ e (uF0.h) (ur Ozh)ug
+2¢ e (U0, h) (uOruy )

5 1 1
_ €/\a75((ﬂ_1)n>\a h)u’Yw +c He)\aw((n—l)m\amu'y)wé
—|—c2{ D) (Oxu”) — (GAUA)((?,{U"“)}UQ
=C lc;h(gil)nA(anh)(aAua) — c¢;s(5" Ok tia)
+2¢ 7 e (U 0.h)Sa — qn(u0.h)Ss + ¢*q(Oau”) S,
- CQQ(anuH)Sa + Q(Snanua)
1
E(l — ) q€aprs S U@’ 4 (2 — 1)q( ST ur Oz - (5.15)

Next, using (2.13b), we observe the following identity for the two terms
on the second line of RHS (5.15):

(1 — ) (u"Opue ) (urdrh) — M) (Deh) (Orua)
= —(971)"(9:h) (Orua)- (5.16)

Moreover, using Eq. (2.22), we see that the terms on the fourth through sev-
enth lines of RHS (5.15) sum to (¢* — 1)q(9xu™)Sa + 2¢ ¢.nq(u"0,h)S,. In
addition, appealing to definition (2.4) with V, := wa, we obtain the following
identity for the first product on RHS (5.15): ¢? L exarsu? (1) 0, w?) =

_|_
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—c? Lvort,(w). From these facts, (5.15), and (5.16), we obtain the following

H
equation:
1
Ogua = —c2ﬁvorta(w)

1 1
- CQﬁeAavﬁ((n_l)m\anh)uvwé + CQﬁe/\Ma((n_l)”’\é),{u"f)wé

+ {(0xu") (Dah) = (Bau™)(0xh)} — (97 1) (9xh) (Ortia)

+ & {(0pu?) (Oru"™) — (0ru™)(0u™) } ua

— ¢ Len (g7 N (0:h) (Orta) — ce.s(S"Oktin)

+2¢7 e (uF0.h)Sa — qn(u0.h)Se + ¢*q(Oau”) S,

+ q(S"0xuq) + %(1 — *)qeaprsSPu w0

+ (¢ — Dg(S" u Ozt ) g,

— q(0xu™)Su + 2¢ e q(uF 0 h) S, (5.17)

Using definition (2.16a) to express the product —c?%vort, (@) on RHS (5.17)

as —02%Ca + - -+, reorganizing the terms on the RHS of the resulting identity,

and raising the o index with n~!, we arrive at the desired identity (5.8). [

5.4. Covariant Wave Equation for the Entropy

In this subsection, we derive the covariant wave equation (3.5).

Proposition 5.4 (Covariant wave equation for s). Assume that (h,s,u®) is a
C? solution to (2.17)—(2.19) + (2.20). Then the entropy s verifies the following
covariant wave equation:

Oy8 = ¢2nD + S*0,h — 2S%0,h — cc.,S"0h — cc.s5,.5". (5.18)

Proof. Applying (5.1) with ¢ := s, using (2.13b) to algebraically substitute for
the factor of (¢g7!)"* on RHS (5.1), and using the evolution equation (2.19)
[which implies that many factors on RHS (5.1) vanish], we deduce, in view of
definition (2.8), that

Ogs = c29,,5% — cc.p, S"0xh — cc,sS8,S". (5.19)

We then solve for 9,,5" in terms of the remaining terms in definition (2.16b)
and then use the resulting identity to algebraically substitute for the factor
0,S" in the first product on RHS (5.19), which in total yields the desired
Eq. (5.18). O

6. Transport Equations for the Entropy Gradient and the
Modified Divergence of the Entropy
In this section, with the help of the preliminary identities of Lemma 4.1, we

derive Egs. (3.7) and (3.9a). We start by deriving (3.7) (more precisely, its
n-dual).
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Proposition 6.1 (Transport equation for the entropy gradient). Assume that
(h,s,u®) is a C? solution to (2.17)—(2.19) + (2.20). Then the rectangular
components the S, of the entropy gradient vectorfield (see Definition 2.5) verify
the following transport equations:

w05y = —S"0 Uy — ;eamgSBqu (S"0ch)ua + qSkS g
= —S"ptg — %eamgsﬁu”wé + S5 (U Ozt ) ey - (6.1)
Proof. From Eq. (2.24), the identity (4.17), (2.20), and (2.21), we deduce
U0, Sy = —S"Optiy — %eawsﬁmw + (0ah) Sty — (S0 h)uq
— q{SaS"u, — S"Suqs}
= —S"uq — %eam55ﬂu7w5 — (S50, h)ug + qSTSeta,  (6.2)

which yields the first line of (6.1). To obtain the second line of (6.1) from the
first, we use the identity (4.18). O

We now derive Eq. (3.9a).

Proposition 6.2 (Transport equation for the modified divergence of the en-
tropy). Assume that (h,s,u®) is a C* solution to (2.17)~(2.19) + (2.20). Then
the modified divergence of the entropy gradient D, which is defined in (2.16b),
verifies the following transport equation:

WF,D = % [(0.5%)(0x) — (0x5™) (D)}

e {(0.)(038Y) — (1) 05V}

+ 225" (@) (0ah) — (Oxr) (94h)}
L SRC" S.Cr
nH
1—c?) 1
+ %e BWéSQUg(avh)w(g + ﬁe BWéSa(aguv)w
(e — e§h) K QA o % K(QA
+7’I’LH ST(5%0\uy,) TLS (S*0ruk)
(e;h — e) K A 2071645 K A
+7nH S S® (O u™) + - SkS™(Oau™)
2
- ghsns'*(aAuA) + %SKSW(aAuA). (6.3)

Proof. We apply (™1)**0, to Eq. (6.1) [where we use the first equality in (6.1)]
and use the evolution equation (2.19) and the identity (4.18) to deduce

U0, 008N = —u"0, (S Onh) — 2(9xS™)(9.u)
— S%0.0zu™ — (8%0,.h)(Oru’)
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1 1
+ Eeaﬁﬁya(@ah);ggu-YW5 — ﬁeam‘sSguv(aawg)

1
— Eeam‘sSg(aauv)w(;
+ 1S S" (U Orh) 4 2¢S% (U0 S, ) + ¢S S"(Ozur).  (6.4)

Next, we use the evolution equations (2.17) and (2.19) to rewrite the third
product on RHS (6.4) as follows:

—8%9,.00u = S"0,. (¢ 2urdxh)
= ¢ 2(S"ut0x0,h) — 2¢ 3 c.n (S50, h) (u Orh)
—2¢73¢,08,.S"(urO\h) + ¢ 2(S%D,u) (Onh)
= 00, (¢ 28%\h) + ¢ 2(S"0.u™) (Oxh) — ¢ 2 (u"0,.5™)(Dxh)
—2¢73¢.S,. 8" (urO\h). (6.5)

Next, with the help of the evolution equation (2.17), we decompose the second
and third products on RHS (6.5) as follows:

¢ 2(8%0,u™)(Ozh) = ¢ 2(S%0,.h) (Oru’)
+ 2 {(8%0,ut)(0zh) — (Oru™)(S"0.h)},  (6.6)
—c (10, SM)(Oxh) = —c¢ 2 (u"Dh)(0rS)
+ ¢ 2 { (W 9,:h)(02S™) — (u"0,.S5™)(0rh) }
= (9,u™)(9rS)
+ ¢ 2 {(uF9.h)(02S?) — (u0,.S™)(Orh)} . (6.7)

Using (6.6)—(6.7) to substitute for the second and third products on RHS (6.5)
and then using the resulting identity to substitute for the third product on
RHS (6.4), we obtain the following equation:

w0, {ONS + S*Onh — ¢ (SM0xh) }
= (0:5)(0zu™) — 2(05") (9u)
— (870,.h)(OAu™) + ¢ 2(570,h) (Oau?)
+ ¢ 2 {(570,ut)(Ozh) — (Oru™)(S"0,.h)}
+ ¢ {(u0.h)(02S™) — (u"0,.5™)(Orh) }

1 1 1
+ Ee"‘m‘s(aah)sﬁuww(; — ﬁeam‘sSguy(aaw(;) — EeO‘BW‘SSﬁ(aauy)wtg

+ 1Sk S" (uOrh) 4 2¢S" (U0 S,) + ¢S, S" (Ozu)
—2¢73¢,48, 8" (u Ozh). (6.8)

We now multiply both sides of (6.8) by 1/n, commute the factor of 1/n under
the operator u*9,, on LHS (6.8), use Eq. (2.25) (which in particular implies
that "0, (1/n) = (1/n)0,u"), and use Eq. (2.17) to replace the two factors of
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u*dzh on the last and next-to-last lines of RHS (6.8) with —c20\u?, thereby
obtaining the following equation:

w*d, {i(aAsw (5 oxh) - 7110_2<SA8>\h>}
= 2 {(0:57) (03 ~ (02870}
4 %C—Q [(S%0.u™) (9xh) — (D) (S70)}
+ %c* {(u"0,h)(0xS™) — (Oxh)(u"0,.S™)}

1 1
+ ﬁeaﬁv5(aah)gﬂu7w5 — ﬁ€aﬁ7655u7(8a7E5)

1 «
— niHe 57555(8au7)w(5

2 2c¢ e 2q.
+qu~(uAaA5K)+ € Gsg 8% (Out) — Cs*hsﬁs*@(aw%)
+ %sﬂs'ﬁ(am). (6.9)

Next, we use definitions (2.4) and (2.16a) and the identity (2.21) to obtain the
following identity for the second product on the fourth line of RHS (6.9):

1 « 1 «
——nHe ’876Sgu7(8aw5) = ——nHe 575Sau5(87w(;)
_ CKSK 1 _92 aﬂny
=7 “ngf ¢ Saug(0yh)ws
(e;h - 9) K A (e - e;h) K[ QA
+ Y S S (Ohu )+7nH SF(S* O\t ).

(6.10)

Using (6.10) to substitute for the second product on the fourth line of RHS (6.9),
using (2.24) to express the first product on the next-to-last line of RHS (6.9) as

%S’“(u’\(’b\SN) = —%S“(Skaw,i), and noting that the terms in parentheses
on LHS (6.9) are equal to D [see (2.16b)], we arrive at the desired evolution
equation (6.3). O

7. Transport Equation for the Vorticity

In this section, with the help of the preliminary identities of Lemma 4.1, we
derive Eq. (3.8). We also derive some preliminary identities that, in the next
section, we will use when deriving Eq. (3.11b). We collect all of these results
in the following proposition.

Proposition 7.1 (Transport equation for the vorticity). Assume that (h,s,u®)
is a C3 solution to (2.17)~(2.19) + (2.20). Then the rectangular components
w® of the vorticity vectorfield defined in (2.5) wverify the following transport
equations:
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w0y = w"0u® — (0xu”)w® — (w"Oh)u
+ (0 — 0.,) e ug(0,h) S5 + quw” Su®. (7.1)
Moreover, the following identity holds:
(L) e = @ 0kta + @ (Oatty) — (Oxu™)wws + (u“@,m,\)ztawA
+ (0 —0.4)e, " us(9,h)S;5. (7.2)
In addition, the following identity holds:
(dLuwy)ap
= (0a@")(Oxup) — (9p@") (Oxua)
+ @w" 0, 0aup — "0, 03Uq
+ (0a@")(9pux) — (0pw") (Datx)
— (00 0xu™)ws + (030, u")wq
— (0xu”)(Oawp) + (9xu") (Opwa)
+ (Oaug) @ (U Opuy) — (Dpuq )™ (U Opuy)
+ ug (90 @) (U Opur) — ua(9pw™) (U Opuy)
+ ugw M (0au”) (Buun) — uaw™ (5u™)(Dpuy)
+ ugwN (U0 Oatty) — ta@™ (U8, 05uy)
+ (0n — Ounin) e, S (9ah)(05h)Ss
0.0 — On) €y u" (Dph) (D, h)Ss
+ (05 — Oupis )€, U Sa(05h) S5 + (Oinis — 0,5) €0, 7 u"S(0,h)Ss
+ (0 — 0.)€45,.)° (0au™) (0h)Ss + (8. — 0)€,,7° (Dpu™) (D4 h) S
+ (0 — 0,1)€ 5,1 U (0adyh) S5 + (0, — 0) €, u(930,1) S5
(0= 0,052t (D, ) (055) + (0 — 0)e, 2 ut (D, )(D5S5). (7.9

+(
+(
+(
+(

Finally, the rectangular components vort®(w) of the vorticity of the vor-
ticity, which is defined by (2.4) and (2.5), verify the following transport equa-
tions:

u O vort™®(w) = vort” (w)d,u® — (Oxu"™)vort®(w)
+ u® (u" O ug)vort? (o)
+ eP0ug(0,0pu")ws — € 0ug(w" 0,0 us)
+ €27 (D up) (urDrnws )uy + €*PV (uF D up) ™ (Dsun )u,
— €0 5(0, ") (Dsn) — €V 0up(0,w") (Dpus)
b BT8Oy )
— 2P up (0 us)w (Ut Duy)
+ (04 — B:n) S (N9 h) (Oah)
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+ (8 — 0..1) S (U D, h) (u DOxh)
+ (8.5 — O)u(S"Dh) (u Orh)
+ (Bnsn — 0) (N~ 1)* k) (S Orh)
+ (8.5 — 0.1.6)SY(S"0h) + (015 — 0.5)u* S, S (u Oxh)
+ (e;h;s G,S)S,{S“(( _l)a)\aAh)
4+ (0 — 0.4)SY(0uu”) (uOxh) + (8.1, — 0)(S"Deu)(urd\h)
4+ (0 — 0.4)SY((M™ 1) D0xh) + (8 — 0.) S (u uD,Ozh)
+ (0., — 0)u(S"u? 0, 0\h) + (0., — 8) (1) (S%D,Ozh)
+ (0= 0.,)(N"") N (9xh)(0r5) + (8 — 0,) (w"Dch) (u*D25%)
+ (0,0 — 0)u (u*9h) (OnS™) + (8., — 8)((N1)* D,eh) (01 S™)
+ (8 — 0) (") Deh)ug (u*x5")
+ (0= 0.0)u”(n™") A Dch)ug(9257). (7.4)

Remark 7.2 Note that RHS (7.4) features some terms that explicitly depend
on two derivatives of u, falsely suggesting that there is derivative loss, that is,
that vort®(w) cannot be more regular than 9?u. For this reason, Eq. (7.4) is not
suitable for obtaining top-order energy estimates for vort®(w). To overcome
this difficulty, we will derive a transport-div-curl system for w that does not
lose derivatives; see Proposition 8.2.

Proof of Proposition 7.1. We first prove (7.1). From definition (2.5) and the
Lie differentiation formula (2.1), we deduce that

1
w0 w® — whout = Lyw® = —§£u {eaﬁ'y‘sUB(d(Hub))w} . (7.5)

Using (7.5), the Leibniz rule for Lie derivatives, definition (2.5), (4.11), the
first identity in (4.12), (4.14), and (4.16), we compute that

U 0, = whOu® — (0 u")w® + (ui0un)uw® — (U O uy)uw®
— 0P (u D, up) S us — 0.,€*P 0ug(0,h)Ss. (7.6)

Using (4.3), we see that the fourth product on RHS (7.6) vanishes. Next, we
use (2.22) and (4.2) to obtain the following identity for the third product on
RHS (7.6): (u"0,u))u®w® = — (@ 0.h)u® + qww"S,u®. Next, we use (2.22) to
obtain the following identity for the fifth product on RHS (7.6):
—0eP70 (ur D up) Sy us = 0€“P7°(95h) S us = 0€*P0ug (0, h)Ss. Substituting
these two identities for the third and fifth products on RHS (7.6), we arrive
at the desired identity (7.1).
Equation (7.2) follows from the Lie derivative identity

(Lumy)a = u0xwa + @ 0qtiy

[see (2.1)], from using (4.3) to observe the vanishing of the fourth product
on RHS (7.6), and from using the identity for the fifth product on RHS (7.6)
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proved in the previous paragraph. Equation (7.3) then follows from taking the
exterior derivative of Eq. (7.2) and carrying out straightforward computations.
To derive (7.4), we first use definition (2.4) to deduce

1
Lyvort®(w) = —iﬁu(eo‘ﬁng (dwp)s)- (7.7)

Next, we use (7.7), the Leibniz rule for Lie derivatives, (4.11), the first equality
in (4.12), and the standard commutation identity £, dw, = dL,w, to deduce

1
Lyvort®(w) = — (9, u™)vort®(w) — 56“576(u”85uﬁ)(dwb)vg

— %eo‘ﬁ'yéu@(dﬁuwb)%. (7.8)
Next, using (4.25), we express the second product on RHS (7.8) as follows:
—%e”‘m‘s(uﬁaﬁum(dwb)w = —vort®(w) (u"dug)u”
+ u® (u" O ug)vort’ (o)
— PV (uF D up) (ur Oz, Jus
+ € (uF D up) (u Dy us. (7.9)

Next, using (4.3), we observe that the first product on RHS (7.9) vanishes.
From this fact, the Lie derivative identity L,vort®(w) = u"0vort®(w) —
vort®(w)d,u® [see (2.1)], (7.8), and (7.9), we deduce

u" O vort®(w) = vort”(w)d,u” — (Oxu”™)vort™(w)

+ u® (u" O ug)vort” (o)
+ PV (uF D up) (ur Dy Yus
— PV (uF D up) (urOreo. Jus
- %ea’awuB(dﬁuwb),ﬂ;. (7.10)

Next, we use (4.5) and the antisymmetry of € to express the product

on the third line of RHS (7.10) as
PV (uFup) (u Dy )us = €*P70 (uF D up)w™ (Dsuy ).,

use the antisymmetry of € to express the product on the fourth line of
RHS (7.10)

— e (RO, up) (ur O, Jus = €V (uF D up) (uPOrews)u.,

use (7.3) to substitute for the factor (df,wy)ys in the last product on
RHS (7.10), and carry out straightforward computations, thereby deducing
that

udvort™(w) = vort”(w)d,u — (9xu”)vort™®(w)
+ u® (u" O ug)vort’ (o)

+ €270 5(8,0,u™ w5 — P 0ugs(w" 9,0, us)
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+ e (uF D up) (u Ozews ),
eI (U, u5) N (Dyun
— e (0, ) Dstun) — € (D,") (Outs)
€D (9 )
e 0ug(0,us) ™ (uFduy)

+ (O;n5n — 01)€* 0 €5 W ugu (04 h)(0,h) S,
+ (0.0;5 — 0,5)e*7 e [ ugu S, (9,h)S,
+ (8 — 8)e™ e [ us(0,u")(8,h)S,
+ (0, —0)e orde Wuﬂu (avauh)su
+ (0., — 0)e* e M ugu(9,h)(9,S,). (7.11)

Finally, we use the identity
e ey 1 = () L) — (st
R - e
R G R G I e (e R e

to substitute for the five products €*#%¢; " on RHS (7.11). Also using
(2.20), (2.21), and (4.3), we arrive at the desired identity (7.4). O

8. The Transport-div-curl System for the Vorticity

Our main goal in this section is to derive Egs. (3.11a) and (3.11b). We ac-
complish this in Proposition 8.2. Before proving the proposition, we will first
establish some preliminary identities.

8.1. Preliminary Identities

In the next lemma, we derive a large collection of identities that we will use in
deriving the transport equation verified by the vectorfield C* defined in (2.16a).

Lemma 8.1 (Identification of the null structure of some terms tied to the
transport-div-curl system for the vorticity). Assume that (h,s,u®) is a C?
solution to (2.17)—(2.19) + (2.20). Then the following identities hold for some
of the terms on the third through seventh lines of RHS (7.4):

€ 0ug(0,0,u" s = —ur 0, {c e ug(0yh)ws }
— 2(9,u™)c 2P0y 5(8, h)ws
+c % aﬁwé( "0, Uﬁ)(avh)w(;
+e 2 aﬂ'yé ( ) “(&;uﬁ)
2(6 0:1)(S"0h) (™) Oxh)
20 — 0.,)u*(S"0,h) (u Orh)
“2(0,), — 0)S*(u . h) (udxh)
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20, — 0)S7 (1) (D) (9h)
2wy {(B,u%) (8,h) — (95u")(Deh)} s

+2¢7 3¢, (u"0,h)e*P P up S, ws, (8.1a)
1 1
—eP0u5(w" D, Dy us) = E(w“&gwo‘) - ﬁwo‘(w“&gh)
1
- EuawA(w“&Qu)\) + €0 5(0,h) "™ (Dsuy)
— qe“PugS " (dsu), (8.1b)
e (u D ug) (W nws ) uy = —e*P1(Dgh)u, @™ (Dpus)

+ (0,u™) eV (D5 )u, ws
+(0—=0.)((n~")*"Deh)(S*Orh)
+ (0 — 0.5)u (u"0,.h) (S O\h)

+ (0., — 0)S“(u"d,h) (uOh)

+ (0, — 0)S* ()" (,ch) (Orh)
+ qe*P° Sgu, ™ (Dsu, )

— q(9,u") PV Sgu s

+q(0., — 0)((n~")" 9, h) 5™ S
+q(0.5, — 0)u™ (u"0.h)S Sy

+q(0 — 0.,)SY(S"0h), (8.1¢c)
ea576(u”8,$u5)u7w)‘(85uA) = —eaﬁ""s(agh)uww’\(agun
+ g Sgu M (D5uy), (8.1d)

—e™P0us(0, ") (Dnus) = —*P 0 ug(0y ") (Dsun)
_ €a575uﬁ (8Wh)w”(35uﬁ)

1 K a i a K
—E(w Oxww®) + T (Ox@™)

1 1
— ﬁwawA(u'{aﬁu)\) + Euaw)‘(w'*&guA)

— qe®*Pu5(8,u")w, Ss, (8.1e)
€ P0us(0,u") (8, w5) = —(Bpuu™)vort™ (w), (8.1f)
1
—e0u5(0yus)w (U d,uy) = Ewaw)‘(u”&{uA). (8.1g)

Moreover, we have
(0 —0.1,)S((M™ )" 0,0\h) + (0 — 0.5,)S* (W uD,Orh)
= u"0, {(8; — 0)S*(Oru?) }
4 (0, — 0.1.1)S* (U0, h) (Ozu™) 4 (0 — 0.5) (U0 S™) (Oru™)
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+ (8.1, — 0)SY(Fuu™) (Oru”) + (8.5 — 0)S* (u"Deu™) (rh)
+ (8., — 0)SY(Dpu”) (uOrh)

+ (0 —0.,)¢SY(0:5™) + (0 — 0.1)q.nS¥(S"0h) + (0 — 0.1,)q.s S Sk S"™,
(8.2a)

(0,1, — 0)u*(S"ut9,0zh) = u" 0y { (0, — O)u*(S*Orh)}

+ (0, — 0.0 )u® (U, h) (S Oxh)

+ (8 — 0.) (u 0u™) (S ONh)

+ (0 — 0.5)u(u"0,5™)(dxh), (8.2b)
(0.1 — 8)(N™1)*(S"0k0xh) = u 0, {(8 — 0:0)(n 1) **S” (Orup) }
+ (0.0 — On) (U8 h) (1) SP (Orup)
+ (0. — 0)(w5 9. S”) (M) (Oaup)
0 —0.1)5” (") Irup) (u"d,h)

SO~ 0xu”) (Dxup)

a(n™1)**nS") S

+ (8:n — 0)q;s 555"
+2(0., — 0)g(n™1)**9\5")S,. (8.2¢)
Identities that reveal null-form structure and cancellations. The fol-
lowing identities hold?®:
Dy = (8 — 8)(N™1)™9h)ONS™ + (8 — 8.1) (1)} (9:h) (OnS®)
= (0 — 0)(n 1) {(9:h)(9rS™) = (8rh)(8:5M) } (8.3a)
24 = (0 — B,1:0) S (1) N (D,h) (OnR)
+ (04 — 0,,0) S (WO, h) (urOnh) + (B — 0,4;1)S* (U h) (Oru™)
=c2(0n — 0.,.1) S (g7 )" (O h) (OrR), (8.3b)
D5 = (B — 8) ()"0, h) (Sxh)
+ (B — 02) (u9sh) (™)™ 57 (Drup)
= (Bn — 01)S u (1) {(9:h) (Orup) — (On)(Drup)}
+ (B0 — Br)a((N™ 1) ,sh)SA Sy, (8.3¢)
D5 = %(0,, — 0)S(u D) (uOrh)
+¢72(0,, — 0)S*(M ™) () (Orh) + (8 — 0,,) S* (D) (Oru™)
10,0 —8)5(971)"(9:h) (9rh), (8.3d)

250ur labeling of the terms 25, 23, etc. is tied to the order in which terms appear in our
proof of (8.41).
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27 := (0.4 — 0)5* (u Dch) (u*Orh) + (8,5 — 0)5*(n ™) (D,h) (Drh)
+ (8., — 0)S™(u 9, u™) (Ozh)
= (0;n — 6)gS*(5"0:h), (8.3¢)

Do := (0., — 0)(S70,u)(Oru) + (0.0 — 0)(u"Deu®) (S Inh)
+ (0 —0.,) (1) 0u™)S” (Orup)
= (8:n — 0)5™ {(Duu®)(Oau?) — (Dru)(Bput) }
+ %(e — 0.1)e™°(0,u”) Spuy s + (0.0 — 0)(uTDu®) SN Sy, (8.3f)
211 = (0= 0,1)(u 0. 5%)(Dru?) + (0 — 0,,) 57 (N~ * Dru™) (Duup)
= (8., — 0)S” (™)™ {(Deup) (Oau™) — (Dnup)(Deu)} (8.3g)
215 :=2(0,, — 0)(Dpu”) (") S (Drup)
+¢72(0 — 0,1)(S"0ch) () * Oxh)
+ (8.0 — 0)(u"9,5”)(N1)**Drup)
= (8., — 0)(n™1)*"S? {(Duup) (Oru?) — (Daup)(Oxu) }
+c72(0.0 — 0) (1) S UM {(Oaup) (9xh) — (Deup)(Oah)}
+qc2(0 — 0.,)8,.S" (M) axh), (8.3h)
D13 1= (0 — 0.5,)u®(Du”) (S Onh) + (8 — 0.5)u (u"du™)SP (Orus)
= (8:n — B)u”SPuM {(Du™) (Oaup) — (Oau™)(Dnup)}
+q(0 — 0.)u™S,.S"(hu?), (8.31)
D1y = (0 — 0.5)u®(0u”) (S*Onh) + (0 — 0.)u(u"0,.h)(S*O\h)
+(0 = 0.)u*(n™") N (Deh)us (0257
=n(0 — 0.5)u*(u"0.h)D

+ (8. — O)uu” {(3:h)(0rS7) = (OaR)(0:5™) (8.3))
D15 = (0,u™) e (Dgh)uyws + ¢ 2PV (u D up) (0 h)ws
= ¢ 2qe*P° S5(0. h)ws, (8.3k)
Q16 1= —c 2u"e“’g"’é( U0ty )ug (0 h)ws
= —c2qu®e"P° S, up (0, h)ws, (8.31)

215 = (8 — 0,)((n~")*" D) (S OnR)
+ (81 — ©)((N™H) ™ Dh)us(u*0rS7)
= (8 —0.,)S.5%((M~ 1) d\h), (8.3m)
D19 = (0. — 0)u®(u"0,uy)S? (Oru?)
+¢72(0 — 0.)u™(S"0.h) (urO\h)
=q(0.5, — 0)u*S,.S"(Ou), (8.3n)
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Do = (8 — 0,4)S7 (1) Orup) (u"O,ch)
+ (8 — 0.4) (u" D h) (u* 9, 5%)

=0, (8.30)
Doy = (0. — 0)u® (u"Oup)u’ (S O\h)
= 0. (8.3p)
Proof. We split the proof into many pieces.
e Proof of (8.1a): We first use Eq. (2.17) to deduce
€MV 5(8,0,u" s = —e“ P 0uy {0,(c ?u"0,h) } ws
= —e"Pug(c?u"0,0,h)ws
+2¢7 3¢, (U D h) e 0ug(8,h)ws
+ 20_30;5(u”aﬁh)e“méuﬁSWw(;
— 20U (0, u™) (D) ws. (8.4)

Next, we rewrite the first term on RHS (8.4) as a perfect u”9,, derivative plus
error terms, thereby obtaining, with the help of (2.19), the following identity:
€00 5(8,0,u" s = —u"0, {6aﬁ75672U5(8-yh)’(D5}
+ ¢ 2P (uF D up) (8, h)ws
+ ¢ 2P 0u5(0,h) (U Dy ws)
— ¢ 2e"P0u5(0,u™) (Dh)ws
+2¢73 ¢, (u" 0, h) PP up S, ws. (8.5)

Using Eq. (7.1) to substitute for the factor u”0dyws in the third product on
RHS (8.5), we deduce
€M 5(8,0,u" )ws = —u"0, {cfzeaﬂ“"suﬂ(ayh)w(g}
+ ¢ 2P (4 D, up) (0 h)ws
+ ¢ 2 0u5(0,h) (w" Dus)
— ¢ 2(0u") e ug (0, h)ws
+¢72(0 — 0.,) e e P ugu” (9,h) (h) Sy
— 2P 0u(0,u") (Dh)ws

+2¢7 3¢, (u 0, h) e up S, ws. (8.6)

Next, using the identity (4.21), we express the third product on RHS (8.6) as

follows:

¢ 2e Py (0, h) (" Dus) = ¢ 2e*PPug (9, h)w" (D5 (8.7)
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Next, using the identity
—e™0es N = (M (M) — (M ()
+ MM = (T HME ()
+ MM — e ()

and Egs. (2.20), (2.21), and (4.2), we express the third-from-last product on
RHS (8.6) as follows:

20 — 0.4)e* e, P ugu” (0,h)(9,.h) Sy
=¢72(8 — 0,,)(S"9:h) (N~ 1) Onh)
+¢72(0 — 0.5,)u®(S"0,.h) (urdrh)
+¢72(0., — 0)S*(u0,.h) (urOrh)
+e72 (0, — 0)S (™Y (k) (Orh). (8.8)

Using (8.7) and (8.8) to substitute for the relevant products on RHS (8.6),
adding and subtracting ¢~ 2?3 ugtos(9,u")(0,h), and reorganizing the terms,
we arrive at the desired identity (8.1a).

e Proof of (8.1b): We first use (4.22) to deduce

PV 0ug(w" 0,0y us)
1 1
= ugw" O {Hw"uﬁ - ﬁuawﬂ — e*P(9 h)us + qe“m‘sSﬁ,utg} . (8.9)

The desired identity (8.1b) now follows from (2.6), (2.20), (4.2), (4.3), (4.5),
(4.21), (8.9), and straightforward calculations.

e Proof of (8.1c): We first use Eq. (2.22) to substitute for the factor u”d,ug
on LHS (8.1c), thereby obtaining the identity

eV (uF Dug) (W Orws)uy = —e*P7°(Aph) (urOrwos)u.,
+qe*P° S5 (u Oxems )u. (8.10)

We then use Eq. (7.1) to substitute for the two factors of u*9yws on RHS (8.10),
which yields the identity

e (u D ug) (W drws ) uy = —e*P7(dgh)u. (w"d,us)
+ (9,u™)e*PV (Dgh)uyws
+ (8., — 0)e™P0 e N Agh)u” (D,.h)Sau.,
+ qe*P Sgu (w" D us)
— q(9,u") eV Sgu s
+q(0 — 0.,)e*0 e M (0.h)SxSpuy. (8.11)

Next, we use the identity (4.21) to express the first and fourth products on
RHS (8.11) as follows:

—€a575(aﬁh)(w>\a,\u5)u7 = —€a575(85h)wA(85u>\)u7, (8.12)
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q€*P Spu, (w"Opus) = g€ Spu, ™ (Dsu,). (8.13)
We then use the identity
e es A = (ML) — (M)
+ M) — (M)
+ M) = (s ()

and Egs. (2.20) and (2.21) to express the third product on RHS (8.11) as
follows:

(8 — 8)e™™ €5,/ (Dph)u” (Dsh) Sxu,
= (8= 0)((n~1)**Deh) (S*ONR)
+ (0 — 0.)u(u"d,.h)(S*Oxh)
+ (8, — 0)S*(u"h) (uOrh)
+ (8, — 0)S () (9:h) (D). (8.14)
Similarly, we express the last product on RHS (8.11) as follows:
q(8 — 0.n)e*™ €5, u (9:h) SaSpuy = q(0:, — 0)(N 1) *0h) S Sy
+ q(0;, — 0)u® (U9, h)S* Sy
+q(0 —0.,)SY(S"0kh). (8.15)

Using (8.12)—(8.13) and (8.14)—(8.15) to substitute for the relevant prod-
ucts on RHS (8.11), we arrive at the desired identity (8.1c).

e Proof of (8.1d): (8.1d) follows easily from using Eq. (2.22) to substitute for
the factor u*0d,us on the LHS.

o Proof of (8.1e): We first use the identity (4.17) to deduce
€50, (Dtis) = €7 (0, (D)
+ %eam‘sem@,\u wMug (0, w")
+ e“P0u5(0y "™ Yuy (O5h) — qe®P P ug(8, " )u,Ss.
(8.16)
Next, we note the identity
€, son = —€P e, 005 = 52608) — 82655
+ 80555 — 52515, + 57555, — 578555,

which, in view of (2.20), (4.2), and (4.5), allows us to express the second
product on RHS (8.16) as follows:

1
—eam‘se,ﬂ;g)\uew)‘uﬁ(&yw“) = fﬁwaux (u“@KwA)

1
+ Euau)\(w“a,{w)‘)
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1 K (0% 1 (07 K
—i—E(w ) — 7@ (Ow")
1 1
= Ewo‘wA(u”&@uA) - Euo‘wk(w“&@ux)

1 K a i a K
+ (@ 0,”) — @ (D). (8.17)

Using (8.17) to substitute for the second product on RHS (8.16), and us-
ing (4.5) to express the third product on RHS (8.16) as €*%us(0, " )u, (sh)
= —e*P0ugw”(0,u, ) (05h) = €*F7%ug (0, h)w" (Dsu,) and the last product on
RHS (8.16) as —qe*®%ug(0,w")u,Ss = e ug(d,u”)w,Ss, we arrive at
the desired identity (8.1e).

e Proof of (8.1f): (8.1f) follows from definition (2.4) with Vs := ws.

e Proof of (8.1g): (8.1g) is a straightforward consequence of (4.22), (2.20),
and (4.2).

e Proof of (8.2a): We first use (5.5) to express LHS (8.2a) as follows:
(0 —0.,)SY(M™ 1) D0xh) + (8 — 0.4,) S (u"uD,.Ozh)
= (8:n — 8)S* (un0pu™) + (8: — 8)S* (D) (Oru”)
+ (8., — 0)S“(u D u)(Onh) + (0.1 — 0)S*(Du™) (urIrh)
+(0—0.,)g5%(0x5") + (0 — 0.1,)q:nS*(S"0xh) + (0 — 0.5)q.s S5, S".
(8.18)

Next, with the help of Eq. (2.19), we rewrite the first product on RHS (8.18)
as follows:

(0, — 0)S*(u ONDu™) = w9y, {(8;, — 0)S*(Oru™)}
+ (Gh — 6;;L;h)Sa(u“8ﬁh)(B,\u’\)
+ (60— 0,) (u"9,5%) (Dru?). (8.19)

Using (8.19) to substitute for the first product on RHS (8.18), we arrive at the
desired identity (8.2a).

e Proof of (8.2b): (8.2b) is a straightforward consequence of Eq. (2.19).

e Proof of (8.2c): We first differentiate Eq. (4.18) with (n™!)®*dy and then
multiply the resulting identity by (8., — 0) to obtain

(8:n = B)(N™1)*N(S"0x0xh) = (0 — 0,) (™) S (w0 Orup)

+ (6= 0,4)((N1)**0x5")(Drh)

+(0—0.) (1) 0nS?) (u" Deup)

+ (0 —0.,)S”((M™1)*0\u") (Dup)

+ (8,0 — 0)gin (M) 0xh) S, S"

+ (8., — 0)q.s5%S5,. 5"

+2(8, — 8)g((n~1)*aS")S..  (8.20)
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Next, with the help of Eq. (2.19), we rewrite the first product on RHS (8.20)
as follows:

(0 — 0.,) (1) SP (1D, Orup)
= u 9, {(0 — 0.,) (1) S (Dyug) }
+ (0.0 — 1) (WD) (n™1) 1S (Daup)
+ (0.0 — 0)(u0,S”) (™) (Drup)- (8.21)

Next, we use Eqgs. (2.22) and (4.4) to express the sum of the second and third
products on RHS (8.20) as follows:

(6 = 0:)((N™1)*01S5")(9ih) + (8 — 8:) (N~ 1) **OnS”) (w"Dpuig)
= (01 — 0)((N™ 1) xS )us(udsh) + (8 — 0:4)q((n™1)**9x5%) S5

= (80— 0,,)57((n~")*Daup) (u®Beh) + (8 — B.1)a(N~")**DrS")Ss.
(8.22)

Using (8.21) to substitute for the first product on RHS (8.20), and using (8.22)
to substitute for the second and third products on RHS (8.20), we arrive at
the desired identity (8.2c).

o Proof of (8.3a): We simply use (4.1) to express the second product on
LHS (8.3a) as follows:

(6= 0:n) (1) (9xh)(0xS*) = (6 — ) (N~ 1) (Orh)(9:57).
e Proof of (8.3b): We use Eq. (2.17) to substitute for the last factor dyu* on
LHS (8.3b) and then appeal to Eq. (2.13b).

e Proof of (8.3¢): We first use (4.18) to express the first product on LHS (8.3c)
as follows:

(Bunsn — 01)((N™1) ¥ Dch) (S Oxh)
= (0n — Onsn) (1) h) (W Dnup) S”
+ (80 — On)a((n 1) ,h) S S\ (8.23)

Using (8.23) to substitute for the first product on LHS (8.3¢), we arrive at the
desired identity.

e Proof of (8.3d): To prove (8.3d), we first use Eq. (2.17) to express the last
product on LHS (8.3d) as follows:

(0 — 0.4)SY(0uu”) (Oru?) = ¢ (0 — 0.,) S (u" D h) (u Orh). (8.24)

Using (8.24) to substitute for the last product on LHS (8.3d) and appealing
to Eq. (2.13b), we arrive at the desired identity.

o Proof of (8.3¢): We first use (2.22) to substitute for the factor u*d,u* in the
last product on LHS (8.3¢), thereby obtaining the following identity:

(0.5, — 0)SY(u D u)(Oxh) = (0 — 0.4)S* (M) (.h)(Orh)
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+ (8 = 0.4,)S“(u D h) (u*O\h)
+ (0., — 0)gS™(S",.h). (8.25)

Using (8.25) to substitute for the last product on LHS (8.3¢), we arrive at the
desired identity.

o Proof of (8.3f): We first use (4.1), (4.4), and the first equality in (6.1) to
express the last product on LHS (8.3f) as follows:

(8 — 0.)(N™1)0,u)S” (Drup) = (8 — 0)(9pu®) (u”9pS")
= (9 = 0,1)(0,u®) (5 9yu”)
(9 — 8.1)€" (9,u”) Spuy s
(9 —0,1) (u0,u®)(S Onh)
+q(0., — 0)(u"0,u*)S*Sx.  (8.26)

Using (8.26) to substitute for the last product on LHS (8.3f), we arrive at the
desired identity.

e Proof of (8.3g): We use (4.1) and (4.4) to express the first product on
LHS (8.3g) as follows:

(8 — 0,) (u0.5°) (D) = (0 — 0,)(u*(n~")**95S,.) (Bx)
= (84— 0)S°((N™)™ Dpug)(@re).  (827)

Using (8.27) to substitute for the first product on LHS (8.3g), we conclude the
desired identity.

e Proof of (8.3h): To prove (8.3h), we first note the following identity, which
we derive below:

¢ 20— 0.)(S"9h)((n~1)**Drh)
+ (8., — 0)(u"0,.S7) (M~ 1) Irup)
= (0 —0,1)5"(9pu) (1) * Oru?)
+ 720 — 0)(uDxug) S (M) Dxh)
+ 720 — 0.4) (M) Deup)S? (u Ozh)
+ (0= 0.) (1) 0eup) S’ (Oru?) + g™ (0 — 0.4) 57 Sp((n~ ") D).
(8.28)

Using (8.28) to substitute for the sum of the second and third products on
LHS (8.3h), we conclude the desired identity (8.3h).

It remains for us to prove (8.28). To proceed, we first use (4.1) and (4.4)
to express the second product on LHS (8.28) as follows:

(6.1 — 0)(u"0,.57) (™) Orup)
= (e;h - e)<uKaBSN)((n_l)a>\aAuﬁ)
= (80— 0.,)(S”Oaup) (N~ 1) Du’)
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=(0- e;h)((nil)aﬁanug)sﬁ(({%\u’\)
+ (8,0 — 0) (1) " Dup) S (Dru)
+ (0 = 0:) (87 0aug) (™) D), (8.29)
where to obtain the last equality, we have added and subtracted
(0.1 — 0)((M 1) up)SP (Oau?).

Next, we use Eq. (2.17) to substitute for the factor dyu in the first product
on RHS (8.29), which allows us to express the product as follows:

(8 —8,n)(N™1)*"Drup)S” (Onu?)
= 20 — B)(n) ™ D) S (uOnh)
= c72(8;, — 0)(uDaup) S (N™1) " D,h)
+¢2(8 = 0,4) (udrug)S7 (n~1)* D,h)
+¢72(0., — 0) (M) Deup)SP (u Orh), (8.30)
where to obtain the last equality, we have added and subtracted
¢2(8 — 0,) (D) S ()0, h).
Next, we use Eq. (4.18) to express the first product on RHS (8.30) as follows:
¢ (0,0 — 0)(udrug) S (1) 0.h)
=c72(0 — 0,,)(S"9:h)(n~1)* k)
+qc (0, — 0)S,5" ()™ k). (8.31)
Combining (8.29)—(8.31), we find that
¢ (0 — 0,4)(S70:h) (M~ 1) * Ih)
= (8., — 8)(u"0,:5”) (") *Daup)
+(8 = 8:) (71" Dup)S” (Oru*) + (85 — €)(S Dnug) (™) Dpu?)
+ ¢ 2(0., — 0)(utdrup)SP (M~ 1)*"9,.h)
+¢72(0 = 0.5)(( 1) Onup)S? (u Orh)
+qe73(0 — 0,,)8,.5% (N~ 1) Ih). (8.32)
Using (8.32) to substitute for the first product on LHS (8.28), we deduce
¢2(8 = 0,1)(S"0:h) (N~ 1) rh)
+ (8 — 8)(u" 8. 5”) (1) Irup)
=2(8,5 — 8)(u"8,5”) (") Irup)
+(8 = 8) (1) Dup)S” (Oru*) + (8 — €)(S Drug) (™) (9pu)
+e (8 — 0)(udup)S”(N™1) " D,h)
+¢72(0 = 0.)((n1) M Onup)S? (uw Oxh)
+qc72(0 — 0,,)8,.5% (N~ 1) Ih). (8.33)
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Next, we use (4.1) and (4.4) to express the first product on RHS (8.33) as
2(8;n — 0)(u"9,5”) (N~ 1)**Drup)
= 2(0; — 0)(u"95S,) (N~ 1) **ou’)
=2(0 — 0.,)(S"9pu.) (M~ 1) ozu?). (8.34)

Using (8.34) to substitute for the first product on RHS (8.33), we arrive at the
desired identity (8.28). This completes the proof of (8.3h).

e Proof of (8.3i): We use the identity (4.18) to substitute for the factor S*d\h
on LHS (8.3i), thus obtaining

(0 — 0.,)u(9uu) (S Ozh) = (8.1, — O)u (D) S (uDyug)
4 (0 — 0.5)qu® (9, u")S* S, (8.35)

Using (8.35) to substitute for the first product on LHS (8.3i), we arrive at the
desired identity.

e Proof of (8.3j): We first use Eq. (4.1) to express the last product on LHS (8.3j)
as follows:

(8 — 8:)u (™) (9:h)us(925”)
= (8- 0,)u(8,h) (10,5")
= (0 — 0.5)u®(u"9,h)(9rS™)

+ (0.1, — O)uu {(Orh) (0. S™) — (0h)(0rS™)}, (8.36)
where to obtain the second equality in (8.36), we added and subtracted
(0.5, — 0)u(u9,.h)(0xS*). Next, we solve for 9yS* in terms of the remaining
terms in definition (2.16b) and then use the resulting identity to algebraically

substitute for the factor dyS? in the first product on RHS (8.36), which yields
the identity

(0 — 0.)u(u"9,.h)(0xS?) = n(0 — 0.,)u® (u"0,h)D
+ (0.5, — 0)u(u"d.h)(S*xh)
+¢72(0 — 0.)u (u"9,.h)(SM\R).  (8.37)

Next, we use Eq. (2.17) to substitute for the factor u”d,h in the last product
on RHS (8.37), which yields the identity

(0 — 0.,)u(u"d.h)(0xS*) = n(0 — 0.,)u® (u"d,.h)D
+ (0,1 — 0)u” (u"9,h) (S Oh)
+ (8., — 0)u (9, u™) (S O\R). (8.38)
Substituting RHS (8.38) for the first product on RHS (8.36) and then using

the resulting identity to substitute for the last product on LHS (8.3j), we arrive
at the desired identity (8.3j).
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e Proof of (8.3k): We first use Eq. (2.22) to substitute for the factor of u”d,ug
in the second product on LHS (8.3k), which yields the identity

(9pu™)ePV (Dgh)uyws + 2P (uF D up) (0 h)ws
= (D,u™)e*P°(Dsh)u,ws — ¢ 2 (u"Dh)e*P P ug(8,h)ws
+ ¢ 2qe“P2 S5(0,h)ws. (8.39)

Using Eq. (2.17) to substitute for the factor d,u™ in the first product on
RHS (8.39) and taking into account the antisymmetry of €, we see that the
first and second products on RHS (8.39) cancel, which yields the desired iden-
tity (8.3k).

e Proof of (8.31): We simply use Eq. (2.22) to substitute for the factor u”d,u,
on LHS (8.31).

e Proof of (8.3m): We simply multiply Eq. (4.19) by (8., — 0)(n~1)**9,h.

e Proof of (8.3n): We use Eq. (4.18) to substitute for the factor (u"0,us,)S?
in the first product on LHS (8.3n) and Eq. (2.17) to substitute for the factor
u?dxh in the second product on LHS (8.3n).

o Proof of (8.30): We simply use Eq. (2.24) to substitute for the factor u*dy S
in the second product on LHS (8.30).

e Proof of (8.3p): (8.3p) follows from (4.3). O
8.2. The Transport-div-curl System

Armed with Lemma 8.1, we now derive the main result of this section.

Proposition 8.2 (The transport-div-curl system for the vorticity). Assume that
(h,s,u®) is a C® solution to (2.17)—~(2.19) + (2.20). Then the divergence of
the vorticity vectorfield @w® defined in (2.5) verifies the following identity:

O™ = —w"0.h + 2qw"S,.. (8.40)

Moreover, the rectangular components C* of the modified vorticity of the
vorticity, which is defined in (2.16a), verify the following transport equations:

U0 CY = CFOeu® — 2(0xu™)C® + u®(u"0uy)C
— 2e“PV0u5(8, ") (D)
(O — 8) {7 + 2u"u } {(D.h) (91 ™) — (9ah)(9.5Y)}
+n(0 — 0.,)u*(u*d,h)D
4+ (0 — 0.4)¢S%0S" + (8., — 0)g((n~1)*19xS%) S,
+Qcay + Lca), (8.41)
where Q ¢« is the linear combination of null forms defined by
Qeoy = —c 72" (9 u)up (9, h)ws
+ (c72 4+ 2)e*Pug(0, h)w" (D5
T 2y (D) (D,h) — (9yu") (D)}
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+{ (B —B8n) +¢2(8 = 0;)} (N1 SFurx
{(0xh)(Orug) — (Oxh)(Oxugp)}
+ (8, — 0)S"u* {(9xu)(Orh) — (Oru®)(9xh)}
+ (0., — 0) {(n_l)a” + uo‘u“} S8 %
{(Dcus)(Oru™) = (Orup) (Ou*) }
+ (8, — 0)S* {(0uut) (Oau") — (Opu™) (Oau)}
+ (8, — 0)S™ {(9pu™) (Onu?) — (Dau®)(Du?)}
+ S5 {e72(0n — ) + ¢ (0 — 0)} (97 1) N (Duh) (OnR),  (8.42)
and £cay, which is at most linear in the derivatives of the solution variables,

1s defined by

2 2
Loy = ﬁqw”SRwa - Ewa(w”&.{h)
+ 20_30;5(u“@,ih)eo‘m‘sufg&yw(;

— 2qe(’ﬂ'y‘5uﬁ5’7w“(6§uf§) — q(aﬁu“)eo‘57555u7w§

+ %(6 — G;h)e"ﬁv‘;(@,{uo‘)sﬁguwfﬂg + C*QqeO‘BV‘SSg(@Wh)w(;

— ¢ 2que™ S, ug(0,h)ws

+q(0;, — 0)S.S" (utdau®)

+q(0;n — 0)u*S,. S (urOnh) + (B;5s — 0,5)u® S, S™ (uOrh)

+ (0,5 — 0.1:5)SY(S"Okh) + (0 — 0,1)q.n S (S"Okh)

+q(O;nn — eh)SnSn((nil)a)\aAh) + (8;n5s — G;S)SHSH((nil)a)\akh)
+qc7(0 = 8,1) S5 (N 9nh) + (8,5 — G)Q;hSnsn((ﬂ_l)M?gzg)

Proof. We split the proof into several pieces.

e Proof of (8.40): First, from definition (2.5) and the antisymmetry of e"*°
we deduce

Opw™ = —"(9,ux) 0, (Hus). (8.44)
Next, using (4.16), we deduce that
RHS (8.44) = @ (u"0,uy) — w"ut(Duy) — 0" (Dup)Syus.  (8.45)

Using (4.3), we see that the second product on RHS (8.45) vanishes. Moreover,
using Eq. (2.22) and the identity (4.2), we can express the first product on
RHS (8.45) as follows:

w’\(uﬁaﬁu,\) = —w"O.h + qw"S,. (8.46)

In addition, using definition (2.7) and the identity (4.23), we can express the
last product on RHS (8.45) as follows:

—GeHM(s(amuA)SA,u(; = qw"™S,. (8.47)
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Combining these calculations, we arrive at the desired identity (8.40).

e Proof of (8.41): The proof is a series of lengthy calculations in which we
observe many cancellations. We start by using (8.1a)—(8.1g) to substitute for
all of the terms on the third through seventh lines of RHS (7.4) except for
the term —e®#ug(d,")(0su,) from the fifth line, which we leave as is. We
also use (8.40) to express the fourth product on RHS (8.1e) as £w@w®(9,@") =
— 2@ (@w"0,h) + 2w @ S, and we use (8.2a)—(8.2c) to substitute for the
four products (which depend on the second derivatives of h) on the sixth-
to-last and fifth-to-last lines of RHS (7.4), thereby obtaining the following
equation (where at this stage in the argument, we have simply performed a
term-by-term substitution and have not yet organized the terms):

w0 vort™®(w) = vort®(w)d,u® — (9,,u™)vort™(w)
+ u® (u*dpup)vort? (w)
—u"0, {C*QGO‘M‘SUB(&Y}L)W(;}
— 2(0,u")c 2PV 0u5(8, h)ws
+ ¢ 2PV (uF D, up) (9, h)ws
+ %M ug (9, h)w" (Dsun)

+c‘2( 8:1)(S":h)(n~")**Oah)
c2(0 — 0.5,)u(S"0,h)(u drh)
¢ (8, — 8)S* (u"h) (uOrh)
¢ (8 — 0)S (M) (9:h) (Or)

F 2P (0,0 (0, h) — (0,u") (Ouh)) s
+ 20_30;8(u”@nh)eaﬁ'yéuBSWW5

1 K A l K
+ E(w Opw™) H(w Orh)w
— iuaw’\(w“(‘i{u)\) + €P0u5(0,h) "™ (Dsu,)

H
_ qeaﬁ'yé

eV (Dh)uy ™ (Dsuy) + (Deu™)e*PV (Dgh)uyws
+(0—0,1)((n™ 1) 0sh)(S9xh)
+ (0 — 0.5,)u™ (u"0.h)(S*O\h)
+ (0.5, — 0)S™(u 0, h) (urOzh)
+ (0.0 — )5 (N1 (Dh) (Orh)
+ e Sgu, ™ (D)
— q(8,u") e Spu s
+q(0, — 0)(N™")"D,h)S* S

ugSyaw" (Osus)
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+ q(0.1, — B)u (u"0.h)S* Sy + q(6 — 0.,)S*(S"D,.h)
— e*P(9sh)u, @ (Fsuy) + g€ Spu, ™ (Dsuy)

— (0, ) (5

= €0, 5) Bst) — € ug (D) (5
- 2 (@0") — @ (@) + A,

- %wawA(unﬁnuA) + %uo‘w)‘(w“&iun

— qeam‘sulg(&yu“)wn&;

— (Oxu")vort®(w)

0.s — 0.1.6)SY(S"0, h) (8.5 — 0.)u* S, S™ (urh)
n(( —l)a)\a)\h)

S
0— e;h)sa(aﬁuﬁ)( N
+ (8., — 0)(S"0u®) (uOxh)
+u 0, {(8;, — 0)S*(Oru*)}
+ (8, — 0..1) S (U0, h) (Ozu)
+ (8 — 0.) (u"0,5%)(Dau)
+ (8, — 8)S¥(Dpu*)(Dru”)
+ (0., — 0)SY(u"Du) (Onh) + (0.1, — 0)S™(Du”) (urIrh)
+ (0 — 0.,)gS*(9:5") + (6 — 0.4)q.nS*(S"0,h)
4 (0 — 0.,)q.55%5,. 5"
+u" 0, {(8,, — O)u(S )}
+ (8, — 0.1 )u® (U, h) (S Oxh)
+ (0 — 0.5) (u"Du®) (S O\h)
+ (0 — 0.)u(u"0,.S)(9xh)
+u"0, {(8 = 8) ()57 (Drup) }
+ (Bun — 0) (1 Dh) S (N™1)**Orugp)
+ (8., — 0)(u . S”) (™) * Oaup)
+(8 = 0.,)8”((n1)*Oaup) (u*dsh)
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+(0—0.1)87 (") 0au™) (Drup)
+(8—0.)a(n™1)*9x57)55
+ (8. — 0)gn((n™1)* D)5, 5"
+ (0.0 — 0)q. SV Sx 5" +2(8:0 — B)g((n™")**Dx5™) S
+(8 = 0.,) ()" (9:h) (925%)
+ (0 = 0,) (w0 h) (u9,S%)
+ (8., — B)u (u"Dh)(0rS™)
+ (0.0 — 0)(N™1) "0, h) (925
+ (8. — 0)(N") ™ Deh)ug(u*xS”)

4+ (0 — 0.5)u*(M™ 1) M (Duh)us(0xS?). (8.48)

Next, we bring the four perfect-derivative terms u"0,{- - - } on RHS (8.48)
over to the left-hand side, which yields the equation

u”a,{{vorta(w) + ¢ 2eP0ug(0h)ws + (8 — 0.,)S* (zu)

(08— 0,)u (S 9xh) + (8, — e)(nfl)wsﬁ(awﬁ)}

= vort” (w) 0. u® — 2(du™)vort® (w) 4+ u® (u"deug)vort’ (w) + -
(8.49)

where the terms - - - do not involve vort(z). Next, we solve for vort(z) in terms
of the remaining terms in definition (2.16a) and then use the resulting identity
to algebraically substitute for the four instances of vort(w) in Eq. (8.49) (note
in particular that the terms in braces on LHS (8.49) are equal to C%). In total,
this yields the following equation, where we have placed the terms generated
by the algebraic substitution on the first through tenth lines of RHS (8.50):

U 0,C* = CFOpu®™ — 2(9,u™)C* 4+ u® (u"yup)C?
— 2" (9 u)up (8, h) s + (0. — 0)(S¥Du®)(dru?)
+ (0.1, — 0) (U 0eu®)(S*O\h) + (0 — 0.1) (1) (9u™)SP (Orup)
+ 2(Du™) e 2P 005 (0, h)ws 4 2(0 — 0.5)S% (Dpu”) (Dru)
+2(0 — 0.5)u®(Du™) (S Onh)
+2(0, — 0)(0,u) S (1) Dyup)
— u® (U Opu, )27 0us (0, h)ws
(8 — O)u® (1 Byu,) 7 (Dys®)
+ (8., — 0)u® (u* D up)u’ (S Orh)
(8 — 8)u” ()P (Dyug)
— 2(0,u")c 2P 0ug(8, h)ws
+ ¢ 2P (uF D, up) (0, h)ws
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+0’2€“Mw(57 )" (Dsu)

720 = 0,,)(S"0:h) (n™1)* Dah)
u®(S"0,.h)(utdxh)
S (U Bh) (uOrh)
SN 0eh)(0xh)
+ ¢ e u {(9,u) (D5 h) — (84u”)(9sh)} s
+ 2c_3c;s(u”(i),ﬂh)e“ﬁ”guﬁva(;

( )
(0 -0.)
2(9h—9)
( )

1 K 87 1 83 K
+E(w Opw®) — i (w"dh)

— %uaw/\(w"anw\) + €0 5(0, h)ww"™ (Dsu,)

—qe
— P (9sh)u, " (Dsuy) + (Bxu”) e (d5h)u, ws

+ (0= 0:) (71 0h) (S*Onh) + (8 — 0 )u (u",ch) (S D)
+ (85 — 0) S (W 9ch) (uPOxh) + (8;n — 0)S* (™)™ (D) (D)
+ ¢V Sgu, ™ (Dsu)

— q(8,u”) P Sgu ws

+q(0., — 0) (1) 9,.h)S*Sy + q(0.5, — O)u® (u"0,h)S* Sy
+q(0 — 0.,)SY(S"0h)

— e*P(9sh)u, w (Fsuy) + g€ Spu, ™ (Dsuy)

O‘mﬁugSﬁ,w“(&;um)

— (0, ) (5
- 605761@3(8”/@&)(651%) - €a676UQ(67h)wﬁ(65uK)
1 K o 1 =@ K 2£ a,__K
fﬁ(w Oxww®) — (w"0xh) + T Sk
1 1
- ﬁw"‘wk(u Ok u)\) Eu @ (@ D)
— g€ 0ug(0,u")w, Ss

1
+ Ew"w)‘ (u"0kuy)

“0uh) + (O.hs — 0.)u®S,.S"(udrh)

D
>
»
|
D
»
n
X
n —
=
—
—
|
—
~—
Q
>
5
>=
~—
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0.
0 — 0,,)¢.s 55, S"

0 — 0.5)u(u"0,.S8)(9xh)

O.n — ) (w0 h) S (N1) X Onup)
0.1 — 0)(u"9,57) (1) Irup)

0 —0,1)57 (") Drup) (u"d,h)

0 —0.1)S” (") * au”) (D)

CD

h

n
n
n
I
n
n
n
n
n
I
+ )S
+ )
+ )
+ (0., — 0)q.s5S.S"™ 4+ 2(0.1 — 0)g((M™1)**0xS") S,
+ )
+ )
+ )

0.n — 6)((N™1) " Oh)up(u02S”)
0 —6,n)u(n"") " (0xh)ug(9257).

A~ N N N N N Y~ N~ Y~ N N~

0 — 0.1,)5%(9uu”) (W Orh) + (8.1, — 0)(S"Dpu®)(urh)
01 — 0.1.1) S (U, h) (Onu™) + (8 — 0.5) (u" D, S¥) (Dru?)
0., — 0)S%(9uu™)(Oau”) + (0.1, — 0)S* (u"Du™)(Orh)
0., — 0)SY(Duu”) (urh)

0 — 0.,)qS*(9,.5%) + (6 — 0.,)¢.1 S (57D, h)

0 — 0.,) (N~ 1) (Dh)(9rS%) + (8 — 0.1,) (u" D) (U DrS%)
0.1, — 0)u(u"dh)(0xS) + (8.n — 0)(N™1)*Dh)(0rS™)

2235

On — 0.0 u® (U 0, h) (S Oxh) + (0 — 0.5) (w0, u™) (S Oh)

a((n™)**0x8%)S5 + (B — 8)gin((N 1) *0ah) S 8"

(8.50)

Next, we reorganize the terms on RHS (8.50) to obtain the equation

21

UF9CY = CFOu® — 2(0pu")C + u® (W Opup)C’ + > 2+ .,

where

c@l =

Dy =
D3 =
9Dy =

25 =

Zs

i=1

~2e27 (0, ") (D5,

0.0 — 0)(N 1) 0h)OxnS™ + (0 — 0,4) (N~ 1)"(9:h) (0rS%),

(

(0.1, — 0)u™ (U0, h)(0xS™) + (0 — 0.5)u™ (u"0,S™) (Orh),
(0 — 0,15 (N~ 1) (D) (9rh)
+

(8.51)

(8.52)
(8.53)
(8.54)

(0 — 0.5.1)S% ("D h) (U Orh) + (85 — 0.1.1) S (D) (Oru™),

(B:nin — B1) (™) (D:h) (S*Onh)
+ (O — On) (u"0:h) S (1) Daup),

= 2(0., — 0)SY(u D) (uO\h)

(8.55)

(8.56)

20 — 0)S (M) (D:h) (Bah) + (0 — 0,) 5% (Do) (Oau),

(8.57)
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Dy = (0., — 0)SY(u . h) (uDxh)
+ (8,0 — 0)S (™) (9xh)(Oxh) + (8.1, — 8)S* (u D) (Drh), (8.58)

Dg = (0., — 0)SY(Fpuu™) (Oru™) + (8 — 0.1,) 5% (Dpu™) (D), (8.59)
Dy = (0., — 0)(S"0,u) (Oru?) + (8.1, — 0) (u"Dpuu®)(S*O\h)

+(0 = 0.4) (1) 0,u*)S? (Orup), (8.60)
D10 := (0.5 — 0)(S"0,u®)(uOxh) + (8 — 0.5) (u"Deu®) (S O\h), (8.61)
211 = (8 — 0.) (u"0,5) (Dru?)

+ (0 — 0.4)S? (M1 0au”) (D), (8.62)
Qg = 2(9 = 0)(Du) (™) NS (Drup)
720 — 0,,)(S"0xh)

(n=1)**axh)

(G;h —0)(u"9,5”) (1) Drup), (8.63)
D13 = (0 — 0.1)u® (9 u™) (S Oxh) + (0 — 0.5)u (u,u™) S (Drup), (8.64)
D1g = (0 — 0.5)u(0u”) (S Oxh) + (0 — 0.5)u™(u"0,.h) (S O\h)

£(0— 800" (YA (O, h)us(9457), (5.65)
D15 = (0,u™) e (Dgh)u s + ¢ 2P (u D up) (0 h)ws, (8.66)
D16 = —c 2u"e? P (u B uy )ugs (0 h)ws, (8.67)

Dy7 = —c 2" (9 u)ug (0 h)ws
+ (¢72 +2)e*Pu5(0,h)w" (Dsus)

+ 2 ugms {(9u) (95 h) — (8,u")(D:h)} (8.68)
D15 = (8 = 0,)((n~"1)* D) (S O\R)

+ (8., — 0) (1), h)ugz (u0xSP), (8.69)
D19 := (0. — 0)u® (U0 uy)S? (Oru™)

+¢72(0 — 0.,)u® (S"0.h) (urOrh), (8.70)
220 = (8 — 0:4)57((n~")**Daug) (u*D,h)

+ (0 — 0.4) (u"Dch) (u*9,S*), (8.71)
Doy = (0. — 0)u® (u"up)(u’ S ), (8.72)

and

L = f%wa(w"&gh) + %w"‘w”&i

+ 20_30;3(u"‘aﬁh)eaﬁ”‘sulg&,w(; — qeaﬁ”"suﬁ&yw”(@guﬁ)
+ 2qe°‘57555u7w“(85uﬁ)
— q(9,u") e Sgu s
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+q(0., — ) (1) 8, h)SA Sy + q(0.1, — 8)u® (u"D,:h)S* S
+q(0 —0.,)5%(5%0,.h)

— qe“ﬁ""sug((%u")wn&;

+ (0,5 = 0.1,5)S(S"0h) + (015 — 0.5)u™ S, S (u*Dxh)

+ (e'h‘s - e;S)SnS’i((n_l)aAaAh)

s Ity

4 (8 — 0.1,)gS%(9.5") + (8 — 0.1,)@.nS*(S"Dh) + (8 — 0.4)q.s5% S, 5"
+(0 - 0,4)a((n™1)*915%) S5 + (8:0 — 8)g.n (M) Onh) S, 5"
+ (0.1, — 0)q.s5*S,. 5" +2(0.5, — 0)g((M™)**IrS") S, (8.73)

Note that the terms on RHSs (8.52)—(8.72) are precisely quadratic in the
first-order derivatives of the solution variables (h,u®,@®,S%)a=01,2,3 While
the terms on RHS (8.73) are at most linear in the derivatives of the solution
variables. We will now show that 2, 2, ---, 251 can be expressed as null
forms or terms that are at most linear in the derivatives of the solution vari-
ables. To this end, we simply use (8.3a)—(8.3p) to algebraically substitute for
Do, Dy, D5, Do, 27, Dy, 211, L2, 213, L14, D15, L6, Lis, Lig, Doo, and
291 (we do not substitute for 21, 23, Zg, 210, and 217 since these terms are
already manifestly linear combinations of null forms). Following this substitu-
tion, there are only two kinds of terms on RHS (8.51): null forms and terms
that are at most linear in the derivatives of the solution variables. We now place
all null forms on RHS (8.42) except for null forms that involve the derivatives
of w or S; these null forms we place directly on RHS (8.41). We then place all
terms that are linear in C, linear in D, linear in the first-order derivatives of
@, or linear in the first-order derivatives of S directly on RHS (8.41). Finally,
we place all remaining terms, which are at most linear in the derivatives of
the solution variables and do not depend on the derivatives of w or S, on
RHS (8.43). This completes the proof of the proposition. O

9. Local Well-Posedness with Additional Regularity for the
Vorticity and Entropy

Our main goal in this section is to prove Theorem 9.12; which is a local well-
posedness result for the relativistic Euler equations based on our new formu-
lation of the equations, that is, based on the equations of Theorem 3.1. The
main new feature of Theorem 9.12 compared to standard local well-posedness
results for the relativistic Euler equations (see Theorem 9.10 for a statement
of standard local well-posedness) is that it yields an extra degree of differen-
tiability for the vorticity and the entropy, assuming that the initial vorticity
and entropy enjoy the same extra differentiability. We stress that this gain
in regularity holds even though the logarithmic enthalpy and four-velocity do
not generally enjoy the same gain. As we described in Sect. 1.2, this extra
regularity for the vorticity and the entropy is essential for the study of shocks
in more than one spatial dimension.
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For convenience, instead of proving local well-posedness for the relativistic
Euler equations on the standard Minkowski spacetime background, we instead
consider the spacetime background (RxT?,n), where the “spatial manifold” T?
is the standard three-dimensional torus and, relative to standard coordinates
on R x T3, n,s := diag(—1,1,1,1) is the standard Minkowski metric. Thus,
strictly speaking, in this section, 1n denotes a tensor on a different manifold
compared to the rest of the paper, but this minor change has no substantial
bearing on the discussion. In particular, the relativistic Euler equations on
(R x T3,1) take the same form that they take in Theorem 3.1. The advantage
of the compact spatial topology is that it allows for a simplified approach
to some technical aspects of the proof of local well-posedness. However, the
arguments that we give in this section feature all of the main ideas needed to
prove local well-posedness on the standard Minkowski spacetime background
(in which the spacetime manifold is diffeomorphic to R1+3).

9.1. Notation, Norms, and Basic Tools from Analysis

9.1.1. Notation. Throughout this section, {x“},=01,2,3 denote standard rect-
angular coordinates on R x T3, where {x%}4=12,3 are standard local coordi-
nates on T?, and we often use the alternate notation t := z°. Note that even
though {%},-1,2,3 are only locally defined on T?, the coordinate partial de-
rivative vectorfields {0, }4=12,3 can be extended to a smooth global frame on
T3; by a slight abuse of notation, we will denote the globally defined “spa-
tial” frame by {0, }a=1,2,3, and the corresponding globally defined “spacetime
frame” by {0a}a=01,2,3.- Also, we often use the alternate partial derivative
notation 9y := dp.

Y = {(t,z) | z € T3} (9.1)

denotes the standard flat constant-time hypersurface.

Throughout Sect. 9, we use the same conventions for lowering and raising
indices stated in Sect. 2.1, i.e., we lower and raise indices with the Minkowski
metric and its inverse. Note that for Latin “spatial” indices, this is equivalent
to lowering and raising via the Euclidean metric §;; = diag(1,1,1) and its
inverse 8 = diag(1,1,1). Finally, we note that we sometimes identify the
Euclidean metric or its inverse with the Kronecker delta.

To each “spatial multi-index” I = (t1,t2,t3), where the i, are non-
negative integers, we associate the spatial differential operator d; := 0;' 05>05° .
Note that J5 is an operator of order |f| =11+ Lo+ t3.

If V is a spacetime vectorfield or a one-form, then V denotes the n-
orthogonal projection of V onto X, that is, the “spatial part” of V. For ex-
ample, w is the vectorfield on ¥; with rectangular components w’ := w’ for
1 =1,2,3. Moreover, we use the notation

G eurl (W) := 9%, W, (9.2)

to denote the standard Euclidean curl operator acting on one-forms on ¥,
where €% is the fully antisymmetric symbol normalized by €!23 = 1.



Vol. 20 (2019) Relativistic Euler 2239

9.1.2. Norms.

Definition 9.1 (Lebesgue and Sobolev norms). We define the following Lebesgue
norms for scalar functions f:

1fllos (xs) = ess sup,eqa| f(2)], (9:3)

o = { [ £w ) (94

where in the rest of Sect. 9, dz := da'dz2dz® denotes the standard volume
form on T? induced by the Euclidean metric diag(1,1,1).

Remark 9.2 (Extending the definitions of the norms from T3 to ¥;). In our
proof of local well-posedness, we will use norms in which the manifold T3
from Definition 9.1 is replaced with the constant time slice ¥; = {t} x T3,
which is diffeomorphic to T2. We will not explicitly define these norms along
3 since their definitions are obvious analogs of the ones appearing in Defini-

1/2
tion 9.1. For example, || f|lz2(s,) := {fzt f2(t, ) dx} , which is also equal

to {fw f2(t, ) dx}l/2. Here, we are using that the volume form induced by
the Minkowski metric on ¥; equals dz. Similar remarks apply to other norms
on T? introduced later in this subsubsection.

We define the following Sobolev norms for integers r > 0:

1/2
sy = § D 102 f 1 Femey ¢ s (9.5a)
|T|<r
1/2
1 i rsy = 4 S 10 By ¢ - (9.5b)
|I|=r
If € R is not an integer, then we define?
1/2
. 2
Wl =4 >0 A+ P [fhikesks) o o (96)

(kl,k2,k3)€Z3

where f(ki, ko, ks) = [ps f(x)e 2™ Ya—17"ka dg is the spatial Fourier trans-
form of f and |k|? := 22:1 k2.
IfU = (Uy,...,U,) is an array of scalar-valued functions and ||-|| denotes

any of the norms introduced in this subsubsection, then we define

U] = Ul (9.7)
a=1

26 As is well known, when 7 is an integer, RHS (9.6) defines a norm that is equivalent to the
norm defined in (9.5a).
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Definition 9.3 (Some additional function spaces). If 9B is a Banach space with
norm || - |l and » > 0 is an integer, then C"([0,7T],B) denotes the space of
r-times continuously differentiable functions from [0,7] to B. We omit the
superscript when r = 0. We denote the corresponding norm of an element f of
this space by || fllc+((o,7,%) = maxieo.1] Sop_o | f ¥ (¢)]|, where f*) denotes
the kth derivative of f with respect to t.

L*>([0,T],B) denotes the space of functions from [0,T] to B that are
essentially bounded over the interval [0, T]. We denote the corresponding norm
of an element f of this space by || f||L=(jo,7),) := ess sup;co, 7l f(?)[l5-

C"(T3) denotes the space of functions on T? that are r-times contin-
uously differentiable. We omit the superscript when » = 0. We denote the
corresponding norm of an element f of this space by

[ fller(rey = Z gg};glaff(:v)lo

1I<r

We now fix, for the rest of Sect. 9, an integer N subject to
N > 3. (9.8)

9.1.3. Basic Analytical Tools. In our analysis, we will rely on the following
standard results; see, e.g., [1,26,38] for proofs.

Lemma 9.4 (Sobolev embedding, product, difference, and interpolation
estimates). If r > 3/2, then H"(T?) continuously embeds into C(T?), and there
exists a constant C,. > 0 such that the following estimate holds for v € H"(T3):

lvlleersy < Crllvllarersy- (9.9)

Let r > 0 be an integer and let v := (vy,...,v4) and w := (wy,...,wR)
be finite-dimensional arrays of real-valued functions on T3 such that v, €
H™(T3)NC(T3) for1 <a< A andw, € C(T3) 1 <b< B. Let

A
7, = {(fl,...jA) DA :7“}. (9.10)

Assume that w(T?) C int# , where # is a compact subset of RE, and let f be
a smooth real-valued function on an open subset of RE containing ¢ . Then
the following estimate holds:

A
f(w) H 07 Va
a=1

_ max
(I1,.,Ta)ET, L2(T9)
A
< Cror Y lvallgrezsy [T Iowlleqs). (9.11)
a=1 b#a
Moreover, under the same assumptions stated in the previous paragraph,
if (I1,...,14) € I, then the map (v,w) — f(w) Hle 01, va 18 continuous

. A
from (HT(’JIB) N C’(T3)) X (C’(T3))B to L*(T®). In particular, let & = §,, > 0
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be such that the following holds*" :if d(p,w(T®)) < &, d(q,w(T?)) < &, and
d(p,q) < &, where d is the standard Euclidean distance function on RZ, then
the straight-line segment joining p to q is contained in int & . Then if (v,w)
and (U, w) are two array pairs of the type described in the previous paragraph
such that ||w — w|crsy < O, and if 1 > 3/2, then the following estimate
holds (where the function f is assumed to be the same in both appearances on
LHS (9.12) and I, is defined by (9.10)):

A

f(u/)Ha Vg — Ha Uq

a=1

L2(T3)
< Crot ol o ooy I8l o ooy A {10 = Ol o) + 0 = @lleas } - (912)
Furthermore, if r > 3/2 and v, € H"(T?) for a = 1,2, then vivy €
H7"(T3), and there exists a constant C,. > 0 such that
H’Ul’l}g ||H7‘(T3) S C’I‘HU]. ||H7‘(T3) HU2||H7‘(T3)7 (913)
and function multiplication (v, v9) — v1v2 is a continuous map from H"(T?3)x
H"(T3) to H™(T?).
Finally, if 0 < s < r and v € H"(T3), then there exists a constant
Cr s > 0 such that

1—= El
HU”HS(T?’) < Cr,s ||U||L2(gr3) HU||;IT(T3)' (9'14)

Remark 9.5 (The same estimates hold along ¥.). All of the results of
Lemma 9.4 hold verbatim if we replace T? by ¥; throughout.

9.1.4. An L2-in-time Continuity Result for Transport Equations. We will use
the following simple technical result in our proof of local well-posedness.

Lemma 9.6 (An L2-in-time continuity result for transport equations). Let T >
0. Assume that F € L>([0,T], L*(T?)), and let f be the solution to the inho-
mogeneous transport equation initial value problem

U0 f = F, (9.15)
flge == f € L*(Z0). (9.16)

Assume further that u® € L>([0,T],C*(T?)) for « =0,1,2,3. Then
feC(o,T], L*(T?)). (9.17)

Proof. We will prove right continuity at ¢ = 0; continuity at any other time
€ (0,T] could be proved using similar arguments. More precisely, we will

show that

lim H f(t,- ‘

10

9.18
P (9.18)

27Such a & > 0 exists due to the compactness of w(T?) and .#, where the compactness of
w(T3) follows from the assumption that the v, are continuous.
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To proceed, we let {fk},;";l C C°°(T?) be a sequence of smooth functions such
that

.. 1
1F = fell sy < - (9.19)

Note that
u0a(f = fi) = —u"dufi + F. (9.20)

Hence, a standard integration by parts argument based on the divergence

identity
o{(r - i} ={a. (2%5) } (£~ 42

2<f;Ofok) {—uaaafk + 9}

~a{ (%) v -2} (9:21)

yields that for 0 < ¢ < T, we have
If = FillZa sy = I1f = fillZecs,)

LA () o
+2/T_o/z, %{—u“aafwrﬁ} dedr.  (9.22)

In particular, from (9.19), (9.22), our assumptions on .% and u®, and Young’s
inequality, we find that if 0 < ¢ < T, then there is a constant Cr (independent
of k) such that

t

o 1 o
I£ = filtacon < g+ Cr [ {14 1l } dr

7=0
t
7=0

From (9.23) and Gronwall’s inequality, we deduce (allowing Cr to vary from
line to line in the rest of the proof) that if 0 < ¢t < T, then the following
inequality holds:

o 1 o
I = Gl < {3 + Crt (1 Uilincsg) fesorn. 020
From (9.24), (9.19), and the triangle inequality, it follows that

2
Jim sup (17 = fliacs.) < - (9.25)
Finally, allowing £ — oo in (9.25), we conclude (9.18). We have therefore

proved the lemma. O
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9.2. The Regime of Hyperbolicity

Our proof of well-posedness relies on a standard assumption, namely that the
solution lies in the interior of the region of state space where the equations are
hyperbolic without degeneracy. This notion is precisely captured by the next
definition.

Definition 9.7 (Regime of hyperbolicity). We define the regime of hyperbolicity
‘H to be the following subset of state-space:

H = {(h,s,u",u*,u®) €R® |0 < c(h,s) <1}. (9.26)
9.3. Standard Local Well-Posedness

Our principal goal in this subsection is to state Theorem 9.12, which is our main
local well-posedness result exhibiting the gain in regularity for the vorticity
and entropy. Most aspects of the theorem are standard. We summarize these
standard aspects in Theorem 9.10, which will serve as a precursor to our proof
of Theorem 9.12.

Remark 9.8 (Some non-standard aspects of Theorem 9.12). One of the non-
standard aspects of Theorem 9.12 is that it shows the continuous time de-
pendence of the top-order derivatives of @ and s in the norm || - || z2(x,). The
proof relies on some results that are not easy to locate in the literature, tied
in part to the fact that the required estimates are of elliptic-hyperbolic type.
In our proof of Theorem 9.12, we will show how to obtain these top-order
time-continuity results. A second non-standard aspect of Theorem 9.12 is that
the transport-div-curl systems [specifically (3.9a)—(3.9b) and (3.11a)—(3.11b)]
leading to the gain in regularity for w and s involve spacetime divergence and
curl operators. Hence, additional arguments are needed to obtain the needed
spatial elliptic estimates along ;; the key ingredients in this vein are provided
by the identity (9.34) and Lemma 9.20.

Remark 9.9 (The “fundamental” initial data). In the rest of Sect. 9, we view
h:=h|s,, § := s|s,, and @' := u'|g, to be the “fundamental” initial data in the
following sense: with the help of the relativistic Euler equations (2.17)—(2.19)
+ (2.20), along Xy, all of the other quantities that are relevant for our analysis
can be expressed in term of the fundamental initial data; see Lemma 9.17.

Theorem 9.10 (Standard local Well-Posedness). Let h:=hls,, § := s|s,, and
' = u'ls, be initial data®® for the relativistic Euler equations (2.17)-(2.19)
+ (2.20). Assume that for some integer N > 3, we have

h, §, ' e HN (o). (9.27)

Assume moreover that there is a compact subset & C intH (where intH is the
interior of H) such that for all p € Xy, we have

(h(p), (p), @ (p), W (p), 4> (p)) € intA.

28The datum u®|5;, is determined from the other data by virtue of the constraint (2.20).
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Then there exists a time T > 0 depending only on®® R, ||iL||H3(EO), 81| E3 (330 »
and ||i2i||H3(ZO), such that a unique classical solution (h,s,u®,w®) exists on
the slab [0, T] x T2 and satisfies (h(p),s(p),u*(p), u*(p),u®(p)) € intk for p €
[0,T] x T2. Moreover, the solution depends continuously on the initial data,>°
and its components relative to the standard coordinates enjoy the following
reqularity properties:

h, s, u® € C([0,T], HN (T?)), (9.28a)
5%, w* € C([0,T], HN~1(T?)). (9.28b)

Proof. (Discussion of the proof). Theorem 9.10 is standard. Readers can con-
sult, for example, [31] for detailed proofs in the case of the relativistic Euler
equations on a family of conformally flat?! spacetimes. The main step in the
proof is deriving a priori energy estimates for linearized versions of a first-order
formulation of the equations, such as (2.17)—(2.19) + (2.20). For a first-order
formulation that is equivalent (for C'! solutions) to (2.17)—(2.19) + (2.20), this
step was carried out in detail in [31] using the method of energy currents, a
technique that originated in the context of the relativistic Euler equations in
Christodoulou’s foundational work [4] on shock formation. O

Remark 9.11 (C*° data give rise to C* solutions). In view of the Sobolev
embedding result (9.9), we see that Theorem 9.10 implies that C'*° initial data
give rise to (local-in-time) C'*® solutions.

We now state our main local well-posedness theorem. Its proof is located
in Sect. 9.7.

Theorem 9.12 (Local well-posedness with improved regularity for the entropy
and vorticity). Assume the hypotheses of Theorem 9.10, but in addition to (9.27),
assume also that the initial vorticity and entropy enjoy one extra degree of
Sobolev reqularity. That is, assume that for some integer N > 3 andi =1,2,3,
we have

h, @' e HN (), (9.29a)
5, w' e HY (), (9.29b)

where w is defined in (2.5) and &' := wly, .
Then the conclusions of Theorem 9.10 hold, and the solution’s components
relative to standard coordinates enjoy the following reqularity properties for

29In fact, using additional arguments not presented here, one can show that for any fixed
real number r > 5/2, the time of existence can be controlled by a function of &, ||;L||Hr(20>,
81l 7 (20), and [|@*|| gr(s,)- Of course, if the initial data enjoy additional Sobolev regularity,
then the additional regularity persists in the solution during its classical lifespan.

30In particular, there is a (HS(EO))S—neighborhood of (h,s,u’) such that all data in the
neighborhood launch solutions that exist on the same slab [0,7] x T3 and, assuming also
that the data belong to (HN(EO))5, enjoy the regularity properties stated in the theorem.
31 More precisely, in [31], the spacetime metrics are scalar function multiples of the Minkowski
metric on R1F3,
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a=0,1,2,3, where T > 0 is the same time from Theorem 9.10:
h, u* € C([0,T], HN(T?)), (9.30a)
se C([0,T]), HN*H(T?)), S* = € C([0,T],HN(T?)).  (9.30b)

In particular, according to (9.30b), the additional regularity of the entropy and
vorticity featured in the initial data is propagated by the flow of the equations.
Moreover, the solution depends continuously on the initial data relative the
norms corresponding to (9.30a)—(9.30b).

9.4. A New Inverse Riemannian Metric and the Classification of Various Com-
binations of Solution Variables

In our proof of Theorem 9.12, when controlling the top-order derivatives of the
vorticity and entropy, we will rely on “geometrically sharp” elliptic estimates in
which the precise details of the principal coefficients of the elliptic operators are
important for our arguments. Due to the quasilinear nature of the relativistic
Euler equations, these precise elliptic estimates involve the inverse Riemannian
metric G~! from the next definition. In particular, we will need to use G-
based norms when proving that the top-order derivatives of w and S are
continuous in time with values in L?(T3) [these facts are contained within
the statement (9.30b)]; the role of G™! in our analysis will become clear in
Sect. 9.7.

Definition 9.13 (An inverse Riemannian metric on ;). On each X, we define
the inverse Riemannian metric G~! as follows:

G =8Y — 9.31
(e Lo (931)
where 8% := diag(1,1,1) is the standard Kronecker delta.
Remark 9.14 From the relation naﬁuo‘uﬁ = —1, one can easily show that G~!

is Riemannian, that is, of signature (4, +, +).

In proving that the solution depends continuously on the initial data, we
will use a modified version of Kato’s framework [17-19]. His framework was
designed to handle hyperbolic systems, while our formulation of the relativistic
Euler equations is elliptic-hyperbolic. For this reason, we find it convenient to
divide the solution variables into various classes, which we provide in the next
definition. Roughly, we will handle the “hyperbolic quantities” using Kato’s
framework, and to handle the remaining quantities, we will use elliptic esti-
mates and algebraic relationships to control them in terms of the hyperbolic
quantities.

Definition 9.15 (Classification of various combinations of solution variables).
We define the hyperbolic quantities H, the elliptic quantities E, and the al-
gebraic quantities Ay, Ax g, and A as follows, where the Euclidean curl
operator ®)curl is defined in (9.2):
H := (h, s,u", duh, Dgu’, @*, S C*, D)y .v=1.23, (9.32a)
E := (0,@b,005b)a,b=1,2,3 (9.32b)



2246 M. M. Disconzi, J. Speck Ann. Henri Poincaré

(0 0 g0 (0 0
Ap = (v —1,@",8%,C" 0ph, 0u®, 0au”, 045) , o1 5502123

U ((G—l)cdacwd, (G 149,54, @ ewrl®(w), (3)curl“(§))

a=1,2,3"
(9.32¢)
An g = (0o, 020, 0tSa, 0aS0, 0", 0,5 )a=0,1,2,310=1,2,3, (9.32d)
A =AxU AH,E' (9326)

Some remarks are in order.

e The point of introducing the algebraic quantities A is that, by virtue of
the relativistic Euler equations, they can be algebraically expressed in
terms of H and E (and thus are redundant); see Lemma 9.17. We stress
that in (9.32c), it is crucial that the inverse metric G=! is the one from
Definition 9.13; the proof of (9.33a) will clarify that it is essential that
the inverse metric is precisely G~1.

e The elliptic quantities E can be controlled (in appropriate Sobolev norms)
in terms of H via elliptic estimates; see Lemma 9.20 and its proof.

e The hyperbolic quantities H solve evolution equations with source terms
that depend on H and E. In view of the previous point, we see that one
can bound the source terms (in appropriate Sobolev norms) in terms of
H. This will allow us to derive a closed system of energy inequalities that
can be used to estimate H. In view of the previous two points, we see
that the estimates for H imply corresponding estimates for E and A.

Remark 9.16 (The hyperbolic quantities verify first-order hyperbolic equations).
In our proof of local well-posedness, we will use the fact that the hyperbolic
quantities H solve first-order hyperbolic equations. More precisely, the ele-
ments h, s, and u® of (9.32a) satisfy the first-order hyperbolic system (2.17)—
(2.19) + (2.20), the elements 9,h and 9,u’ satisfy hyperbolic equations ob-
tained by taking one spatial derivative of the Eqs. (2.17)—(2.19) + (2.20), and
S w®, C% and D respectively satisfy the (spatial components of the) trans-
port Egs. (3.7), (3.8), (3.11b), and (3.9a); it is in this sense that we consider
the variables H to be “hyperbolic.”

Lemma 9.17 (Expressions for the algebraic quantities in terms of the hy-
perbolic and elliptic quantities). Assume that (h,s,u®) is a smooth solution
to (2.17)~(2.19) + (2.20). Then we can express

Ay = f(H), (9.33a)
A ={(H,E), (9.33¢)

where in (9.33a)—(9.33¢c), f is a schematically denoted smooth function that
satisfies £(0) = 0 and that is allowed to vary from line to line.
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Moreover, let Tbea spatial multi-index with |f| > 1. Then
(G_l)abaaafwb, (G_l)abaaa-sb, )curl? (8 w)
1|
= > e H 0; H (9.34)

M=1
[y |4+ Tar | =1

where fjl,.,.,J'M are schematically denoted smooth functions (not necessarily

vanishing at 0) and H%Zl 05 H schematically denotes an order M monomial
in the derivatives of the elements of H.

Proof. Throughout this proof, f is a smooth function that can vary from line
to line and satisfies £(0) = 0 (except that the functions f5 ;7 ~on RHS (9.34)
do not necessarily satisfy £5 7 (0) = 0). Moreover, H and E are as defined
n (9.32a) and (9.32b).

We first prove (9.33a). We must show that the elements of (9.32¢) can be
written as smooth functions of the elements of (9.32a) that vanish at 0. We first
note that by the normalization condition N, u®u* = —1, u® — 1 is a smooth
function of the spatial components of u that vanishes when u' = u? = u? = 0.
From this fact and the identity u*S, = 0 [see (2.21)], we deduce that S is a
smooth function of the spatial components of u and S that vanishes at 0. A
similar result holds for w? by virtue of (4.2). Next, we note that, in view of the
above discussion and the discussion surrounding Eq. (2.28), we can solve for the
time derivatives of h, s, and u® in terms of their spatial derivatives. Thus far,
we have shown that u’—1,@?, S, 9;h, dyu®, 9,u’, O;s can be expressed as f(H).
In the rest of the proof, we will use these facts without explicitly mentioning
them every time. Next, we use definitions (2.4) and (2.16a) to deduce that
u*C, = f(H). Using this equation to algebraically solve for C°, we deduce that
C% = f(H), as desired. We will now show that (G~1)°?9,.S; = f(H). To begin,
we use definition (2.16b) to deduce that 9;S° = 9,5 — 3;5° = nD — S*0,.h +
¢ 28%0,h — 0;5° = f(H) — 9;S°. Next, using the identity 9; = % — “u—f? and
the evolution equation (3.7) with o = 0, we ﬁnd that 9;,5° = f(H) — “1‘9"50

Moreover, using (2. 21)7 we find that SO = 24- from which we deduce that

M = f(H) + (“ 08)25 Combining the above calculations, we find that

9,81 — & u 6;2‘% = f(H) which, in view of definition (9.31), yields the desired
relation (G 1ed9.Sy = f(H). The relation (G~1)°40.wwq = f(H) can be proved
using a similar argument based on Eqs. (3.8) and (3.11a), and we omit the
details. To show that ) curl®(w) = f(H), we first note that by definition (9.2),
it suffices to show that 0;w; — 0;w; = f(H) for ¢,j = 1,2,3. To proceed, we
use (4.10) with V' := w [which is applicable in view of (4.2)], definition (2.16a),
and the transport Eq. (3.8) to deduce that 0;m0; — 9;; = €;j,5u”vort’ (@) +
uju*0xw; —uu 0y w;+{(H) = f(H), which is the desired result. The fact that
Gleurl*(S) = 0 = f(H) is a trivial consequence of the symmetry property (4.1)
and definition (9.2). We have therefore proved (9.33a).
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We now prove (9.33b). We must show that elements of (9.32d) can
be written as smooth functions of the elements of (9.32a) and the elements

of (9.32b) that vanish at 0. To handle 9;w;,we use the identity 9y = “Z?N — “;‘31'
and the transport Eq. (3.8) to deduce that 0yco; = % +f(H,E) = {(H,E)
as desired. To handle 0;wg, we simply use (4.2) to obtain the identity w® =

7~ differentiate this identity with respect to d;, and then use the already

u
proven facts that w;, u® — 6§, and their time derivatives are equal to f(H, E).

Similarly, by differentiating the identity w® = =i " with 8y, we conclude that
O,wo = f(H,E). The relations 9,5, = {(H,E) and 0,5, = f(H,E) can be
proved using a similar argument based on Eqgs. (2.21) and (3.7), and we omit
the details. The facts that 9y’ = f(H, E) and 0,S® = f(H, E) follow trivially
from the definitions. We have therefore proved (9.33b). Equation (9.33¢) then
follows from definition (9.32¢) and (9.33a)—(9.33b).

To prove (9.34), we first note that definition (9.32c) and (9.33a) im-
ply that (G=1)*d, @y, (G~1)*9,S), and (3)curli(z) are all of the form f(H).
Hence, (9.34) follows from the Leibniz and chain rules and the definition (9.32a)
of H. O

9.5. Elliptic Estimates and the Corresponding Energies

In this subsection, we construct the energies that we will use to control the
top-order derivatives of the vorticity and entropy; see Definition 9.19. The
proof that the energies are coercive relies on elliptic estimates; see the proof
of Lemma 9.20. We start by defining a bilinear form on the relevant Hilbert
space of functions. Lemma 9.20 shows that the bilinear form induces a norm
on the Hilbert space.

Definition 9.18 (A new Hilbert space inner product). Let (zz,S) denote the
array of spatial components of the vorticity and entropy gradient (i.e., the
n-orthogonally projection of (w,.S) onto X, as in Sect. 9.1.1). Let & > 0 be a
parameter and let M ~1(¢,-) be an inverse Riemannian metric on 3;. We define
the following bilinear form on the corresponding Hilbert space (H N (Et))3 X

(HN(2))*:

= (xm—N_l/Ef {(M~1)" 0,05 } {(M~1)40.07%54} da
+ ocﬂ /2 {O)20,0;9,} { (4)0.0:5, ) da
I|=N-1"""
+ /Z (MY (M), iepqy P eurl’ (97m) P curl (9;2) da
|[I|=N—1"""
+ « /Z (M1 (M1 e g piepq; P eurl (9:8) ) curl? (9;5) da
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+ > /5@3@@ Op)dz+ > /6“”85 )(87Sp) dz

[T|I<N-1 |I|<N-1
(9.35)

where 6% is the standard Kronecker delta and e is the fully antisymmetric
symbol normalized by €123 = 1.

We now define the family of energies that we will use to control the
top-order derivatives of the vorticity and entropy.

Definition 9.19 (“Elliptic” energy). Let N > 3 be an integer, let o > 0 be a
parameter (below we will choose it to be sufficiently small), and let M ~1(¢,-)
be a C'! inverse Riemannian metric on ;. We define the square of the “elliptic”
energy En.a-1.«[(@, S)] = En,ar-1.0[(@, 5)](t) > 0 as follows:

IE:N M—1; “[(w,ﬁ)](t) =((=m9), (@7§)>M71;¢x (t). (9.36)

In the next lemma, with the help of elliptic estimates, we exhibit the
coercivity of En,pr-1.4[(@@, S)](t). The lemma shows in particular that if o > 0
is sufficiently small (depending on the inverse Riemannian metric M 1), then
the bilinear form from Definition 9.18 is a Hilbert space inner product.

Lemma 9.20 (Energy-norm comparison estimate based on elliptic estimates).
Let T > 0, and let M~ = M~1(t,x) be an inverse Riemannian metric de-
fined for (t,z) € [0,T] x T3. Let A be the infimum of the eigenvalues of the
3 x 3 matriz (M=) (t,z) over (t,z) € [0,T] x T3, and let A be the supremum
of the eigenvalues of the 3 x 3 matriz (M ~1)4 (t,x) over (t,z) € [0,T] x T3,
and assume that 0 < A < A < oo. Let En.p-1.4[(@, S)] be as in Defini-
tion 9.19. There exist a small constant o, > 0 and a large constant C > 0
such that o' and C depend continuously in an increasing fashion on (i)
max; j— (M_l)ijnc([o,T],cl(TB))" (ii) A; and (iii) A=Y, such that the fol-

lowing comparison estimates hold for t € [0,T]:

3 3
Enortio (@ (1) € CY 10wy + C Y ISallungs,y s (9:37a)
a=1 a=1
3 3
Sl i sy + D Iallmvesy) < CEnarta (@ S0, (9.37)
a=1 a=1

Proof. We prove only (9.37b) since (9.37a) can be proved using similar but
simpler arguments. Throughout the proof, C' > 0 denotes a constant with the
dependence-properties stated in the lemma. To proceed, we note the following
divergence identity for one-forms V' on 3, which can be directly verified:

(M1)* (M ™1)*4(9V5) (9eVa)

LM (M) (8, V=0 Va) (96 Va—04Vs)

+ (MY (M Y i €44 P curl (V) curl? (V)

| =



2250 M. M. Disconzi, J. Speck Ann. Henri Poincaré

= (M) (M 1) (0aVe) (0Va)

+ % {0a [(M‘l)“(M*)“d}} VetV + Ve0aVi)

+ % {o.[(M~1) )4} VaOy Vi + Vada Vi)

— % {op [(M~1) NN} [Va0eVa + Vo0, Vi

— % {04 [(M~) N} [Va0e Vi + Ve0a Vi)

+ %ab {1 (M V0.V + Veda Vi }

+ 50 (I VDV + V.0uVil}

S0 L ) VBV 4 VeouVi])

— %ac {(M1) (M) V00V + VaOaVi) } - (9.38)

We now integrate (9.38) over 3; with respect to dz and note that the integrals
of the last four (perfect spatial derivative) terms on the right-hand side vanish.
In view of our assumptions on the eigenvalues of (M ~1)¥(t,-), we see that the
integral of the first term (M ~1)2®(M~1)¢4(9,V,.)(0pV4) on RHS (9.38) is >
A2 Za 1 10a VbHLQ(Z . Also using Young’s inequality, we see that the integrals
of the second through ﬁfth terms on RHS (9.38) (in which a derivative falls on

M‘l) are collectively bounded from below by > )‘; Zz p—1 10 VbHi%z

Sy IVa ||L2(E) It follows that the integral of (9.38) is bounded from

below by

)\2 3 ) C 3 )
> -5 Z 10aVllT2(s,) — )TQZ IVallzz(s,) -
a,b=1 a=1

The desired estimate (9.37b) now follows from these considerations with w
and S in the role of V, and definitions (9.35) and (9.36), where « := o, > 0 is
chosen so that oc*}\g2 =1, and (’; is the (absolute value of the) coefﬁment from
the previous inequality. We clarify that, by our conventions, factors of 3z can
be absorbed into the constant C' on RHS (9.37Db). O

In the next lemma, we show that some Sobolev norms of the elliptic vari-
ables E can be bounded by corresponding Sobolev norms of the hyperbolic
variables H. We also derive related estimates for the difference of two solu-
tions. The main ingredients in the proofs are the elliptic estimates provided
by Lemma 9.20.

Lemma 9.21 (Controlling Sobolev norms of the elliptic variables in terms of
Sobolev norms of the hyperbolic variables).

(A) Let h := hls,, § := s|s,, and @' = u'ly, be initial data for the relativistic
Euler equations (2.17)~(2.19) + (2.20), let @° := @'|x,, and let (h, s,u®)
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- L=

be the solution provided by Theorem 9.10. In particular, let N > 3 be an
integer, let [0,T] x T3 be the slab of existence provided by the theorem,
and let R be the set featured in Theorem 9.10. Assume in addition that
the rectangular components of the initial data are elements of C*° (%),
and note that by Theorem 9.10 and the Sobolev embedding result (9.9),
the rectangular components of the solution belong to C>([0,T] x T?). Let
E and H be the corresponding elliptic and hyperbolic variables as defined
in Definition 9.15. Then there ezists a constant C > 0, depending only
on:

N
R

7 ° 3 o 3 °
Al e~ g0y + 18I EN 41 (20) + Doamt 104 HN (20) + Doamt 1T 1N (50)

3
||h||C([0,T],Cl(T3)) + ||S||C([O,T],Cl(']1‘3)) + Z Hua||c([07T],Cl(T3))

such that the following estimate holds for t € [0,T]:

|Elg~-1(s,) < ClH|grv-1(s,)- (9.39)

(B) Fori = 1,2, let (hg),s(),u@)) be classical solutions to the relativistic

K2

4.

7

Me wor

1

Euler equations (2.17)—(2.19) + (2.20) that have the properties stated in
part (A). Assume that the slab of existence [0,T] x T? is the same for
both solutions and that the set R is the same for both solutions, that is,
that there ea:ists a compact set R C intH such that for i = 1,2, we have
(h(i),s(i),ub), () UG ))([O T) x T3) C int&. Let E(;) and Hy; be the cor-
responding elliptic and hyperbolic variables as defined in Definition 9.15.
Then there exist constants & > 0 and C > 0, depending only on:

N
R
3 3
{”h(i)”HN(EO) + 18 [l av+1(s0) + Z |W(li)||HN(zU) + Z ”7%211')”HN(20)}
a=1 a=1

3

2
a=1

1

3
=+ Z:l ”Szlz) ||C([O,T].,Cl('ﬂ'3)) + Z:l ”w&) ||C([O,T],Cl('ﬂ'3)) }
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3

Z{” )H OT HN('JI‘3 +Z”u(l ([07T]>HN(T3))

i=1

+||5()|| ([OT HN+1(VJT3) +ZH (z)” ([0 T] HN(TB))}

such that if |Hy — Hegllos,) <9, then the following estimate holds for
te0,T]:
1B —E@)llav-1s,) < ClH@) —He)lav-i(s,). (9.40)

Proof. Throughout this proof, C' denotes a constant with the dependence-
properties stated in the lemma. We begin by establishing (9.39). Invoking
definitions (9.32a), (9.32b), (9.35), and (9.36), using the fact that )curl(S) =

0 [see (4.1)], and using the estimate (9.37b) Wlth M~!:= G~ and with o, > 0
as in the statement of Lemma 9.20 (where G~! is deﬁned in Definition 9.13,
and we stress that the proof of (9.37b) relied on elliptic estimates), we find
that

[Ell vz, < C]EN-G—l-cx*[(w S)\()

<0 Y G 00| o,
|I|=N-1
NI D (TN [
|I|=N-1
+C Z ZH(?’)cuﬂ“ *w‘ ,
|I|=N—10=1 L)
+ C|H| g~-1(s,)- (9.41)

Next, using (9.34), we see that the terms (G~1)*9,0;wp, (G1)*0,07S,
and 3 Jeurl”(9;w) on RHS (9.41) are smooth functions of H and its spatial
derivatives. Thus, using inequality (9.11) to bound RHS (9.34) in the norm
|- lz2(s,), We arrive at the desired estimate (9.39). We stress that RHS (9.11)
is linear in the order r derivatives of the solution; this is the reason that
RHS (9.39) is linear in [H| g~-1(x,)-

We now prove (9.40). For i = 1,2, we let G_i1 denote the inverse Riemann-
ian metric corresponding to the ith solution, that is, the inverse Riemannian
metric whose rectangular components are formed by evaluating RHS (9.31)
at the solution corresponding to the labeling index i. To proceed, we use
definitions (9.32a), (9.32b), (9.35), and (9.36), the fact that (3)curl(§(1)) =
(3)cur1(§(2)) = 0 [see (4.1)], and the comparison estimate (9.37b) with M1 :=
Ga; and with o, > 0 as in the statement of Lemma 9.20 to deduce that

IEqy —E@)llav-13,)
< CEy, e (@) — @2y, S1) — S2))](t)

1) 3
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<C ) H( (1)) 9, 05 (w(1)b — W(z)b)‘ L2
|[T|l=N-1
+C0 H( ) 007 (Sayp —5<2>b)‘ o)
[T|l=N-1
3
c |©cwt (95() - |
—+ ﬁz Z: cur ( 1(2(1) 2(2))) L2(sy)
[I|l=N—-10=1
+ C[Hqay — Hgllgv-1s,)- (9.42)
Next, using the triangle inequality, we find that
RHS (9.42)
<C Z H 9, i1y — (Ga)abaaafW(z)bHLQ(z )
—1\ab —1\ab

+C Z (G(g))a - (G(1))a o) Haaafw@)bHLZ(zt)
|[I|=N-1

+C |G 00 — (GE) ™ u07S e o
|[I|=N-1 '

—1\ab —1\ab

+C Z (G(g))a - (G(1))a o) "aaafS(Q)b’|L2(Et)
|[I|=N-1

+C Z Z H(3)curla 8~w ) 3eurl® (8~w(2))‘ Locss
|[|=N-10a=1 )

+ C[Hy — Hglgy-1s,)- (9.43)

Using the assumed bounds > 7 _n_, Zi,b:l ||aaafw(2)b||wzt) < C and

S ien—1 Lawet 10607 @pl 1o,y < s (9:34), (9.9), and (9.12) (where the
hypotheses needed to invoke (9.12) are satisfied if |[Hyy — Hg)l/c(s,) is suf-
ficiently small), we see that the terms on the first, third, and fifth lines of
RHS (9.43) are < C|[H(y) — Hg)||g~v-1(x,) as desired. To handle the terms on
the second and fourth lines of RHS (9.43), we use the assumed bounds

3 3
Z Z Haaafw@)bum(z,,) =, Z Z Haaafs@)bHH(z,,) <C

|I|=N—1ab=1 |I|=N—1a,b=1
the mean value theorem estimate ‘(G@))“b (G(S)“b < C‘H o —Hg )’
(where we are using that RHS (9.31) can be viewed as a smooth function of
(ul,u?,u?)), and the Sobolev embedding result (9.9) to deduce that the terms
on the second and fourth lines of RHS (9.43) are < C||H() — Hegllo(s,) <
C|[Hqy — Hg)|lg~x-1(s,) as desired. We have therefore proved (9.40). O
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9.6. Energies for the Wave Equations via the Vectorfield Multiplier Method

In this subsection, we derive a priori estimates for our new formulation of the
relativistic Euler equations. The main result is provided by the next proposi-
tion. The proposition shows in particular that the vorticity and entropy are
one degree more differentiable compared to the standard estimates that fol-
low from first-order formulations of the equations. The main analytic tools in
the proof of the proposition are the elliptic estimates from Sect. 9.5 and the
vectorfield method for wave equations (see Sect. 9.6.1).

Proposition 9.22 (A priori estimates for solutions to the relativistic Euler
equations). Let h := hls,, § := s|g,, and @' := u'lg, be initial data for the
relativistic Euler equations (2.17)=(2.19) + (2.20) obeying the assumptions of
Theorem 9.10, and let (h,s,u® u*,u? u®) be the corresponding solution. In
particular, let N > 3 be an integer, let [0,T] x T3 be the slab of eristence
provided by the theorem, and let K be the set featured in theorem. Assume in
addition that the components of the initial data relative to standard coordinates
belong to C*°(T3) and note that by Remark 9.11, the solution components be-
long to C°°([0,T] x T3). Let w be the vorticity (see Definition 2.2), and let

Y2

@' = w'ly, be its initial spatial components.
Then there exists a constant C > 0, depending only on:
1. N
2. R
Z- ||;l||HN(EO) + 300 6 v sy + 18] mn+izo) + Socn 160° ]~ (50

3
||h||C([(),T],C1(T3)) + Zl ||uaHC([07T]’C1(T3)) + ”5”0([0’71]_’01@3))

3 3
+ Zl ||Sa||c([0,T]$cl (']1‘3)) + Zl ||waHC([O,T],Cl(T3))
a= a=

such that for t € [0,T], the components of the solution relative to the standard
coordinates verify the following estimates:
3

2l g~ (s, + Z lu® =85 |~ (s, + Isll v (s,
a=0

3 3
+ Z 15[~ () + Z [z~ (s,
a=0 a=0

< Cexp(Ct) < Cexp(CT) := C., (9.44)

where d§ is the Kronecker delta.
The proof of Proposition 9.22 is located in Sect. 9.6.4. We will first derive
some preliminary results. We start by noting that we can rewrite the spatial
components of (3.1), (3.3), (3.7), (3.8), (3.9a), and (3.11b) in concise form as

follows, where f denotes a smooth function of its arguments that is free to vary
from line to line and that satisfies f(0) = 0, V' denotes n-orthogonal projection
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of V onto constant-time hypersurfaces (see Sect. 9.1.1), and the hyperbolic
variables H and the elliptic variables E are as in Definition 9.15:

Oyh = f(H), (9.452)
Ogu = f(H), (9.45b)
u"9,8 = f(H), (9.45¢)
U = f(H), (9.45d)
w9, D = f(H, E), (9.45¢)
u*9,C = {(H, E). (9.45¢f)

The crux of the proof of Proposition 9.22 is to derive energy estimates
for the covariant wave equations (9.45a) and (9.45b), energy estimates for the
transport equations (9.45¢), (9.45d), (9.45e), and (9.45f), and elliptic estimates
to handle the terms E on RHSs (9.45¢) and (9.45f). We have already derived
the necessary elliptic estimates in Sect. 9.5. In the next three subsections, we
will outline the energy estimates, which are standard.

9.6.1. Energy Estimates for Covariant Wave Equations. The wave operator
in (9.45a) and (9.45b) is with respect to the acoustical metric g introduced in
Definition 2.6. These are covariant wave equations for the scalar quantities h
and u®. Estimates for such equations can be derived by using the well-known
vectorfield multiplier method3? for wave equations, which we outline in this
subsubsection.

Let ¢ be any element of {h,u',u? u3} (in practice, we will not need to
derive separate energy estimates for u" since estimates for u° can be obtained
as a consequence of the estimates for the spatial components of u and the
normalization condition neyu®u® = —1). We start by defining the energy-
momentum tensor associated to a scalar function ¢:

2

Tus = Tusle] = (0u9)(050) — 300s(s™ V" (0u0)Dr0).  (9.46)

A crucial property of T3 is that it satisfies the dominant energy condition:
TogX Y8 > () whenever the vectorfields X and Y are future-directed®? and
timelike3* with respect to g. In practice, the dominant energy condition allows
one to construct energies that are coercive along causal (with respect to g)
hypersurfaces;*® see Eq. (9.56) below for the energy that we use in deriving a
priori estimates for h and u.

32In deriving a priori estimates, in addition to the multiplier method, we will use only the
simplest version of the vectorfield commutator method. Specifically, we will commute the
equations only with the coordinate spatial derivative operators J;.

33By a “future-directed” vectorfield X, we mean that X > 0.

34X is defined to be timelike with respect to g if gagXaXﬁ < 0.

35By a “causal hypersurface,” we mean a hypersurface whose future-directed unit normal is
either timelike with respect to g or null with respect to g at each point.
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Next, for any vectorfield X (soon to be employed in the role of a “mul-
tiplier vectorfield”), we let ()7 be its deformation tensor relative to g, which
takes the following form relative to arbitrary coordinates:

X as = 95, Va X  + gau Vs XH. (9.47)

n (9.47) and in the rest of this subsubsection, V is the covariant derivative
induced by g. Next, we define the energy current vectorfield corresponding to
X as follows:

(X)ge = K1) := (g7 1) T5[p] X P — X2 (9.48)

From straightforward computations, we derive the following identity:
1 _
VoI = (Og9) X 0atp + 5 (971" (671 Tap™mas
= (VaX%)¢® = 20(X*0ap). (9.49)

Applying the divergence theorem on the spacetime slab [0,7] x T? and us-
ing (9.49), we deduce the following identity:

[ s I
~ [ 90a 16187 dy
3o
1
_/ (D) X0atp + = (97 1) (g7 )P Tap X5 ¢ dpsg
[0, x T3 2

F [ {(TaXN o+ 26(X000)) (9.50)
[0,6]xT3

In (9.50), dy, is the volume form that g induces on [0,t] XT3, N is the future-
directed unit normal to ¥; with respect to the metric g, and dju, is the volume
form that g induces on ¥;, where g is the first fundamental form of ¥, that
is, g, = gij for 1 < i,j < 3. We also note that relative to the standard
coordinates, N® = f\/(‘g(_w dpg = +/|detg|dz'dz?dzda®, and dp, =
V/detg datdz?da® = /|(g=1)9]\/|detg| dz'dz?da?, where the last equality is
a basic linear algebraic identity. Note that N is future-directed and timelike
with respect to g, and that we used the fact that (g71)% < 0 (which is a simple
consequence of the formula (2.13b) and our assumption that 0 < ¢ < 1).
From the above discussion, it follows that along any spacehke (with re-
spect® to g) hypersurface with future-directed unit normal N, we can con-
struct a positive-definite energy density gag( ) %o ]Nﬂ using any multiplier
vectorfield X that is future-directed and timelike with respect to g. For the
basic a priori estimates of interest to us, we will apply the above constructions
along ¥y with X := w, which is future-directed timelike with respect to g. As we
described in Footnote 18, we cannot generally use X := 0, because g(9;,9;) > 0

1

36 A hypersurface is spacelike with respect to g if, at each point, its unit normal is timelike
with respect to g.
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can occur when Zz=1 |u®| is large; in contrast, note that by (2.13a) and the

normalization condition T],Mu"uA = —1, we have gmu“uA = —1. Thus, we
~ —1ya0
define the following energy (where N = —%):
Eyave(t) = Eyavel#](t) := /Z gaﬁ(u)Ja [SD]NB dpg- (9.51)

From (9.50), definition (9.51), and the standard expansion®’ of covariant deriva-
tives in terms of partial derivatives and Christoffel symbols (which in particular
can be used to derive the identity (u)ﬂ'ag = U0xGas + JarOpu” + grOau”),
we deduce the following energy identity relative to the standard coordinates:

Bl = Bual )~ [ Oy o

1 -1\« - K

2/[0 | T3(9 N (g7 P st Ok gys dpig
t|x

—/[0 ) Tg(g‘l)ﬁ‘;Taﬁ[w]é‘au“ dyg
] x

+ / {(0.u™)* + Irute? + 20u 0.0} dpg.  (9.52)
[0,¢]xT3

On RHS (9.52),

1

5(9_1)76 {0agsp + 039as — Osgaps} (9.53)

are the Christoffel symbols of g relative to the standard coordinates. Note that
by (2.13a)—(2.13b) we have that

T = f(h,s,u,0h,S,0u), (9.54)

F(;’ﬂ =

where f is a smooth function (depending on «, 3, and 7).

Next, with the help of (2.13a)-(2.13b) and the normalization condition

Neatu? = —1, we compute that

gaﬂ(u)‘]a [@]Nﬁ

= {czTog[cp]uﬁ +(1- cz)uOTaﬂ[cp]uauﬁ + uogaz} _
VI(g=1)%|
U {P(0p)? + 8% (0up) D + (1 — ) (u®Dap)? }
- (g~
{2 (B1p)udutp + u'p?}
(1)

where 8% is the Kronecker delta. From (9.51) and (9.55), it follows that

: (9.55)

37For example, Vo X8 = 0, X7 + FaﬁWXV, where 1_‘0‘57 is defined by (9.53).
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Ay
= 3 [ (0 + @+ (1 - )
{2 (0ep)udup +u’p?} e (9:56)
R

The energy Eyave|e](t) will yield L? control of ¢ and its first derivatives. In
Sect. 9.6.3, we will establish the coerciveness Eyaye[¢](t). To obtain L? control
of the higher-order_spatial derivatives of ¢, one can use energies of the form
Eave|07¢], where I is a spatial multi-index.

9.6.2. Energy Estimates for Transport Equations. One can derive energy es-
timates for transport equations of the form u“d,p = f by relying on the
following energy:

Etransport [‘P](t) = / 502 dm» (957)
3¢

as in the proof of Lemma 9.6. The analog of the wave equation energy iden-
tity (9.52) is the following integral identity, whose simple proof follows from
the ideas featured in the proof of Lemma 9.6:

Etransport[¢](t) = Etransport|® / / { ( >}<p dzdr
+ 2/ / “‘p da dr. (9.58)

To control the higher-order derivatives of ¢, one can rely on energies of the form
Eiransport[079]. We mention that the argument we have sketched here relies
on the basic fact that u® > 0, which allows us to divide by u® on RHS (9.58);
for the relativistic Euler equations, this fact follows from the normalization
condition N ufu* = —1 and the fact that u is future-directed.

9.6.3. Comparison of the Energies with the Sobolev Norm. The coerciveness
properties of the wave equation energy Eyave|®](t) constructed in Sect. 9.6.1
are tied to the metric g; see (9.51). In order to obtain our results, we need
Egave|®] (t) to be uniformly comparable to a corresponding Sobolev norm along
3.;. More precisely, we need to ensure the existence of a constant C' > 1 such
that on the slab [0,7] x T3 of existence guaranteed by Theorem 9.10, the
following estimates hold:

el 1oy <€D Bueldrel(t)
0<|I|<N-1
< C{Iellr (s, + 10315 } -
(9.59)

To see that such a constant C' exists, we first use Young’s inequality, (2.20),
and Cauchy—Schwarz to bound the first product in braces on the last line of
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RHS (9.56) as follows:
(0pp)uOutp

(uh)? | 8"°(0atp)Obep

3
=1

<

= 2@ (VI 1) 00 - 3¢ (VIE 1) 8 (@ug)ihg.  (9.60)

Next, we recall that Theorem 9.10 guarantees that on [0, 7] x T3, the solution
never escapes the compact subset R featured in the statement of the theorem.
In view of (9.60), we see that this ensures that on [0,7] x T3, the product
2 (0yp)udytp on the last line of RHS (9.56) can be absorbed into the sum
52uP(0y)? + 5c2u08%(84p) O from the first line of RHS (9.56), with room
to spare. This implies that for solutions contained in K, the integrands on
RHS (9.56) are in total uniformly comparable to Zzzo(ﬁaga)z + 2. This also
dug

I(g=1)™|
comparable®® to dr := dx'dz?dz3. From these observations, it readily follows
that a C' > 1 exists such that (9.59) holds.

ensures that on [0,7] x T3, the volume form on Y; is uniformly

9.6.4. Proof of Proposition 9.22. Recall that the assumptions of the propo-
sition guarantee that we have a smooth solution to the system (2.17)—(2.19)
+ (2.20). Consider the scalar component functions

h,u®, 8%, o, C, D, (9.61)

introduced in Sect. 2. According to Theorem 3.1, they satisfy the system of
evolution equations given by Egs. (3.1), (3.3), (3.7), (3.8), (3.9a), and (3.11b).
Next, we recall that the hyperbolic quantities H and the elliptic quantities
E were defined in Definition 9.15. To prove the proposition, we claim that it
suffices to show that the following inequality holds for ¢ € [0, T7:

t
IEIZ x5,y < CIH ) +C / IH|Zn s, dr, (9.62)

where in (9.62) and in the rest of this proof, C is as in the statement of Propo-
sition 9.22. For once we have shown (9.62), we can use Gronwall’s inequality
to deduce (recalling that C' is allowed to depend on the initial data and can
vary from line to line) that the following estimate holds for ¢ € [0, T):

H[Z~-1(s,) < CIHIEx-1(g,) exp(Ct) < Cexp(Ct) < Cexp(CT).  (9.63)

Then from (9.39) and (9.63) we conclude, in view of Definition 9.15, the desired
bound (9.44), except for the estimates for u°, S°, and w®. To obtain the
desired estimate for these quantities, we first express u® — 1, S°, @, 9,u°,
0,5°, and 0, as f(H,E), with f smooth and satisfying f(0) = 0 [this is

38T0 see this, it is helpful to note the following identity, which holds relative to the standard
d
ﬁ = ¢~ 3 da'dx2da3. This identity follows from (2.14a) and the linear
g
algebraic identity detg = (g7 1)%detg.

coordinates:
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possible in view of definition (9.32¢) and (9.33c¢)]. We then use Lemma 9.4 to
deduce that ||f(H7 E)HHN—I(Zt) < CHH”HN*l(Zt) +C||E||HN*1(E,5)~ Finally, we
use the elliptic estimate (9.39) and (9.63) to conclude that C||H|gz~-1(s,) +
C|E[g~-1(s,) < RHS (9.44), which yields the desired estimates.

It remains for us to prove (9.62). We start by noting that the results
described in Sects. 9.6.1-9.6.3 can be used to derive the following estimates,
where we recall that V denotes the spatial components of V (i.e., the
n-orthogonal projection of V onto constant-time hypersurfaces, as in
Sect. 9.1.1):

1Pl 20y + 10:h v -1 g5,y < C {||h||§{N(zo) + ||3thHi1Nfl(zo)}
t
+c/ IH2 51 s, 7, (9.64)
0
el s+ 10uelm sy < € Nl sy + 100l s,

t
+C [ B, dr, (9.65)
0

||§H%IN—1(Zt) < CH§”%IN—1(EO)

t
+C/ IH|[%~ 15, d7, (9.66)
0

Izl w1z, < Cllallin-1 s,

t
+C/ IH|[Z~ 15,y d7, (9.67)
0

‘|DH§—IN*1(Et) < OHDH%TN*I(E())

t
+C [ By + 1Bl s, }
(9.68)
IC x5,y < 15,

t
+C/O {”H”%{N—l(z‘r) + HE”?{N—l(ZT)} dr.
(9.69)

The estimates (9.64)—(9.69) are standard and can be derived by commuting
the evolution equations of Theorem 3.1 (more precisely, only the evolution
equations for the spatial components of u, w, S, and C) with spatial de-
rivative operators d; and using the energy identities (9.52) and (9.58) (and
their analogs for the dj-differentiated solution variables), the coerciveness es-
timate (9.59), Lemma 9.17, and the Sobolev—Moser-type estimate (9.11). We
stress that RHS (9.11) is linear in the order r derivatives of the solution; this is
the reason the integrands on RHS (9.64)(9.69) are quadratic in ||Hl|g~-1(x, )
and ||E||g~-1(s,) [the sup-norm factors on RHS (9.11) can be bounded by
< C since those factors are among the quantities that constants C' are allowed
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to depend on]. The non-standard aspect of the remaining part of the proof
is the appearance of the term HE”%{NA(Z,) on RHSs (9.68)—(9.69); we clarify
that these terms are generated by the terms 9,5, and 9,w;, on RHSs (3.9a)
and (3.11b) [see definition (9.32b)]. Next, adding (9.64)—(9.69) and appealing
to Definition 9.15, we deduce that

v s,y < CIHIEN -1 (5,

t

+C [ {IHlvos sy + Bl ar (070)
Finally, from (9.70) and the elliptic estimate (9.39), we conclude the desired
bound (9.62). O

9.7. Proof of Theorem 9.12

We now prove Theorem 9.12, which is the main result of Sect. 9. By The-
orem 9.10, we need only to show that (i) under the regularity assumptions
on the initial data stated in Theorem 9.12, the standard local well-posedness
results (9.28a)—(9.28b) can be upgraded to (9.30a)—(9.30b) and (ii) that the
solution depends continuously on the initial data, where continuity is measured
in the norms corresponding to the function spaces featured in (9.30a)—(9.30b).
Throughout this proof, & denotes the set featured in the statement of Theo-
rem 9.10. To proceed, we let (iz(m), §(m),&1('m)) C (COO(']I‘3))5 be a sequence of
smooth initial data such that as m — oo, we have

sl =0 i

~0, (9.71)
HY (20)

HN (Z0)

— 0, (9.72)

113¢m) —§||HN+1<EU> —0, Hﬁém) _&iHHN(Eo)

where &ém) denotes the initial vorticity of the mth element of the sequence
and @' is as in the statement of the theorem. Let (h(m)» S(m)> ufm), Szlm), w?m))
denote the corresponding sequence of solution variables. Theorem 9.10 yields
(see, for example, [31], for additional details) that for m sufficiently large,
the element (h(m), S(m),u(,,)) is a C classical solution to Eqgs. (2.17)~(2.19)
+ (2.20) on the fixed slab [0, 7] x T3 with

(h(m) (p)a S(m) (p)a u%m) (p)v u%m) (p)a ui()’m) (p)) € intR

for p € [0,7] x T3, and that on the same slab, (h(m),s(m),u‘()‘m), S?m),w?m))
is a C* solution to the equations of Theorem 3.1 [which are consequences
of (2.17)-(2.19) + (2.20)]. Moreover, Theorem 9.10 also implies that the se-
quence converges to the solution in the following norms as m — oco:

Hh(m) - hHC([07T]7HN(’]I‘3)) — 0, (9'73)
Hu?m) B uaHC([O,T],HN(T3)) -0 (9.74)
||S(m) o SHC([O,T],HN(TB)) — 0, (9.75)
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(o3

—0, (9.76)

([0, HN=1(T3))

oy —w® 0. 9.77
Hw(m) “ Hc([o,T],HNfl(W)) - (9.77)
Next, we use the convergence results (9.73)—(9.77), Theorem 9.10, and

the a priori estimates provided by Proposition 9.22 to deduce that exist a
constant C' > 0, depending on 7" and on the four types of quantities listed just

above (9.44), and a positive integer mg such that

sup  sup |[sm)llar+is,) < C, (9.78)
m2>mo 7€[0,T
sup sup HS v,y < C, (9.79)

m>mo TG[O

sup  sup ||u—,r mylla~(s,) < C. (9.80)
m>mo 7€[0,T]

Since H"(T3) is a Hilbert space for r € R, it follows from the norm-boundedness
results (9.78)-(9.80) that for each 7 € [0, T, there exist subsequences s, ),
S¢,,y» and @, o that weakly converge in HN™(3,), HY(3,), and HY(3,)
respectively as n — oco. Moreover, since the norm is weakly lower semicontin-
uous in a Hilbert space, it follows that the limits are bounded, respectively, in
the norms || - [[gv+isy, |- e~ (s, ), and || - |z~ (s,), by < C, where C is the
same constant found on RHSs (9.78)—(9.80). From (9.76) to (9.77), it follows
that the limits must be s, S*, and @w® respectively. We have therefore shown
that

sup ||s]|gv+1s,) < C, (9.81)
rel0,7)

sup |5 g~ s,y < C, (9.82)
7€[0,T]

sup [l@®||g~ s,y < C. (9.83)
T7€[0,T]

To complete the proof of (9.30b), we must show that for each spatial
multi-index I with |f| = N, the map t — 075°(t,-) is a continuous map from
[0,T] into L?(T?), and similarly for @® (the desired time-continuity results
for s then follow from the relation d;s = S;). To keep the presentation short,
we illustrate only the right-continuity of these maps at ¢ = 0; the general
statement can be proved by making minor modifications to the argument that
we give. That is, we will show that

lim 0557 (t,) = 9p5° ()ll2(zs) = 0,

~

=N, (9.84a)

~

hm 07w (t,-) — 07 ()| L2(1s) = O, =N, (9.84b)
where §%(-) := §%(0, ). The rest of our proof is based on Lemmas 9.6 and 9.20,
but to apply the lemmas, we first have to derive some preliminary results. We
will use the estimates provided by Lemma 9.4 without giving complete details
each time we use them; we will refer to these estimates as the “standard
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Sobolev calculus.” In the rest of the proof, we will refer to the variable sets H,
E, Ay, Au g, and A from Definition 9.15.
As a first step in proving (9.84a)—(9.84b), we will show that

H, Ay € C([0,7], HN1(T?)), (9.85)
where H and Ay are defined in (9.32a) and (9.32c). Note that by (9.33a) and
the standard Sobolev calculus, the desired result Ag € C([0,T], HN~1(T?))
would follow from H € C([0,7], HN~(T?)). The latter statement is equiv-
alent to showing that 9;H € C([0,T], L*(T?)) for |.7| < N — 1. All of these
results, except in the case of the top-order (i.e., order N — 1) derivatives of
C* and D, follow from the standard local well-posedness time-continuity re-

sults (9.28a)—(9.28b), and the standard Sobolev calculus. Thus, to complete
the proof of (9.85), we need only to show that for i = 1,2,3, we have

8:C*, 9;D e C([0,T), L*(T?)), I|=N-1. (9.86)

The desired result (9.86) follows from using Eqgs. (3.9a) and (3.11b) [more pre-
cisely, we need only to consider the spatial components of (3.11b)], the bound-
edness results (9.81)—(9.83), the standard local well-posedness time-continuity
results (9.28a)-(9.28b), and the standard Sobolev calculus to deduce that 9;C*
and 07D solve transport equations that satisfy the hypotheses of Lemma 9.6;
put succinctly, we can apply Lemma 9.6 with f := 8I~Ci and f := 9;D. We have
therefore proved (9.85). In particular, it follows from (9.85) and the definition
of Ay that for i = 1,2, 3, we have

@ewrl’ (@), Beurl’(S) € C([0,T], HN ~H(T?)). (9.87)

Next, we note that in view of Definition 9.15, Lemma 9.17 (in particular
the relation (9.33b) for 9,5° and 9,w”), (9.85), and the standard Sobolev
calculus, the desired results (9.84a)—(9.84b) would follow as a consequence of
the following convergence result:

lim ||07E(t,) — O7E(0, )| 2(x2) = 0, I|=N-1. (9.88)
To establish (9.88), we first use (9.85), (9.34), and the standard Sobolev

calculus to deduce the following facts, where (G=1)%¥ is defined in Defini-
tion 9.13:

(G~ H%8,0;Sp, (G~1)®0,0;w € C([0,T], L*(T%)), |I|=N—1. (9.89)
In the rest of the proof, &, > 0 is as in the statement of Lemma 9.20 in

the case (M 1% (t,z) :== (G~1)¥(t,x). Next, setting
(GTHY() = (GH7(0,), (9.90)
applying Lemma 9.20 with (M~1)% := (G~')%, and appealing to defini-
tion (9.32b), we see that in order to prove (9.88), it suffices to show the

following convergence result:

iy oo, [(2,5) - (2. 3)(0) = 0, (9.91)

where (o, ﬁ) = (@, 8)s,-
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To initiate the proof of (9.91), we let ¢ € H~Y(T?) be any element of
the dual space of HY (T?). From the below-top-order continuity result (9.28b),
the top-order boundedness results (9.82)—(9.83), and the density of C'*° func-
tions in H~N(T?), it is straightforward to deduce that the following “weak
continuity” result holds for ¢ = 1,2, 3:

lim [ S'(t,z)pdr = S'oda. (9.92)

tl0 J3 T3
Since ¢ was arbitrary, we conclude that Si(¢,-) weakly converges to St in
HN(T3) as ¢ | 0. Similarly, w'(¢, -) weakly converges to ¢’ in HY (T3) as ¢ | 0.
We now let ()41, denote the inner product (9.35) on the Hilbert space
(HN(Zt))3 X (HN(Zt))g, and we let (-,-) denote the standard inner product
on the same Hilbert space (obtained by keeping only the two sums on the last
line of RHS (9.35) and replacing N — 1 with N in the summation bounds).
By Lemma 9.20, the two corresponding norms [i.e., the norms on the left- and
right-hand sides of (9.37a)—(9.37b)] are equivalent. It is a basic result of func-
tional analysis that given these two inner products with equivalent norms, a
sequence weakly convergences relative to (-,-)s-1,,, if and only if it weakly
converges relative to (-, -). In particular, in view of the weak convergence re-
sults for S*(t,-) and @' (¢, -) proved above, we infer that (= (t,-), S(t,-)) weakly
converges to (z(-), S(-)) relative to the inner product (-, Vé-1.a, ast | 0. More-
over, it is another basic result of functional analysis that based on this weak
convergence and Lemma 9.20, in order to prove the result (9.91), it suffices to
show that

hm Stlll(I)) EN;éfl;oc* [(@7 ﬁ)](t) S EN;C?*I;(X* [(éﬂ S)]’ (9'93)

Moreover, since the standard local well-posedness time-continuity results (9.28a)
and (9.9) imply that lim,) H (G-1Yi(t, ) — (G1) .
T

definitions (9.35) and (9.36) and the top-order boundedness results (9.81)-
(9.83) that in order to prove (9.93), it suffices to show that

) =0, it follows from

i S0P -1 (2 S)10) < B [ 8] (9.94)
¢

where we stress that the inverse metric G™' on LHS (9.94) depends on ¢
[which is different compared to (9.93)]. In fact, our arguments will yield a
stronger statement than (9.94). More precisely, we will show the following
time-continuity result:
ltllr{)l ]EN;G”;LX* [(@7 ﬁ)](t) - ]EN;éfl;cx* [(@7 S)L (9'95)
To proceed, we use definitions (9.35) and (9.36) and the standard local well-
posedness time-continuity results (9.28a)-(9.28b) to deduce that all terms in
the definition of Ey.g-1.«,[(w,S)](t) have been shown to have the desired
continuous time dependence at except for the ones depending on the order
N derivatives of @ or S [i.e., the ones corresponding to the terms on the
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first four lines of RHS (9.35)]. The continuous time dependence of these re-
maining four terms follows from (9.87), (9.89), and the fact that (G=1)¥ €
C([0,7],C(T?)) [which follows from the standard local well-posedness time-
continuity results (9.28a) and (9.9)]. We have therefore proved (9.95), which
finishes the proof of the desired result (9.30b).

To complete our proof of Theorem 9.12, we need to show continuous
dependence on the initial data. To proceed, we let (}oz(m),fﬂ('m), S(m)) be a se-
quence of initial data (not necessarily C*° now) such that as m — oo, the con-
vergence results (9.71)—(9.72) hold. We again let (h(m), $(m)> 4(p)s S(ny> @(m))
denote the corresponding sequence of solution variables (which are not neces-
sarily C'*° now). We aim to show that the sequence converges to the limiting

solution (h,u®,s,S* w®) in the norm || - ||c([o,T],HN1r3)) as m — oo. To pro-

ceed, we first note that Theorem 9.10 yields that for m sufficiently large, the
element (h(m),s(m),u‘("m),S?‘m),wf‘m)) is a classical solution (not necessarily
C* now) to Egs. (2.17)-(2.19) + (2.20) on the fixed slab [0,7] x T3 with
(") (P), S(m) (D)5 Wy (D) UG,y (), ) (P)) € int R for p € [0,T] x T?, that it
also is a strong solution® to the equations of Theorem 3.1, that there exists
an integer mg such that

ms;lﬁ)m HS(m)”C([O TLHN+1(19) ) <C, (9.96)
<c, (9.98)

mS;SLo ”w(m) HC([O,T],HN(T3 )

and that the following convergence results (which are below top-order for S
and @) hold as m — oo:

1= m | (0,772 ) = O (9.99)
Hua ) H (.1, HN(T3)) (9.100)

s = sl (g0, (zsy) = O (9.101)

|s* - <m>H (o v-rc) (9.102)
= ==l oy a0y = (0.103)

In view of (9.99)—(9.103), we see that to complete our proof of Theorem 9.12,
we need only to show continuity in the top-order norms. That is, we must show
that if |I| = N, then as m — oo, we have

Hafsa = 9rSm) HC([O,TLL?(TB)) -0 (9.104)

39By “strong solution,” we mean in particular that at each fixed t € [0, T], the equations of
Theorem 3.1 are satisfied for almost every = € T3.
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|07 - 0=t (9.105)

o ([o,17,22(T3)) -

To proceed, we first review an approach to proving the standard esti-
mates (9.99)—(9.103). These estimates can be proved by applying Kato’s ab-
stract framework [17-19], which is designed to handle first-order hyperbolic
systems in a rather general Banach space setting. In particular, one can apply
Kato’s framework to the first-order system (2.17)—(2.19) + (2.20); this is de-
scribed in detail, for example, in [31]. To prove (9.104)—(9.105), we will modify
Kato’s framework so that it applies to the hyperbolic variables H and the
elliptic variables E from Definition 9.15.

To employ Kato’s framework, one relies on the propagators U(t,7) :=
U(t,7; H) for the linear homogeneous hyperbolic system corresponding to the
(nonlinear) first-order hyperbolic system that H satisfies. To shorten the pre-
sentation, we will not explicitly state the form of this linear first-order hyper-
bolic system; see Remark 9.16 for further discussion of its nature. By definition,
U(t,7; H) maps initial data given at time 7 to the solution of the linear homo-
geneous hyperbolic system (whose principal coefficients depend on H) at time
t. Similarly, one relies on the operators U, (t,7) := U(t, 7; H(,,)) correspond-
ing to the homogeneous linear system whose principal coefficients depend on
H(,,). By Duhamel’s principle, we have

H(t) = U(t,0)H + /t U(t, )t (H(t),E(7)) dr, (9.106)

7=0

t
H(m)(t) = Um) (t, O)H(m) + /_0 Uim) (t,)f (H(m)(T)7 E(m)(T)) dr, (9.107)

where H and IiI(m) respectively denote the initial data of H and H,,), and
on RHSs (9.106)—(9.107), f denotes the inhomogeneous term in the first-order
hyperbolic system satisfied by the elements of H and H(,,). We have not
explicitly stated the form of f since its precise structure is not important for
our arguments here; what matters is only the following basic facts (that can
easily be checked): f is a smooth function of its arguments satisfying f(0) = 0,
and the same f appears on RHSs (9.106)—-(9.107).

The strategy behind Kato’s framework is to control the difference H(¢, -)—
H,,)(t,-) in the norm || - || z~-1(ps) by subtracting (9.106)(9.107), splitting
the right-hand side of the resulting equation into various pieces, and bounding
each piece by exploiting some standard properties of the propagators U(t, )
and U, (t, 7). This is explained in detail in [31, Section 7.4], and most of
the arguments given there for controlling [[H(Z, ) — Hu)(t,)||g~-1(rs) g0
through without any substantial changes. The one part of the argument that
does require substantial changes is: in order to obtain a closed inequality for
[H(t,-) — Hpny (L, )| gy -1 (13), one needs to show that the difference of the
inhomogeneous terms on RHSs (9.106)—(9.107) satisfies the following estimate
for t € [0, T7:

|{(H,E) — f(H(n), E() < CIH-Hgyllgyv-1(s,),  (9.108)

v,
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where the key point is that the quantity |E — E(y,)||g~v-1(x,) does not appear
on RHS (9.108).

The estimate (9.108) can be obtained with the help of elliptic estimates,
as we now explain. First, we note that the top-order norm-boundedness re-
sults (9.96)—(9.98) and the convergence results (9.99)—(9.103) imply that

B {HH ~Holo (o) T 1B = Bomllo (o c2am) } -
(9.109)

and that there exists an integer my and a constant C' > 0 such that

I8l 0.7y, rr-1 ay) T 1 Bll )€ (9.110)

mssp {HH m)” ([OT HN- 1('1[‘3)) +HE m)” ([OT HN-— 1(’1[‘3))} SC (9'111)

From (9.109), (9.110)—(9.111), and the Sobolev interpolation result (9.14), we
deduce that if N’ < N — 1, then

(0,77, HN=1(T3)

W}EHOO {HH H(m) || ( 0,7T] HN/('JI‘S)) + ||E - E(m) ||C([O,T]7HN’(T3)) } =0.
(9.112)

Fixing a real number N’ satisfying 3/2 < N’ < 2 and using (9.112) and the
Sobolev embedding result (9.9), we deduce that

tim {|[H - H

m—00

Next, we use (9.110), (9.111), (9.113), (9.9), and (9.12) to deduce that there
is a constant C' > 0 such that if m is sufficiently large, then for ¢ € [0, 7], the
following estimate holds for the function f appearing on RHSs (9.106)—(9.107):

|f(H,E) — f(H(,n), E() < C|H — Hipy | gn-1(s,)
+CHE_E(m)||HN—1(Zt)~ (9.114)

Next, we use (9.110), (9.111), (9.113), and (9.40) to deduce that if m is suf-
ficiently large, then for ¢ € [0,7], the last term on RHS (9.114) obeys the
following bound:

IE—Eullav-1z,) < CIH - Hp)lay-1(s,)- (9.115)

The desired bound (9.108) follows from (9.114) and (9.115). Kato’s framework
(see [31, Section 7.4]) then allows one to conclude that

||C( 0,7)xT2) T [1oks E(m)Hc ([0, T]XT3)} =0 (9.113)

||HN—1(Z)

Moreover, (9.115) and (9.116) imply that
rr}gnoo HE E(m)H ([O,T],HNfl(TS)) =0. (9.117)

Finally, in view of Definition 9.15 and the relation (9.33c), we note that the
desired convergence results (9.104)—(9.105) follow from (9.116) to (9.117) and
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the standard Sobolev calculus [which is needed to handle the components o = 0
in (9.104)—(9.105)]. O

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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