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Abstract. We consider a stress-energy tensor describing a pure radiation vis-

cous fluid with conformal symmetry introduced in [3]. We show that the cor-
responding equations of motions are causal in Minkowski background and also

when coupled to Einstein’s equations, and solve the associated initial-value

problem.

1. Introduction. Consider the following stress-energy tensor for a relativistic fluid
with viscosity:

Tαβ =
4

3
uαuβε+

1

3
gαβε− ηπµαπνβ(∇µuν +∇νuµ −

2

3
gµν∇λuλ)

+ λ(uαu
µ∇µuβ + uβu

µ∇µuα) +
1

3
χπαβ∇µuµ + χuαuβ∇µuµ

+
λ

4ε
(uαπ

µ
β∇µε+ uβπ

µ
α∇µε) +

3χ

4ε
uαuβu

µ∇µε+
χ

4ε
παβu

µ∇µε.

(1)

Here, u is the four-velocity of fluid particles, normalized so that

uαuα = −1, (2)

ε is the energy density of the fluid, g is a (Lorentzian) metric, ∇ is the Levi-Civita
connection associated with g, παβ = gαβ +uαuβ , and η, λ, and χ are viscous trans-
port coefficients — so that η = λ = χ = 0 corresponds to an ideal fluid. The
transport coefficients are non-negative functions of ε. Coefficient η is the usual co-
efficient of shear viscosity, whereas λ and χ are related to relaxation times. More
precisely, while λ and χ, differently than η, have no analogue in more familiar the-
ories such as classical, non-relativistic Navier-Stokes, their physical meaning can be
understood from the derivation of (1) from kinetic theory given in [3]. In that case,
one may interpret λ/(sθ) and χ/(sθ), where s is the entropy density and θ the tem-
perature, as relaxation times that restore causality (since intuitively causality says
that the system needs some time to relax back to equilibrium after a perturbation).
See [3] for details.
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We are interested in the case of pure radiation, when the fluid’s pressure is given
by p = 1

3ε, and, therefore, p has already been eliminated from Tαβ .
Above and throughout, we adopt the following:

Convention 1. We work in units where 8πG = c = 1, where G is Newton’s
constant and c is the speed of light in vacuum. Our signature for the metric is
−+ ++. Greek indices run from 0 to 3 and Latin indices from 1 to 3.

We shall couple (1) to Einstein’s equations:

Rαβ −
1

2
Rgαβ + Λgαβ = Tαβ , (3)

where Rαβ and R are, respectively, the Ricci and scalar curvature of the metric
g, and Λ is a constant (the cosmological constant). We recall that in light of the
Bianchi identities, a necessary condition for (3) to hold is that

∇αTαβ = 0. (4)

Naturally, equations (3)-(4) are defined in a four-dimensional differentiable mani-
fold, the space-time.

We shall establish the following.

Main result. (see Theorems 2.2 and 2.3 for precise statements) Under appropriate
conditions on the initial data and the transport coefficients, the system of Einstein’s
equations coupled to (1) is causal and admits a unique solution. Causality and
uniqueness are here understood in the usual sense of general relativity. Existence,
uniqueness, and causality remain true if we consider solely (4) in Minkowski space-
time.

The tensor (1) was introduced1 in [3]. As discussed there, (1) is the first example
in the literature of a stress-energy tensor for relativistic viscous fluids satisfying
the following list of physical requirements: in Minkowski background, equations (4)
are (i) linearly stable with respect to perturbations around homogeneous thermody-
namic equilibrium, (ii) well-posed, and (iii) causal; (iv) Einstein’s equations coupled
to (1) are well-posed and causal; (v) equations (4) reduce to the standard Navier-
Stokes equations in the non-relativistic limit; (vi) an out-of-equilibrium entropy
can be defined so that solutions to (4) satisfy the (out of equilibrium) second law
of thermodynamics; and (vii) Tαβ can be derived from microscopic kinetic theory.

One reason for seeking a stress-energy tensor satisfying the above properties is
that the traditional forms of the relativistic Navier-Stokes equations fail to be causal
and stable [23, 35], and attempts to construct a relativistic viscous theory satisfying
(i)-(vi) have been limited so far2. See [12, 15, 16, 37] for a discussion. In [3] it is
also shown that Tαβ yields a well-defined temperature in the test-case of the Gubser
flow, in contrast to the traditional relativistic Navier-Stokes’ equations that yield a
negative temperature, and that a hydrodynamic attractor exists for the dynamics
of the Bjorken flow.

Tensor (1) describes a conformal fluid. Loosely speaking, this means that (1)
is well-behaved under conformal changes of the metric. More precisely, consider

1In [3], (1) is written in a different form, using the so-called Weyl derivative (whose definition

is given in [3]; see [33] for more details) instead of the covariant derivative. Both expressions agree
once the Weyl derivative is expanded in terms of the covariant derivative.

2It is interesting to note that the seemingly easier task of generalizing the non-relativistic
Navier-Stokes to Riemannian manifolds is not without problems either, see [5].



CONFORMAL FLUIDS 1569

a conformal transformation g′αβ = e−2φgαβ , and the transformed quantities u′α =

e−φuα, ε′ = e4φε. Then the fluid is called conformal if Tαβ is traceless and the
corresponding transformed T ′αβ satisfies

T ′αβ = e2φTαβ .

One can show [2, 4] that under these conditions

∇′α(T ′)αβ = e4φ∇αTαβ ,
so in particular solutions are preserved by the above transformations. There exists
a large literature on conformal fluids and their applications in physics, to which the
reader is referred for a discussion (see, e.g., [11, 20] and references therein; for the
mathematical background for these references, see [19]). We restrict ourselves to
mentioning that conformal fluids are of importance in the study of the quark-gluon
plasma that forms in high-energy collisions of heavy-ions; the quark-gluon plasma
at very high temperatures is the prototypical example of a relativistic viscous fluid
with an equation of state of pure radiation.

The definition of conformal fluid, stated above, will play no direct role in this
work per se. Rather, we shall use one of its main consequences, namely, that for
such fluids we have

χ = a1η, λ = a2η, (5)

where a1 and a2 are constants. Therefore all transport coefficients are determined
once we are given η = η(ε).

Our main result has previously appeared in [3], but the letter format of that
manuscript and the fact that it was addressed primarily to a physical audience pre-
vented us from presenting several details of the proof. In particular, the argument
in [3] may not be entirely satisfactory for a mathematical audience.

Definition 1.1. For the rest of the the paper, we shall refer to the system of
equations (3), with Tαβ given by (1) and u satisfying (2), as the viscous Einstein-
conformal fluid (VECF) system.

2. Statement of the results. We now turn to the precise formulation of the Main
Result. We begin by discussing the initial data for the VECF system.

Definition 2.1. An initial data set for the VECF system consists of a three-
dimensional smooth manifold Σ, a Riemannian metric g0 on Σ, a symmetric two-
tensor κ on Σ, two real-valued functions ε0 and ε1 defined on Σ, and two vector
fields v0 and v1 on Σ, such that the Einstein constraint equations are satisfied.

We recall that the constraint equations are given by the following system of
equations on Σ:

Rg0 − |κ|2g0 − (trg0 κ)2 = 2ρ

∇g0 trg0 κ− divg0 κ = j

where Rg0 is the scalar curvature of g0, ∇g0 , trg0 , divg0 , and | · |g0 are the covariant
derivative, trace, divergence, and norm with respect to g0. The quantities ρ and j
are given by ρ = T (n, n) and j = T (n, ·), where n is the future-pointing unit normal
to Σ inside a development of the initial data and T is the stress-energy tensor.

Because Tαβ involves first derivatives of u and ε, initial conditions for their time
derivatives have to be given, hence the necessity of two functions and two vector
fields. Even though u is a four-vector, it suffices to specify vector fields on Σ,
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with initial conditions for the non-tangential components of u derived from (2) (see
section 3.2). It is well-known that initial data for Einstein’s equations cannot be
prescribed arbitrarily, having to satisfy the associated constraint equations, see,
e.g., [21], for details.

We can now state our main result. The definition of spaces Gs and Gm,s is
recalled in Appendix A.1. We refer the reader to the general relativity literature
(e.g., [7, 21, 25, 38, 40]) for the terminology employed in Theorem 2.2.

Theorem 2.2. Let I = (Σ, g0, κ, ε0, ε1, v0, v1) be an initial data set for the VECF
system. Assume that Σ is compact with no boundary, and that ε0 > 0. Suppose that
χ and λ are given by (5), where η : (0,∞) → (0,∞) is analytic, and assume that
a1 = 4 and a2 ≥ 4. Finally, assume that the initial data is in G(s)(Σ) for some
1 < s < 17

16 . Then:
1) There exists a globally hyperbolic development M of I.
2) M is causal, in the following sense. Let (g, ε, u) be a solution to the VECF

system provided by the globally hyperbolic development M . For any p ∈ M in the
future of Σ, (g(p), u(p), ε(p)) depends only on I|i(Σ)∩J−(p), where J−(p) is the causal

past of p and i : Σ → M is the embedding associated with the globally hyperbolic
development M .

We note that, in the standard PDE language, Theorem 2.2 is local in time. But as
usual in general relativity, solutions to Einstein’s equations are geometric (a solution
to Einstein’s equations is a Lorentzian manifold) and, in particular, coordinate
independent, whereas a statement like “there exists a T > 0...” (as is usual in local
in time results) requires the introduction of coordinates. This is why the theorem is
better stated as the existence of a globally hyperbolic development3. We assumed
that Σ is compact for simplicity, otherwise asymptotic conditions would have to
be prescribed. The type of asymptotic conditions one would impose had Σ been
non-compact depends on the type of questions one is investigating. For instance,
it is customary to require g0 to be asymptotically flat, but other conditions, such
as asymptotically hyperbolic, are often used. As for the matter variables, several
choices are possible. One can require v0 and ε0 to approach zero, a constant, or
some other specified profile at infinity. The literature on Einstein’s equations with
non-compact Σ is vast, and a discussion of asymptotic conditions can be found,
e.g., [7, 8] and references therein. The assumption ε0 > 0 in Theorem 2.2 (which
implies a uniform bound from below away from zero by the compactness of Σ),
however, is crucial. This is apparent from expression (1), but it is worth mentioning
that allowing ε0 to vanish leads to severe technical difficulties even in the better
studied case of the Einstein-Euler system (see [18, 24, 36] for the known results
and [13] for a discussion; in fact, the difficulties with vanishing density are present
already in the non-relativistic case, see the discussion in [14, 31]). In particular,
if we were dealing with a non-compact Σ and had chosen an asymptotic condition
where ε0 approaches zero, the techniques here employed would not directly apply.

3We recall that a globally hyperbolic development is, roughly speaking, a Lorentzian manifold
where Einstein’s equations are satisfied and in which Σ embeds isometrically as a Cauchy surface
taking the correct data. We also recall that once a globally hyperbolic development is shown to
exist, one can prove the existence of the “largest” possible global hyperbolic development, i.e., the

maximal globally hyperbolic development of the initial data, which is (geometrically) unique. See
[25, 38] for details.
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The assumptions a1 = 4 and a2 ≥ 4 are technical4, but they are consistent with
conditions that guarantee the previously mentioned linear stability of (1). Note
that while our proof is restricted to the Gevrey class, our result guarantees that
causality will be automatically satisfied in any function space where uniqueness can
be established. This is relevant in view of the difficulties of constructing causal
theories of relativistic viscous fluids.

Next, we consider the case of a Minkowski background.

Theorem 2.3. Let T be given by (1) with g being the Minkowski metric. Suppose
that χ and λ satisfy (5), with a1 = 4, a2 ≥ 4, where η : (0,∞)→ (0,∞) is a given
analytic function. Let ε0, ε1 : R3 → R and v0, v2 : R3 → R3 belong to G(s)(R3) for
some 1 ≤ s < 7

6 , and assume that ε0 ≥ C0 > 0, where C0 is a constant.

Then, there exists a T > 0, a function ε : [0, T ) × R3 → (0,∞), and a vec-
tor field u : [0, T ) × R3 → R4, such that (ε, u) satisfies equations (2) and (4) in
[0, T ) × R3, ε(0, ·) = ε0, ∂0ε(0, ·) = ε1, u(0, ·) = u0, and ∂0u(0, ·) = u1, where ∂0

is the derivative with respect to the first coordinate in [0, T ) × R3. This solution
belongs to G2,(s)([0, T ) × R3) and is unique in this class. Finally, the solution is
causal, in the following sense. For any p ∈ [0, T )×R3, (ε(p), u(p)) depends only on
(ε0, ε1, v0, v1)|{x0=0}∩J−(p), where J−(p) is the causal past of p (with respect to the

Minkowski metric).

While formally Theorem 2.3 can not be derived as a corollary of Theorem 2.2,
its validity should come as no surprise once we know the latter to be true. In fact,
the proof of Theorem 2.3 will be essentially contained in that of Theorem 2.2, as
we shall see. It is nonetheless useful to state Theorem 2.3 given the importance of
viscous fluids in Minkowski background for applications.

Remark 1. The difference between s > 1 in Theorem 2.2 and s ≥ 1 in Theorem 2.3
comes from the fact that in the proof of Theorem 2.2 we work in local coordinates
and employ bump functions, which cannot be analytic (case s = 1). In Minkowski
space, however, we can use global coordinates and analyticity is not prevented.

3. Proof of Theorem 2.2. In this section we prove Theorem 2.2, thus we hence-
forth assume its hypotheses. We will always denote by s a number in (1, 17

16 ), as in
the statement of the theorem. The proof will be split in several parts. Some of the
arguments parallel well-known constructions in general relativity in the smooth set-
ting, but we present them because some additional steps are required in the Gevrey
class.

3.1. The equations of motion. Here we write the VECF in coordinates and in a
more explicit form. At this point, we are only interested in writing the equations in
a suitable form, thus we assume the validity of (2) and (3) (and consequently (4)),
and derive relations of interest.

As is customary, we shall write (3) in trace-reversed form and in wave coordinates.
More precisely, we consider the reduced Einstein equations given by

gµν∂2
µνgαβ = Bαβ(∂ε, ∂u, ∂g), (6)

where above and henceforth we adopt the following:

4 Other values of a1 and a2 are in fact possible as showed in [3], and the proof for these
other cases is essentially the same as showed here. The main difference is how one factors the

characteristic determinant. This different factorization is carried out in [3]. See Remark 16.
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Notation 1. We shall employ the letters B and B̃, with indices attached when
appropriate, to denote a general expression depending on at most the number of
derivatives indicated in its argument. For instance, in (6), Bαβ represents an ex-
pression depending on at most first derivatives of ε, first derivatives of u, and first

derivatives of g. As another example, B̃(ε, ∂u, ∂2g) denotes an expression depend-
ing on at most zero derivatives of ε, one derivative of u, and two derivatives of g.

B and B̃ can vary from expression to expression. It can be easily verified that B

and B̃ will always be an analytic function (typically involving only products and
quotients) of its arguments.

Equations (4) become5

(−ηgαµ + (λ− η)uαuµ)∂2
αµu

β + (λ+ χ)uβuµ∂2
µαu

α +
1

3
(−η + χ)gβµ∂2

µαu
α

+
1

3
(−η + χ)uβuµ∂2

µαu
α +

1

4ε
uβ(λgαµ + (λ+ 3χ)uαuµ)∂2

αµε

+
1

4ε
(λ+ χ)uαgβµ∂2

αµε+
1

4ε
(λ+ χ)uβuαuµ∂2

αµε+ B̃β(∂u, g)∂2g

=Bβ(∂ε, ∂u, ∂g).

(7)

The term B̃β(∂u, g)∂2g, which is linear in ∂2g, comes from derivatives of the
Christoffel symbols, after expanding the second covariant derivatives of u. This

term is of the form B̃β(∂u, g, ∂2g) according to Notation 1, but we wrote it as

B̃β(∂u, g)∂2g to emphasize that we shall consider it as a second order quasi-linear
operator on g. The particular form of this operator will not be needed, but it is
important that it be included in the principal part of the system for the derivative
counting employed below.

Applying uαuµ∇α∇µ to (2) produces

uλu
αuµ∂2

αµu
λ + B̃(∂u, g)∂2g = B(∂u, ∂g). (8)

We introduce the vector

U = (uβ , ε, gαβ),

where we adopt the obvious notation with uβ denoting (u0, u1, u2, u3), etc.; such a
notation is used throughout, including in the matrices below. We write equations
(6), (7), and (8) in matrix form as

M(U, ∂)U = q(U), (9)

where

M(U, ∂) =

(
m(U, ∂) b(U, ∂)

0 gµν∂2
µν

)
(10)

with

m00(U, ∂) =(−ηgαµ + (λ− η)uαuµ)∂2
αµ + (λ+ χ)u0uα∂2

0α

+
1

3
(−η + χ)(g0α + u0uα)∂2

0α,

m0i(U, ∂) =(λ+ χ)u0uα∂2
αi +

1

3
(−η + χ)(g0α + u0uα)∂2

αi,

5See Appendix B for a derivation of (6) and (7).
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miν(U, ∂) =ui(λ+ χ)uα∂2
αν +

1

3
(−η + χ)(giα + uiuα)∂2

αν , ν 6= i,

mii(U, ∂) =(−ηgαµ + (λ− η)uαuµ)∂2
αµ + ui(λ+ χ)uα∂2

αi

+
1

3
(−η + χ)(giα + uiuα)∂2

αi,

with no sum over i,

mν4(U, ∂) =
1

4ε
uν(λgαµ + (λ+ 3χ)uαuµ)∂2

αµ +
1

4ε
(λ+ χ)(uαgνµ + uνuαuµ)∂2

αµ,

m4ν(U, ∂) = uνu
αuµ∂2

αµ.

(Recall Convention 1: above we have 1 ≤ i ≤ 3.) The matrix b(U, ∂) in (10)

corresponds to the matrix with the operators B̃β(∂u, g)∂2 and B̃(∂u, g)∂2 that act
on g (see (7) and (8)), whose explicit form will not be important here. Finally,
gµν∂2

µν in (10) represents the 10 × 10 identity matrix times the operator gµν∂2
µν .

The vector q(U) corresponds to the right-hand side of equations (6), (7), and (8),
i.e.,

q(U) = (Bβ(∂ε, ∂u, ∂g), B(∂u, g), Bαβ(∂ε, ∂u, ∂g)).

3.2. Initial data. We now investigate the appropriate initial conditions for (9).
We remind the reader that the geometric data in the assumptions of Theorem 2.2
are intrinsic to Σ, thus they do not determine full data for the system6. Hence, we
need to complete the given data to a full set of initial data.

Assume that I is given as in the statement of Theorem 2.2. Embed Σ into R×Σ
and consider p ∈ {0} ×Σ. We shall initially obtain a solution in a neighborhood of
p, hence we prescribe initial data locally.

Take coordinates {xα}3α=0 in a neighborhood U of p such that {xi}3i=1 are coor-
dinates on Σ, which we assume to be normal coordinates for g0 centered at p. We
remark that in these coordinates the initial data will be in G(s)({x0 = 0}∩U). For,
by our assumption on I, there exist local coordinates {yi}3i=1 in a neighborhood
Y ⊆ Σ of p such that, in these coordinates, the initial data is Gevrey regular. One
obtains (short-time) geodesics starting at p by solving the geodesic equation, which
will be an ODE with Gevrey data in the {yi} coordinates. Since we can equip
Gevrey spaces with a norm, the usual Picard iteration can be applied to solve the
geodesic equation, and hence we obtain solutions that are Gevrey regular and vary
within the Gevrey class with the initial data. Therefore, the exponential map and,
as a consequence, the coordinates {xi} are Gevrey regular in Y with respect to the
{yi} coordinates. Expressing the initial data now in {xi} coordinates, we conclude
from standard properties of composition and products of Gevrey maps (see, e.g.,
[32]) that the initial data is in G(s)({x0 = 0} ∩ U) in the {xi} coordinates.

We prescribe the following initial conditions for gαβ on {x0 = 0} ∩ U :

gij(0, ·) = (g0)ij , g00(0, ·) = −1, g0i(0, ·) = 0, ∂0gij(0, ·) = κij ,

6For example, g0 is a metric on Σ which is a three-manifold; thus, g0 contains only nine (six
independent) components locally, whereas there are sixteen (ten independent) components in the
full space-time metric. Similarly, κ does not determine all transversal derivatives of g on Σ, and v0
and v1 determine only the initial three-velocity and its transversal derivatives, whereas we need the

four-velocity u and its tranversal derivatives initially. These mismatches are, as it is well-known,
related to the gauge freedom of Einstein’s equations. See, e.g., [7] for more discussion.
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and ∂0g0α(0, ·) is chosen such that {xα} are wave coordinates for g at x0 = 0 (which
is well-known to always be possible).

For uβ , we prescribe

ui(0, ·) = vi0, u
0(0, ·) =

√
1 + (g0)ijvi0v

j
0, ∂0u

i(0, ·) = vi1,

∂0u
0(0, ·) =

1√
1 + (g0)ijvi0v

j
0

(
(g0)ijv

j
0v
i
1 +

1

2
κijv

i
0v
j
0 +

1

2
∂0g00(0, ·)(1 + (g0)ijv

i
0v
j
0)

+ ∂0g0i(0, ·)vi0
√

1 + (g0)ijvi0v
j
0

)
.

(Note that the radicands are non-negative because g0 is a Riemannian metric.) The
initial conditions for u0 and ∂0u

0 have been derived from (2) and the above initial
conditions for gαβ . Finally,

ε(0, ·) = ε0, ∂0ε(0, ·) = ε1.

3.3. Initial conditions for the system in R4. Consider the local coordinates
introduced in section 3.2. Via these coordinates and identifying p with the origin,
we can regard system (9) as defined in an open set U of R4 containing the origin,
with the initial conditions prescribed on {x0 = 0} ∩ U . Note that we can also take
(9) as a system of equations on the whole of R4, and we therefore do so. We seek to
extend the initial data to the whole hypersurface {x0 = 0}, thus determining initial
conditions for the system in R4.

Let V be compactly contained in {x0 = 0} ∩ U and W be compactly contained
in V. Let ϕ : {x0 = 0} → R be a function in G(s)(R3) such that 0 ≤ ϕ ≤ 1, ϕ = 1
in W, and ϕ = 0 in the complement of V. Denote by h the Minkowski metric and
set, on {x0 = 0},

g̊ij = ϕ(g0)ij + (1− ϕ)hij , g̊00 = −1, g̊0i = 0, ∂0g̊ = ϕκij .

These will be initial conditions for gαβ (for equations (9) in R4), with an usual
abuse of notation to denote the initial conditions involving ∂0. As our coordinates
have been chosen with {xi} normal coordinates for g0 centered at p, we have that
g̊ij(0) = hij and the deviations of g̊ij from the Minkowski metric restricted to
{x0 = 0} ∩ U are quadratic on the coordinates away from the origin. Writing

g̊ij = ϕ(g0)ij + (1− ϕ)hij = hij + ϕ((g0)ij − hij),
we see that, shrinking U if necessary and taking into account our choice for g̊0α,
g̊αβ is a perturbation of the Minkowsi metric restricted to {x0 = 0}. Therefore, g̊αβ
defines a Lorentzian metric.

Next, we introduce

ůi = ϕvi0, ∂0ů
i = ϕvi1,

with the initial conditions for ů0 and ∂0ů
0 obtained by the same formulas as in

section (3.2), with the appropriate replacements by ůi and g̊ on the right-hand
sides. Finally, set

ε̊ = ϕε0 + 1− ϕ, ∂0̊ε = ϕε1.

By the compactness of Σ and the assumption ε0 > 0, it follows that ε0 ≥ C for
some constant C > 0, thus

ε̊ ≥ min{1

2
C,

1

2
} ≥ C ′ > 0,
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for some constant C ′.
The initial data for (9) in R4 described in this section will be denoted by Ů .

3.4. Solving the system in R4. In this section, we solve system (9) with the
initial conditions described in section 3.3 (see Proposition 1 below). We shall employ
the techniques, terminology, and notation of Leray-Ohya systems reviewed in the
appendix.

Lemma 3.1. Equations (9) form a Leray system.

Proof. Write U as U = (U1, U2), with the understanding that U1 = (uβ , ε) =
(u0, u1, u2, u3, ε) and U2 = (gαβ). Assign to (9) the following indices:

m1 = 2, m2 = 2,
n1 = 0, n2 = 0,

where m1 = m(U1) ≡ m(uβ , ε), m2 = m(U2) ≡ m(gαβ),

n1 = n(equation (7))

= n(equation (8))

≡ n(equations corresponding to the first five rows of (9)),

and

n2 = n(equation (6))

≡ n(equations corresponding to the last ten rows of (9)).

It is understood that we have one indexmI for each unknown of the fifteen unknowns
and one index nJ for each one of the fifteen equations in (9). For instance, by
m1 = m1(uβ , ε) = 2 we mean m(u0) = m(u1) = m(u2) = m(u3) = m(ε) = 2, and
so on.

One readily verifies that with this choice of indices, (9) has the structure of a
Leray system. Indeed, we list below for each row J in (9) or, equivalently, for each
equation in the system (6), (7), and (8), the value of nJ ; the highest derivatives of
each unknown entering in the coefficients and on the right-hand side of the equation;
and the difference mI − nJ :

rows 1-4 ≡ eq. (7) : n1 = 0; ∂u, ∂ε, ∂g;


m(u)− n1 ≡ m1 − n1 = 2,

m(ε)− n1 ≡ m1 − n1 = 2,

m(g)− n1 ≡ m2 − n1 = 2,

row 5 ≡ eq. (8) : n1 = 0; ∂u, ∂g;


m(u)− n1 ≡ m1 − n1 = 2,

m(ε)− n1 ≡ m1 − n1 = 2,

m(g)− n1 ≡ m2 − n1 = 2,

and

rows 6-15 ≡ eq. (6) : n2 = 0; ∂u, ∂ε, ∂g;


m(u)− n1 ≡ m1 − n2 = 2,

m(ε)− n1 ≡ m1 − n2 = 2,

m(g)− n1 ≡ m2 − n2 = 2.

For example, in equations (7), for which n1 = 0, we have that the left-hand side
consists of differential operators of order 2 acting on (uβ , ε) (m(uβ , ε)−n1 = 2) and
differential operators of order 2 acting on (gαβ) (m(gαβ)−n1 = 2), whose coefficients
depend on at most first derivatives of the unknowns (∂u, ∂ε, ∂g, i.e., m(uβ , ε)−n1−1
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andm(gαβ)−n1−1);theright-handsideof(7),asthecoefficientsofthedifferential
operators,dependsonat mostfirstderivativesoftheunknowns.

Assumption1. Wehenceforth makeexplicituseof(5),witha1=4anda2≥4,
inaccordancewiththeassumptionsofTheorem2.2.

Fortheproofofthenextproposition,thereaderisremindedoftheDefinitionA.9
ofAs(Σ,Y),whichconsistsofthespaceoffunctionssufficientlyneartheCauchy
data.

Proposition1. ThereexistaT>0,avectorfieldu:[0,T)×R3→ R4,afunction
:[0,T)×R3→ (0,∞),andaLorentzianmetricgdefinedon[0,T)×R3,suchthat

U=(uβ,,gαβ)satisfies(9)in[0,T)×R3andtakestheinitialdataŮon{x0=0}.

Moreover, (u,,g)∈G2,(s)([0,T)×R3)andthissolutionisuniqueinthisclass.

Proof. Wefixtheinitialdata Ů asconstructedinsection3.3andconsiderU =
(uα,,gαβ)∈ As(Σ,Y). ShrinkingY ifnecessary, wecanassumethatgαβ isa
Lorentzianmetric,that >0,andthatuistime-likeforgαβ,sincetheseproperties

holdforŮ. Becausethecoefficientsofthe matrixofdifferentialoperatorsM(U,∂)
dependonat mostfirstderivativesoftheunknowns,wecanevaluatethesecoef-

ficientsonU. DenotethecorrespondingoperatorbyM(U,∂). Thecharacteristic

determinantP(U,ξ)of(9),evaluatedatU,is

P(U,ξ)=detM(U,ξ)=p1(U,ξ)p2(U,ξ)p3(U,ξ)p4(U,ξ) (11)

where7

p1(U,ξ)≡p1(ξ)=
1

12
η4(uµξµ)4, (12)

p2(U,ξ)≡p2(ξ)=(a2−1)((u0)2ξ2
0+(u1)2ξ2

1+(u2)2ξ2
2+(u3)2ξ2

3)−ξµξµ

+2(a2−1)(u1u2ξ1ξ2+u1u3ξ1ξ3+u2u3ξ2ξ3)

+2(a2−1)u0ξ0uiξi
2

,

(13)

p3(U,ξ)≡p3(ξ)=−6((a2+5)a2+(a2
2+7a2−8)uλuλ)(uµξµ)2

+6(a2+2)(1+5uλuλ)ξµξµ,
(14)

and

p4(U,ξ)≡p4(ξ)=(ξµξµ)10, (15)

andthecontractionsintheseexpressionsaredonewithrespecttothe metricgαβ.

ThecomputationofP(U,ξ),andthecorrespondingfactorizationintheabovepoly-
nomials,isdonethroughalengthyandtediousalgebraiccalculation,partofwhich
wasdonewiththehelpofthesoftware Mathematica8. Notethattheblockdiago-
nalformofM(U,∂)allowedustocomputethecharacteristicdeterminantwithout

providingthespecificformoftheoperatorsBβ(∂u,g)∂2gandB(∂u,g)∂2g.

7Weremarkthatcomparedto[3],polynomialp3(U,ξ)looksdifferent. Thatisbecausein[3]
uλuλ hadbeenreplacedby 1inviewof(2). Strictlyspeaking, wearenotallowedtodothat
sinceonehastoprovethaturemainsnormalizedforpositivetime, whichisdoneinLemma3.3
below,butthis wasignoredin[3]sincethereonlyasketchoftheproof waspresented(seethe

aboveIntroduction).
8SeeAppendixC.
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It is easy to see that the polynomials ûµξµ and ξµξµ are hyperbolic polynomials
as long as ĝαβ is a Lorentzian metric and û is time-like with respect to ĝαβ . Both
conditions are satisfied in view of the constructions in section 3.3. Therefore, p1(ξ)
is the product of four hyperbolic polynomials (recall that ε̂ > 0 and η(ε̂) > 0), and
p4(ξ) is the product of ten hyperbolic polynomials. We now move to analyze p2(ξ)
and p3(ξ).

Write p2(ξ) = (p̃2(ξ))2, where p̃2(ξ) is the second-degree polynomial between
brackets in the definition of p2(ξ). We claim that p̃2(ξ) is a hyperbolic polynomial.
To show this, we need to investigate the roots ξ0 = ξ0(ξ1, ξ2, ξ3) of the equation
p̃2(ξ) = 0. Consider first the case where p̃2(ξ) is evaluated at the origin, i.e.,

p̃2(ξ) = p̃2(Û(0), ξ), and assume for a moment that ĝαβ(0) is the Minkowski metric
and that ûµûµ = −1. In this case, the roots are

ξ0,± = − 1

1 + (a2 − 1)(1 + û2)

(
(a2 − 1)û · ξ

√
1 + û2

±
√

(a2 + (a2 − 1)û2)ξ2 − (a2 − 1)(û · ξ)2

)
,

(16)

where û = (û1, û2, û3), û2 = (û1)2 + (û2)2 + (û3)2, ξ = (ξ1, ξ2, ξ3), ξ2 = ξ1
1 + ξ2

2 + ξ2
3 ,

and · is the Euclidean inner product. We see that if ξ = 0, then ξ0,± = 0, and
hence ξ = 0. Thus, we can assume ξ 6= 0. The Cauchy-Schwarz inequality gives

û2ξ2−(û ·ξ)2 ≥ 0, hence ξ0,+ and ξ0,− are real and distinct for a2 ≥ 4. We conclude
that p̃2(ξ) is a hyperbolic polynomial at the origin. Since the roots of a polynomial
vary continuously with the polynomial coefficient, p̃2(ξ) will have two distinct real
roots at any point on {x0 = 0} if ĝαβ is sufficiently close to the Minkowski metric and
ûµûµ sufficiently close to −1. We know from section 3.3 that these last conditions
are fulfilled upon taking U and Y sufficiently small (recall that g̊αβ(0) equals the
Minkowski metric.). Therefore, p̃2(ξ) is a hyperbolic polynomial, and p2(ξ) is the
product of two hyperbolic polynomials.

We now investigate the roots ξ0 = ξ0(ξ1, ξ2, ξ3) of the equation p3(ξ) = 0. As
above, we first consider p3(ξ) evaluated at the origin and suppose that ĝαβ(0) is the
Minkowski metric and that ûµûµ = −1, which produces

ξ0,± =
1

−2(2 + a2)− (a2 − 4)(1 + û2)

(
(a2 − 4)û · ξ

√
1 + û2

±
√

2
√

(3a2(2 + a2) + (a2
2 − 2a2 − 8)û2)ξ2 − (a2

2 − 2a2 − 8)(û · ξ)2

)
.

As above, we can assume ξ 6= 0, and the Cauchy-Schwarz inequality again gives

û2ξ2 − (û · ξ)2 ≥ 0. We readily verify that (a2
2 − 2a2 − 8) ≥ 0 and 3a2(2 + a2) > 0

for a2 ≥ 4. Therefore, ξ0,+ and ξ0,− are real and distinct, and p3(ξ) is a hyper-
bolic polynomial at the origin. As above, this implies that p3(ξ) is a hyperbolic
polynomial.

We conclude that P (Û , ξ) is the product of four degree one (i.e., p1(ξ)), two
degree two (i.e., p2(ξ)), one degree two (i.e., p3(ξ)), and ten degree two (i.e., p4(ξ))
hyperbolic polynomials. The Gevrey index of (9) is thus 17

16 (see Remark 15). Recall

that 1 < s < 17
16 by assumption.

Since mI − nJ = 2 for all I, J , and
∑
I mI −

∑
J nJ ≥ 2, we have verified the

conditions of Theorem A.14 in the appendix. Hence we obtain the diagonalized
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system

M̃(U, ∂)U = q̃(U), (17)

where M̃(U, ∂) is a diagonal matrix whose entries are differential operators of order
30 (the order of the characteristic determinant, see the appendix) whose coefficients
depend on at most 29 derivatives of U , and q̃(U) contains all the lower order terms.
We want to invoke Theorem A.10 to solve (17). To do so, we need to provide initial
conditions for (17). Since our goal is to obtain a solution to (9) out of a solution to
(17), such initial conditions need to be compatible with solutions to (9).

We shall show that all derivatives of U , restricted to {x0 = 0}, can be formally
computed from (9) and written in terms of the initial data. In particular, initial
conditions to (17) compatible with (9) can be determined. As usual in these situa-
tions, it suffices to show that we can inductively compute ∂k0U on {x0 = 0} as the
tangential derivatives ∂i can always be computed.

From (6), we can determine ∂2
0gαβ

∣∣
{x0=0} in terms of the initial data Ů . Using

the result into (7), we can write B̃β(∂u, g)∂2g restricted to {x0 = 0} in terms of Ů .
Equations (7) and (8) then give

a

(
∂2

0u
β

∂2
0ε

)
= b,

where b can be written in terms of the initial data on {x0 = 0}, and the matrix a
is the matrix of the coefficients of the terms ∂2

0u
β and ∂2

0ε in equations (7) and (8).
At the origin, where g̊αβ(0) equals the Minkowski metric, the determinant of a is

η4

ε0
(1 + ů2)2(3a2 + (a2 − 4)̊u2)(a2 + (a2 − 1)̊u2)2,

which is never zero for a2 ≥ 4 (recall that ε0 > 0 and η(ε0) > 0). Invoking once
more the fact that g̊αβ is a perturbation of the Minkowski metric, we conclude
that det(a)|{x0=0} never vanishes. We can thus invert a and write ∂2

0u
β and ∂2

0ε at

x0 = 0 in terms of Ů .
It is clear that we can continue this process: differentiate (6) with respect to

∂0 to determine ∂3
0gαβ

∣∣
{x0=0}; differentiate (7) and (8) with respect to ∂0, use

∂3
0gαβ

∣∣
{x0=0} to eliminate the resulting terms B̃β(∂u, g)∂3g and B̃(∂u, g)∂3g, and

then solve for ∂3
0u

β and ∂3
0ε at x0 = 0 (notice that the matrix a remains unchanged).

Inductively, we can determine all derivatives ∂k0U on {x0 = 0}, k = 2, 3, . . . , in terms

of Ů . Moreover, ∂k0U
∣∣
{x0=0} are analytic expressions of Ů and, therefore, the initial

conditions for (17) determined in this fashion will be in G(s).

The initial data for (17), denoted
˚̃
U , consists of the original initial data Ů for (9),

and the values of ∂k0U
∣∣
{x0=0} determined by the above procedure for k = 2, . . . , 29.

Remark 2. The above procedure determines all derivatives of U , evaluated at
x0 = 0, in terms of the initial conditions Ů . It follows that if the initial data Ů is
analytic, a well-known argument using power series can be employed to construct
an analytic solution to (9) in a neighborhood of {x0 = 0}. These techniques for
construction of analytic solutions, however, say nothing about causality.

Having supplied (17) with appropriate initial conditions, we can now invoke

Theorem A.10 to conclude the following. There exist a T̃ > 0, a vector field
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u : [0, T̃ )× R3 → R4, a function ε : [0, T̃ )× R3 → (0,∞), and a Lorentzian metric

g defined on [0, T̃ )×R3, such that U = (uβ , ε, gαβ) satisfies (17) in [0, T̃ )×R3 and

takes the initial data
˚̃
U on {x0 = 0}. Moreover, (u, ε, g) ∈ G2,(s)([0, T̃ ) × R3) and

this solution is unique in this class.
(We note that in invoking Theorem A.10, we are using that the intersections

of the cones determined by the polynomials pi(ξ) have non-empty interiors (recall
definition A.4). This follows from the above expressions, but it can also be verified
from the explicit computations in section 3.5.)

The conclusions that ε > 0 and g is a Lorentzian metric follow by continuity in
the x0 variable, since these conditions are true at x0 = 0.

Now we move to obtain a solution to (9) in R4. The argument is similar to the
one in [30], thus we shall go over it briefly.

Let {Ůk}∞k=1 be a sequence of analytic initial conditions for the system (9) con-

verging in G(s)({x0 = 0}) to Ů . For each k, let (uk, εk, gk) be the analytic solution

to (9), defined in a neighborhood of {x0 = 0}, and taking on the initial data Ůk (see

Remark 2). Let
˚̃
Uk be the initial data for (17) obtained from Ůk and compatible with

(9), i.e., the one derived by the inductive procedure previously described. Then,
˚̃
Uk →

˚̃
U in G(s)({x0 = 0}). In light of the compatibility of

˚̃
Uk, and because (17)

was derived from (9) via diagonalization, the solutions (uk, εk, gk) also satisfy (17).
Furthermore, this solution to (17) also agrees with the one given by Theorem A.10
(since this theorem also applies for analytic data, i.e., s = 1). The energy-type of
estimates proved by Leray and Ohya [28] guarantee then that (uk, εk, gk)→ (u, ε, g)
in G(s) and that (u, ε, g) satisfy the original system (9). By construction, (u, ε, g)

take on the initial data Ů .

Remark 3. The initial conditions for the VECF system have to satisfy the Einstein
constraint equations (recall Definition 2.1). The initial conditions Ů satisfy the

constraints in the region W in light of the way that Ů was constructed out of I|U .
This is, naturally, necessary for the eventual construction of a full solution to the
VECF system. However, purely from the point of view of (9) in R4, initial condition
can be prescribed freely, i.e., they do not have to satisfy any constraints. Therefore,
the existence of the analytic initial data Ůk follows simply by the density of analytic
functions in G(s). Also by density, we can guarantee that the components (̊ε0)k and

(̊gαβ)k in Ůk satisfy (̊ε0)k > 0 and that (̊gαβ)k is a Lorentzian metric.

Remark 4. The above calculations involving (a2
2 − 2a2 − 8) ≥ 0 show why we

have the technical assumption a2 ≥ 4. As our calculations were presented already
with a1 = 4 in place, they do not reveal the reason for this assumption, which as
follows. Computing the characteristic determinant with general a1 produces a very
complicated expression with some terms proportional to a1−4. These terms vanish
when a1 = 4, and the corresponding expression simplifies to (11). This can be seen
explicitly in Appendix C.

3.5. Causality. Having obtained solutions, we now investigate the causality of
equations (9). As in section 3.4, we use results and terminology recalled in the
appendix.

Lemma 3.2. The solution U = (u, ε, g) to (9) given in Proposition 1 is causal,
in the following sense. For any x ∈ [0, T ) × R3, (u(x), ε(x), g(x)) depends only on

Ů |{x0=0}∩J−(x), where J−(x) is the causal past of x (with respect to the metric g).
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Proof. Fix x ∈ [0, T ) × R3. The characteristic determinant of (9) at x is given by

(11), with the obvious replacement of Û by U and evaluated at x; the polynomials
pi(U(x), ξ) ≡ pi(x, ξ), i = 1, . . . , 4, are given by expressions (12) to (15), again with
the obvious replacement by U(x). By the same argument used in section 3.4 to
prove that the pi(ξ)’s are hyperbolic polynomials on {x0 = 0}, namely, that gαβ is
near the Minkowski metric, we know that the polynomials pi(x, ξ) are hyperbolic
(perhaps after shrinking T if necessary).

Denote by Vi(x) the characteristic cone {pi(x, ξ) = 0}, and by Γ∗,±i (x) the
corresponding (forward and backward) convex cones (on the cotangent space).
Let K∗,±(x) be the (forward and backward) time-like interiors of the light-cone

{gµν(x)ξµξν = 0}. We need to show that K∗,±(x) ⊆ Γ∗,±i (x) (see Remark 12).
This is straightforward for i = 1 and i = 4.

Assume for a moment that g is the Minkowski metric at x and that uλuλ = −1
(note that we have not proved yet that u remains normalized for x0 > 0). The roots
of {p2(x, ξ) = 0} are given by (16), changing û by u, which we can write as

ξ0,± = s±(u, θ)
√
ξ2, (18)

where

s±(u, θ) = − 1

1 + (a2 − 1)(1 + u2)

(
(a2 − 1)

√
u2 cos θ

√
1 + u2

±
√
a2 + (a2 − 1)u2 − (a2 − 1)u2 cos2 θ

)
,

θ is the angle between u and ξ in R3, we used u ·ξ =
√
u2
√
ξ2 cos θ, and we omitted

the dependence of u and θ on x for simplicity.
Equation (18) determines the two halves of the characteristic cone V2(x) in the

cotangent space at x. We will have that K∗,±(x) ⊆ Γ∗,±2 (x) if the slopes s± satisfy
−1 < s±(u, θ) < 1 for each u and θ. To see that this is the case, compute

s±(u, 0) = s±(u, 2π) = −
±√a2 + (a2 − 1)

√
u2(1 + u2)

1 + (a2 − 1)(1 + u2)
,

and observe that this expression is always between −1 and 1 for a2 ≥ 4. We seek
the maxima and minima of s±(u, θ) for 0 < θ < 2π. Computing the derivative with
respect to θ and solving for sin θ, we find sin θ = 0, i.e., θ = π. We readily verify
that −1 < s±(u, π) < 1, thus −1 < s±(u, θ) < 1. Since this last condition is open,
the result remains true when g is sufficiently close to the Minkowski metric and u
sufficiently close to unitary, which is the case if T is taken sufficiently small. The
same argument shows that K∗,±(x) ⊆ Γ∗,±3 (x), where again one uses the condition
a2 ≥ 4.

We conclude that for any x ∈ [0, T )×R3, we have K∗,±(x) ⊆
⋂4
i=1 Γ∗,±i (x), and

the result now follows from Theorem A.11 and Remark 12.

Remark 5. The characteristics associated with p1(ξ) and p4(ξ) are of course those
of the flow lines and gravitational waves. The characteristics associated with p3(ξ)
and p2(ξ) are interpreted, respectively, as sound waves and shear waves. The latter
is sometimes called a second sound wave and is present also in the Müller-Israel-
Stewart theory [22]. It is useful to compare these characteristics to those of the
ideal fluid. In the latter case we have the flow lines and the sound cone (i.e., the
characteristics of the sound waves; see [17] for a detailed discussion of the role
of the sound cone in the relativistic Euler equations). Here it is as if the sound
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cone had “split” into two sound-type characteristics. This resembles what happens
in magnetohydrodynamics: there two different characteristics are present for the
magnetoacoustic waves, namely, the so-called fast and slow magnetoacoustic waves
(see [1] for details).

3.6. Existence and causality for the system in R×Σ. Here we show how the
solution found in section 3.4 can be used to construct a causal solution in a region
of R × Σ, thus effectively proving Theorem 2.2. Recall that we embedded Σ into
R× Σ.

Remark 6. Consider the solution U = (u, ε, g) to (9) obtained in Proposition 1. Let
p be a point on {x0 = 0}×Σ and W be as in section 3.3. Let D+

g (W) ⊆ [0, T )×R3

be the future domain of dependence of W in the metric g, where replacing W with
a smaller set if necessary, we can assume that x0 < T for every (x0, x1, x2, x3) ∈
D+
g (W). In the coordinates on D+

g (W) induced from the coordinates on [0, T )×W,

the solution U is in G(2,s) The solution will remain in G(2,s) upon coordinate changes
that are Gevrey regular [32]. Note that there are plenty of such coordinate changes
in that a smooth manifold always admits a maximal compatible analytic atlas.

Lemma 3.3. It holds that uλuλ = −1 in D+
g (W).

Proof. The vector field u satisfies (8), whose explicit form is

uλu
αuµ∇µ∇µuλ + uα∇αuλuµ∇µuλ = 0.

This can be written as

1

2
uαuµ∇α∇µ(uλu

λ) = 0.

This is an equation for the scalar uλu
λ. The operator uαuµ∇α∇µ satisfies the

assumptions of Theorem A.10. Therefore, uαu
α = −1 in D+

g (W) if this condition
is satisfied initially, which is the case by construction.

Lemma 3.4. For every q ∈ Σ there exists a neighborhood Zq ⊆ Σ of q in Σ and
a globally hyperbolic development Mq of I|Zq , where Mq ⊆ [0, Tq) × Σ for some

Tq > 0.

Proof. Let p be a point on {x0 = 0} × Σ and W be as in section 3.3. Since the

initial conditions Ů (where Ů is as in section 3.3) agree on W with those from the
initial data I, in view of Lemma 3.2, we conclude that U is a solution to the reduced
Einstein equations within D+

g (W). It is well-known that a solution to the reduced

equations within D+
g (W) is also a solution to the full Einstein’s equations if and

only if the constraints are satisfied, which is the case by the definition of I. Because
p was an arbitrary point, the result is proven.

We now glue the different Mq’s in order to obtain a global (in space) solution.

Proposition 2. Let q, r ∈ Σ, Zq and Zr be neighborhoods of q and r as in lemma
3.4, with globally hyperbolic developments Mq and Mr of I|Zq and I|Zr , respectively,

and corresponding solutions Uq = (uq, εq, gq) and Ur = (ur, εr, gr) of the VECF
equations. Assume that Zq ∩ Zr 6= ∅. Then, for any w ∈ Zq ∩ Zr, there exist
neighborhoods Uq and Ur of w in Mq and Mr, respectively, and a diffeomorphism
ψ : Uq → Ur such that Uq = ψ∗(Ur).
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Proof. We shall construct harmonic coordinates for gq in a neighborhood of w in
Mq as follows. Identifying (a portion of) Σ with its embedding in Mq, take normal
coordinates (V, {yi}) for g0 on Σ centered at w, where g0 comes from the initial
data I. Note that the initial data is Gevrey regular in the {yi} coordinates (see the
argument in section 3.2). We can thus assume that Uq is in G(2,s) (see Remark 6)

On [0, Tq) × V , where Tq > 0 is some small number such that Uq is defined
on [0, Tq) × V , we introduce coordinates {yα}, y0 ∈ [0,∞). Consider family of
initial-value problems parametrized by α:

∇µ∇µf (i) = 0,

f (i)(0, y1, y2, y3) = yi,

∂0f
(i)(0, y1, y2, y3) = 0,

and

∇µ∇µf (0) = 0,

f (0)(0, y1, y2, y3) = 0,

∂0f
(0)(0, y1, y2, y3) = 1,

where ∇ is the covariant derivative in the metric gq. This problem has a Gevrey
regular solution in a neighborhood of w in [0, Tq) × V , and a standard implicit

function type of argument shows that the functions xα ≡ f (α) define (harmonic)
coordinates near w. We now consider the change of coordinates x = x(y) : [0, T ′q )×
V ′ → W ⊆ [0,∞) × R3, x = (x0, x1, x2, x3), where V ′ is a neighborhood of w in
V , T ′ > 0 is determined by the foregoing conditions guaranteeing the existence
of the coordinates {xα}, and W is an open set containing the origin. Pulling Uq
back to W via x−1, it follows from these constructions that (x−1)∗(Uq) satisfies the
reduced Einstein equations in W . Since Uq originally satisfied (2) and (4) as well,
we conclude that it is a solution to (9) in W .

We can repeat the above argument to obtain wave coordinates {zα} for gr. Be-
cause (V, {yi}) is intrinsically determined by g0, and Mq and Mr induce on Zq ∩Zr
the same initial data, the map z agrees with x on {0}×V ′ (in the region where both
are defined). From these facts, we conclude that (x−1)∗(Uq) and (z−1)∗(Ur) (i) are
solutions to (9) in some domain [0, t)× Y ⊆ [0,∞)×R3 containing the origin, and
(ii) take the same initial data on {0} × Y .

We have shown that (9) enjoys uniqueness and causality. Thus, considering possi-
bly a smaller region that is globally hyperbolic for both (x−1)∗(gq) and (z−1)∗(gr),
we conclude that (x−1)∗(Uq) = (z−1)∗(Ur), so that Uq = (z−1 ◦ x)∗(Ur), as de-
sired.

Using Proposition 2, we can now identify overlapping globally hyperbolic de-
velopments, thus obtaining a globally hyperbolic development of I as stated in
Theorem 2.2. Causality follows essentially from Lemma 3.2: by the foregoing, we
can assume that M is diffeomorphic to [0, T ) × Σ for some T > 0. Shrinking T if
necessary, we reduce the problem to local coordinates, in which case we can employ
wave coordinates. Causality, as stated in Theorem 2.2, is preserved by diffeomor-
phisms, thus the result follows from the causality of the reduced system guaranteed
by Lemma 3.2. This finishes the proof of Theorem 2.2.
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4. Proof of Theorem 2.3. The proof of Theorem 2.3 is essentially contained in
the above. In the case of a Minkowski background, the system reduces to

m(U, ∂)U = q(U),

where m is as in (10), U = (uβ , ε) and q(U) is as in (9) with the appropriate
changes for this 5 × 5 system. The system can be analyzed as in section 3.4. We
can do this directly in R4, without the complications of constructing the initial
data Ů . The characteristic determinant is given by p1(ξ)p2(ξ)p3(ξ), where these
polynomials are as before, with the simplification that now we need not carry out
any near-Minkowski arguments. Without the matrix gµν∂2

µν coming from Einstein’s

equations, the Gevrey index of the system is 7
6 , and analogues of Proposition 1 and

Lemma 3.2 establish the result.

Appendix A. Tools of weakly hyperbolic systems. For the reader’s conve-
nience, we state in this appendix the results about Leray-Ohya systems (sometimes
called weakly hyperbolic systems) that are used in the proof of Theorem 2.2. These
results have been established by Leray and Ohya in [27, 28] for the case of systems
with diagonal principal part, and extended by Choquet-Bruhat in [6] to more gen-
eral systems. These works build upon the classical work of Leray on hyperbolic
differential equations [26]. The reader can consult these references for the proofs
of the results stated below. Further discussion can be found (without proofs) in
[7, 10, 12]. Related results can also be found in [34].

We start by recalling some standard notions and fixing the notation that will be
used throughout. Given T > 0, let X = [0, T ]×Rn. By ∂k we shall denote any kth

order derivative. We shall denote coordinates on X by {xα}nα=0, thinking of x0 ≡ t
as the time-variable. We use the multi-index notation to write

∂α ≡ ∂|α|

∂xα0
0 ∂xα1

1 ∂xα2
2 · · · ∂x

αn
n
≡ ∂α0

x0 ∂
α1

x1 ∂
α2

x2 · · · ∂αnxn ,

where |α| = α0 + α1 + α2 + · · ·+ αn.

A.1. Gevrey spaces. In this section we review the definition of Gevrey spaces.
Roughly speaking, a function is of Gevrey class if it obeys inequalities similar, albeit
weaker, than those satisfied by analytic functions. One of the crucial properties
of Gevrey spaces for their use in general relativity is that they admit compactly
supported functions.

Definition A.1. Let s ≥ 1. We say that f : Rn → C belongs to the Gevrey space
G(s)(Rn) if

sup
α

1

(1 + |α|)s
‖∂αf‖

1
1+|α|
L2(Rn) <∞.

Let K ⊂ Rn be the cube of unit side. We say that f belongs to the local Gevrey

space G
(s)
loc(Rn) if

sup
α

1

(1 + |α|)s

(
sup
K
‖∂αf‖L2(K)

) 1
1+|α|

<∞,

where supK is taken over all side one cubes K in Rn.
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We note that the case s = 1, i.e., G(1)(Rn), corresponds to the space of analytic
functions.

We next introduce the space of maps defined on X whose derivatives up to order
m belong to G(s)({x0 = t}), 0 ≤ t ≤ T .

Definition A.2. On X, denote St = {x0 = t}. Let s ≥ 1, and let m ≥ 0 be an
integer. We denote by α a multi-index α = (α0, . . . , αn) for which α0 = 0. We
define Gm,(s)(X) as the set of maps f : X → C such that

sup
α, |β|≤m, 0≤t≤T

1

(1 + |α|)s
∥∥∂β+αf

∥∥ 1
1+|α|
L2(St)

<∞.

Let Y be an open set of Rd. We define Gm,(s)(X×Y ) as the set of maps f : X×Y →
C such that

sup
α, γ, |β|≤m, 0≤t≤T

1

(1 + |α|+ |γ|)s

∥∥∥∥sup
y∈Y

∣∣∂β+α
x ∂γy f

∣∣∥∥∥∥ 1
1+|α|+|γ|

L2(St)

<∞.

Let Kt ⊂ St be the cube whose sides have unit length. The spaces G
m,(s)
loc (X) and

G
m,(s)
loc (X × Y ) are defined as the set of maps f : X → C and f : X × Y → C,

respectively, such that

sup
α, |β|≤m, 0≤t≤T

1

(1 + |α|)s

(
sup
Kt

∥∥∂β+αf
∥∥
L2(Kt)

) 1
1+|α|

<∞,

and

sup
α, γ, |β|≤m, 0≤t≤T

1

(1 + |α|+ |γ|)s

(
sup
Kt

∥∥∥∥sup
y∈Y

∣∣∂β+α
x ∂γy f

∣∣∥∥∥∥
L2(Kt)

) 1
1+|α|+|γ|

<∞,

where supKt is taken over all cubes of side one within St.

Remark 7. Definitions A.1 and A.2 are easily generalized to vector and tensor fields
in Rn and X, and to open subsets of Rn and X. In particular, replacing Rn by an
open set Ω and X by [0, T ]×Ω in the above definitions we obtain the corresponding
spaces for Ω. This allows one to define Gevrey spaces on manifolds. If M is a
differentiable manifold, we say that f : M → C belongs to G(s)(M) if for every
p ∈ M there exists a coordinate chart (x, U) about p such that f ◦ x−1 ∈ G(s)(Ω),
where Ω = x(U). This definition generalizes for vector and tensor fields.

Remark 8. The reason to treat X and Y differently in definitions of G(s)(X × Y )
and Gm,(s)(X × Y ) is that, in the theorems of section A.2, we need to distinguish
between the regularity with respect to the space-time X and the regularity with
respect to the parametrization of the initial data.

Remark 9. We could similarly define for manifolds the analog of the other Gevrey
spaces introduce above. However, this can be somewhat cumbersome and not always
natural. In particular, the spaces Gm,(s) require a distinguished coordinate that
plays the role of time. This can always be done locally, and it can be done for
globally hyperbolic manifolds if we fix a particular foliation in terms of space-like
slices (as done, e.g., in [10, 12]), although it is debatable how canonical this is. Here
we prefer to avoid extra complications, i.e., we in fact only need the definition of
G(s)(Σ), which is used for the construction of appropriate local coordinates and the
construction of the initial data for the system in R4 (sections 3.2 and 3.3) and in
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the results of section 3.6. The bulk of the proofs are carried out for the system in
R4, where all the different Gevrey spaces play a role. It follows that the solution in
R4 is in particular smooth, giving rise to a smooth globally hyperbolic development.
Note that for the conclusion of Theorem 2.2 it is not needed to assert that the full
solution enjoys certain Gevrey regularity.

For more about Gevrey spaces, see, e.g., [28, 39]. We remark that the terminology
“local” and the notation Gloc are not standard.

A.2. The Cauchy problem. Let a = a(x, ∂k), x ∈ X, be a linear differential
operator of order k. We can write

a(x, ∂k) =
∑
|α|≤k

aα(x)∂α,

where α = (α0, α1, α2, . . . , αn) is a multi-index. Let p(x, ∂k) be the principal part
of a(x, ∂k), i.e.,

p(x, ∂k) =
∑
|α|=k

aα(x)∂α.

At each point x ∈ X and for each co-vector ξ ∈ T ∗xX, where T ∗X is the cotangent
bundle of X, we can associate a polynomial of order k in the cotangent space T ∗xX
obtained by replacing the derivatives by ξ ∈ T ∗xX. More precisely, for each kth

order derivative in a(x, ∂k), i.e.,

∂α =
∂|α|

∂xα0
0 ∂xα1

1 ∂xα2
2 · · · ∂x

αn
n

|α| = k, we associate the polynomial

ξα ≡ ξα0
0 ξα1

1 ξα2
2 · · · ξαnn ,

where ξ = (ξ0, ξ1, ξ2, . . . , ξn) ∈ T ∗xX, forming in this way the polynomial

p(x, ξ) =
∑
|α|=k

aα(x)ξα.

Clearly, p(x, ξ) is a homogeneous polynomial of degree k. It is called the character-
istic polynomial (at x) of the operator a.

The cone Vx(p) of p in T ∗xX is defined by the equation

p(x, ξ) = 0.

Definition A.3. With the above notation, p(x, ξ) is called a hyperbolic polynomial
(at x) if there exists ζ ∈ T ∗xX such that every straight line through ζ that does not
contain the origin intersects the cone Vx(p) at k real distinct points. The differential
operator a(x, ∂k) is called a hyperbolic operator (at x) if p(x, ξ) is hyperbolic.

Leray proved in [26] that (ifX is at least three-dimensional) if p(x, ξ) is hyperbolic
at x, then the set of points ζ satisfying the condition of Definition A.3 forms the
interior of two opposite half-cones Γ∗,+x (a), Γ∗,−x (a), with Γ∗,±x (a) non-empty, with
boundaries that belong to Vx(p) .

Remark 10. Another way of stating Definition A.3 is as follows. Given ζ ∈ TxX,
consider a non-zero vector θ that is not parallel to ζ and form the line λζ + θ,
where λ ∈ R is a parameter. We then require this line to intersect the cone Vx(p)
at k distinct real points. An equivalent definition of hyperbolic polynomials is as
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follows [9]: p(x, ξ) is hyperbolic at x if for each non-zero ξ = (ξ0, . . . , ξn) ∈ T ∗xX,
the equation p(x, ξ) = 0 has k distinct real roots ξ0 = ξ0(ξ1, . . . , ξn).

With applications to systems in mind, we next consider the N × N diagonal
linear differential operator matrix

A(x, ∂) =

a
1(x, ∂k1) · · · 0

...
. . .

...
0 · · · aN (x, ∂kN )

 .

Each aJ(x, ∂kJ ), J = 1, . . . , N is a linear differential operator of order kJ .

Definition A.4. The operator A(x, ∂) is called Leray-Ohya hyperbolic (at x) if:
(i) The characteristic polynomial pJ(x, ξ) of each aJ(x, ∂kJ ) is a product of hy-

perbolic polynomials, i.e.

pJ(x, ξ) = pJ,1(x, ξ) · · · pJ,rJ (x, ξ), J = 1, . . . , N,

where each pJ,q(x, ξ), q = 1, . . . , rJ , J = 1, . . . , N , is a hyperbolic polynomial.
(ii) The two opposite convex half-cones,

Γ∗,+x (A) =

N⋂
J=1

rJ⋂
q=1

Γ∗,+x (aJ,q), and Γ∗,−x (A) =

N⋂
J=1

rJ⋂
q=1

Γ∗,−x (aJ,q),

have a non-empty interior. Here, Γ∗,±x (aJ,q) are the half-cones associated with the
hyperbolic polynomials pJ,q(x, ξ), q = 1, . . . , rJ , J = 1, . . . , N .

Remark 11. When the above hyperbolicity properties hold for every x, we call
the corresponding operators hyperbolic (we can also talk about hyperbolicity in
an open set, a certain region, etc.). When we say that an operator is Leray-Ohya
hyperbolic on the whole space (or in an open set, etc.), this means not only that
Definition A.4 applies for every x, but also that the numbers rJ and the degree of
the polynomials pJ,q(x, ξ), q = 1, . . . , rJ , J = 1, . . . , N , do not change with x.

Definition A.5. We define the dual convex half-cone C+
x (A) at TxX as the set of

v ∈ TxX such that ξ(v) ≥ 0 for every ξ ∈ Γ∗,+x (A); C−x (A) is analogously defined,
and we set Cx(A) = C+

x (A) ∪ C−x (A). If the convex cones C+
x (A) and C−x (A) can

be continuously distinguished with respect to x ∈ X, then X is called time-oriented
(with respect to the hyperbolic form provided by the operator A). A path in X is
called future (past) time-like with respect to A if its tangent at each point x ∈ X
belongs to C+

x (A) (C−x (A)), and future (past) causal if its tangent at each point
x ∈ X belongs or is tangent to C+

x (A) (C−x (A)). A regular surface Σ is called
space-like with respect to A if TxΣ (⊂ TxX) is exterior to Cx(A) for each x ∈ Σ. It
follows that for a time-oriented X, the concepts of causal past, future, domains of
dependence and influence of a set can be defined in the same way one does when
the manifold is endowed with a Lorentzian metric. We refer the reader to [26] for
details. Here we need only the following: the causal past J−(x) of a point x ∈ X is
the set of points that can be joined to x by a past causal curve.

Remark 12. The definitions in Definition A.5 endow X with a causal structure
provided by the operator A. Despite the similar terminology, however, it should
be noticed that all of the above definitions depend only on the structure of the
operator A, and do not require an a priori Lorentzian metric on X. The case of
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interest in general relativity, however, is when the causal structure of the space-
time is connected with that of A. In this regard, the following observation is useful.
Suppose that X has a Lorentzian metric g. For causal solutions of the systems of
equations here described (see Theorem A.11 below) to be causal in the sense of
general relativity, one needs that, for all x ∈ X, C±x (A) ⊆ K±x , where K±x are the
two halves of the light-cone {gµνξµξν ≤ 0}. By duality, this is equivalent to saying
that in the cotangent spaces we have K∗,±x ⊆ Γ∗,+x (A), where K∗,±x are the two
halves of the dual light-cone {gµνξµξν ≤ 0}.

Next, we consider the following quasi-linear system of differential equations

A(x, U, ∂)U = B(x, U), (19)

where A(x, U, ∂) is the N ×N diagonal matrix

A(x, U, ∂) =

a
1(x, U, ∂k1) · · · 0

...
. . .

...
0 · · · aN (x, U, ∂kN )

 ,

with aJ(x, U, ∂kJ ), J = 1, . . . , N differential operators of order kJ . B(x, U) is the
vector

B(x, U) = (bJ(x, U)), J = 1, . . . , N,

and the vector

U(x) = (U I(x)), I = 1, . . . , N

is the unknown. Notice that because aJ is allowed to depend on U , the above
system is in general non-linear.

Definition A.6. The system A(x, U, ∂)U = B(x, U) is called a Leray system if it
is possible to attach to each unknown uI an integer mI ≥ 0, and to each equation
J of the system an integer nJ ≥ 0, such that:

(i) kJ = mJ − nJ , J = 1, . . . , N ;
(ii) the functions bJ and the coefficients of the differential operators aJ are9

functions of x, of uI , and of the derivatives of uI of order at most mI − nJ − 1,
I, J = 1 . . . , N . If for some I and some J , mI − nJ < 0, then the corresponding aJ

and bJ do not depend on uI .

Remark 13. The indices mI and nJ in Definition A.6 are defined up to an additive
integer.

Definition A.7. A Leray-Ohya system (with diagonal principal part) is a Leray
system where the matrix A is Leray-Ohya hyperbolic. In the quasi-linear case, since
the operators a depend on U , we need to specify a function U that is plugged into
A(x, U, ∂) in order to compute the characteristic polynomials. In this case we talk
about a Leray-Ohya system for the function U . The primary case of interest is
when U assumes the values of the given Cauchy data.

When considering a quasi-linear system, we write p(x, U, ξ) and similar expres-
sions to indicate the dependence on U .

We now formulate the Cauchy problem for Leray systems.

9The regularity required for the coefficients aJ and bJ depends on particular applications and
context. For instance, for Theorem A.10 the required regularity is specified. Similarly, in Definition

A.8, one needs to take derivatives of these quantities up to order nJ , thus they need to be at least
as many times differentiable.
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Definition A.8. Let Σ be a regular hypersurface in X, which we assume for sim-
plicity to be given by {x0 = 0}. The Cauchy data on Σ for a Leray system in X
consists of the values of U = (uI) and their derivatives up to order mI − 1 on Σ,
i.e., ∂αuI

∣∣
Σ

, |α| ≤ mI −1, I = 1, . . . , N . The Cauchy data is required to satisfy the

following compatibility conditions. If V = (vI) is an extension of the Cauchy data
defined in a neighborhood of Σ, i.e. ∂αvI

∣∣
Σ

= ∂αuI
∣∣
Σ

, |α| ≤ mI − 1, I = 1, . . . , N ,

then the difference aJ(x, V, ∂)U − bJ(x, V ) and its derivatives of order less than nJ
vanish on Σ, for J = 1, . . . , N . When to a Leray system A(x, U, ∂)U = B(x, U)
we prescribe initial data satisfying these conditions, we say that we have a Cauchy
problem for A(x, U, ∂)U = B(x, U).

Notice that by definition, the Cauchy data for a Leray system satisfies the afore-
mentioned compatibility conditions. We also introduce the following notions related
to the Cauchy problem for a Leray system.

Assumption 2. Consider the Cauchy problem for a Leray system A(x, U, ∂)U =
B(x, U). Let Y be an open set of RL, where L equals the number of derivatives of
uJ of order less or equal to maxI mI − nJ , J = 1, . . . , N , and such that Y contains
the closure of the values taken by the Cauchy data on Σ. It is convenient to consider
A(x, U, ∂) as a differential operator defined over X×Y , as follows. We shall assume

that there exists a differential operator Ã(x, y, ∂) defined over X × Y with the
following property. If (x, y) ∈ X ×Y and V = (vJ) is a sufficiently regular function

on Σ such that y = (∂maxI mI−nJ vJ(x))J=1,...,N , then A(x, V (x), ∂) = Ã(x, y, ∂).

We shall write A(x, y, ∂) for Ã(x, y, ∂).

Definition A.9. Consider the Cauchy problem for a Leray system A(x, U, ∂)U =
B(x, U). Let Σ and Y be as in Definition A.8 and Assumption 2, respectively.
Denote by As(Σ, I) the set of V = (vJ) ∈ G(s)(Σ), J = 1, . . . , N , such that
(∂maxI mI−nJ vJ(x))J=1,...,N ∈ Y for all x ∈ Σ.

We are now ready to state the results of this appendix. We use the above notation
and definitions in the statement of the theorems below.

Theorem A.10 (Existence and uniqueness). Consider the Cauchy problem for
(19). Suppose that the Cauchy data is in G(s)(Σ), and that

aJ(·, ·, ∂kJ ) ∈ GnJ ,(s)loc (X × Y ), and bJ(·, ·) ∈ GnJ ,(s)(X × Y ).

Suppose that for any V ∈ As(Σ, Y ) the system is Leray-Ohya hyperbolic with indices
mI and nJ ; thus for all x ∈ Σ, each pJ(x, V, ξ) is the product of rJ hyperbolic
polynomials,

pJ(x, V, ξ) = pJ,1(x, V, ξ) · · · pJ,rJ (x, V, ξ), J = 1, . . . , N.

Suppose that each pJ,q+1(x, V, ξ), q = 0, . . . , rJ −1, depends on at most mI−mJ,q−
rI + q derivatives of vI , I = 1, . . . , N , where

mJ,q = nJ + deg(pJ,1) + · · ·+ deg(pJ,q), mJ,rJ = mJ , mJ,0 = nJ .

Above, deg(pJ,q) is the degree, in ξ, of the polynomial pJ,q(x, V, ξ).
Denote by aJq+1(x, y, ∂) the differential operator associated with pJ,q+1. Assume

that

aJq+1(·, ·, ∂) ∈ GmJ,q−q,(s)loc (X × Y ).
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Let 0 ≤ gI ≤ rI be the smallest integers such that aJ(x, V, ∂mJ−nJ ) and bJ(x, V )
depend on at most mI −nJ − rI + gI derivatives of vI , I = 1, . . . , N , J = 1, . . . , N .
Finally, assume that

1 ≤ s ≤ rJ
gJ

and
n

2
+ rJ < nJ , J = 1, . . . , N.

Then, there exists a T ′ > 0 and a solution U = (uI) to the Cauchy problem for (19)
and defined on [0, T ′)× Rn ⊆ X. The solution satisfies

uI ∈ GmI ,(s)([0, T ′)× Rn), I = 1, . . . , N.

Furthermore, the solution is unique in this regularity class.

Theorem A.11 (Causality). Assume the same hypotheses of Theorem A.10, and
suppose further that

1 ≤ s < rJ
gJ
, J = 1, . . . , N.

Let T ′ and U be as in the conclusion of Theorem A.10. Then, if T ′ is suffi-
ciently small, the operator A(x, U, ∂) is Leray-Ohya hyperbolic (thus the causal past
of a point is well-defined), and for each x ∈ [0, T ′) × Rn, U(x) depends only on
U0|J−(x)∩Σ, where U0 is the Cauchy data.

Remark 14. Theorem A.10 assumes that the system is Leray-Ohya hyperbolic for
V ∈ A(Σ, Y ), which is essentially the space of values near the initial data. (Natu-
rally, it would not make sense to require the system to be Leray-Ohya hyperbolic
for the yet to be proven to exist solution U .) Once U is constructed, one can then
ask whether the system is Leray-Ohya hyperbolic for U . This will be the case if T ′

is small, since in this case the values of U will be close to those of the initial data
by continuity, guaranteeing that U(x) ∈ A(Σ, Y ).

Theorems A.10 and A.11 are proven in [28] (reprinted in [29]).
We now consider a system whose principal part is not necessarily diagonal. The

definition of a Leray system depends only on the existence of the indices mI and
nJ with the stated properties, and thus can be extended to non-diagonal systems.

Definition A.12. Consider a system of N partial differential equations and N
unknowns in X, and denote the unknown as U = (uI), I = 1, . . . , N . The system
is a (not necessarily diagonal in the principal part) Leray system if it is possible
to attach to each unknown uI a non-negative integer mI and to each equation a
non-negative integer nJ , such that the system reads

hJI (x, ∂mK−nJ−1uK , ∂mI−nJ )uI + bJ(x, ∂mK−nJ−1uK) = 0, J = 1, . . . , N. (20)

Here, hJI (x, ∂mK−nJ−1uK , ∂mI−nJ ) is a homogeneous differential operator of order
mI − nJ (which can be zero), whose coefficients depend on at most mK − nJ − 1
derivatives of uK , K = 1, . . . N , and there is a sum over I in hJI (·)uI . The remaining
terms, bJ(x, ∂mK−nJ−1uK), also depend on at most mK −nJ −1 derivatives of uK ,
K = 1, . . . N . As before, these indices are defined only up to an overall additive
integer.

As done above, for a given sufficiently regular U , hJI (x, ∂mK−nJ−1UK , ∂mI−nJ )
are well-defined linear operators, and we can ask about their hyperbolicity proper-
ties. The case of interest will be, again, when we evaluate these operators at some
given Cauchy data.
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Write (20) in matrix form as

H(x, U, ∂)U = B(x, U). (21)

Definition A.13. The characteristic determinant of (21) at x ∈ X and for a given
U is the polynomial p(x, ξ) in the co-tangent space T ∗xX, ξ ∈ T ∗xX, given by

p(x, U, ξ) = det(H(x, U, ξ)). (22)

Note that p is a homogeneous polynomial of degree

` ≡
N∑
I=1

mI −
N∑
J=1

nJ .

Under appropriate conditions, (21) can be transformed into a Leray-Ohya system
of the form (19), i.e., with diagonal principal part. More precisely, we have the
following.

Theorem A.14 (Diagonalization). Consider (21). Suppose that the characteristic
determinant (22) at a given U is not identically zero, and it is the product of Q
hyperbolic polynomials, i.e.,

p(x, U, ξ) = p1(x, U, ξ) · · · pQ(x, U, ξ).

Let dq be the degree of pq(x, U, ξ), q = 1, . . . , Q, and suppose that

max
q
dq ≥ max

I
mI −min

J
nJ .

Finally, assume that

` ≥ max
I
mI −min

J
nJ .

Then, there exists a N ×N matrix C(x, U, ∂) of differential operators whose coeffi-
cients depend on U , such that

C(x, U, ∂)H(x, U, ∂)U = I p(x, U, ∂)U + B̃1(x, U),

and

C(x, U, ∂)B(x, U) = B̃2(x, U),

where I is the N×N identity matrix, p(x, U, ∂) is the differential operator associated

with p(x, U, ξ), and B̃1(x, U) and B̃2(x, U) depend on at most ` − 1 derivatives of
U , as do the coefficients of the operator p(x, U, ξ). Furthermore, there is a choice
of indices that makes the system

I p(x, U, ∂)U = B̃2(x, U)− B̃1(x, U) (23)

into a Leray system. In particular, if the intersections ∩qΓ∗,+x (aq) and ∩qΓ∗,−x (aq),
where Γ∗,±x (aq) are the half-cones associated with the hyperbolic polynomials
pq(x, U, ξ), have non-empty interiors, then (23) is a Leray-Ohya system with di-
agonal principal part in the sense of definition A.7.

Theorem A.14 is proven in [6].

Definition A.15. Under the hypotheses of Theorem A.14, the number Q
Q−1 is

called the Gevrey index of the system.
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Remark 15. Suppose that (23) forms a Leray-Ohya system in the sense of defini-
tion A.7, i.e., the half-cones have non-empty interiors as stated in Theorem A.14.
It can then be shown [6] that a value of s sufficient to apply Theorems A.10 and

A.11 is 1 ≤ s < Q
Q−1 .

Let us make a brief comment about the proofs of the above results. Theorem
A.10 is proven as follows. First, one solves the associated linear problem. This
is done by a method of majorants reminiscent of the Cauchy-Kowalevskaya theo-
rem. One uses the fact that Gevrey functions admit a formal series expansion that
provides a consistent way of constructing successive approximating solutions to the
problem. The non-linear problem is then treated via a fixed point argument, upon
solving successive linear problems. Theorem A.11 is obtained by a Holmgren type
of argument. We remark that the assumption that pJ,q+1(x, V, ξ), q = 0, . . . , rJ −1,
depends on at most mI − mJ,q − rI + q derivatives of vI , I = 1, . . . , N , ensures
that the coefficients of the associated differential operators aJ,q+1(x, U, ∂) do not
depend on too many derivatives of U , as it should be in the treatment of quasi-linear
equations.

Theorem A.14 is based on the following identity:

cTa = det(a), (24)

where a is an N ×N invertible matrix and cT the transpose of the co-factor matrix.

At the level of differential operators, this identity produces the lower order terms B̃1.
One then needs to match the order of the resulting differential operators and lower
order terms with appropriate indices satisfying the definition of a Leray system.
This is possible under the conditions on dq and ` stated in the theorem.

Appendix B. Derivation of the equations of motion. In this section we give
the derivation of (6) and (7). The derivation of (6) is standard and we include it
here for the reader’s convenience, thus let us start with (6). Let

(0)tαβ =
4

3
uαuβε+

1

3
gαβε, (25)

and denote the third to ninth terms in (1) by (1)tαβ to (7)tαβ , respectively. Explicitly,

(1)tαβ = −ηπµαπνβ(∇µuν +∇νuµ −
2

3
gµν∇λuλ),

(2)tαβ = λ(uαu
µ∇µuβ + uβu

µ∇µuα),

(3)tαβ =
1

3
χπαβ∇µuµ,

(4)tαβ = χuαuβ∇µuµ,

(5)tαβ =
λ

4ε
(uαπ

µ
β∇µε+ uβπ

µ
α∇µε),

(6)tαβ =
3χ

4ε
uαuβu

µ∇µε,

(7)tαβ =
χ

4ε
παβu

µ∇µε,

so that

Tαβ = (0)tαβ + (1)tαβ + · · · (7)tαβ .
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B.1. Calculation of ∇α(1)tαβ . We have

∇α(1)tαβ = −ηπαµπνβ(∇α∇µuν +∇α∇νuµ −
2

3
gµν∇α∇λuλ)

+∇α(ηπαµπνβ)(∇µuν +∇νuµ −
2

3
gµν∇λuλ).

(26)

Compute

πνβ∇α∇µuν = (gνβ + uβu
ν)∇α∇µuν = ∇α∇µuβ + uβu

ν∇α∇µuν
= ∇α∇µuβ + uβ∇α(uν∇µuν)− uβ∇αuν∇µuν
= ∇α∇µuβ − uβ∇αuν∇µuν ,

so that

−ηπαµπνβ∇α∇µuν = −ηπαµ(∇α∇µuβ −∇αuν∇µuν)

= −η(gαµ + uαuµ)∇α∇µuβ + ηπαµ∇αuν∇µuν
= −ηgαµ∇α∇µuβ + uαuµ∇α∇µuβ + ηπαµ∇αuν∇µuν .

(27)

Similarly, we find

παµ∇α∇νuµ = (gαµ + uαuµ)∇α∇νuµ = gαµ∇α∇νuµ + uαuµ∇α∇νuµ
= ∇α∇νuα − uα∇αuµ∇νuµ,

so that

−ηπαµπνβ∇α∇νuµ = −ηπνβ(∇α∇νuα − uα∇αuµ∇νuµ)

= −ηgνβ∇α∇νuα − ηuβuν∇α∇νuα + ηπνβu
α∇αuµ∇νuµ.

(28)

But

∇α∇νuα = ∇ν∇αuα +Rναu
α,

so that (28) becomes

−ηπαµπνβ∇α∇νuµ = −ηgνβ(∇ν∇αuα +Rναu
α)− ηuβuν(∇ν∇αuα +Rναu

α)

+ ηπνβu
α∇αuµ∇νuµ

= −ηgνβ∇ν∇αuα − ηgνβRναuα − ηuβuν∇ν∇αuα

− ηuβuνRναuα + ηπνβu
α∇αuµ∇νuµ.

(29)

Next compute

−ηπαµπνβ(−2

3
gµν∇α∇λuλ) =

2

3
ηπαµπβµ∇α∇λuλ

=
2

3
ηπαβ∇α∇λuλ =

2

3
η(gαβ + uαuβ)∇α∇λuλ

=
2

3
ηgαβ∇α∇λuλ +

2

3
ηuβu

α∇α∇λuλ.

(30)

Plugging (27), (29), and (30) into (26) we find

∇α(1)tαβ = −ηgαµ∇α∇µuβ − ηuαuµ∇α∇µuβ + ηuβπ
αµ∇αuν∇µuν − ηgνβ∇ν∇αuα

− ηuβuν∇ν∇αuα − ηRβαuα − ηuβRναuνuα + ηπνβu
α∇αuµ∇νuµ

+
2

3
ηgνβ∇ν∇αuα +

2

3
ηuβu

ν∇ν∇αuα

+∇α(ηπαµπνβ)(∇µuν +∇νuµ −
2

3
gµν∇λuλ).
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We now group the first two terms, the fourth term with the ninth term, and the
fifth term with the tenth term, to find

∇α(1)tαβ = −η(gαµ + uαuβ)∇α∇µuβ −
1

3
ηgνβ∇ν∇αuα

− 1

3
ηuβu

ν∇ν∇αuα + (1)Bβ ,

(31)

where

(1)Bβ = ηuβπ
αµ∇αuν∇µuν − ηRβαuα − ηuβRναuνuα + ηπνβu

α∇αuµ∇νuµ

+∇α(ηπαµπνβ)(∇µuν +∇νuµ −
2

3
gµν∇λuλ).

(32)

B.2. Calculation of ∇α(2)tαβ . Compute

∇α(2)tαβ = ∇α
[
λ(uαuµ∇µuβ + uβu

µ∇µuα)
]

= λ(uαuµ∇α∇µuβ + uβu
µ∇α∇µuα) +∇α(λuαuµ)∇µuβ

+∇α(λuβu
µ)∇µuα.

Using ∇α∇µuα = ∇µ∇αuα +Rµαu
α we find

∇α(2)tαβ = λuαuµ∇α∇µuβ + λuβu
µ∇µ∇αuα + (2)Bβ , (33)

where

(2)Bβ = λuβRµαu
µuα +∇α(λuαuµ)∇µuβ +∇α(λuβu

µ)∇µuα. (34)

B.3. Calculation of ∇α(3)tαβ . Compute

∇α(3)tαβ = ∇α
(1

3
παβ∇µuµ

)
=

1

3
χπαβ∇α∇µuµ +

1

3
∇α(χπαβ )∇µuµ,

so that

∇α(3)tαβ = χ
1

3
gµβ∇µ∇αu

α +
1

3
χuβu

µ∇µ∇αuα + (3)Bβ , (35)

where

(3)Bβ =
1

3
∇α(χπαβ )∇µuµ. (36)

B.4. Calculation of ∇α(4)tαβ . Compute

∇α(4)tαβ = ∇α
(
χuαuβ∇µuµ

)
= χuβu

µ∇µ∇αuα + (4)Bβ ,
(37)

where

(4)Bβ = ∇α(χuαuβ)∇µuµ. (38)
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B.5. Calculation of ∇α(5)tαβ . Compute

∇α(5)tαβ = ∇α
[ λ

4ε
(uαπµβ∇µε+ uβπ

αµ∇µε
]

=
λ

4ε
uαπµβ∇α∇µε+

λ

4ε
uβπ

αµ∇α∇µε+∇α
[ λ
4ε

(uαπµβ + uβπ
αµ)
]
∇µε

=
λ

4ε
uαgµβ∇α∇µε+

λ

4ε
uβu

αuµ∇α∇µε+
λ

4ε
uβg

αµ∇α∇µε

+
λ

4ε
uβu

αuµ∇α∇µε+∇α
[ λ
4ε

(uαπµβ + uβπ
αµ)
]
∇µε.

We rearrange the terms, swapping the first and third terms, so that

∇α(5)tαβ =
λ

4ε
uβg

αµ∇α∇µε+
λ

4ε
uβu

αuµ∇α∇µε

+
λ

4ε
uαgµβ∇α∇µε+

λ

4ε
uβu

αuµ∇α∇µε+ (5)Bβ ,

(39)

where

(5)Bβ = ∇α
[ λ
4ε

(uαπµβ + uβπ
αµ)
]
∇µε. (40)

B.6. Calculation of ∇α(6)tαβ . Compute

∇α(6)tαβ = ∇α
[3χ

4ε
uαuβu

µ∇µε
]

=
3χ

4ε
uβu

αuµ∇α∇µε+∇α
[3χ

4ε
uαuβu

µ
]
∇µε

=
3χ

4ε
uβu

αuµ∇α∇µε+ (6)Bβ ,

(41)

where

(6)Bβ = ∇α
[3χ

4ε
uαuβu

µ
]
∇µε. (42)

B.7. Calculation of ∇α(7)tαβ . Compute

∇α(7)tαβ = ∇α
[ χ

4ε
παβu

µ∇µε
]

=
χ

4ε
(gαβ + uαuβ)uµ∇α∇µε+∇α

[ χ
4ε
παβu

µ
]
∇µε

=
χ

4ε
gαβu

µ∇α∇µε+
χ

4ε
uαuβu

µ∇α∇µε+ (7)Bβ ,
(43)

where

(7)Bβ = ∇α
[ χ

4ε
παβu

µ
]
∇µε. (44)

B.8. Calculation of ∇αTαβ . Using (1), (25), (31), (33), (35), (37), (39), (41), and

(43), we find

∇αTαβ = −η(gαµ + uαuβ)∇α∇µuβ −
1

3
ηgνβ∇ν∇αuα −

1

3
ηuβu

ν∇ν∇αuα

+ λuαuµ∇α∇µuβ + λuβu
µ∇µ∇αuα

+ χ
1

3
gµβ∇µ∇αu

α +
1

3
χuβu

µ∇µ∇αuα

+ χuβu
µ∇µ∇αuα +

λ

4ε
uβg

αµ∇α∇µε+
λ

4ε
uβu

αuµ∇α∇µε

+
λ

4ε
uαgµβ∇α∇µε+

λ

4ε
uβu

αuµ∇α∇µε+
3χ

4ε
uβu

αuµ∇α∇µε

+
χ

4ε
gαβu

µ∇α∇µε+
χ

4ε
uαuβu

µ∇α∇µε+Bβ ,

(45)
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where the first three terms on the RHS of (45) come from (31), the fourth and
fifth from (33), the sixth and seventh from (35), the eighth from (37), the ninth to
twelfth from (39), the thirteenth from (41), the fourteenth and fifteenth from (43),
and Bβ is given by

Bβ = (1)Bβ + (2)Bβ + (3)Bβ + (4)Bβ + (5)Bβ + (6)Bβ + (7)Bβ +∇α(0)tαβ , (46)

with (1)Bβ , . . . ,
(7)Bβ given by (32), (34), (36), (38), (40), (42), and (44), respec-

tively, and (0)tαβ is given by (25). We now group the terms on the RHS of (45)
as follows: the first and the fourth terms, the fifth and the eighth terms, the sec-
ond and the sixth terms, the third and the seventh terms, the ninth, tenth, and
thirteenth terms, the eleventh and fourteenth terms, and the twelfth and fifteenth
terms. We obtain:

∇αTαβ = (−ηgαµ + (λ− η)uαuµ)∇α∇µuβ + (λ+ χ)uβu
µ∇µ∇αuα

+
1

3
(−η + χ)gµβ∇µ∇αu

α +
1

3
(−η + χ)uβu

µ∇µ∇αuα

+
1

4ε
uβ(λgαµ + (λ+ 3χ)uαuµ)∇α∇µε+

1

4ε
(λ+ χ)gµβu

α∇α∇µε

+
1

4ε
(λ+ χ)uβu

αuµ∇α∇µε+Bβ ,

(47)

where the first term on the RHS of (47) comes from the first and the fourth terms
on the RHS of (45), the second term on the RHS of (47) comes from the fifth and
the eighth terms on the RHS of (45), the third term on the RHS of (47) comes from
second and the sixth terms on the RHS of (45), the fourth term on the RHS of (47)
comes from the third and the seventh terms on the RHS of (45), the fifth term on
the RHS of (47) comes from the ninth, tenth, and thirteenth terms on the RHS of
(45), the sixth term on the RHS of (47) comes from the eleventh and fourteenth
terms on the RHS of (45), the seventh term on the RHS of (47) comes from and the
twelfth and fifteenth terms on the RHS of (45), and we used that ∇α∇µε = ∇µ∇αε.

Expanding the covariant derivatives and using Notation 1 gives (7).

B.9. Derivation of (6). Let us first write (3) in trace reversed form. Tracing (3)
gives

R = 4Λ− T,

where T = gαβTαβ . (For (1) we in fact have T = 0, as it must be for a conformal
tensor. But at this point we are writing Einstein’s equations for a general tensor.)
Plugging this for R in (3) gives

Rαβ = Tαβ −
1

2
Tgαβ + Λgαβ .

We now proceed to compute Rαβ in local coordinates. In coordinates, we have

Rαβ = ∂λΓλαβ − ∂αΓλβλ + ΓλαβΓµλµ − ΓλαµΓµβλ.

Using the definition of the Christoffel symbols Γλαβ gives

Rαβ = −1

2
gµν∂2

µνgαβ +
1

2
(gαλ∂βΓλ + gβλ∂αΓλ)

− 1

2
(∂βg

λµ∂λgαµ + ∂αg
λµ∂λgβµ)− ΓµαλΓλβµ,
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where Γλ is given by

Γλ = gµνΓλµν .

Using that in wave coordinates Γλ = 0 and recalling (1), the above gives (6).

Appendix C. The characteristic determinant. In this section we derive (11).
Because of the structure of the system in (9) it suffices to compute the characteristic
determinant of m(U, ∂) in (10). Using Mathematica and (5) we find (we are not
assuming a1 = 4 at this point)

detm(Û , ξ) = p̃1(Û , ξ)p̃2(Û , ξ)p̃3(Û , ξ),

where

p̃1(Û , ξ) =
1

12ε̂
η4(ûµξµ)2,

p̃2(Û , ξ) =
[
(a2 − 1)(û0)2ξ2

0 + (a2 − 1)(û1)2ξ2
1 − (û2)2ξ2

2 + a2(û2)2ξ2
2 − 2û2û3ξ2ξ3

+ 2a2û
2û3ξ2ξ3 − (û3)2ξ2

3 + a2(û3)2ξ2
3 + ξ0(2(−1 + a2)ξ1û

0û1

+ 2(a2 − 1)ξ2û
0û2 − 2ξ3û

0û3 + 2a2û
0û3ξ3 − ξ0)

+ξ1(2(−1 + a2)û1û2ξ2 + 2(a2 − 1)û1û3ξ3 − ξ1)− ξ2ξ2 − ξ3ξ3
]2

and

p̃3(Û , ξ) =− 6(−2a1û0û
0 − a2û0û

0 + 2a1a2û0û
0 + a2

2û0û
0 − 2a1û1û

1 − a2û1û
1

+ 2a1a2û1û
1 + a2

2û1û
1 − 2a1û2û

2 − a2û2û
2 + 2a1a2û2û

2 + a2
2û2û

2

− 2a1û3û
3 − a2û3û

3 + 2a1a2û3û
3 + a2

2û3û
3)(ξ0û

0 + ξ1û
1

+ ξ2û
2 + ξ3û

3)4

− 2(−a2û0 + 4a1a2û0 + 3a2
2û0)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3ξ0

− 2(−a2û1 + 4a1a2û1 + 3a2
2û1)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3ξ1

− 2(−a2û2 + 4a1a2û2 + 3a2
2û2)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3ξ2

− 2(−a2û3 + 4a1a2û3 + 3a2
2û3)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3ξ3

+ 5(3a1û0û
0 + 2a2û0û

0 + a1a2û0û
0 + 3a1û1û

1 + 2a2û1û
1

+ a1a2û1û
1 + 3a1û2û

2 + 2a2û2û
2 + a1a2û2û

2

+ 3a1û3û
3 + 2a2û3û

3 + a1a2û3û
3)(ξ0û

0 + ξ1û
1

+ ξ2û
2 + ξ3û

3)2(ξ0ξ
0 + ξ1ξ

1 + ξ2ξ
2 + ξ3ξ

3) (48)

+ (3a1û0 + 2a2û0 + a1a2û0)(ξ0û
0 + ξ1û

1 + ξ2û
2 + ξ3û

3)ξ0(ξ0ξ
0

+ ξ1ξ
1 + ξ2ξ

2 + ξ3ξ
3) + (3a1û1 + 2a2û1 + a1a2û1)(ξ0û

0

+ ξ1û
1 + ξ2û

2 + ξ3û
3)ξ1(ξ0ξ

0 + ξ1ξ
1 + ξ2ξ

2 + ξ3ξ
3)

+ (3a1û2 + 2a2û2 + a1a2û2)(ξ0û
0 + ξ1û

1

+ ξ2û
2 + ξ3û

3)ξ2(ξ0ξ
0 + ξ1ξ

1 + ξ2ξ
2 + ξ3ξ

3)

+ (3a1û3 + 2a2û3 + a1a2û3)(ξ0û
0

+ ξ1û
1 + ξ2û

2 + ξ3û
3)ξ3(ξ0ξ

0 + ξ1ξ
1 + ξ2ξ

2 + ξ3ξ
3)

+ (4a2û0û
0 − a1a2û0û

0 + 4a2û1û
1 − a1a2û1û

1 + 4a2û2û
2
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− a1a2û2û
2 + 4a2û3û

3 − a1a2û3û
3)(ξ0ξ

0 + ξ1ξ
1 + ξ2ξ

2 + ξ3ξ
3)2.

It is not difficult to see, after some manipulations, that p̃2(Û , ξ) is precisely p2(Û , ξ),

i.e., (13). Let us now analyze p̃3(Û , ξ). The first term in p̃3(Û , ξ), that spans lines
2 to 5 in (C), is proportional to (ûµξµ)4. The terms from lines 6 to 9 combined are
also proportional to (ûµξµ)4. Indeed, the term on the sixth line can be written as

−2(−a2û0 + 4a1a2û0 + 3a2
2û0)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3ξ0

= −2(−a2 + 4a1a2 + 3a2
2)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3û0ξ

0,

and similarly we can group ûi with ξi in the terms on the seventh to ninth line.
Factoring then the common factor in lines 6 to 9 gives a term cubic in ûµξµ times
the term

û0ξ
0 + û1ξ

1 + û2ξ
2 + û3ξ

3.

But this last term equals ûµξµ, which can then be grouped with the cubic term in
ûµξµ producing a term proportional to (ûµξµ)4, as claimed.

The next term in p̃3(Û , ξ), spanning lines 10 to 13 in (C) is proportional to
(ûµξµ)2.

We claim that the terms spanning lines 14 to 20, when combined, produce a term
proportional to (ûµξµ)2. To see this, note that as written the terms in lines 14 to
20 all have a factor û0ξ

0 + û1ξ
1 + û2ξ

2 + û3ξ
3, which equals ûµξµ. The term that

begins on line 14 of (C) can be written as

(3a1û0 + 2a2û0 + a1a2û0)(ξ0û
0 + ξ1û

1 + ξ2û
2 + ξ3û

3)ξ0(ξ0ξ
0 + ξ1ξ

1 + ξ2ξ
2 + ξ3ξ

3)

= (3a1 + 2a2 + a1a2)(ξ0û
0 + ξ1û

1 + ξ2û
2 + ξ3û

3)(ξ0ξ
0 + ξ1ξ

1 + ξ2ξ
2 + ξ3ξ

3)û0ξ
0,

and similarly we can combine ûi with ξi in the other terms in lines 15 to 20.
Factoring then the common factor to all terms in lines 14 to 20 produces a term
linear in ûµξµ times û0ξ

0 + û1ξ
1 + û2ξ

2 + û3ξ
3 ≡ uµξµ, hence a term quadratic in

ûµξµ, as claimed.

Therefore, we see that all terms in p̃3(Û , ξ) contain a factor of (ûµξµ)2, except
for the last term which spans lines 21 and 22. This last term, however, vanishes

identically if a1 = 4. In this case we can factor (ûµξµ)2 from p̃3(Û , ξ). We combine

the factored (ûµξµ)2 with p̃1(Û , ξ), producing p1(Û , ξ), i.e., (12), and the remainder

from p̃3(Û , ξ) produces p3(Û , ξ), i.e., (14).

Remark 16. Without setting a1 = 4, the above factorization procedure can be

used to show that p̃3(Û , ξ) factors as

A(ûµξµ)4 +B(ûµξµ)2ξλξλ + C(ξλξλ)2,

where A, B, and C depend on a1 and a2. We would like to factor this quartic
polynomial as a product of (real) degree two polynomials, since then we can analyze
its roots explicitly. The above choice a1 = 4 does exactly this. But other choices of
a1 and a2 also lead to the desired factorization, as showed in [3].
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