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ABSTRACT. We consider a stress-energy tensor describing a pure radiation vis-
cous fluid with conformal symmetry introduced in [3]. We show that the cor-
responding equations of motions are causal in Minkowski background and also
when coupled to Einstein’s equations, and solve the associated initial-value
problem.

1. Introduction. Consider the following stress-energy tensor for a relativistic fluid
with viscosity:
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1
+ )\(Uauuvuuﬂ + U/BU”Vuua) + gxﬂ'aﬂvuu“ + XxuqugV ut (1)
A 3
+ L(uoﬂrgvue +ugmhV,€) + quauﬁu“vue + %ﬂ'aﬁu”vue.
Here, wu is the four-velocity of fluid particles, normalized so that
U = —1, (2)

€ is the energy density of the fluid, g is a (Lorentzian) metric, V is the Levi-Civita
connection associated with g, mo5 = gap +usug, and 0, A, and x are viscous trans-
port coefficients — so that n = A = x = 0 corresponds to an ideal fluid. The
transport coefficients are non-negative functions of e. Coefficient 7 is the usual co-
efficient of shear viscosity, whereas A and x are related to relaxation times. More
precisely, while A and y, differently than 7, have no analogue in more familiar the-
ories such as classical, non-relativistic Navier-Stokes, their physical meaning can be
understood from the derivation of (1) from kinetic theory given in [3]. In that case,
one may interpret A\/(sf) and x/(s8), where s is the entropy density and 6 the tem-
perature, as relaxation times that restore causality (since intuitively causality says
that the system needs some time to relax back to equilibrium after a perturbation).
See [3] for details.
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We are interested in the case of pure radiation, when the fluid’s pressure is given
by p = %e, and, therefore, p has already been eliminated from 7T, z3.
Above and throughout, we adopt the following:

Convention 1. We work in units where 87G = ¢ = 1, where G is Newton’s
constant and c is the speed of light in vacuum. Owur signature for the metric is
— 4+ ++. Greek indices run from 0 to 3 and Latin indices from 1 to 3.

We shall couple (1) to Einstein’s equations:

1
Raﬂ - iRgOlB + Agaﬁ = Taﬂa (3)

where R, and R are, respectively, the Ricci and scalar curvature of the metric
g, and A is a constant (the cosmological constant). We recall that in light of the
Bianchi identities, a necessary condition for (3) to hold is that

Vo T5 =0. (4)

Naturally, equations (3)-(4) are defined in a four-dimensional differentiable mani-
fold, the space-time.
We shall establish the following.

Main result. (see Theorems 2.2 and 2.3 for precise statements) Under appropriate
conditions on the initial data and the transport coefficients, the system of Einstein’s
equations coupled to (1) is causal and admits a unique solution. Causality and
uniqueness are here understood in the usual sense of general relativity. Fxistence,
uniqueness, and causality remain true if we consider solely (4) in Minkowski space-
time.

The tensor (1) was introduced’ in [3]. As discussed there, (1) is the first example
in the literature of a stress-energy tensor for relativistic viscous fluids satisfying
the following list of physical requirements: in Minkowski background, equations (4)
are (i) linearly stable with respect to perturbations around homogeneous thermody-
namic equilibrium, (ii) well-posed, and (iii) causal; (iv) Einstein’s equations coupled
to (1) are well-posed and causal; (v) equations (4) reduce to the standard Navier-
Stokes equations in the non-relativistic limit; (vi) an out-of-equilibrium entropy
can be defined so that solutions to (4) satisfy the (out of equilibrium) second law
of thermodynamics; and (vii) T,s can be derived from microscopic kinetic theory.

One reason for seeking a stress-energy tensor satisfying the above properties is
that the traditional forms of the relativistic Navier-Stokes equations fail to be causal
and stable [23, 35], and attempts to construct a relativistic viscous theory satisfying
(i)-(vi) have been limited so far?. See [12, 15, 16, 37] for a discussion. In [3] it is
also shown that T, yields a well-defined temperature in the test-case of the Gubser
flow, in contrast to the traditional relativistic Navier-Stokes’ equations that yield a
negative temperature, and that a hydrodynamic attractor exists for the dynamics
of the Bjorken flow.

Tensor (1) describes a conformal fluid. Loosely speaking, this means that (1)
is well-behaved under conformal changes of the metric. More precisely, consider

In [3], (1) is written in a different form, using the so-called Weyl derivative (whose definition
is given in [3]; see [33] for more details) instead of the covariant derivative. Both expressions agree
once the Weyl derivative is expanded in terms of the covariant derivative.

It is interesting to note that the seemingly easier task of generalizing the non-relativistic
Navier-Stokes to Riemannian manifolds is not without problems either, see [5].
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a conformal transformation g;,; = e 2%g,p, and the transformed quantities u/, =
e %u,, € = e*®e. Then the fluid is called conformal if T,p is traceless and the
corresponding transformed T, 5 satisfies
Tls=e*"Tap.
One can show [2, 4] that under these conditions
V(TG = €'V, T§,

so in particular solutions are preserved by the above transformations. There exists
a large literature on conformal fluids and their applications in physics, to which the
reader is referred for a discussion (see, e.g., [11, 20] and references therein; for the
mathematical background for these references, see [19]). We restrict ourselves to
mentioning that conformal fluids are of importance in the study of the quark-gluon
plasma that forms in high-energy collisions of heavy-ions; the quark-gluon plasma
at very high temperatures is the prototypical example of a relativistic viscous fluid
with an equation of state of pure radiation.

The definition of conformal fluid, stated above, will play no direct role in this

work per se. Rather, we shall use one of its main consequences, namely, that for
such fluids we have

X = a11, A = aan), (5)
where a1 and as are constants. Therefore all transport coefficients are determined
once we are given 7 = 7)(e).

Our main result has previously appeared in [3], but the letter format of that
manuscript and the fact that it was addressed primarily to a physical audience pre-
vented us from presenting several details of the proof. In particular, the argument
in [3] may not be entirely satisfactory for a mathematical audience.

Definition 1.1. For the rest of the the paper, we shall refer to the system of
equations (3), with T,3 given by (1) and w satisfying (2), as the viscous Einstein-
conformal fluid (VECF) system.

2. Statement of the results. We now turn to the precise formulation of the Main
Result. We begin by discussing the initial data for the VECF system.

Definition 2.1. An initial data set for the VECF system consists of a three-
dimensional smooth manifold ¥, a Riemannian metric gg on X, a symmetric two-
tensor k on X, two real-valued functions €y and €; defined on ¥, and two vector
fields vy and vy on X, such that the Einstein constraint equations are satisfied.

We recall that the constraint equations are given by the following system of
equations on X:

R!Jo - |H|30 - (trgo "{)2 =2p

Vo trg, & — divgy K = j

where R, is the scalar curvature of go, Vg, trg,, divg,, and |- |4, are the covariant
derivative, trace, divergence, and norm with respect to go. The quantities p and j
are given by p = T'(n,n) and j = T'(n, ), where n is the future-pointing unit normal
to ¥ inside a development of the initial data and 7T is the stress-energy tensor.
Because T, 3 involves first derivatives of v and e, initial conditions for their time
derivatives have to be given, hence the necessity of two functions and two vector
fields. Even though w is a four-vector, it suffices to specify vector fields on 3,
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with initial conditions for the non-tangential components of u derived from (2) (see
section 3.2). It is well-known that initial data for Einstein’s equations cannot be
prescribed arbitrarily, having to satisfy the associated constraint equations, see,
e.g., [21], for details.

We can now state our main result. The definition of spaces G° and G™* is
recalled in Appendix A.1. We refer the reader to the general relativity literature
(e.g., [7, 21, 25, 38, 40]) for the terminology employed in Theorem 2.2.

Theorem 2.2. Let T = (X, go, K, €0, €1, Vo, v1) be an initial data set for the VECF
system. Assume that 3 is compact with no boundary, and that g > 0. Suppose that
X and X are given by (5), where n : (0,00) = (0,00) is analytic, and assume that
a1 = 4 and ay > 4. Finally, assume that the initial data is in G®)(Z) for some
l<s< %, Then:

1) There exists a globally hyperbolic development M of T.

2) M is causal, in the following sense. Let (g,€,u) be a solution to the VECF
system provided by the globally hyperbolic development M. For any p € M in the
future of 32, (g(p), u(p), e(p)) depends only on I|i(2)ﬁ.]_(p)7 where J~ (p) is the causal
past of p and i : X — M 1is the embedding associated with the globally hyperbolic
development M .

We note that, in the standard PDE language, Theorem 2.2 is local in time. But as
usual in general relativity, solutions to Einstein’s equations are geometric (a solution
to Einstein’s equations is a Lorentzian manifold) and, in particular, coordinate
independent, whereas a statement like “there exists a 7 > 0...” (as is usual in local
in time results) requires the introduction of coordinates. This is why the theorem is
better stated as the existence of a globally hyperbolic development®. We assumed
that X is compact for simplicity, otherwise asymptotic conditions would have to
be prescribed. The type of asymptotic conditions one would impose had ¥ been
non-compact depends on the type of questions one is investigating. For instance,
it is customary to require go to be asymptotically flat, but other conditions, such
as asymptotically hyperbolic, are often used. As for the matter variables, several
choices are possible. One can require vy and €y to approach zero, a constant, or
some other specified profile at infinity. The literature on Einstein’s equations with
non-compact Y is vast, and a discussion of asymptotic conditions can be found,
e.g., [7, 8] and references therein. The assumption €y > 0 in Theorem 2.2 (which
implies a uniform bound from below away from zero by the compactness of ¥),
however, is crucial. This is apparent from expression (1), but it is worth mentioning
that allowing €y to vanish leads to severe technical difficulties even in the better
studied case of the Einstein-Euler system (see [18, 24, 36] for the known results
and [13] for a discussion; in fact, the difficulties with vanishing density are present
already in the non-relativistic case, see the discussion in [14, 31]). In particular,
if we were dealing with a non-compact ¥ and had chosen an asymptotic condition
where ¢y approaches zero, the techniques here employed would not directly apply.

3We recall that a globally hyperbolic development is, roughly speaking, a Lorentzian manifold
where Einstein’s equations are satisfied and in which ¥ embeds isometrically as a Cauchy surface
taking the correct data. We also recall that once a globally hyperbolic development is shown to
exist, one can prove the existence of the “largest” possible global hyperbolic development, i.e., the
maximal globally hyperbolic development of the initial data, which is (geometrically) unique. See
(25, 38] for details.
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The assumptions a; = 4 and as > 4 are technical®, but they are consistent with
conditions that guarantee the previously mentioned linear stability of (1). Note
that while our proof is restricted to the Gevrey class, our result guarantees that
causality will be automatically satisfied in any function space where uniqueness can
be established. This is relevant in view of the difficulties of constructing causal
theories of relativistic viscous fluids.

Next, we consider the case of a Minkowski background.

Theorem 2.3. Let T be given by (1) with g being the Minkowski metric. Suppose
that x and X satisfy (5), with a; = 4, ag > 4, where n : (0,00) — (0,00) is a given
analytic function. Let ey, €1 : R — R and vg, va : R3 — R3 belong to G (R3) for
some 1 <s< %, and assume that e¢g > Cy > 0, where Cy is a constant.

Then, there exists a T > 0, a function € : [0,T) x R® — (0,00), and a vec-
tor field u : [0, T) x R® — R*, such that (e,u) satisfies equations (2) and (4) in
[0, 7) x R3, €(0,) = €0, oe(0,) = €1, u(0,-) = ug, and dou(0,-) = uy, where Jy
is the derivative with respect to the first coordinate in [0,T) x R3. This solution
belongs to G2)([0,T) x R3) and is unique in this class. Finally, the solution is
causal, in the following sense. For any p € [0,T) x R3, (e(p),u(p)) depends only on
(€o, el,vo,vl)|{x0=0}ﬁj,(p), where J~(p) is the causal past of p (with respect to the

Minkowski metric).

While formally Theorem 2.3 can not be derived as a corollary of Theorem 2.2,
its validity should come as no surprise once we know the latter to be true. In fact,
the proof of Theorem 2.3 will be essentially contained in that of Theorem 2.2, as
we shall see. It is nonetheless useful to state Theorem 2.3 given the importance of
viscous fluids in Minkowski background for applications.

Remark 1. The difference between s > 1 in Theorem 2.2 and s > 1 in Theorem 2.3
comes from the fact that in the proof of Theorem 2.2 we work in local coordinates
and employ bump functions, which cannot be analytic (case s = 1). In Minkowski
space, however, we can use global coordinates and analyticity is not prevented.

3. Proof of Theorem 2.2. In this section we prove Theorem 2.2, thus we hence-
forth assume its hypotheses. We will always denote by s a number in (1, %), as in
the statement of the theorem. The proof will be split in several parts. Some of the
arguments parallel well-known constructions in general relativity in the smooth set-
ting, but we present them because some additional steps are required in the Gevrey

class.

3.1. The equations of motion. Here we write the VECF in coordinates and in a
more explicit form. At this point, we are only interested in writing the equations in
a suitable form, thus we assume the validity of (2) and (3) (and consequently (4)),
and derive relations of interest.

As is customary, we shall write (3) in trace-reversed form and in wave coordinates.
More precisely, we consider the reduced Einstein equations given by

2
9" 0%, 9ap = Bap(0¢, 0u, dg), (6)
where above and henceforth we adopt the following:
4 Other values of a; and ag are in fact possible as showed in [3], and the proof for these

other cases is essentially the same as showed here. The main difference is how one factors the
characteristic determinant. This different factorization is carried out in [3]. See Remark 16.



1572 MARCELO M. DISCONZI

Notation 1. We shall employ the letters B and E, with indices attached when
appropriate, to denote a general expression depending on at most the number of
derivatives indicated in its argument. For instance, in (6), Bag represents an ex-
pression depending on at most first derivatives of €, first derivatives of u, and first
derivatives of g. As another example, B(e, du, 9*g) denotes an expression depend-
ing on at most zero derivatives of €, one derivative of u, and two derivatives of g.
B and B can vary from expression to expression. It can be easily verified that B
and B will always be an analytic function (typically involving only products and
quotients) of its arguments.

Equations (4) become®
1
(=ng™ + (A = muu) g1’ + A+ ) u Pu® + 2 (=0 + X)g™ T qu”

1
B8 2 o« B « « 2
+ 5 (=n+ x)u ut 0 u® + —u” (Ag™ + (A + 3x)uur)0; €

4e
1 1 ~
+ @()‘ + X)uagﬁ#aiue + g(/\ + X)uﬁuo‘u“aiue + Bﬁ (aua 9)629
=B*(de,du, dg).

W =

The term B(du, g)d%g, which is linear in §2g, comes from derivatives of the
Christoffel symbols, after expanding the second covariant derivatives of u. This
term is of the form B”(du,g,d%g) according to Notation 1, but we wrote it as
B?(0u, g)0%g to emphasize that we shall consider it as a second order quasi-linear
operator on g. The particular form of this operator will not be needed, but it is
important that it be included in the principal part of the system for the derivative
counting employed below.

Applying u®utV,V, to (2) produces

u,\uo‘u“agmu)‘ + B(du, 9)8*g = B(du, dg). (8)
We introduce the vector
U = (uﬁ7 €, gaﬁ)a

where we adopt the obvious notation with u” denoting (u®, ut, u? u?), ete.; such a

notation is used throughout, including in the matrices below. We write equations
(6), (7), and (8) in matrix form as

Dﬁ(U, 8)U = q(U)v (9)
where
ww.o) = ("G ) (10)
with

mOO(U7 8) :(_779&“ + ()‘ - n)uau#)aiu + (/\ + X)uouaagoz
1
+ 3 (=n 200" + u'u) e,
1
moi(U,0) =(A + x)uu®0%; + 3+ X) (g% + u®u™)dZ,,

5See Appendix B for a derivation of (6) and (7).
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mi, (U, 0) =u'(\ + X)uo‘(‘)i,, + g(—n +x) (g™ + uzuo‘)afw, v #1,

mii (U, 0) =(=ng™ + (A = muu)9z, +u' (A + x)u* 0z,

1 o
+3(=n+ )" + u'u®)0z;,

with no sum over 1,

1 1
my,4(U, D) :Zeu”()\g““ + A+ 3x)u“u”)8§lu + 4—€(>\ + x)(u®g"* + u”uau“)aiﬂ,

may (U, 0) = u,u®uto?

ap*

(Recall Convention 1: above we have 1 < ¢ < 3.) The matrix b(U,9) in (10)
corresponds to the matrix with the operators B? (Ou, g)9? and E(au, g)0? that act
on g (see (7) and (8)), whose explicit form will not be important here. Finally,
g" 97, in (10) represents the 10 x 10 identity matrix times the operator g7, .
The vector q(U) corresponds to the right-hand side of equations (6), (7), and (8),
ie.,

q(U) = (B?(e,0u, 0g), B(0u, g), Bag(0e, 0u, dg)).

3.2. Initial data. We now investigate the appropriate initial conditions for (9).
We remind the reader that the geometric data in the assumptions of Theorem 2.2
are intrinsic to 3, thus they do not determine full data for the system®. Hence, we
need to complete the given data to a full set of initial data.

Assume that Z is given as in the statement of Theorem 2.2. Embed ¥ into R x 3
and consider p € {0} x X. We shall initially obtain a solution in a neighborhood of
p, hence we prescribe initial data locally.

Take coordinates {z*}3_ in a neighborhood U of p such that {z'}3_, are coor-
dinates on ¥, which we assume to be normal coordinates for gy centered at p. We
remark that in these coordinates the initial data will be in G*)({° = 0} N). For,
by our assumption on Z, there exist local coordinates {y*}3_, in a neighborhood
Y C ¥ of p such that, in these coordinates, the initial data is Gevrey regular. One
obtains (short-time) geodesics starting at p by solving the geodesic equation, which
will be an ODE with Gevrey data in the {y'} coordinates. Since we can equip
Gevrey spaces with a norm, the usual Picard iteration can be applied to solve the
geodesic equation, and hence we obtain solutions that are Gevrey regular and vary
within the Gevrey class with the initial data. Therefore, the exponential map and,
as a consequence, the coordinates {z?} are Gevrey regular in ) with respect to the
{y'} coordinates. Expressing the initial data now in {2} coordinates, we conclude
from standard properties of composition and products of Gevrey maps (see, e.g.,
[32]) that the initial data is in G ({2° = 0} NU) in the {x'} coordinates.

We prescribe the following initial conditions for g,s on {z° = 0} NU:

9i5(0,-) = (90)i5> 900(0,-) = =1, goi(0,-) = 0, 0og:;(0, ) = Kyj,

SFor example, go is a metric on ¥ which is a three-manifold; thus, go contains only nine (six
independent) components locally, whereas there are sixteen (ten independent) components in the
full space-time metric. Similarly, x does not determine all transversal derivatives of g on X, and vg
and v; determine only the initial three-velocity and its transversal derivatives, whereas we need the
four-velocity u and its tranversal derivatives initially. These mismatches are, as it is well-known,
related to the gauge freedom of Einstein’s equations. See, e.g., [7] for more discussion.
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and 9pgoa (0, ) is chosen such that {x*} are wave coordinates for g at 2 = 0 (which
is well-known to always be possible).
For u?, we prescribe

ui(oa ) :v(i)v UO(Oa ) =V 1+ (go)ijvévgv aoui(oa ) - 'Ui,

1 N | .
8ou’(0,) = ———= <(go)ijvévi + 54000 + 5909000, ) (1 + (90)i;v6v5)
1+ (g0)ijv6})

- Bogos(0, Juin/1 + (gomavé) |

(Note that the radicands are non-negative because g is a Riemannian metric.) The
initial conditions for u® and dpu" have been derived from (2) and the above initial
conditions for g,g. Finally,

€(0,-) = €9, Ope(0, ) = €.

3.3. Inmitial conditions for the system in R*. Consider the local coordinates
introduced in section 3.2. Via these coordinates and identifying p with the origin,
we can regard system (9) as defined in an open set I of R* containing the origin,
with the initial conditions prescribed on {#° = 0} NU. Note that we can also take
(9) as a system of equations on the whole of R*, and we therefore do so. We seek to
extend the initial data to the whole hypersurface {z° = 0}, thus determining initial
conditions for the system in R

Let V be compactly contained in {2° = 0} NU and W be compactly contained
in V. Let ¢ : {z° = 0} — R be a function in G*)(R3) such that 0 < ¢ <1, p = 1
in W, and ¢ = 0 in the complement of V. Denote by h the Minkowski metric and
set, on {2° = 0},

Gij = ©(90)ij + (1 —©)hij, Goo = —1, goi =0, Qg = @kij.

These will be initial conditions for g,z (for equations (9) in R*), with an usual
abuse of notation to denote the initial conditions involving dy. As our coordinates
have been chosen with {z?} normal coordinates for gy centered at p, we have that
§ij(0) = h;; and the deviations of g;; from the Minkowski metric restricted to
{2 = 0} NU are quadratic on the coordinates away from the origin. Writing

9i7 = #(90)ij + (L = p)hij = hij + ¢((g0)i5 — his),
we see that, shrinking U if necessary and taking into account our choice for ggq,
Gap is a perturbation of the Minkowsi metric restricted to {z#° = 0}. Therefore, jns

defines a Lorentzian metric.
Next, we introduce

@' = pug, Byt = pui,
with the initial conditions for @° and 9y@° obtained by the same formulas as in

section (3.2), with the appropriate replacements by u* and ¢ on the right-hand
sides. Finally, set

é:g060+1—g0, 80e°:<p61.

By the compactness of ¥ and the assumption ¢y > 0, it follows that ¢y > C for
some constant C' > 0, thus

1 .1
€ 2 mln{ic, 5} Z C/ > 0,
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for some constant C'. )
The initial data for (9) in R* described in this section will be denoted by U.

3.4. Solving the system in R%. In this section, we solve system (9) with the
initial conditions described in section 3.3 (see Proposition 1 below). We shall employ
the techniques, terminology, and notation of Leray-Ohya systems reviewed in the
appendix.

Lemma 3.1. Equations (9) form a Leray system.

Proof. Write U as U = (U',U?), with the understanding that U' = (u”,¢) =
(u®,ul,u?,u? €) and U? = (gap). Assign to (9) the following indices:

m1:2, m2:2,
ni =0, ny=0,

where m1 = m(UY) = m(u?, €), ma = m(U?) = m(gap),

ny = n(equation (7))
= n(equation (8))
= n(equations corresponding to the first five rows of (9)),
and
ne = n(equation (6))

= n(equations corresponding to the last ten rows of (9)).
It is understood that we have one index m; for each unknown of the fifteen unknowns
and one index n; for each one of the fifteen equations in (9). For instance, by
my = my(vP,€) = 2 we mean m(u®) = m(ul) = m(u?) = m(u?®) = m(e) = 2, and
SO On.

One readily verifies that with this choice of indices, (9) has the structure of a
Leray system. Indeed, we list below for each row J in (9) or, equivalently, for each
equation in the system (6), (7), and (8), the value of ns; the highest derivatives of
each unknown entering in the coefficients and on the right-hand side of the equation;
and the difference my; — n:

m(u) —ng =mqg —ny =2,
rows 1-4 = eq. (7) : ny = 0; Ou, e, 0g; < m(e) —ny =mq —ny = 2,

m(g) —n1 =ma —ng =2,

m(u) —ny =mq —ng =2,
row 5 =eq. (8):ny =0; 0u,dg; < m(e) —ny =myg —ny = 2,
m(g) —ni =me —ng = 2,
and
m(u) —ng =mq —ng =2,
rows 6-15 = eq. (6) : ng = 0; Qu, J¢,0g; ¢ m(e) —ny =mq —ng = 2,
m(g) —ni = mg —ng = 2.
For example, in equations (7), for which n; = 0, we have that the left-hand side
consists of differential operators of order 2 acting on (u”, €) (m(u”,€) —n; = 2) and

differential operators of order 2 acting on (gag) (m(gas)—n1 = 2), whose coefficients
depend on at most first derivatives of the unknowns (du, ¢, dg, i.e., m(u?, €)—ny —1
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and m(gsg) —ny —1); the right-hand side of (7), as the coefficients of the differential
operators, depends on at most first derivatives of the unknowns. |

Assumption 1. We henceforth make explicit use of (5), with a; = 4 and a; > 4,
in accordance with the assumptions of Theorem 2.2.

For the proof of the next proposition, the reader is reminded of the Definition A.9
of A%(%,Y), which consists of the space of functions sufficiently near the Cauchy
data.

Proposition 1. There erist a T > 0, a vector fieldu : [0,T) xR3 — R, a function
€:[0,7)xR* — (0,00), and a Lorentzian metric g defined on [0,T) x R3, such that
U = (uP, €, gap) satisfies (9) in [0, T) x R3 and takes the initial data U on {z° = 0}.
Moreover, (u,€,g) € G*©)([0,T) x R3) and this solution is unique in this class.

Proof. We fix the initial data U as constructed in section 3.3 and consider U =
(u*, €, gap) € A%(X,Y). Shrinking Y if necessary, we can assume that gog is a
Lorentzian metric, that € > 0, and that @ is time-like for gag, since these properties
hold for U. Because the coefficients of the matrix of differential operators MU, 0)
depend on at most first derivatives of the unknowns, we can evaluate these coef-
ficients on U. Denote the corresponding operator by gﬁ(f} ,0). The characteristic
determinant P(U, £) of (9), evaluated at U, is

P(U,&) = det M(T, €) = p1(U, &)p2(U, €)p3 (T, €)pa(T, €) (11)
where”
Pi(0,€) = pr(€) = 1o @6)* (12

p2(U,€) = pa(€) = [(az — 1)((@°)%€2 + (@)%} + (@%)2€3 + (@®)2€3) — ¢r¢,
+2(a — 1)(@' @216 + W @16 + W0 L) (13)
+2(az2 — 1)aoﬁum£ﬁ]2 ;

p3(U,€) = p3(€) = — 6((az + 5)az + (a + Taz — 8)@ ) (@€,

14
+6(ay +2)(1 + 50 1, )E¢,, a4

and

pa(U,€) = pa(§) = (£"6,)", (15)

and the contractions in these expressions are done with respect to the metric gag.

The computation of P (f} ,€), and the corresponding factorization in the above poly-
nomials, is done through a lengthy and tedious algebraic calculation, part of which
was done with the help of the software Mathematica®. Note that the block diago-
nal form of 9M(U, ) allowed us to compute the characteristic determinant without

providing the specific form of the operators B®(du, g)8%g and B(du, g)d%g.

"We remark that compared to [3], polynomial ps(T/, ¢) looks different. That is because in [3]
#i* i, had been replaced by 1 in view of (2). Strictly speaking, we are not allowed to do that
since one has to prove that u remains normalized for positive time, which is done in Lemma 3.3
below, but this was ignored in [3] since there only a sketch of the proof was presented (see the
above Introduction).

8See Appendix C.



CONFORMAL FLUIDS 1577

It is easy to see that the polynomials ©*¢, and "¢, are hyperbolic polynomials
as long as gop is a Lorentzian metric and @ is time-like with respect to gns. Both
conditions are satisfied in view of the constructions in section 3.3. Therefore, p;(£)
is the product of four hyperbolic polynomials (recall that € > 0 and 7n(€) > 0), and
p4(€) is the product of ten hyperbolic polynomials. We now move to analyze ps(§)
and p3(§).

Write pa(€) = (p2(€))?, where pa(€) is the second-degree polynomial between
brackets in the definition of p2(£). We claim that p2(€) is a hyperbolic polynomial.
To show this, we need to investigate the roots &y = &o(&1,&2,&3) of the equation
p2(€) = 0. Consider first the case where pa(€) is evaluated at the origin, i.e.,
P2(€) = p2(U(0),€), and assume for a moment that 9ap(0) is the Minkowski metric
and that ¥4, = —1. In this case, the roots are

_— 1 - A. A2
0,4 = 1+ (@11 D) <(02 Du-&§\/1+u

/(0 + (a2 — DT)E — (a2~ 1)(@- 5)2) ,

(16)

where @ = (@',4?,@%), @ = (@')? + (@*)* + (@)%, € = (&1,6.6), & = & + & + 43,
and - is the Euclidean inner product. We see that if £ = 0, then 0.+ = 0, and
hence ¢ = 0. Thus, we can assume & # 0. The Cauchy-Schwarz inequality gives
2% —(-€)? > 0, hence 0,4+ and & _ are real and distinct for ag > 4. We conclude
that p2(€) is a hyperbolic polynomial at the origin. Since the roots of a polynomial
vary continuously with the polynomial coefficient, ps(¢) will have two distinct real
roots at any point on {z° = 0} if g,z is sufficiently close to the Minkowski metric and
uru,, sufficiently close to —1. We know from section 3.3 that these last conditions
are fulfilled upon taking U and Y sufficiently small (recall that g,s(0) equals the
Minkowski metric.). Therefore, p2(£) is a hyperbolic polynomial, and ps(§) is the
product of two hyperbolic polynomials.

We now investigate the roots &y = £p(&1,&2,&3) of the equation p3(§) = 0. As
above, we first consider p3(&) evaluated at the origin and suppose that g,z(0) is the

Minkowski metric and that u*%4,, = —1, which produces
¢ . (02— 026142
0,+ = — a2 —2)U - u
—2(2+ az) — (aa — 4)(1 + 7% =

13\ [(Baa(2 + ) + (@ — 202 — O)T)E — (a3 — 205 — 8)(@- g)2> .

As above, we can assume £ # 0, and the Cauchy-Schwarz inequality again gives
TE? — (@- €)% > 0. We readily verify that (a3 — 2a5 — 8) > 0 and 3ag(2 + az) > 0
for ag > 4. Therefore, & + and & _ are real and distinct, and ps(§) is a hyper-
bolic polynomial at the origin. As above, this implies that p3(£) is a hyperbolic
polynomial.

We conclude that P(fj,f) is the product of four degree one (i.e., pi(§)), two
degree two (i.e., p2(€)), one degree two (i.e., p3(£)), and ten degree two (i.e., p4(€))
hyperbolic polynomials. The Gevrey index of (9) is thus 1% (see Remark 15). Recall
that 1 < s < % by assumption.

Since my —ny = 2 for all I,J, and ), m; — > ;ny > 2, we have verified the
conditions of Theorem A.14 in the appendix. Hence we obtain the diagonalized
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system
M(U,9)U =74(U), (17)

where ﬁ(U ,0) is a diagonal matrix whose entries are differential operators of order
30 (the order of the characteristic determinant, see the appendix) whose coefficients
depend on at most 29 derivatives of U, and q(U) contains all the lower order terms.
We want to invoke Theorem A.10 to solve (17). To do so, we need to provide initial
conditions for (17). Since our goal is to obtain a solution to (9) out of a solution to
(17), such initial conditions need to be compatible with solutions to (9).

We shall show that all derivatives of U, restricted to {z° = 0}, can be formally
computed from (9) and written in terms of the initial data. In particular, initial
conditions to (17) compatible with (9) can be determined. As usual in these situa-
tions, it suffices to show that we can inductively compute 95U on {2° = 0} as the
tangential derivatives 0; can always be computed.

From (6), we can determine agga@|{$0:0} in terms of the initial data U. Using

the result into (7), we can write B?(du, g)9%g restricted to {z° = 0} in terms of U.
Equations (7) and (8) then give
QRul\
a ( Be ) = b,

where b can be written in terms of the initial data on {z° = 0}, and the matrix a

is the matrix of the coefficients of the terms 92u” and d2e in equations (7) and (8).

At the origin, where g,s(0) equals the Minkowski metric, the determinant of a is
4

L1+ i) Baz + (a2~ i) (0 + (a2 — i),

which is never zero for as > 4 (recall that e¢g > 0 and n(eg) > 0). Invoking once

more the fact that gog is a perturbation of the Minkowski metric, we conclude

that det(a)|(,0_o, never vanishes. We can thus invert a and write 02uP and 9% at

2% = 0 in terms of U.

It is clear that we can continue this process: differentiate (6) with respect to
o to determine ngaghmozo}; differentiate (7) and (8) with respect to 0y, use
aggaﬁ‘{xozo} to eliminate the resulting terms B?(du, g)9%g and B(du, g)03g, and
then solve for 93u” and 93¢ at 2° = 0 (notice that the matrix a remains unchanged).
Inductively, we can determine all derivatives (%“U on {z° =0}, k=2,3,...,in terms
of U. Moreover, O5U ‘ (20=0) 1€ analytic expressions of U and, therefore, the initial

conditions for (17) determined in this fashion will be in G(*).

The initial data for (17), denoted U, consists of the original initial data U for (9),

and the values of 8§U|{10:0} determined by the above procedure for k = 2,...,29.

Remark 2. The above procedure determines all derivatives of U, evaluated at
2% = 0, in terms of the initial conditions U. Tt follows that if the initial data U is
analytic, a well-known argument using power series can be employed to construct
an analytic solution to (9) in a neighborhood of {2 = 0}. These techniques for
construction of analytic solutions, however, say nothing about causality.

Having supplied (17) with appropriate initial conditions, we can now invoke
Theorem A.10 to conclude the following. There exist a 7 > 0, a vector field
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w:[0,7) x R3 — R*, a function € : [0,7) x R® — (0,00), and a Lorentzian metric
g defined on [0, 7) x R?, such that U = (u”, €, gop) satisfies (17) in [0,7) x R? and

takes the initial data U on {20 = 0}. Moreover, (u, €, g) € G>)([0,T) x R?) and
this solution is unique in this class.

(We note that in invoking Theorem A.10, we are using that the intersections
of the cones determined by the polynomials p;(£) have non-empty interiors (recall
definition A.4). This follows from the above expressions, but it can also be verified
from the explicit computations in section 3.5.)

The conclusions that € > 0 and ¢ is a Lorentzian metric follow by continuity in
the 2° variable, since these conditions are true at 2 = 0.

Now we move to obtain a solution to (9) in R*. The argument is similar to the
one in [30], thus we shall go over it briefly.

Let {Uk}g"zl be a sequence of analytic initial conditions for the system (9) con-
verging in G ({z° = 0}) to U. For each k, let (ug, €k, gr) be the analytic solution
to (9), defined in a neighborhood of {z° = 0}, and taking on the initial data Uy, (see

Remark 2). Let Uy, be the initial data for (17) obtained from Uy, and compatible with
(9), i.e., the one derived by the inductive procedure previously described. Then,

Ur — U in G®({z° = 0}). In light of the compatibility of Uy, and because (17)
was derived from (9) via diagonalization, the solutions (ug, €, gi) also satisfy (17).
Furthermore, this solution to (17) also agrees with the one given by Theorem A.10
(since this theorem also applies for analytic data, i.e., s = 1). The energy-type of
estimates proved by Leray and Ohya [28] guarantee then that (ug, ek, gr) — (u, €, g)
in G*) and that (u, e, g) satisfy the original system (9). By construction, (u,e,g)
take on the initial data U. O

Remark 3. The initial conditions for the VECF system have to satisfy the Einstein
constraint equations (recall Definition 2.1). The initial conditions U satisfy the
constraints in the region W in light of the way that U was constructed out of Z |y
This is, naturally, necessary for the eventual construction of a full solution to the
VECF system. However, purely from the point of view of (9) in R*, initial condition
can be prescribed freely, i.e., they do not have to satisfy any constraints. Therefore,
the existence of the analytic initial data Uy, follows simply by the density of analytic
functions in G(*). Also by density, we can guarantee that the components (&), and
(§ap)k in [J'k satisfy (€p)r > 0 and that (go)x is a Lorentzian metric.

Remark 4. The above calculations involving (a2 — 2as — 8) > 0 show why we
have the technical assumption as > 4. As our calculations were presented already
with a; = 4 in place, they do not reveal the reason for this assumption, which as
follows. Computing the characteristic determinant with general a; produces a very
complicated expression with some terms proportional to a; —4. These terms vanish
when a; = 4, and the corresponding expression simplifies to (11). This can be seen
explicitly in Appendix C.

3.5. Causality. Having obtained solutions, we now investigate the causality of

equations (9). As in section 3.4, we use results and terminology recalled in the
appendix.

Lemma 3.2. The solution U = (u,€,g) to (9) given in Proposition 1 is causal,
in the following sense. For any x € [0,T) x R3, (u(z),e(z),g(z)) depends only on
Ul{z0—0yn7-(x) where J~(z) is the causal past of x (with respect to the metric g).
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Proof. Fix x € [0,7) x R3. The characteristic determinant of (9) at z is given by
(11), with the obvious replacement of U by U and evaluated at x; the polynomials
pi(U(x),&) =pi(x,§), i =1,...,4, are given by expressions (12) to (15), again with
the obvious replacement by U(z). By the same argument used in section 3.4 to
prove that the p;(€)’s are hyperbolic polynomials on {z° = 0}, namely, that g,z is
near the Minkowski metric, we know that the polynomials p;(z, ) are hyperbolic
(perhaps after shrinking 7 if necessary).

Denote by Vi(z) the characteristic cone {p;(x,£) = 0}, and by I'"*(z) the
corresponding (forward and backward) convex cones (on the cotangent space).
Let K**(x) be the (forward and backward) time-like interiors of the light-cone
{g""(z)€,6, = 0}. We need to show that K**(x) C 7% (z) (see Remark 12).
This is straightforward for ¢ = 1 and ¢ = 4.

Assume for a moment that g is the Minkowski metric at  and that u uy = —1
(note that we have not proved yet that u remains normalized for z° > 0). The roots
of {pa(z,£) = 0} are given by (16), changing u by u, which we can write as

0.t = 52(u,0) /€, (18)

where

s+(u,0) = L ((ag — 1)@005 0+/1 4 u?

Sl (a—)(1+u?)
+v/ag + (az — 1)u? — (a2 — 1)u? cos? 9) ;

0 is the angle between u and §in R3, we used u-§ = Vv u2y /§2 cos 6, and we omitted

the dependence of u and 0 on x for simplicity.

Equation (18) determines the two halves of the characteristic cone Va(x) in the
cotangent space at 2. We will have that K*¥(z) C F;’i(x) if the slopes s satisfy
—1 < s4(u,0) <1 for each u and 6. To see that this is the case, compute

£/az + (a2 — 1)y/u?(1 + v?)
1+ (a2 — 1)(1 + u?) ’

and observe that this expression is always between —1 and 1 for as > 4. We seek
the maxima and minima of sy (u, 6) for 0 < § < 2x. Computing the derivative with
respect to 6 and solving for sinf, we find sinf = 0, i.e., 8 = . We readily verify
that —1 < sg(u,7) < 1, thus —1 < s4(u,d) < 1. Since this last condition is open,
the result remains true when ¢ is sufficiently close to the Minkowski metric and «
sufficiently close to unitary, which is the case if T is taken sufficiently small. The
same argument shows that K**(z) C T'y®(x), where again one uses the condition
as Z 4.

We conclude that for any z € [0,7) x R3, we have K**(z) C ﬂ?:l Ff’i(z), and
the result now follows from Theorem A.11 and Remark 12. O

sx(u,0) = sq(u,2m) =

Remark 5. The characteristics associated with p;(£) and p4(§) are of course those
of the flow lines and gravitational waves. The characteristics associated with p3(§)
and po (&) are interpreted, respectively, as sound waves and shear waves. The latter
is sometimes called a second sound wave and is present also in the Miiller-Israel-
Stewart theory [22]. It is useful to compare these characteristics to those of the
ideal fluid. In the latter case we have the flow lines and the sound cone (i.e., the
characteristics of the sound waves; see [17] for a detailed discussion of the role
of the sound cone in the relativistic Euler equations). Here it is as if the sound
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cone had “split” into two sound-type characteristics. This resembles what happens
in magnetohydrodynamics: there two different characteristics are present for the
magnetoacoustic waves, namely, the so-called fast and slow magnetoacoustic waves
(see [1] for details).

3.6. Existence and causality for the system in R x 3. Here we show how the
solution found in section 3.4 can be used to construct a causal solution in a region
of R x X, thus effectively proving Theorem 2.2. Recall that we embedded ¥ into
R x X.

Remark 6. Consider the solution U = (u, €, g) to (9) obtained in Proposition 1. Let
p be a point on {z = 0} x ¥ and W be as in section 3.3. Let D} (W) C [0, T) x R?
be the future domain of dependence of W in the metric g, where replacing VW with
a smaller set if necessary, we can assume that z° < T for every (2%, 21,22, 23) €
Df(W). In the coordinates on D (W) induced from the coordinates on [0, 7) x W,
the solution U is in G(>*) The solution will remain in G(2*) upon coordinate changes
that are Gevrey regular [32]. Note that there are plenty of such coordinate changes
in that a smooth manifold always admits a maximal compatible analytic atlas.

Lemma 3.3. It holds that v uy = —1 in D} (W).
Proof. The vector field u satisfies (8), whose explicit form is
uAuau”V#VuuA + u“Vau)\u“V#uA =0.
This can be written as
%u“u“vavﬂ(uAu’\) =0.
This is an equation for the scalar uyu®. The operator u*u*V,V, satisfies the

assumptions of Theorem A.10. Therefore, uau® = —1 in D} (W) if this condition
is satisfied initially, which is the case by construction. O

Lemma 3.4. For every q € ¥ there exists a neighborhood Z, C ¥ of ¢ in ¥ and
a globally hyperbolic development M, of I\Zq, where M, C [0,74) X X for some
Ty > 0.

Proof. Let p be a point on {z° = 0} x ¥ and W be as in section 3.3. Since the
initial conditions U (where U is as in section 3.3) agree on W with those from the
initial data Z, in view of Lemma 3.2, we conclude that U is a solution to the reduced
Einstein equations within D (W). It is well-known that a solution to the reduced
equations within D (W) is also a solution to the full Einstein’s equations if and
only if the constraints are satisfied, which is the case by the definition of Z. Because
p was an arbitrary point, the result is proven. O

We now glue the different M,’s in order to obtain a global (in space) solution.

Proposition 2. Let q,r € X, Z, and Z, be neighborhoods of ¢ and r as in lemma
3.4, with globally hyperbolic developments My and M, of I|Zq and I\ZT, respectively,
and corresponding solutions Uy = (uq, €q,9q) and Up = (ur,€r,g,) of the VECF
equations. Assume that Z4 N Z, # @. Then, for any w € Z4 N Z,, there exist
neighborhoods Uy and U, of w in My and M., respectively, and a diffeomorphism
¥ : Uy — Uy such that Uy = *(Uy).
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Proof. We shall construct harmonic coordinates for g, in a neighborhood of w in
M, as follows. Identifying (a portion of) ¥ with its embedding in M, take normal
coordinates (V,{y'}) for go on ¥ centered at w, where gy comes from the initial
data Z. Note that the initial data is Gevrey regular in the {y’} coordinates (see the
argument in section 3.2). We can thus assume that U, is in G(>*) (see Remark 6)
On [0,7;) x V, where 7, > 0 is some small number such that U, is defined
on [0,7,) x V, we introduce coordinates {y*}, y° € [0,00). Consider family of
initial-value problems parametrized by a:
VIV, 9 =0,
F20,9% 9%, 9% = o,
A0 f 0,y 4%, y%) = 0,
and
VAV, O
FO0,9", 9%, y7)
8Of(O) (07 y17 y27 y3)

0,
0,
L

where V is the covariant derivative in the metric g,. This problem has a Gevrey
regular solution in a neighborhood of w in [0,7;) x V, and a standard implicit
function type of argument shows that the functions * = f(® define (harmonic)
coordinates near w. We now consider the change of coordinates z = z(y) : [0, 7)) x
VI — W C[0,00) x R? 2 = (2°, 21, 2%, 22), where V' is a neighborhood of w in
V, T’ > 0 is determined by the foregoing conditions guaranteeing the existence
of the coordinates {z*}, and W is an open set containing the origin. Pulling U,
back to W via 7!, it follows from these constructions that (z71)*(U,) satisfies the
reduced Einstein equations in W. Since U, originally satisfied (2) and (4) as well,
we conclude that it is a solution to (9) in W.

We can repeat the above argument to obtain wave coordinates {z*} for g,. Be-
cause (V,{y'}) is intrinsically determined by go, and M, and M, induce on Z, N Z,
the same initial data, the map z agrees with z on {0} x V"’ (in the region where both
are defined). From these facts, we conclude that (z=1)*(U,) and (271)*(U,) (i) are
solutions to (9) in some domain [0,¢) x Y C [0,00) x R3 containing the origin, and
(ii) take the same initial data on {0} x Y.

We have shown that (9) enjoys uniqueness and causality. Thus, considering possi-
bly a smaller region that is globally hyperbolic for both (z=1)*(g,) and (271)*(g,),
we conclude that (z=1)*(U,) = (27 1)*(U,), so that U, = (27! o 2)*(U,), as de-
sired. O

Using Proposition 2, we can now identify overlapping globally hyperbolic de-
velopments, thus obtaining a globally hyperbolic development of Z as stated in
Theorem 2.2. Causality follows essentially from Lemma 3.2: by the foregoing, we
can assume that M is diffeomorphic to [0,7) x ¥ for some 7 > 0. Shrinking 7 if
necessary, we reduce the problem to local coordinates, in which case we can employ
wave coordinates. Causality, as stated in Theorem 2.2, is preserved by diffeomor-
phisms, thus the result follows from the causality of the reduced system guaranteed
by Lemma 3.2. This finishes the proof of Theorem 2.2.
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4. Proof of Theorem 2.3. The proof of Theorem 2.3 is essentially contained in
the above. In the case of a Minkowski background, the system reduces to

m(U,0)U = q(U),

where m is as in (10), U = (u”,€) and q(U) is as in (9) with the appropriate
changes for this 5 x 5 system. The system can be analyzed as in section 3.4. We
can do this directly in R?*, without the complications of constructing the initial
data U. The characteristic determinant is given by p1(€)p2(€)ps(€), where these
polynomials are as before, with the simplification that now we need not carry out
any near-Minkowski arguments. Without the matrix g’“’82 coming from Einstein’s
equations, the Gevrey index of the system is %, and analogues of Proposition 1 and
Lemma 3.2 establish the result.

Appendix A. Tools of weakly hyperbolic systems. For the reader’s conve-
nience, we state in this appendix the results about Leray-Ohya systems (sometimes
called weakly hyperbolic systems) that are used in the proof of Theorem 2.2. These
results have been established by Leray and Ohya in [27, 28] for the case of systems
with diagonal principal part, and extended by Choquet-Bruhat in [6] to more gen-
eral systems. These works build upon the classical work of Leray on hyperbolic
differential equations [26]. The reader can consult these references for the proofs
of the results stated below. Further discussion can be found (without proofs) in
[7, 10, 12]. Related results can also be found in [34].

We start by recalling some standard notions and fixing the notation that will be
used throughout. Given T > 0, let X = [0,7] x R™. By 0* we shall denote any k!
order derivative. We shall denote coordinates on X by {x*}"_, thinking of 2° =
as the time-variable. We use the multi-index notation to write

glel
0% = =090 0% -+ - 0o

0 1 2 n
000z 0xg? - - - Owp™ wn e o

where |a] = g + a1 + @z + - + .

A.1. Gevrey spaces. In this section we review the definition of Gevrey spaces.
Roughly speaking, a function is of Gevrey class if it obeys inequalities similar, albeit
weaker, than those satisfied by analytic functions. One of the crucial properties
of Gevrey spaces for their use in general relativity is that they admit compactly
supported functions.

Definition A.1. Let s > 1. We say that f : R™ — C belongs to the Gevrey space
GE)/(R") if

10° 7 2z < oo

Sup L2 Rn

(1+| )®

Let K C R™ be the cube of unit side. We say that f belongs to the local Gevrey
space GE;Z(R”) if

1
TH[al

sup m (Slll(P ||8af||L2(K)> < 00,

where sup is taken over all side one cubes K in R".
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We note that the case s =1, i.e., G(l)(R”), corresponds to the space of analytic
functions.

We next introduce the space of maps defined on X whose derivatives up to order
m belong to G®) ({2 =1}), 0 <t < T.

Definition A.2. On X, denote S; = {2° = t}. Let s > 1, and let m > 0 be an
integer. We denote by @ a multi-index o = (ay,...,q,) for which ag = 0. We
define G™(*)(X) as the set of maps f : X — C such that

B4a || THET
L

sup L2 (5, < 00

1
@, |B|<m, 0<t<T (1+|al)s ’
Let Y be an open set of R?. We define G™*)(X xY') as the set of maps f : X x¥ —
C such that

1
T+Tal+1~]

sup ‘8f+68;f‘ < 00.

yey

1
sup s
@, v, 181<m,o<t<T (1 +[a] +[7])®

L2(St)

Let K; C S; be the cube whose sides have unit length. The spaces Gm’(s)(X) and

loc

Gm’(s)(X x Y) are defined as the set of maps f : X — Cand f: X xY — C,

loc
respectively, such that

e (0 )
sup ——— | sup < oo,
@, |p|<m, o<t<T (14 [@])® \ Kk, L2 (K2
1
1+[al+]y]
) < 00,
L2(Ky)

Remark 7. Definitions A.1 and A.2 are easily generalized to vector and tensor fields
in R™ and X, and to open subsets of R" and X. In particular, replacing R™ by an
open set 2 and X by [0, 7] x © in the above definitions we obtain the corresponding
spaces for ). This allows one to define Gevrey spaces on manifolds. If M is a
differentiable manifold, we say that f : M — C belongs to G*)(M) if for every
p € M there exists a coordinate chart (x,U) about p such that foz~! € G (Q),
where = z(U). This definition generalizes for vector and tensor fields.

and

sup laera@;*f’
yey ‘

1
sup s | sup
a7, 18l<m, o<t<r (1 + (@] +[)* (m

where supy, is taken over all cubes of side one within S;.

Remark 8. The reason to treat X and Y differently in definitions of G(*)(X x V')
and G"™(*)(X x Y) is that, in the theorems of section A.2, we need to distinguish
between the regularity with respect to the space-time X and the regularity with
respect to the parametrization of the initial data.

Remark 9. We could similarly define for manifolds the analog of the other Gevrey
spaces introduce above. However, this can be somewhat cumbersome and not always
natural. In particular, the spaces G™ (%) require a distinguished coordinate that
plays the role of time. This can always be done locally, and it can be done for
globally hyperbolic manifolds if we fix a particular foliation in terms of space-like
slices (as done, e.g., in [10, 12]), although it is debatable how canonical this is. Here
we prefer to avoid extra complications, i.e., we in fact only need the definition of
G(S)(E)7 which is used for the construction of appropriate local coordinates and the
construction of the initial data for the system in R?* (sections 3.2 and 3.3) and in
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the results of section 3.6. The bulk of the proofs are carried out for the system in
R*, where all the different Gevrey spaces play a role. It follows that the solution in
R* is in particular smooth, giving rise to a smooth globally hyperbolic development.
Note that for the conclusion of Theorem 2.2 it is not needed to assert that the full
solution enjoys certain Gevrey regularity.

For more about Gevrey spaces, see, e.g., [28, 39]. We remark that the terminology
“local” and the notation GGj,. are not standard.

A.2. The Cauchy problem. Let a = a(x,0%), » € X, be a linear differential
operator of order k. We can write

a(x,0%) = Z aq(x)0%,
lo| <k
where o = (o, a1, o, ..., q,) is a multi-index. Let p(z,0*) be the principal part
of a(z,d%), i.e.,
p(z,0%) = Z aq ()0,
|| =k
At each point x € X and for each co-vector £ € T X, where T*X is the cotangent
bundle of X, we can associate a polynomial of order k in the cotangent space T, X
obtained by replacing the derivatives by ¢ € T} X. More precisely, for each k'
order derivative in a(z, %), i.e.,
olel
0500 0xS? - O
|| = k, we associate the polynomial

£ =606 - 6,

where £ = (&,&1,&2,...,&,) € Tx X, forming in this way the polynomial

pa,6) = 3 aa(w)ee.

la|=k

806

Clearly, p(x, &) is a homogeneous polynomial of degree k. It is called the character-
istic polynomial (at z) of the operator a.
The cone V(p) of p in T X is defined by the equation

p(xaf) =0.

Definition A.3. With the above notation, p(z, ) is called a hyperbolic polynomial
(at ) if there exists ¢ € TF X such that every straight line through ¢ that does not
contain the origin intersects the cone V,.(p) at k real distinct points. The differential
operator a(z,d") is called a hyperbolic operator (at ) if p(x, £) is hyperbolic.

Leray proved in [26] that (if X is at least three-dimensional) if p(z, ) is hyperbolic
at x, then the set of points ( satisfying the condition of Definition A.3 forms the
interior of two opposite half-cones T'** (a), T'%'~ (a), with T'>*(a) non-empty, with
boundaries that belong to V,(p) .

Remark 10. Another way of stating Definition A.3 is as follows. Given ¢ € T, X,
consider a non-zero vector # that is not parallel to ¢ and form the line A( + 0,
where A € R is a parameter. We then require this line to intersect the cone V,(p)
at k distinct real points. An equivalent definition of hyperbolic polynomials is as
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follows [9]: p(z,€&) is hyperbolic at z if for each non-zero £ = (&,...,&,) € Th X,
the equation p(z,£) = 0 has k distinct real roots £y = &0 (&1, ..., &n).

With applications to systems in mind, we next consider the N x N diagonal
linear differential operator matrix

at(z,0k) ... 0
0 cooaN(x,0F)
Each a”(z,0%7), J =1,...,N is a linear differential operator of order k.

Definition A.4. The operator A(z,d) is called Leray-Ohya hyperbolic (at z) if:
(i) The characteristic polynomial p”(z,¢) of each a”(z,9%7) is a product of hy-
perbolic polynomials, i.e.

p’(x, &) =p” (2, §) - pP (2,8), J=1,...,N,

where each p”4(x,¢), q=1,...,r7, J =1,...,N, is a hyperbolic polynomial.
(i) The two opposite convex half-cones,

N ry N oy
Iy (A) = m ﬂ I5*(a”?), and T%~(A) = m ﬂ I (a”9),

J=1q=1 J=1g=1

have a non-empty interior. Here, I'**(a”9) are the half-cones associated with the
hyperbolic polynomials p”4(z,¢), ¢=1,...,75, J =1,...,N.

Remark 11. When the above hyperbolicity properties hold for every z, we call
the corresponding operators hyperbolic (we can also talk about hyperbolicity in
an open set, a certain region, etc.). When we say that an operator is Leray-Ohya
hyperbolic on the whole space (or in an open set, etc.), this means not only that
Definition A.4 applies for every x, but also that the numbers r; and the degree of
the polynomials p”4(x,€), ¢=1,...,r5, J =1,...,N, do not change with .

Definition A.5. We define the dual convex half-cone C;F(A) at T, X as the set of
v € T, X such that &(v) > 0 for every £ € I (A); C (A) is analogously defined,
and we set Cy,(4) = CF(A) UC, (A). If the convex cones C; (A) and C; (A) can
be continuously distinguished with respect to z € X, then X is called time-oriented
(with respect to the hyperbolic form provided by the operator A). A path in X is
called future (past) time-like with respect to A if its tangent at each point x € X
belongs to Cf(A) (C; (A)), and future (past) causal if its tangent at each point
x € X belongs or is tangent to C;F(A) (C, (A4)). A regular surface X is called
space-like with respect to A if 7,3 (C T,,X) is exterior to Cy(A) for each x € . It
follows that for a time-oriented X, the concepts of causal past, future, domains of
dependence and influence of a set can be defined in the same way one does when
the manifold is endowed with a Lorentzian metric. We refer the reader to [26] for
details. Here we need only the following: the causal past J~(z) of a point x € X is
the set of points that can be joined to x by a past causal curve.

Remark 12. The definitions in Definition A.5 endow X with a causal structure
provided by the operator A. Despite the similar terminology, however, it should
be noticed that all of the above definitions depend only on the structure of the
operator A, and do not require an a priori Lorentzian metric on X. The case of
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interest in general relativity, however, is when the causal structure of the space-
time is connected with that of A. In this regard, the following observation is useful.
Suppose that X has a Lorentzian metric g. For causal solutions of the systems of
equations here described (see Theorem A.11 below) to be causal in the sense of
general relativity, one needs that, for all z € X, CF(A) C KF, where K are the
two halves of the light-cone {g,,£"¢” < 0}. By duality, this is equivalent to saying
that in the cotangent spaces we have K% C I'***(A), where K** are the two
halves of the dual light-cone {g""¢,£, < 0}.

Next, we consider the following quasi-linear system of differential equations

A(z,U,0)U = B(z,U), (19)
where A(z,U, ) is the N x N diagonal matrix
a(z,U,0M) - 0
A(z,U,0) = : : ,
0 oo aN(x,U,0%)

with a”(x,U,0%7), J = 1,..., N differential operators of order k. B(z,U) is the
vector

B(z,U) = (b'(2,U)), J=1,...,N,
and the vector
U(x) = (U (z)), I=1,...,N

is the unknown. Notice that because a; is allowed to depend on U, the above
system is in general non-linear.

Definition A.6. The system A(x,U,0)U = B(z,U) is called a Leray system if it
is possible to attach to each unknown u! an integer m; > 0, and to each equation
J of the system an integer ny > 0, such that:

(i) kJ:mJ—’n,J, J:L...,N;

(ii) the functions b7 and the coefficients of the differential operators a’ are’
functions of z, of !, and of the derivatives of u! of order at most m; — ny — 1,
I,J=1...,N. If for some I and some J, m; —ny < 0, then the corresponding a”

and b’ do not depend on wu’.

J

Remark 13. The indices m; and n; in Definition A.6 are defined up to an additive
integer.

Definition A.7. A Leray-Ohya system (with diagonal principal part) is a Leray
system where the matrix A is Leray-Ohya hyperbolic. In the quasi-linear case, since
the operators a depend on U, we need to specify a function U that is plugged into
A(z,U,0) in order to compute the characteristic polynomials. In this case we talk
about a Leray-Ohya system for the function U. The primary case of interest is
when U assumes the values of the given Cauchy data.

When considering a quasi-linear system, we write p(z, U, &) and similar expres-
sions to indicate the dependence on U.
We now formulate the Cauchy problem for Leray systems.

9The regularity required for the coefficients a’ and b’ depends on particular applications and
context. For instance, for Theorem A.10 the required regularity is specified. Similarly, in Definition
A.8, one needs to take derivatives of these quantities up to order n;, thus they need to be at least
as many times differentiable.
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Definition A.8. Let X be a regular hypersurface in X, which we assume for sim-
plicity to be given by {z° = 0}. The Cauchy data on ¥ for a Leray system in X
consists of the values of U = (u!) and their derivatives up to order m; — 1 on X,
ie., 8“1/‘2, o] <mp—1,I=1,...,N. The Cauchy data is required to satisfy the
following compatibility conditions. If V' = (v!) is an extension of the Cauchy data
defined in a neighborhood of 3, i.e. 8“1}”2 = 8au1|2, o] <m;—-1,I=1,...,N,
then the difference a” (x, V,9)U — b’ (z, V) and its derivatives of order less than n s
vanish on ¥, for J = 1,...,N. When to a Leray system A(z,U,0)U = B(x,U)
we prescribe initial data satisfying these conditions, we say that we have a Cauchy
problem for A(z,U,0)U = B(z,U).

Notice that by definition, the Cauchy data for a Leray system satisfies the afore-
mentioned compatibility conditions. We also introduce the following notions related
to the Cauchy problem for a Leray system.

Assumption 2. Consider the Cauchy problem for a Leray system A(z,U,0)U =
B(z,U). Let Y be an open set of RF, where L equals the number of derivatives of
u’ of order less or equal to max; m; —ny, J =1,..., N, and such that ¥ contains
the closure of the values taken by the Cauchy data on 3. It is convenient to consider
A(z,U, 0) as a differential operator defined over X x Y, as follows. We shall assume
that there exists a differential operator /Nl(x,y,é)) defined over X x Y with the
following property. If (z,y) € X x Y and V = (v”) is a sufficiently regular function
on ¥ such that y = (9maxrmi=nsy(z)) ;1 N, then A(z,V(x),0) = A(z,y,0).
We shall write A(z,y,d) for A(z,y,0).

Definition A.9. Consider the Cauchy problem for a Leray system A(z,U,0)U =
B(z,U). Let ¥ and Y be as in Definition A.8 and Assumption 2, respectively.
Denote by A*(%,1) the set of V = (v/) € GO®)(X), J = 1,...,N, such that
(omaxt mf—"']vJ(a:))J:L___7N cY forall z € .

We are now ready to state the results of this appendix. We use the above notation
and definitions in the statement of the theorems below.

Theorem A.10 (Existence and uniqueness). Consider the Cauchy problem for
(19). Suppose that the Cauchy data is in G (%), and that

a’ (-, 0%) € Gl (X x Y), and b7 (-,-) € G (X x ).

Suppose that for any V € A*(3,Y) the system is Leray-Ohya hyperbolic with indices
my and ny; thus for all x € X, each p’(x,V,€) is the product of r; hyperbolic
polynomaals,

pJ($7M§) :pJJ(m?V?g)"'pJ’rJ('r7‘/a€>7 J = 17"'aN'

Suppose that each p”9T(x,V,€), ¢ =0,...,r7—1, depends on at most m; —Myqg—
rr + q derivatives of vI, I =1,..., N, where

myq =ng +deg(p”') + -+ deg(p”?), my,, = my, myo=ny.

Above, deg(p”?) is the degree, in &, of the polynomial p”4(z,V, &).
Denote by agﬂ(m,y, d) the differential operator associated with p”9t1. Assume
that

al (- 0) € G (X x Y).

loc
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Let 0 < g7 < r; be the smallest integers such that a”’ (x,V,0™ =) and b’ (z,V)
depend on at most my —ny —ry+ gy derivatives of vl, I =1,...,N, J=1,...,N.
Finally, assume that
1<s< " nd E—1—7“J<nJ, J=1,...,N.
95 2
Then, there exists a T' > 0 and a solution U = (u!) to the Cauchy problem for (19)
and defined on [0,T") x R™ C X. The solution satisfies

ul e Gm)([0,T") x R"), I =1,...,N.
Furthermore, the solution is unique in this reqularity class.

Theorem A.11 (Causality). Assume the same hypotheses of Theorem A.10, and
suppose further that
l<s<™ Jj=1,...,N.
g7

Let T' and U be as in the conclusion of Theorem A.10. Then, if T is suffi-
ciently small, the operator A(x,U, ) is Leray-Ohya hyperbolic (thus the causal past
of a point is well-defined), and for each x € [0,T") x R™, U(x) depends only on
UO‘J*(Q:)OE’ where Uy is the Cauchy data.

Remark 14. Theorem A.10 assumes that the system is Leray-Ohya hyperbolic for
V € A(X,Y), which is essentially the space of values near the initial data. (Natu-
rally, it would not make sense to require the system to be Leray-Ohya hyperbolic
for the yet to be proven to exist solution U.) Once U is constructed, one can then
ask whether the system is Leray-Ohya hyperbolic for U. This will be the case if T"
is small, since in this case the values of U will be close to those of the initial data
by continuity, guaranteeing that U(x) € A(Z,Y).

Theorems A.10 and A.11 are proven in [28] (reprinted in [29]).

We now consider a system whose principal part is not necessarily diagonal. The
definition of a Leray system depends only on the existence of the indices m; and
ny with the stated properties, and thus can be extended to non-diagonal systems.

Definition A.12. Consider a system of N partial differential equations and N
unknowns in X, and denote the unknown as U = (u!), I = 1,...,N. The system
is a (not necessarily diagonal in the principal part) Leray system if it is possible
to attach to each unknown u! a non-negative integer m; and to each equation a
non-negative integer n s, such that the system reads

hi (x, 0mx Ly K gmimnayy b (g 0m ey KYy =0, T =1,... N, (20)

Here, hf(z,0mx s =1yK gmi—ns) is a homogeneous differential operator of order
my — ny (which can be zero), whose coefficients depend on at most myxg —ny — 1
derivatives of u®, K = 1,... N, and there is a sum over I in h{(-)u!. The remaining
terms, b’ (z,0™% "7~ 14K also depend on at most my —ny — 1 derivatives of u’,
K =1,...N. As before, these indices are defined only up to an overall additive
integer.

As done above, for a given sufficiently regular U, hy (x, 9"« s =1k gmi—nr)
are well-defined linear operators, and we can ask about their hyperbolicity proper-
ties. The case of interest will be, again, when we evaluate these operators at some
given Cauchy data.
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Write (20) in matrix form as
H(z,U,0)U = B(x,U). (21)
Definition A.13. The characteristic determinant of (21) at € X and for a given
U is the polynomial p(z,§) in the co-tangent space Ty X, £ € T2 X, given by
p(z,U, &) = det(H(z,U,&)). (22)

Note that p is a homogeneous polynomial of degree

N N
l= E mr — E ny.
I=1 J=1

Under appropriate conditions, (21) can be transformed into a Leray-Ohya system
of the form (19), i.e., with diagonal principal part. More precisely, we have the
following.

Theorem A.14 (Diagonalization). Consider (21). Suppose that the characteristic
determinant (22) at a given U is not identically zero, and it is the product of Q
hyperbolic polynomials, i.e.,

p(% Uvg) = pl(l'v U, g) o pQ(x7 Ua g)
Let dg be the degree of py(x,U, &), g=1,...,Q, and suppose that

maxd, > maxmy —minnj.
q I J

Finally, assume that
{>maxmy; —minnj.
= I Uy

Then, there exists a N x N matriz C(x,U,0) of differential operators whose coeffi-
cients depend on U, such that

C(z,U,0)H(z,U,0)U = Ip(z,U,0)U + By (z,U),
and
C(z,U,8)B(x,U) = By(z,U),

where 1 is the N x N identity matriz, p(x, U, ) is the differential operator associated
with p(x, U, £), and El(x, U) and Eg(x, U) depend on at most £ — 1 derivatives of
U, as do the coefficients of the operator p(x,U,§). Furthermore, there is a choice
of indices that makes the system

Ip(x,U,0)U = By(z,U) — By (z,U) (23)

into a Leray system. In particular, if the intersections NG5 (a?) and N,T% ™ (a?),
where T%%(a?) are the half-cones associated with the hyperbolic polynomials
pq(z, U, ), have non-empty interiors, then (23) is a Leray-Ohya system with di-
agonal principal part in the sense of definition A.7.

Theorem A.14 is proven in [6].

Definition A.15. Under the hypotheses of Theorem A.14, the number % is

called the Gevrey index of the system.



CONFORMAL FLUIDS 1591

Remark 15. Suppose that (23) forms a Leray-Ohya system in the sense of defini-
tion A.7, i.e., the half-cones have non-empty interiors as stated in Theorem A.14.
It can then be shown [6] that a value of s sufficient to apply Theorems A.10 and
Aldlis1<s < 5%

Let us make a brief comment about the proofs of the above results. Theorem
A.10 is proven as follows. First, one solves the associated linear problem. This
is done by a method of majorants reminiscent of the Cauchy-Kowalevskaya theo-
rem. One uses the fact that Gevrey functions admit a formal series expansion that
provides a consistent way of constructing successive approximating solutions to the
problem. The non-linear problem is then treated via a fixed point argument, upon
solving successive linear problems. Theorem A.11 is obtained by a Holmgren type
of argument. We remark that the assumption that p”9+1(z,V,€), ¢=0,...,7; —1,
depends on at most m; — my, — r; + ¢ derivatives of v/, I = 1,..., N, ensures
that the coefficients of the associated differential operators a”9+1(x, U, d) do not
depend on too many derivatives of U, as it should be in the treatment of quasi-linear
equations.

Theorem A.14 is based on the following identity:

c’'a = det(a), (24)

where a is an N x N invertible matrix and ¢’ the transpose of the co-factor matrix.
At the level of differential operators, this identity produces the lower order terms Bj.
One then needs to match the order of the resulting differential operators and lower
order terms with appropriate indices satisfying the definition of a Leray system.
This is possible under the conditions on d, and ¢ stated in the theorem.

Appendix B. Derivation of the equations of motion. In this section we give
the derivation of (6) and (7). The derivation of (6) is standard and we include it
here for the reader’s convenience, thus let us start with (6). Let

4 1
Ot = 3Uatpe + 39086, (25)

and denote the third to ninth terms in (1) by V¢, to (Vt,4, respectively. Explicitly,

tas = 1 (Vs + Vot = S0 Vx6),
Dt s = MuauhV yug + usuhV u,),

(3)75043 = %Xﬂ'aﬁvuu“,

(4)75@,(3 = XuqugV ut,

Otg = %(uawgv#e + ugmhV 4€),

Otg = %uaugu“vﬂe,
mtag = %wwu“v#e,
so that

Top = (O)taﬂ 4 (l)taB N (7)t(¥[3'
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B.1. Calculation of Va(l)tg. We have

2
Vo Wtg = —nraly(Va Vi + VaViu, — gngav,\u)‘)

, (26)
+ Vo m5) (Vu, + Viou, — ggWV,\u)‘).
Compute
ThVa Vit = (g5 + usu”)VaVyuu, = Vo Vyug + ugu’Va Vi,
= VaV,uug +ugVa(u'Vyu,) —ugVaou”Vu,
= V.V, ug —ugVau"V,u,,
so that
VoV, = —nr (Vo V,ug — Vau’Vu,)
= —n(g*" + u ")V V,yug + ' VauV u, (27)
= —ng“'VaVug +uu'VoVug + nrVau" Vo,
Similarly, we find
TV Vou, = (¢ + uu?)VoViou, = ¢** Vo Vou, + uu#* Vo Viou,
= V. V,u® —u*Vau'Vyuy,,
so that
—n gV Viu, = =i (VaVou® —uVeu Vo, (28)

= fnggVaVl,uo‘ — nugu”’VoV,u® + nﬂguavauﬂvyuﬂ.
But
VoVou® =V, Vou® + R, qu®,
so that (28) becomes
—nrHrEVaViou, = —ngg(vyvau‘l + Ryou®) — nugu”’ (V,Vau® + Ryqu®)
+ nﬂguo‘vau“vyuu

= —n95VyVau® —nggRyau® —nugu’V,Vau® (29)
— nugu” Ryqu® + nﬂguavau“vyuu.
Next compute
ap, v 2 M2 au A
—nr ﬂﬁ(—gngav,\u ) = 57]77 T8, VaVau
= 2um§VaVaud = Zu(gf + uug)VaVaud  (30)
2

= gnggvaVW + ;nuﬁuavavw%
Plugging (27), (29), and (30) into (26) we find
VoWt = —ng*VaV,us —nuut VoV ug + nusm®Vou, V! —nggV, Vau®
—nugu”VyVou® —nRgau — nugRyqu”u® + nmgu®VautVyuy,
+ %nggvyvau“ + ;nuﬁu”vyvaua

2
+ Va (Uﬂwﬂg)(vuuu + vuuu - ggle}\UA)'
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We now group the first two terms, the fourth term with the ninth term, and the

fifth term with the tenth term, to find

1
Va(l)tg = —n(g*" + uuP)V oV up — gnggvuvau“

1
— gnu5uyvyvaua + (1)35,

where
(1)35 = nugm**Vou, Vyu” — nRgau® — nugRyou”u® + nrgu®VautViou,

2
+ Va(mro"‘wg)(vﬂuy +Vou, — gng)\u’\).

B.2. Calculation of Va(z)tg. Compute

Va(Q)tg = Vo [Au*u"V yug + uguV ,u®)]
= Muu'VoV,ug + uguh Vo V,u®) + Vo (Au®u)V ug
+ Vo (Augut)V  u®.

Using VoV, u® =V, Vu® + R u® we find
VO‘(Q)tg = Mu'VaVyug + AuguV, Vou® + (Q)Bﬁv
where

@) B = Mg Ruautu® + Vo (Mu®u)V yus + Vo (Augu )V u.
B.3. Calculation of Va(g)tg. Compute
(3) 1 1 «a m 1 «a m 1 a m
Vo' tg = Va(gwﬁvuu ) = EXWBVQV,LU + gva(xnﬂ)v“u ,
so that
(3) 1 1 i a 1 I a | (3)
Vo' tg = ngﬁvuvau + gXUﬁU V. Vou® + ' Bg,
where

1
(3)‘85 = gva(xwg)vuu“.

B.4. Calculation of Va(‘l)tg. Compute

Va(4)tg =V, (Xuo‘ufgvﬂu“)
= xugu'V,Vau® + @ Bg,
where

W Bs = Vaxuug)V u.

(32)

(33)

(34)
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B.5. Calculation of Va(5)tg. Compute
A
Va(S)tg =V, [46 (u® wﬂvue—i—u/gw v/ e}

A A, A
= *m5Va V,Le—i-zugw IVaVyue+ Vg [ (u T + ugT” M)V e

A A A
= Zuaggvavﬂe + Zugu“u“vavﬂe + Euﬁngavue

A
+ Lusu “utVoV e+ Vy [ (u T + ugm” ")V e
We rearrange the terms, swapping the ﬁrst and third terms, so that

A A
VQ(5)tg = Lugg““vavﬂe + iugu“u“vavue

(39)
+ iuo‘g“VQV e+ iUgu“u“VaV e+ By
4e 7B a 4e a ’
where
A
®)Bs =V, [4 (umh 4+ ugm™)|V se. (40)
B.6. Calculation of Va(6)tg. Compute
Va(ﬁ)tg =Va [%uo‘u[gu“vﬂ } %UQU utVaV,e+ Vg, { U umﬂ] V€ )
3
= 4—Xu5u0‘u“vavue +©) Bg,
€

where

(6)B =Va {—u ulgu“]vue. (42)
B.7. Calculation of Vamtg. Compute
Vo tg = va{%wguuv“e} f(gﬁ U U UV oV e + Vg [fwﬁuﬂ} Ve )
X o X
= Zegﬁu“vavﬂe + P gV oV e + (7 Bg,

where

(MBg =V [iﬂ'au“}v € (44)
B <« de B B

B.8. Calculation of V,Tg. Using (1), (25), (31), (33), (35), (37), (39), (41), and
(43), we find

1 1
VoT§ = —n(g** + uauﬂ)vav#ug — gnggvuvaua — gUUgUVVUVaua
+ M utV o Vi ug + Augut'V, Vou®
1 «@ 1 «@
+ nggvuvau + gXUBUMv“VQU
+ xugu”V,Vu® + Rl VoV, e+ Pl u'VoV e
€

A A 3
+ Zeu“g;;vav#e + 4—6u5u°‘u“vavﬂe + 4—):u5u°‘u“vav#e

X
+ %gguﬂvav#e + Zeuauﬁuﬂvavue + Bg,
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where the first three terms on the RHS of (45) come from (31), the fourth and
fifth from (33), the sixth and seventh from (35), the eighth from (37), the ninth to
twelfth from (39), the thirteenth from (41), the fourteenth and fifteenth from (43),
and Bg is given by

Bs = (1)3,3 + (2)35 + (3)35 + (4)36 + (5)35 + (G)Bﬂ + (7)3,8 + Va(o)t%‘, (46)

with (W Bg, ..., (M Bs given by (32), (34), (36), (38), (40), (42), and (44), respec-
tively, and (O)tg is given by (25). We now group the terms on the RHS of (45)
as follows: the first and the fourth terms, the fifth and the eighth terms, the sec-
ond and the sixth terms, the third and the seventh terms, the ninth, tenth, and
thirteenth terms, the eleventh and fourteenth terms, and the twelfth and fifteenth
terms. We obtain:

VoI = (=ng™" + (A = nuu*)Va Vyug + (A + X)ugulV, Vou®

1 1
+ 3 (12095 VaVau® + 2 (=1 + X)usu!'V, Vou®

1 1
+ 4—6u5()\ga” + (A +3x)u*ut) Vo Ve + 4—6()\ +X)95u*VaV e

1
+ 4—6()\ + x)upuut VoV e+ Bg,

(47)

where the first term on the RHS of (47) comes from the first and the fourth terms
on the RHS of (45), the second term on the RHS of (47) comes from the fifth and
the eighth terms on the RHS of (45), the third term on the RHS of (47) comes from
second and the sixth terms on the RHS of (45), the fourth term on the RHS of (47)
comes from the third and the seventh terms on the RHS of (45), the fifth term on
the RHS of (47) comes from the ninth, tenth, and thirteenth terms on the RHS of
(45), the sixth term on the RHS of (47) comes from the eleventh and fourteenth
terms on the RHS of (45), the seventh term on the RHS of (47) comes from and the
twelfth and fifteenth terms on the RHS of (45), and we used that V,V e = V,Ve.
Expanding the covariant derivatives and using Notation 1 gives (7).

B.9. Derivation of (6). Let us first write (3) in trace reversed form. Tracing (3)
gives

R=4A-T,

where T' = g*°T,5. (For (1) we in fact have T' = 0, as it must be for a conformal
tensor. But at this point we are writing Einstein’s equations for a general tensor.)
Plugging this for R in (3) gives

1
Raﬂ = Taﬁ - iTgaB + Agaﬁ-
We now proceed to compute R,z in local coordinates. In coordinates, we have
Rag = O\Th5 — 0aT3\ + Taplh, — a5,

Using the definition of the Christoffel symbols 1"’a\ 5 gives

1 1
R, = _igﬂuazugaﬁ + i(ga)\aﬂrl)\ + g520aT?)

1
= 5(059™ Orgap + 00 g™ Orgpu) = x5,
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where I'* is given by
A A
I = g‘“’FW.

Using that in wave coordinates I'* = 0 and recalling (1), the above gives (6).

Appendix C. The characteristic determinant. In this section we derive (11).
Because of the structure of the system in (9) it suffices to compute the characteristic
determinant of m(U,d) in (10). Using Mathematica and (5) we find (we are not
assuming a; = 4 at this point)

detm(U, &) = pr(U, €)p2(U, &)ps (U, €),
where
~ 1

P(0.8) = @6,
P2(U,8) = [(az = 1)(@°)% + (a2 — 1)(@)%] — (0°)%& + aa(8*)°€5 — 20°0%6a8s
+ 2000065 — (0%)2€5 + a2(@®)?E5 + &o(2(—1 + a2)&1 0’
+ 2(ag — 1)&u0% — 265u°0° + 2a2u’uEs — €°)
HE1 (21 + a2)T' 826 + 2(az — DA — €1) — 682 - &)
and
ﬁg(ﬁ, &) =— 6(—2a1ﬁ0ﬂ0 — aglot® + 2a1a2000° + a%ﬁoﬂo — 2a1T1G" — asty "
+ 2a1a0U1 T + a3U10" — 2a1Up? — gl U2 + 2a1a21a° + a3Ua 12
— 2a103T° — aslisu® + 2a1a2U30° + a3tz ) (&ou° + & ut
+ &U° + &u®)
— 2(—axtly + 4arasity + 3a3to) (&’ + &' + &u’ + &5u°)?¢°
— 2(—ayly + 4aiasty + 3a3t1)(Eou’ + & Ut + LU + £30°)3¢!
— 2(—aally + 4arastiz + 3a3tz) (&’ + &' + &u + &u°)?¢?
— 2(—aylis + 4ajastis + 3a3usz)(&ou’ + &0t + 07 4 &30°)3¢3
+ 5(3a1 7o u° 4 2a2T01° + a1astipu’ + 3a17, U + 2a00, Ut
+ ajastin it + 3a10202 + 2020207 4 aa2laU>
+ 3a1uzu° + 2a2030° + ayastizu®)(Eou’ + & Ut
+ &0 + &30°)% (68 + &€ + L8 + 68°) (48)
+ (3a1lo + 2aslly + ayasio) (S’ + &0 + &u” + &5u°)E0 (€€
+ 6161 + 667 + 6363 + (3arty + 2a2T + arastir)(Eou’
+ 6T+ &U 4 &3U°)EN (L8 + &18 + L8 + 687
+ (3a1Ta + 2a01y + arasls)(&u° + &1t
+ &% + U (68" + L1881 + £ + &8°)
+ (3a1T3 + 2a01s + arastis) (&
+ 6T+ &U 4 &30°)E (L€ + &18 + §87 + 687

+ (4&2&0&0 — alagaoﬂo + 4a2ﬂ1ﬂ1 — a1a2ﬂ1ﬂ1 + 46@’(72&2
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— 1097902 + 4agTi3T0° — a1aglzT®)(E0€0 + E161 + £267 + &332

It is not difficult to see, after some manipulations, that ﬁg(ﬁ ,€) is precisely pg(ﬁ ,€),
i.e., (13). Let us now analyze p3(U,§). The first term in p3(U, &), that spans lines
2 to 5 in (C), is proportional to (@#¢,)*. The terms from lines 6 to 9 combined are

also proportional to (u#¢,)%. Indeed, the term on the sixth line can be written as

—2(—asllp + 4arasl + 3a3io)(§ou’ + LU + LU + £5u°)°E°
= —2(—ay +4ajay + 3a2) (&u° + 10 + &2 + &3u°)3Ue?,

and similarly we can group u; with & in the terms on the seventh to ninth line.
Factoring then the common factor in lines 6 to 9 gives a term cubic in u*¢,, times
the term

Uol” + U &' + Ul® + us’.
But this last term equals u*&,,, which can then be grouped with the cubic term in
ut,, producing a term proportional to (W#€,)?, as claimed.
The next term in ]33((775), spanning lines 10 to 13 in (C) is proportional to
(@re,,)?.
We claim that the terms spanning lines 14 to 20, when combined, produce a term
proportional to (u*,)?. To see this, note that as written the terms in lines 14 to

20 all have a factor up€® + U1 &' + U282 + U3€3, which equals 4#€,. The term that
begins on line 14 of (C) can be written as

(3a1To + 2a2tip + arasiio)(§ou° + &0 + &% + &%) (L€° + &1E' + L€ + &€°)
= (3a1 + 2as + a1a2)(&u’ + E10" + E0° + £30°) (E0€° + &1&1 + &2 + £38%) e,

and similarly we can combine u; with £ in the other terms in lines 15 to 20.
Factoring then the common factor to all terms in lines 14 to 20 produces a term
linear in @&, times UpE" + U1 &t + Ua&? + UsE® = u”¢,, hence a term quadratic in
ur€,, as claimed.

Therefore, we see that all terms in p3(U, £) contain a factor of (ur€,,)?, except
for the last term which spans lines 21 and 22. This last term, however, vanishes
identically if a; = 4. In this case we can factor (u*¢,)? from ]33((7, ¢). We combine
the factored (u#€,)? with ]71([77 €), producing pl(ﬁ,«f), i.e., (12), and the remainder
from ]33([7,5) produces pg(U,g), ie., (14).

Remark 16. Without setting a; = 4, the above factorization procedure can be
used to show that p3(U, &) factors as

A@@'E,)" + B(Urg,)2 6, + C(€260)?,

where A, B, and C depend on a; and as. We would like to factor this quartic
polynomial as a product of (real) degree two polynomials, since then we can analyze
its roots explicitly. The above choice a; = 4 does exactly this. But other choices of
ay and aq also lead to the desired factorization, as showed in [3].
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