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We consider a (very) simple version of the restricted three body problem in general relativity. The background geometry is given 
by a Schwarzschild solution governing the motion of two bodies of masses  and . We assume that corrections to the trajectory 
of the body of mass  due to the presence of the mass 	are given by a Newtonian approximation where Poisson's equation is 
solved with respect to the Schwarzschild background geometry. Under these assumptions, we derive approximate equations of 
motion for the corrections to the trajectory of the body of mass . 
 
 

1. Introduction 
 
In this note, we consider a simplified version of the 
restricted three-body problem in general relativity 
with orbital corrections to the farthermost body given 
in a Newtonian type framework, and with all 
interactions other than gravity neglected. More 
precisely, consider three point bodies of masses ,, and . Assume that  ≫  ≫ , so that 
the dynamics of the body of mass  is unaffected by 
the presence of the other two masses, and the effect of 
the body of mass 	on that of mass  is neglected 
as well. Let the bodies of masses  and  orbit the 
body of mass  along trajectories    and    ,	respectively, where 		is an affine 
parameter. Assume further that the body of mass  is 
described by the Schwarzschild solution to Einstein's 
equations: Sch  1     1      sin 

(1) 

 
where  denotes a time parameter, , ,  are 
spherical coordinates, and   2 (the 
Schwarzschild radius), with  being Newton's 
constant. Because of the ensuing assumptions, only the 
exterior region of the Schwarzschild solution is 
relevant here, so we can think of the body of mass  
as a static black hole as well as a massive star where 
any interior dynamics is neglected. Finally, we  
assume that  and  form closed orbits that do 
not intersect, and that on each time slice    
we have dist,   0 and dist,  ≫ 1, where  is the spatial metric 
induced on    time-slices, given by   1       sin 

(2) 

 
and dist is the distance in the metric . This situation 
is illustrated in Figure 1 below. 

Under the above assumptions, the motion of the body 
of mass m is given by a closed geodesic in the metric 
(1). The motion of the body of mass  is given by a  

Figure 1. A schematic representation of the system. 

closed geodesic in the metric (1) plus corrections due 
to the to the presence of the mass . A simple 
derivation of the equations of motion governing these 
corrections is the goal of this note. We suppose that 
these corrections are given by nearly Newtonian 
dynamics of a test particle of mass  subject to the 
gravitational attraction of the body of mass , in the 
following sense. Write     , where     corresponds to the trajectory due to the 
presence of the mass  and    due to the 
presence of the mass . The form of  is known (see 
below) and we are interested in determining a simple 
form for the equations of motion satisfied by , at 
least approximately. By saying that  is given by 
nearly Newtonian dynamics we mean that the 
acceleration of the body of mass  due to the mass  is obtained upon solving Poisson's equation for the 
Newtonian potential Ψ: ΔΨ,   4   (3) 
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but with the Laplacian in (3) given by the Laplacian in 
the metric (2) rather than the Euclidean Laplacian. 
Explicitly: Δ  1||  ||	 
with 	the components of the metric (2),  the 
components of the inverse of , and ||  det. 
Above,  is the Dirac-delta function, and  is a 
coupling constant given by   . The equation of 
motion of the trajectory   	is then given by ∇  ∇Ψ,  (4) 

where   , and ∇ represents the covariant 
derivatives associated with (2).  This situation 
obviously reduces to the example of a test body of 
mass  attracted by  when   0. The resulting 
(approximate) equations of motion are given in (12), 
(13), and (14), for one particular approximation 
involving logarithmic terms, and (16), (17), and (18), 
for another type of approximation involving powers of . 
We believe that considering an approximation of this 
type is very natural. To the best of our knowledge, 
however, it has not appeared in the literature, despite 

similar ideas in different settings [1, 2], and the 
extended literature on post-Newtonian 
approximations. (The literature on post-Newtonian 
approximation is quite large, thus a complete list 
cannot be given here. See, e.g., [3] and references 
therein for standard results, or [4, 5] for some more 
recent developments). 
Hence, the main purpose of this note is to document 
that the approach here considered is a possible avenue 
to study general relativistic corrections in a simplified 
version of the three-body problem. Therefore, we have 
not striven to generality or applications, rather 
focusing on the equations of motions and some 
calculations that illustrate how corrections can be 
computed. 

 
2. Geodesic and Newtonian dynamics 

 
For a particle with position  with spherical 
coordinates , ,  in the slice metric (2). For , ,  ∈ 	 {, , }, we have the components of the 
acceleration ∇ : ∇    Γ  
where Γ  are the Christoffel symbols of the second 
kind associated with the metric (2), given by: 

Γ 


  1    0 00  1    00 0  sin 1   

		Γ  0
 0 0 00 0  sin cos	

	Γ  0 0 0 0 cot cot 0 
       

The entries in the above matrices follow the order of 
the coordinates , , . By denoting the position  
in coordinates , ,  and with the same 
convention for , we can now write explicitly (4) as   2 1      1     sin 1   ∇Ψ,  

 

(5) 

 

  2   sin cos  ∇Ψ,  
 

(6) 

  2   2 cot  ∇Ψ,  
 

(7) 

 

As mentioned, the motion of the body of mass  is 
given by a closed geodesic in the Schwarzschild 
background, which corresponds to solving equations 

(5), (6), and (7) with the indices 1 and 2 reversed and Ψ ≡ 0. Although the form of closed geodesics in a 
Schwarzschild background is well-known (see, e.g., 
[6]), we derive it here for the reader's convenience. 
 
We are interested in closed orbits, and in this case, we 
can assume without loss of generality that   . 
The radial and angular part of the geodesic equation 
are given, respectively, by   1  1     (8) 

   (9) 

where  and  are constants of motion ( is the 
orbital angular momentum). 
 
Equation (8) can be viewed as the one-dimensional 
motion of a particle of unit mass subject to the 
potential 
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  12 1   1   

evaluated at   . We see that 	has a local 
minimum at 

   1    3  

provided that   3  0. Combining with (9) and 
our assumptions, we see that the sought closed orbit   , , 	is given by  





	

   1    3 
  2 ,  

 1    3   0 
(10) 

 

Write  
   

 1    3  

If we take the initial position 0  0, we can 
describe the  position in the orbit more succinctly as   .	Notice that the trajectory  has the 
same form as (10), only with different constants of 
motion. 
 

3.  and logarithmic approximations for the 
Newtonian potential 

 
We will consider two approximations for the equations 
of motion governing . One consists in an 
expansion of the first few terms of Ψ in powers of 
inverse of . This seems to be the more natural 
expansion under our assumptions. We also consider, 
however, an expansion in logarithmic terms. This 
approximation is algebraically more complicated than 
the one involving powers of , but it is in a sense more 

robust in that the series expansion of log 1   

contains terms in  to all orders. 
 
A general solution to (3) can be found via separation 
of variables and reads (see, e.g., [7]) 
 
 

Ψ,   8   ,∗ , 



⋅ ,,  1  2  1  2 

 
(11) 

 

Above,   and   are, respectively, Legendre functions 
of the first and second kind; , are spherical 
harmonics, ∗ is complex conjugation,  min{, }, and   max{, }. Recall that we have 
the ordering in the  coordinate of the metric given by  <  ≡    <   . 
 
Using standard properties of Legendre functions (see, 
e.g., [8]), the Newtonian potential Ψ,  can also 
be written as 

Ψ,     42  1,∗ , 





⋅ ,,  ,  




   

where ,  12  1  !   !2  ! !2! 2    1!  

 
4. Logarithmic approximation 

 
Using the expression for  given in (11), we will keep 
the only the terms   0 and   1 in (11) 

 The specific Legendre functions , , ,  are 
given, for  ∈ ℂ, by 

0  1, 0  12Log 1  1  1  , 1  2Log 1  1   

Since   , the argument of   is given by 1  1  21 1  1  21  
2  2121    11  1  1 

and similarly, for the argument of   since   . 
Because  < , we know that  < 0, so    1  1   

It remains to choose the correct branch of the Log 
function corresponding to the argument   1. Recall 

that for    ∈ ℂ, we have that 
Log  ln ||  Arg  ln  . 

We know that   1 is a purely real negative number, 
so then 
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Log   1  ln   1  ln 1  . 
Therefore, we conclude that  1  2   12Log   1  12 ln 1   1  2   12 1  2 Log   1  1

 12 1  2  ln 1    1
 

Now we state the well-known spherical harmonics ,, , ,, , ,, , ,,  and their 
conjugates: 

,,   ,∗ ,   121
,,   ,∗ ,   123 sin sin

,,   ,∗ ,   123 cos
,,   ,∗ ,   123 sin cos

 

Since we are taking   	and   , we have the 
following: 

,∗ ,   121
,∗ ,   123 sin,∗ ,   0,
,∗ ,   123 cos

 

Now we will compute the individual terms , ≔ ,∗ , ,, ⋅  1  2  1  2   

for   0,1. Since    and    we substitute 
these values into the aforementioned terms and get the 
following: 0,0  18 log 1   

1, 1  34 sin sin sin
⋅ 1  2  12 1  2  log 1    1 1,0  0, 

1,1  34 sin cos cos
1  2  12 1  2  log 1    1 

Then 

  ,



  18 log 1   38 sin sin sin  cos cos

⋅ 1  2  log 1    2
 18 log 1    38 sin cos  
⋅ 1  2  1  2  log 1    2

 

So our approximation for Ψ becomes Ψ,  ≈ 8  18 log 1  	 38 sin cos   1  2 	⋅ 1  2  log 1    2
   log 1    3 sin cos   1  2 ⋅ 1  2  log 1    2

 

We now wish to compute the components of the 
Schwarzschild gradient ∇Ψ. In order to do this, we first 
compute Ψ  1  

1  3 sin cos   1  2 
⋅  2 log 1    1  2  11  


 

Ψ  3 cos cos   1  2 ⋅ 1  2  log 1    2  

Ψ  3 sin sin   1  2 ⋅ 1  2  log 1    2  

Recall that the components of the Schwarzschild 
gradient are given by the following formulas: ∇Ψ   Ψ   Ψ   Ψ  

∇Ψ   Ψ   Ψ   Ψ  

∇Ψ   Ψ   Ψ   Ψ 
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Since the slice metric is given by  

  1   0 00  00 0  sin 

we have that its inverse is  

 


1   0 0
0 1 0
0 0 1 sin

 

It follows that  ∇Ψ,   1   Ψ ,  ∇Ψ,   1 Ψ ,  ∇Ψ,   1 sin Ψ ,  
So combining these with our expressions for  ,  , , we have that the components of the 
Schwarzschild gradient of Ψ,  are as follows: ∇Ψ,     3 sin cos   1  2 ⋅  2 1   log 1    1  2  

 

∇Ψ,   3 cos cos   1  2 ⋅ 1  2  log 1    2  

∇,   3 sin   sin 1  2 ⋅ 1  2  log 1    2  

Combining the above with equations (5), (6), and (7), 
we finally obtain that    , ,  
satisfies, in this approximation, 
   2 1      1    sin 1     	 3 sin cos   1  2 ⋅ 1  2  log 1    2	

 

 

(12) 

  2   sin cos
 3 sin   sin 1  2 ⋅ 1  2  log 1    2

 

 

(13) 

  2   2 cot 
 3 sin   sin 1  2 1  2  log 1    2

 
(14) 

 

 
5. 	 approximation 

Here we are concerned with the terms  with least 
exponents	 ∈ ℕ, we will approximate Ψ in (11) by 
summing ,   0,1 only. In other words, this 
approximation is given by 

Ψ,  ≈   42  1	,∗ , 





⋅ ,,  ,  





   

First, we focus on the term 

,  





  

 

(15) 

 

Recall that    and   , so this term becomes ∑ ∑ ,   .  When   0, (15) 

becomes  

,   ,  








  , 1  , 	 1
 

When   1, (15) becomes 

, 	 






,    ,  	


 ,  1  ,   ,  1  ,  

 

For the coefficients , , we have the following: 
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,  1 ,  12,  12 ,  1
,  12 ,  1

 

Further, we have the following products of spherical 
harmonics: ,∗ , ,,   14,∗ , ,,   34 sin sin sin	,∗ , ,,   0,∗ , ,,   34 cos sin cos

 

Now consider the terms in the sum of 	Ψ, . 
When   0: 4,∗ , ,,  , 1  ,  1  2 1

 

When   1: 
 43 ,∗ , ,,


,  1  ,   ,  1  ,   43 ,∗ , ,, ,∗ , ,,   ,∗ , ,, 	⋅ , 	 1  ,   ,  1  ,   sin cos   2  2 1  2  2 1

 

Our resulting approximation of Ψ,  becomes  Ψ1, 2 ≈  11   2 112 sin1 cos  1⋅ 22  2 112  22  22 113
 

Now we have  

Ψ1 1, 2  12   113 sin1 cos  1
⋅ 22   113  32 22  2 114

 

Ψ1 1, 2   cos1 cos  1
	 ⋅ 22  2 112  22  22 113

 

Ψ1 1, 2   sin1 sin  1
⋅ 22  2 112  22  22 113

 

The components of the gradient are  ∇1, 2  12   113   sin1 cos  1
⋅ 22   113  32 22  2 114

 113   114   sin1 cos  1
⋅ 22   114  32 22  2 115  112   sin1 cos  1 22   113 12  sin1 cos  1 22    2 114 32 222   sin1 cos  1 115

 

∇Ψ1, 2   cos1 cos  1⋅ 22  2 114  22  22 115  

∇Ψ1, 2   sin  1sin1 2  2 114	 22  22 115
 

Combining the above with equations (5), (6), and (7), 
we finally obtain that   , ,  
satisfies, in this approximation, 
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1  212 1  11 12  1 1  1  12  1 sin21 1  1  12 	 12  sin1 cos  1 22    2 114 		  32 222   sin1 cos  1 115 
 

(16) 

 1  21 1 1  sin1 cos1 12  cos1 cos  1⋅ 22  2 114  22  22 115
 

 

(17) 

 1  21 1 1  2 cot1  1 1	
  sin  1sin1⋅ 22  2 114  22  22 115

 

 

(18) 

 

Since  ≫   , we have that the distance between 
the bodies of masses  and  is of the order . The 
highest contribution to (16), , is therefore consistent 
with the Newtonian gravitational interactions between 
these bodies, as it should in light of our assumptions. 
 

6. Discussion 
 
In this work, we have derived an approximation for the 
orbital corrections to the equations of motion of the 
outermost object in a restricted three body-type of 
problem on a Schwarzschild background. The 
approximation is sufficiently simple to be treated by 
elementary methods, yet it provides insight on the 
behavior of such corrections without appealing to the 
heavy machinery of post-Newtonian approximations 
used to describe more realistic scenarios. Therefore, 
equations (12), (13), and (14) and (16), (17), and (18) 
provide a quick assessment of the qualitative behavior 
of the system that can be used as a starting point to 
more thorough and quantitative studies. 
 
The method relies essentially on an exact solution to 
Poisson's equation for a Schwarzschild metric and can 
thus be adapted to other backgrounds where the 
Poisson equation can be solved exactly or 
approximately. In particular, as long as an 
approximate solution to Poisson's equation can be 
written in terms of a series expansion that asymptotes 

to an exact solution, a procedure similar to the one here 
presented can be used. 
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