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Abstract We establish a nonlinear non-conservative
mathematical framework for the acoustic-electro-elastic
dynamics of the response of a piezoelectric disk to
high-level acoustic excitation in the context of ultra-
sound acoustic energy transfer. Nonlinear parameter
identification is performed to estimate the parame-
ters representing nonlinear piezoelectric coefficients.
The identification is based on exploiting the vibra-
tional response of the disk operating in the thickness
mode under dynamic actuation. The nonlinearly cou-
pled electro-elastic governing equations, for the piezo-
electric receiver subjected to acoustic excitation, are
derivedusing the generalizedHamilton’s principle. The
method of multiple scales is used to obtain an approx-
imate solution that forms the basis for parameter iden-
tification. The identified coefficients are then experi-
mentally validated. The effects of varying these coeffi-
cients on the nonlinear response, optimal resistive elec-
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trical loading, and power generation characteristics of
the receiver are investigated.
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1 Introduction

Contactless power transfer (CPT) has become a topic
of interest over the past decade because it eliminates
dissipation losses in conducting wires and its advan-
tage as a maintenance-free operation in aerospace,
biomedicine, andmicrosensor applications [1,2]. Some
well-studied CPT techniques include inductive [3],
capacitive coupling [4], and far-field electromagnetic
energy transfer [5], which use electromagnetic waves
forwireless energy transfer. Thesemethods can achieve
high efficiency at close transmitter-to-receiver dis-
tances but often perform poorly as the distance between
transmitter and receiver increases [6]. More recently,
ultrasound acoustic energy transfer (UAET) was pro-
posed as a transformative CPT approach for applica-
tion in biomedical devices [7–13] and sensing net-
works in enclosed containers or space stations [14–
16]. In UAET, energy is transferred through the recep-
tion of acoustic waves by a piezoelectric receiver that
converts the mechanical energy induced by incident
acoustic waves to electrical voltage. Thorough litera-
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ture reviews on UAET and its advantages over induc-
tive, microwave, capacitive, and optical energy transfer
methods have been presented by Roes et al. [6], Zaid
et al. [17], and Awal et al. [18].

To date, research of UAET systems has been limited
to modeling and proof-of-concept experiments, mostly
in linear regime, i.e., under small levels of acoustic
pressure that result in small-amplitude longitudinal
vibrations and linearized piezoelectricity [14,15,19–
25]. Shahab and Erturk [19] considered an incident
acoustic wave, originating from a spherical source of
known strength, and developed a multi-physics model
to analyze the electrical power output extracted by a
piezoelectric receiver in fixed–free boundary condi-
tions and validated it with finite element simulations.
Shahab et al. [20] later experimentally validated the
theoretical framework for free–free boundary condi-
tions. Gorostiaga et al. [21] considered a piezoelec-
tric receiver that is acoustically excited with a plane
wave and performed a theoretical study to determine
the optimum electrical load by zero reflections and
power maximization approaches. They showed that
both approaches predict same optimum load for a loss-
less transducer but differ as the losses increase. They
also validated their results with experiments [22]. All
of the previously discussed studies assume a linear
piezoelectric constitutive relation [19]. Response pre-
dictions using this assumption fail under high acoustic
excitation levels due to the acoustic medium and the
receiver’s geometric and electro-elastic nonlinearities.
When the amplitude of the acoustic wave becomes suf-
ficiently large, the waves become distorted due to the
generation of higher harmonics as they propagate in the
medium [26,27]. When the induced strains are high
in the piezoelectric receiver, material nonlinearities
and nonlinear coupling with the electric field become
important [28–34]. Under such conditions, there is a
need to account for both acoustic nonlinearities of the
medium and material electro-elastic nonlinearities to
accurately determine the receiver’s response and out-
put voltage.

The objective of this effort is to investigate the
effects of material electro-elastic nonlinear parameters
of the piezoelectric receiver on the electrical power
output in UAET systems. To this end, we develop an
acoustic-electro-elastic model of the receiver using a
nonlinear constitutive relation. We neglect the effects
of absorption, diffraction, and nonlinear distortion in
themedium, as they are not themain focus of this effort.

The governing and electrical circuit equations are
determined using the generalized Hamilton’s princi-
ple followed by a Galerkin’s discretization. The wave–
structure interaction is approximated as the net effect
of an incident acoustic wave and the acoustic radiation
impedance of a baffled circular piston [35,48]. Approx-
imate solutions of the discretized governing and cir-
cuit equations are obtained using the method of mul-
tiple scales [36,37]. We use these solutions to imple-
ment a parameter identification scheme that determines
the nonlinear material coefficients. We validate the
identified coefficients with experiments and preform
a detailed analysis to determine the effects of nonlin-
earity on the vibration response and electrical power
output characteristics of the piezoelectric receiver.

2 Mathematical modeling

To analyze the electromechanical response character-
istics of the piezoelectric receiver, we consider a disk
of thickness l, radius r0, and mass per unit length m,
that is connected to a load resistance R, operating in
the thickness mode as shown in Fig. 1. The acoustic
medium has a density ρ0 and speed of sound c0 . The
receiver, with free–free boundary conditions, is excited
with a spherical acoustic source of radius rsource and
source strength Q. The governing and electrical cir-
cuit equations of the coupled electromechanical system
are derived using the generalized Hamilton’s principle
[30,38–41], which is written as∫ t2

t1
δ(T − Δ + Wnc) dt = 0, (1)

where T , Δ, and Wnc are, respectively, the kinetic
energy, electromechanical enthalpy, and work done by
non-conservative or external forces. Here, δ is the vari-
ation operator.

Denoting the displacement of an integral element of
the receiver at s by u(s, t), the kinetic energy of the
receiver is written as

T = 1

2

∫ l

0
mu̇2 ds, (2)

where the overdot is used to represent the derivative
with respect to time. The variation of kinetic energy is
then written as

δT =
∫ l

0
mu̇δu̇ ds. (3)
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Fig. 1 Schematic of the piezoelectric receiver

Analysis of the vibration characteristics of piezoelec-
tric disk actuators has been extensively investigated
in the literature [19,20,42–47]. Most theoretical mod-
els assume that the displacement is in the thickness
direction as one-dimensional. However, experiments
show that the one-dimensional assumption is accurate
only when the diameter-to-thickness ratio (2r0/ l) is
larger than 20 or smaller than 0.5 [42–44]. By per-
forming experiments on PbTiO3 disks, Ikegami et al.
[43] classified the modal vibrational response into five
groups. They are thickness extensional, shear, edge,
radial, and high-frequency radial modes. Because a
closed-form solution for the three-dimensional model
cannot be easily obtained for a thin disk, the mixed
modal behavior could only be determined from either
experiments or finite element method simulations
[44–47].

In order to assess the effects of material nonlinearity
on the electromechanical response of the receiver, we
assume that the piezoelectric receiver vibrates in the
thickness direction only and is subjected to a “piston-
like” motion, wherein the radial, edge, thickness shear,
and thickness extensional modes are all neglected [47].
The one-dimensional axial strain at any position, s, is
then defined by

ε33(s, t) = ∂

∂s
u(s, t). (4)

Considering that the thickness of receiver is in the 3-
direction and neglecting the effect of Poisson’s ratio
enable us to neglect all strains expect ε33. Then, the

electromechanical enthalpy per unit volume is given
by [30]

Δ =
∫ l

0

1

2
Y33Aε233 ds −

∫ l

0
e33Aε33E3 ds

−
∫ l

0

1

2
α3AE3ε

2
33 ds −

∫ l

0

1

2
εS33AE

2
3 ds

+
∫ l

0

1

6
α1Aε333 ds −

∫ l

0

1

6
α2Aε333E3 ds

+
∫ l

0

1

8
α4Aε433 ds, (5)

where Y33, e33, and εS33 are, respectively, the elastic
modulus (for thickness mode), piezoelectric coupling
coefficient, and dielectric (or piezoelectric permittiv-
ity) constant. The coefficients α1, α2, α3, and α4 repre-
sent the nonlinear material properties. Here, E3 is the
induced electric field due to the strain induced in the
receiver in the 3-direction and can be related to gener-
ated electric potential by

E3(s, t) = −V (t)

l
[H(s) − H(s − l)]

≡ −VH (s, t)

l
, (6)

where H(s) is the Heaviside step function and [H(s)
− H(s − l)] is used to denote that the electric field
is constant through the thickness of the receiver. Sub-
stituting Eqs. (4) and (6) into Eq. (5), we obtain the
variation of electromechanical enthalpy as

δΔ =
∫ l

0
Y33Au

′δu′ ds +
∫ l

0
e33Aδu′ VH

l
ds

+
∫ l

0
e33Au

′ δVH

l
ds

+
∫ l

0
α3A

VH

l
u′δu′ ds +

∫ l

0

1

2
α3A

δVH

l
u′2 ds

−
∫ l

0
εS33A

VH δVH

l2
ds

+
∫ l

0

1

2
α1Au

′2δu′ ds +
∫ l

0

1

2
α2Au

′2δu′ VH

l
ds

+
∫ l

0

1

6
α2Au

′3 δVH

l
ds

+
∫ l

0

1

2
α4Au

′3δu′ ds. (7)

Assuming that the acoustic excitation is generated by
a spherical acoustic source (k0rsource << 1), the pres-
sure on the top surface of the disk is given by
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pt(t) ≈ jρ0c0k0
Q

4π

1

dt
e j(Ωt−k0dt)

= jρ0Ω
Q

4π

1

dt
e j(Ωt−k0dt), (8a)

and the pressure on the bottom surface is given by

pb(t) ≈ jρ0Ω
Q

4π

1

dt + l
e j(Ωt−k0dt−k0l) = χpte

− jΩτ ,

(8b)

χ = dt
dt + l

, and τ = l

c0
, (8c)

where dt is the distance from source to the top surface
of the disk, and k0 = Ω/c0.

The acoustic radiation impedance, Zr, that repre-
sents the reaction forces induced in the medium as
a result of the motion of receiver’s surfaces [48], is
defined as

Zr = − Fr
u̇

= 1

u̇

∫∫

S

p(r) dS = Rr + j Xr, (9a)

where Rr and Xr represent the radiation resistance and
reactance terms, respectively. They are given by the
following relations for a baffled circular piston [48]:

Rr = ρ0c0A

[
1 − J1(2k0r0)

k0r0

]
, and Xr

= ρ0c0A
S1(2k0r0)

k0r0
, (9b)

where J1 and S1 are, respectively, the first-order Bessel
and Struve functions. The acoustic radiation resistance
and reactance for an unbaffled circular piston are cal-
culated vs. k0r0 and presented in Fig. 2. The radiation
resistance (Rr) represents the transfer of power from
the vibrating receiver to the fluid medium, whereas the
radiation reactance (Xr) increases the kinetic energy
of the system, which subsequently shifts the natural
frequency and alters the mode shapes. Therefore, we
define the radiation mass as mr = Xr/ω [48].

The variational work by non-conservative forces—
structural damping, acoustic–structure interaction (pres-
sure excitation and radiation impedance) [20]—is writ-
ten as

δW = ft(t)δu(0, t) − fb(t)δu(l, t)

−
∫ l

0
csu̇(s, t)δu(s, t) ds − Rru̇(0, t)δu(0, t)

− jmrωu̇(0, t)δu(0, t) − Rru̇(l, t)δu(l, t)

− jmrωu̇(l, t)δu(l, t) − Ψ δV, (10)

where ft
(= ∫ r0

0 2πrpt dr
)
and fb are, respectively, the

forces on top and bottom surfaces, and cs and Ψ are,

10-1 100 10110-3

10-2

10-1

100

101

Fig. 2 Normalized radiation resistance Rr/(ρ0c0A), and reac-
tance Xr/(ρ0c0A) for 0 ≤ k0r0 ≤ 20 of a baffled piston

respectively, the structural damping coefficient and the
net generated electric charge. As the excitation and
response of the system are harmonic functions and that
jωu̇ = ü, Eq. (10) is rewritten as

δW = ft(t)δu(0, t) − fb(t)δu(l, t)

−
∫ l

0
csu̇(s, t)δu(s, t) ds

−Rru̇(0, t)δu(0, t) − mrü(0, t)δu(0, t)

−Rru̇(l, t)δu(l, t)

−mrü(l, t)δu(l, t) − Ψ δV . (11)

Substituting Eqs. (3), (7), and (11) into Eq. (1) and per-
forming integration by parts, we obtain the governing
equation:

−mü + Y33Au
′′ + e33A

V ′

l

+α3A

(
V

l
u′′ + V ′

l
u′

)
+ α1Au

′u′′

+ 1

2
α2A

(
u′2 V ′

l
+ 2u′u′′ V

l

)

+ 3

2
α4Au

′2u′′ − csu̇ + ftδ[s] − fbδ[s − l]
− Rr u̇δ[s] − Rru̇δ[s − l] = 0, (12)

the corresponding electrical circuit equation
∫ l

0

[
−1

2
α3A

1

l
u′2 − e33Au

′ 1
l

+εS33A
V

l2
− 1

6
α2Au

′3 1
l

]
ds − Ψ = 0, (13)
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the natural boundary condition on the top surface, s = 0

−mrü + Y33Au
′ + e33A

V

l
+ α3A

V

l
u′ + 1

2
α1Au

′2

+ 1

2
α2Au

′2 V
l

+ 1

2
α4Au

′3
∣∣∣∣
s=0

= 0, (14)

and the natural boundary condition on the bottom sur-
face, s = l

−mrü − Y33Au
′ − e33A

V

l
− α3A

V

l
u′ − 1

2
α1Au

′2

− 1

2
α2Au

′2 V
l

− 1

2
α4Au

′3
∣∣∣∣
s=l

= 0. (15)

2.1 Governing equation of temporal modes

The linear, undamped, short-circuit and unforced gov-
erning equation as well as the boundary conditions are
written as

− mü + Y33Au
′′ = 0, (16a)

−mrü + Y33Au
′∣∣
s=0 = 0, and − mrü

−Y33Au
′∣∣
s=l = 0. (16b)

The general solution for Eq. (16a) is

u(s, t) = 1

2
a+e j(ks−ωt) + 1

2
a−e j(−ks−ωt) + c.c,

(17)

where k = ω
√

m
Y33A

and a+, a−, and ω represent the

complex amplitudes of forward and backward traveling
waves and the natural frequency of the receiver, respec-
tively. Substituting the general solution presented in
Eq. (17) in (16b), we obtain

mr

m
k(a+ + a−) + (a+ − a−) = 0, and (18a)

mr

m
k(a+e2 jkl + a−) + j (a+e2 jkl − a−) = 0. (18b)

Simplifying Eqs. (18a) and (18b), we obtain

ai−
ai+

= 1 − jki
mr
m

1 + jki s
mr
m

, and ki

= iπ

l
, and i = 1, 2, 3 . . . ∞. (19)

Equation (19) shows that there are infinite thickness
modes for the receiver and, as such, the solution is writ-
ten as

u(s, t) =
∞∑
i=1

2ai+
1 + k2i

(mr
m

)2 [cos (ki s)

− mr

m
ki sin (ki s)

]
e− jωi t (20a)

which can be rewritten as

u(s, t) =
∞∑
i=1

âi
[
cos (ki s) − mr

m
ki sin (ki s)

]
q(t)

≡
n∑

i=1

φi (s)qi (t), (20b)

where φn(s) is the nth mode shape and qn(t) is the cor-
responding temporal amplitude. For two distinctmodes
p and q, Eq. (16a) in conjunctionwith the linear bound-
ary conditions presented in Eq. (16b) yields [49]

mrφqφq |s=l + mrφqφq |s=0

+
∫ l

0
mφpφq ds = δpq (21a)

and, subsequently,
∫ l

0
Y33Aφ′

pφ
′
q ds = δpqω

2
p. (21b)

Toobtain the governing equation of the temporal ampli-
tude,we use the solution of the linear system and follow
the Galerkin’s weighted residual method. So, we sub-
stitute Eq. (20b) in the nonlinear distributed parameter
governing equation (12) followed bymultiplying equa-
tionwithφ j (s) and integrating over the thickness of the
disk, which yields

∫ l

0
φk

(
−m

n∑
i=1

φi q̈i + Y33A
n∑

i=1

φ′′
i qi + e33A

V ′
H

l

+α1A
n∑

i=1

φ′′
i qi

n∑
j=1

φ′
j q j

+α3A

[
VH

l

n∑
i=1

φ′′
i qi + V ′

H

l

n∑
i=1

φ′
i qi

]

+3

2
α4A

n∑
i=1

φ′′
i qi

n∑
j=1

φ′
j q j

n∑
m=1

φ′
mqm

+ 1

2
α2A

⎡
⎣V ′

H

l

n∑
i=1

φ′
i qi

n∑
j=1

φ′
j q j

+ 2
VH

l

n∑
i=1

φ′
i qi

n∑
j=1

φ′′
j q j

⎤
⎦ − cs

n∑
i=1

φi q̇i
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+ ftδ[s] − fbδ[s − l] − Rr

n∑
i=1

φi q̇iδ[s]

− Rr

n∑
i=1

φi q̇iδ[s − l]
)

ds = 0. (22)

Using thenormalization conditions defined inEqs. (21a)
and (21b), and the nonlinear boundary conditions pre-
sented in Eqs. (14) and (15), the governing equation of
kth temporal mode is simplified to

q̈k + ω2
kqk +

n∑
i=1

q̇i

[∫ l

0
csφkφi ds

+ Rrφiφk |s=0 + Rrφiφk |s=l
] +

∫ l

0
φ′
ke33A

VH

l
ds

+
n∑

i=1

qi

∫ l

0
α3Aφ′

kφ
′
i
VH

l
ds

+ 1

2

n∑
i=1

n∑
j=1

qiq j

∫ l

0
α1Aφ′

kφ
′
iφ

′
j ds

+ 1

2

n∑
i=1

n∑
j=1

qiq j

∫ l

0
α2Aφ′

iφ
′
jφ

′
k
VH

l
ds

+ 1

2

n∑
i=1

n∑
j=1

n∑
m=1

qiq jqm

∫ l

0
α4Aφ′

kφ
′
iφ

′
jφ

′
m ds

= φk(0) ft − φk(l) fb. (23)

Substituting the solution presented in Eq. (20b) in the
circuit equation (13) and from Ohm’s law, Ψ̇ = − V

R ,
we rewrite the sensing equation as

n∑
i=1

q̇i e33
A

l
[φi (0) − φi (l)]

− 1

2
α3A

1

l

n∑
i=1

n∑
j=1

(
q̇i q j + qi q̇ j

) ∫ l

0
φ′
iφ

′
j ds

− 1

6
α2A

1

l

n∑
i=1

n∑
j=1

n∑
m=1

(
q̇i q j qm

+ q̇mq jqi + q̇mqiqm
) ∫ l

0
φ′
iφ

′
jφ

′
m ds

+ εS33A
V̇

l
+ V

R
= 0. (24)

In practice, the load resistance can be accompanied
with a capacitor and/or an inductor to tune the power
output [19]. However, in this work the analysis is
restricted to a purely resistive load.

2.2 Approximate solution

To study the steady-state response characteristics of
the coupled electromechanical Eqs. (23) and (24), we
determine an approximate solution using themethod of
multiple scales [36,37]. Following Meesala and Hajj
[50], we investigate the response characteristics near
the first thickness resonant mode. Neglecting the con-
tribution of higher thickness modes and assuming a
proportional damping, we rewrite the governing equa-
tions of the first thickness mode as

q̈ + ω2q + 2ε2μq̇ + εθ̂V + εδ1q
2

+ ε2δ2qV + ε2δ3q
3 + ε3δ4q

2V

= 1

2
εΩ

(
Fe jΩt + Fe− jΩt

)
(25a)

− θ̂V q̇ + CpV̇ − ε2δ4V q
2q̇

− εδ2V qq̇ + V

R
= 0, (25b)

where

ε2μ = 1

2

[
2ζω + Rrφ

2
∣∣∣
s=0

+ Rrφ
2
∣∣∣
s=l

]
,

θ̂V = εθ̂ = [φ(l) − φ(0)]
e33A

l
, (25c)

εδ1 = 1

2
Aα1

∫ l

0
φ′3 ds, ε2δ2 = εδ2V

= A

l
α3

∫ l

0
φ′2 ds, ε2δ3 = Aα4

2

∫ l

0
φ′4 ds,

(25d)

ε3δ4 = ε2δ4V = A

2l
α2

∫ l

0
φ′3 ds,

εF = jρ0AQ

4πdt
e
− jΩ dt

c0

[
φ(0) − χφ(l)e− jΩτ

]
,

(25e)

and ε is a bookkeeping parameter that signifies the level
to which the different terms in governing equations
affect the response [36,37].

From the approximate solution and the amplitude
response equation, Meesala and Hajj [50] showed that
α3 generates the response at 2Ω and that it does not
affect the response at Ω . Moreover, they neglected the
contribution of α2 as it can be scaled to ε3 as shown
in Eq. (25a) and will potentially be masked by the
electrical and mechanical noise. In reality, the acous-
tic wave generates higher harmonics as it propagates
in the medium [26,27]. In this study, we neglect this
transfer of energy to the higher harmonics which is
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usually predominant at high source strengths. For the
above-mentioned reasons, we drop the δ2 and δ4 terms
in Eqs. (25a) and (25b) and solve the coupled system
using the method of multiple scales.

We introduce three independent time scales T0, T1,
and T2 defined by

Tn = εnt n = 0, 1, 2

and expand the derivatives up to O(ε2) and write:

D

Dt
= ∂

∂T0
+ ε

∂

∂T1

+ ε2
∂

∂T2
≡ D0 + εD1 + ε2D2 (26a)

and

D2

Dt2
= ∂2

∂T 2
0

+ 2ε
∂2

∂T1∂T0
+ ε2

(
2

∂2

∂T0∂T2
+ ∂2

∂T 2
1

)

≡ D2
0 + 2εD0D1 + ε2

(
D2
1 + 2D0D2

)
. (26b)

The solutions of q(t) and V (t) are then expressed as

q(t, ε) = q0(T0, T1, T2) + εq1(T0, T1, T2)

+ ε2q2(T0, T1, T2) + · · · (27a)

V (t, ε) = V0(T0, T1, T2) + εV1(T0, T1, T2)

+ ε2V2(T0, T1, T2) + · · · . (27b)

To investigate the response near the first thickness
mode, we let Ω = ω + εσ , where εσ is a detuning
parameter that represents the nearness of these frequen-
cies. Substituting Eqs. (26a), (26b), (27a), and (27b)
into Eqs. (25a), and (25b), retaining terms up to O(ε2),
we obtain
ε0− order equations

D2
0q0 + q0ω

2 = 0, and (28a)

RCpD0V0 − Rθ̂V D0q0 + V0 = 0. (28b)

ε1−order equations

D2
0q1 + ω2q1 = −2 (D0D1q0) − δ1q

2
0 − θ̂V0

+ jρ0Qr20Ω

8dt

[
φ(0) − χφ(l)e− jΩτ

]
e
jΩ

(
T0− dt

c0

)

− jρ0Qr20Ω

8dt

[
φ(0) − χφ(l)e jΩτ

]
e
− jΩ

(
T0− dt

c0

)
, and

(29a)

RCpD0V1 − Rθ̂V D0q1 + V1 = −RCpD1V0

+ Rθ̂V D1q0. (29b)

ε2−order equations

D2
0q2 + ω2q2 = −2D0D1q1 − D2

1q0

− 2D0D2q0 − 2μ1D0q0 − δ3q
3
0 − 2δ1q1q0 − θ̂V1, and

(30a)

RCpD0V2 − Rθ̂V D0q2 + V2 = −RCpD1V1

− RCpD2V0 + Rθ̂V D1q1 + Rθ̂V D2q0. (30b)

From the ε0−order equations, we obtain

q0(T0, T1, T2) = B(T1, T2)e
jωT0 + c.c, and (31a)

V0 = Rωθ̂V

− j + RωCp
B(T1, T2)e

jωT0 + c.c. (31b)

Substituting q0 and V0 in ε1−order equation (29a) and
eliminating the secular terms, we obtain

D1B = ρ0Qr20Ω
[
φ(0) − χφ(l)e− jΩτ

]
e

(
− jΩ d

c0
+ jσT1

)

16dω

+ j BRθ̂ θ̂V

2RωCp − 2 j
. (32)

Removing the secular termsusing the definition of D1B
in Eq. (32), we obtain

q1(T0, T1, T2) = δ1

3ω2 B
2e2 jT0ω − δ1

ω2 B B̄ + c.c (33a)

V1(T0, T1, T2)

= Rθ̂V
(
RωCp + j

)
2

48dtω
(
R2ω2C2

p + 1
)2 (

RωCp − j
)

[

− 24 j BdtRωθ̂ θ̂V e
jωT0

− 3ρ0Qr20Ω
(
RωCp − j

)2 e jΩ
(
T0− dt

c0
−τ

) [
φ(0)e jΩτ − χφ(l)

]
RΩCp − j

+ 32B2dtδ1e2 jωT0
(
RωCp − j

)3
2RωCp − j

]
+ c.c. (33b)

Using the solution equations for q1 and V1 in the
ε2−order equation (30a) and eliminating the secular
terms, we obtain

D2B = 1

8
B

(
−8μ1 + R2θ̂2θ̂2V

(
1 − j RωCp

)
ω

(
RωCp − j

)
3

)

+ i B2 B̄
(
9δ3ω2 − 10δ21

)
6ω3 − Δ1ρ0Qr20Ωe

jεσT0− jΩ dt
c0

×
[
φ(0) − χφ(l)e− jΩτ

]
, (34a)

where

Δ1 = Rθ̂ θ̂V
(
RΩCp + j

) + 2σ
(
RωCp − j

) (
RΩCp − j

)
64dtω2

(
RωCp − j

) (
RΩCp − j

) .

(34b)
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Using the chain rule of differentiation, we write

Ḃ = εD1B + ε2D2B. (35)

Substituting the expressions for D1B and D2B, respec-
tively, from Eqs. (32) and (34a), we obtain the complex
amplitude modulation equation. Now, we represent the
complex amplitude as B(T1, T2) = 1

2ae
jβ(T1,T2) and

separate the real and imaginary parts to determine the
amplitude and phase modulation equations, respec-
tively, as

ȧ = m(1,1)a + m(1,2) sin

(
γ − dt

c0
Ω

)

+m(1,3) cos

(
γ − dt

c0
Ω

)

+m(1,4) sin

(
γ −

[
dt
c0

+ τ

]
Ω

)

+m(1,5) cos

(
γ −

[
dt
c0

+ τ

]
Ω

)
, and (36)

γ̇ = εσ + m(2,1) + m(2,2)a
2

+ 1

a

[
m(2,3) sin

(
γ − dt

c0
Ω

)

+m(2,4) cos

(
γ − dt

c0
Ω

)

+m(2,5) sin

(
γ −

[
dt
c0

+ τ

]
Ω

)

+m(2,6) cos

(
γ −

[
dt
c0

+ τ

]
Ω

)]
. (37)

In deriving the amplitude and phase modulation equa-
tions, γ = εσ t−β has been used to remove the explicit
dependence on time in the equations. The coefficients
m(i, j) are presented in “Appendix”. By setting ȧ = 0
and γ̇ = 0, we find the steady-state amplitude a0 and
phase γ0, for a given excitation condition, and write the
approximate solution of Eqs. (25a) and (25b) as

u(s, t) = a0φ(s) cos (Ωt − γ0) + · · · (38a)

V (t) = a0Rθ̂Vω

1 + R2ω2C2
p

[
RωCp cos (Ωt

− γ ) − sin (Ωt − γ )
] + · · · . (38b)

3 Nonlinear parameter identification

Few investigations have considered nonlinear aspects
of piezoelectric materials [28–33]. In this section, we
present a parameter identification procedure [50] to

determine α1 and α4 in the enthalpy density equation
as defined above. To simplify the analysis, we consider
a piezoelectric receiver that is freely suspended in air,
where the radiation effects are negligible, and subject it
to an electrical excitation. The parameter identification
approach is based on using the approximate solution of
the response of the receiver obtained with the method
of multiple scales. This solution is then used to deter-
mine the nonlinear material parameters. To this end,
we consider the actuation equation of the receiver and
write it as

q̈ + ω2q + 2ε2μq̇ + εδ1q
2 + ε2δ3q

3 = −εθ̂V (39)

where V = 1
2 |V | (e jΩt + e− jΩt

)
and Ω = ω + εσ .

Using the same timescales defined in Sect. 2.2, we
express the solution of q as

q(t; ε) = q0(T0, T1, T2) + εq1(T0, T1, T2)

+ ε2q2(T0, T1, T2) + · · · (40)

Substituting the assumed solution and the timescales
in Eq. (39), we obtain
ε0− order equation

D2
0q0 + q0ω

2 = 0 (41)

ε1−order equation

D2
0q1 + ω2q1 = −2 (D0D1q0) − δ1q

2
0

− 1

2
θ̂ |V |

(
e jΩt + e− jΩt

)
(42)

ε2−order equation

D2
0q2 + ω2q2 = −2D0D1q1 − D2

1q0

− 2D0D2q0 − 2μ1D0q0

− δ3q
3
0 − 2δ1q1q0. (43)

Following a similar procedure to the one detailed in
Sect. 2.2, we obtain

q0(T0, T1, T2) = B(T1, T2)e
jωT0 + c.c, (44a)

D1B = − j |V |θ̂
4ω

e− jσT1 (44b)

q1(T0, T1, T2) = − δ1

ω2 B B̄ + δ1

3ω2 B
2e2 jωT0 + c.c,

(44c)

D2B = −μ1B − 5 jδ21
3ω3 B2 B̄ + 3 jδ3

2ω
B2 B̄

− jσ θ̂

8ω2 |V |e jσT1 . (44d)
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Fig. 3 a Dynamic actuation experimental apparatus including
signal generator, power amplifier, and data acquisition system.
b Piezoelectric disk with radius r0 and thickness l in free–free

boundary conditions, operating in thickness mode. The disk’s
surface velocity is measured by laser Doppler vibrometer

Representing the complex amplitude in polar form as
B = 1

2ae
jβ and defining γ = εσ t − β, we determine

the amplitude and phase modulation equations as

ȧ = −ε
θ̂ |V |
2ω

sin γ + ε2
θ̂σ |V |
4ω2 sin γ − ε2μ1a (45a)

γ̇ = ε

(
σ − θ̂

2aω
|V | cos(γ )

)

+ ε2

(
σ θ̂

4aω2 |V | cos(γ ) + 5a2δ21
12ω3 − 3a2δ3

8ω

)
.

(45b)

Setting ȧ = 0 and γ̇ = 0, we obtain the steady-state
amplitude response relation as
√
a20

(
9a20δ3ω

2ε − 10a2δ21ε − 24σω3
)
2

36ω2 θ̂2(σε − 2ω)2
+ 16a20μ

2
1ω

4ε2

θ̂2(σε − 2ω)2
= |V |.

(46)

The approximate solution is then written as

q(t) ≈ a0 cos(γ0 − tΩ) − εδ1
a20
2ω2

+ εδ1
a20
6ω2 cos(2γ0 − 2tΩ) + · · · (47)

or in the frequency domain as

q(ν) ≈ −εδ1
a20
2ω2 δ(ν) + a0δ(ν − Ω)

+ εδ1
a20
6ω2 δ(ν − 2Ω) + · · · , (48)

where a0 and γ0 are, respectively, the steady-state
amplitude and phase and γ̇ = 0 and δ is the Dirac
delta function.

Using the amplitude response equation (46) and
the approximate solution of Eq. (48), we note that the
steady-state response at the forced frequency is a0 and
that is influenced by δ1 and δ3. Moreover, Eq. (48)

shows that δ1 is responsible for the generation of a dc
component at ν = 0 and the response at twice the forc-
ing frequency. Using the value of δ1, δ3 can be deter-
mined from Eq. (46). From Eq. (25d), we note that the
material nonlinear parameters, α1 and α4, are, respec-
tively, related to δ1 and δ3. As such, one can identify
δ1 and δ3 either by employing the steady-state ampli-
tude response relation or from the amplitudes of the
higher harmonics. The parameters α1 and α4 can then
be evaluated using Eq. (25d).

4 Experiments

Experimentswere conducted on an axially poledmono-
lithic piezoelectric disk (modified PZT from PIGmbH)
of length (thickness) l = 4 mm, radius r0 = 5 mm, and
mass per unit length of m = 0.61 g/m. The disk has
silver electrodes covering the two outer faces and oper-
ates in the 33 (thickness) mode. The disk with free–free
boundary conditions is shown in Fig. 3 for in-air actua-
tion tests. During actuation experiments, the actuation
voltage signal (harmonic X-cycle burst excitation) was
generated by Keysight 33500B signal generator which
is fed to E&I amplifier. The disk’s surface velocity was
measured by a laser Doppler vibrometer (LDV, Poly-
tec OFV 5000/505) and acquired by NI DAQ system
(BNC−2110). The data were collected at a sampling
frequency of 10 MHz.

4.1 Parameter identification

4.1.1 Linear parameters

Surface velocity frequency response functions (FRFs)
from in-air actuation experiments and model simula-
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Fig. 4 Surface velocity versus excitation frequency; comparison
between experimental data and model simulation using identi-
fied parameters at 500 mV and 1 V excitation amplitudes. The
lines and circles, respectively, represent themodel prediction and
experimental data

tion are presented inFig. 4. To identify the linear param-
eters, we consider 500 mV and 1 V excitation ampli-
tudes and determine the velocity of the disk’s surface
in a frequency sweep in the neighborhood of the first
thickness mode resonant frequency. We note that the
strains generated for 500 mV and 1 V voltage ampli-
tudes are not significant to trigger any material non-
linear behavior. As such, we drop the nonlinear terms
in the actuation equation (39) and determine the ampli-
tude of disk’s surface velocity for a given voltage signal
V = |V | cos (Ωt), as

|u̇|s=0 = Ωθφ(0)[φ(0) − φ(l)]√(
ω2 − Ω2

)2 + 4ζ 2ω2Ω2
|V |. (49)

In determining Eq. (49), the acoustic radiation effects
(resistive and reactive terms) are neglected as the ratio
of acoustic impedance of air to that of PZT is very small
(≈ 10−5).

Using a least-square curve fit function, linear param-
eters are obtained as shown in Table 1. Figure 4 shows
a good agreement between the experimental data and
model prediction using the identified linear parameters
for both 500 mV and 1 V excitation amplitudes.

Using the mode shape given by Eq. (20b) in con-
junction with the orthogonality conditions presented in
Eqs. (21a) and (21b), we obtain the mass normalized
mode shape as

Table 1 Identified structural parameters of piezoelectric disk

Parameter [units] Value

Natural frequency, ω/(2π) [kHz] 522.64

Young’s modulus, Y33 = mω2l2/(Aπ2) [GPa] 136.36

θφ(0)2 [cm−1 kg−1] 3.04 × 102

Damping ratio (ζ ) 1.65 × 10−3

φ(s) = 28.57 cos
(π

l
s
)

�⇒ φ(0)

= −φ(l) = 28.57 kg−1/2. (50)

From the value of φ(0) in Eq. (50) and using the identi-
fied value of θφ(0)2, we determine the electromechan-
ical coupling as θ = 3.73 × 10−1 C/m.

4.1.2 Nonlinear parameters

A combined experimental–mathematical identification
scheme that exploits the vibration response of the
piezoelectric disk is implemented to estimate param-
eters representing nonlinear piezoelectric coefficients.
We consider the piezoelectric disk with the geometric
and material properties presented in Table 1. Then, fol-
lowing the parameter identification approach detailed
in Sect. 3, and using the experimental setup for dynamic
actuation shown in Fig. 3, the values of the nonlinear
constitutive parameters are obtained.

Figure 5a, b shows, respectively, the time history of
harmonic input actuation voltage measured across the
transducer and the disk’s surface velocity measured by
LDV. The quality of the signals using 10 MHz sam-
pling frequency is shown in the insets in Fig. 5a, b.
Power spectra of these time series are, respectively,
presented in Fig. 5c, d. It is worthy to note that, dur-
ing the actuation tests, it was observed that the actu-
ation input voltage that is measured across the disk
varies in a frequency sweep for a constant voltage
value set in the signal generator. This might be because
of the inability of the control circuits of the ampli-
fier/signal generator to respond to fast changes in the
load impedance (impedance of receiver). Moreover,
exertinghigh electric fields gradually increases the tem-
perature of receiver [51] and affects the material prop-
erties and response characteristics like capacitance,
electromechanical coupling, resonance frequency, and
impedance [52–55]. In order to avoid the above-
mentioned implicit complicated behavior of the piezo-
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Fig. 5 Time series of the a input voltage to the piezoelectric disk in dynamic actuation and b disk’s surface velocity measured by LDV
for an excitation frequency of 522.5 kHz. Power spectrum of c the dynamic actuation and d disk’s surface velocity

electric disk, we fixed the excitation frequency and per-
formed a voltage sweep. For each excitation, the input
voltage signal was fed for approximately 3.4 ms with
a 10-min delay between consecutive excitation mea-
surements. This is to ensure that the temperature of
the receiver do not rise, which may alter the material
properties, thereby creating the necessary conditions
for identifying stable nonlinear material properties at
room temperature.

Figure 5c shows the presence of higher harmonics
in the input actuation voltage that are generated due to
internal resonances in amplifier/signal generator and
data acquisition system. For such an input excitation
signal, the response at higher harmonics is due to the

linear response at that particular frequency and due to
nonlinear material properties. Subsequently, identify-
ing the nonlinear material parameters from higher har-
monics requires a laborious process of identifying the
coefficients in governing equation of higher modes and
understanding coupled circuit dynamics of signal gen-
eration and data acquisition. From Fig. 5d, we note that
the higher harmonics’ contribution to the response is
negligible. Therefore, we use

√
2×RMS of the signal

as the response amplitude at excitation frequency for
the purpose of parameter identification. This estimate
is favored over the spectral peaks to reduce the errors
associated with the Fourier transform.
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Fig. 6 Comparison between experimental data and model pre-
diction (disk surface velocity vs. amplitude of input actuation
voltage) for a nonlinear frequency response of the diskwith iden-
tified parameters at 522.5 kHz and 523 kHz; Markers represent

experimental data and lines represent the model prediction. b
Frequency response predicted with the method of multiple scales
using identified material parameters

Figure 6a shows the amplitude of surface velocity
averaged over five experiments when increasing the
voltage from 500 mV to 77 V at 522.5 kHz and 523
kHz. Figure 6a shows a linear response over the range
between 500 mV and 15V and a saturation response
beyond 15 V, which is a consequence of material non-
linearity. As a first step in identifying nonlinear param-
eters, we solve the amplitude response equation (46)
only for δ1 (i.e., we assume δ3 = 0) over the excita-
tion range between 19 and 39 V and determine that
δ1 ≈ 4.6 × 1019 kg−1/2 m−1s−2. Yet, as shown in
Fig. 6a, using just δ1 underestimates the response over
the excitation range 42–77 V. Therefore, it is neces-
sary to identify the cubic nonlinear stiffness parame-
ter, δ3. Using the δ1 determined previously, we solve
the amplitude response equation (46) for δ3 and obtain
two solutions as δ

so f t
3 = 3.8 × 1025 kg−1 m−2s−2 and

δhard3 = 3.5× 1026 kg−1 m−2s−2, which, respectively,
imply softening and hardening responses. To eliminate
one of the solution, we note that the response measured
at 523 kHz is smaller than the response at 522.5 kHz
for a given excitation voltage as shown in Fig. 6a, sug-
gesting that the nonlinearity is of softening type and
chooses δ

so f t
3 = 3.8 × 1025 kg−1 m−2s−2. Figure 6a

also shows a good agreement between the experimental
data and the response predicted by method of multiple
scales with δ1 and δ3 identified using the data at 522.5
kHz. Since δ1 and δ3 are related to α1 and α4 by

δ1 = 1

2
Aα1

∫ l

0
φ′3 ds, and δ3 = Aα4

2

∫ l

0
φ′4 ds,

(51)

we use the mode shape presented in Eq. (50) and deter-
mine the nonlinear constitutive relation parameters as
α1 = −61 TPa and α4 = 2.6 PPa.

4.2 UAET in water

Having identified the linear and nonlinear material
parameters in Sects. 4.1.1 and 4.1.2, we investigate the
electromechanical response of the piezoelectric disk,
when employed as a receiver subjected to a spheri-
cal acoustic wave excitation as shown in Fig. 1. The
longitudinal strain axis of the receiver and the elec-
trical poling axis (perpendicular to the surface elec-
trodes) are coincident, and therefore the receiver disk
is employed in the 33-mode piezoelectricity. The dis-
tance between the source and top surface of the receiver
is set at dt = 40 mm. For analysis, the capacitance,
Cp = 108.48 pF, is used which is obtained from the
data sheet provided by the manufacturer.

4.2.1 Modal acoustic–structure interaction and linear
response

The piezoelectric material and wave propagation non-
linearities are negligible at low excitation source
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strengths. Therefore, we drop the nonlinear terms in
Eqs. (23) and (24) to determine the receiver’s voltage
output as

V (t) = jΩθ̂V [φ(0) ft − φ(l) fb] e jΩt

[−Ω2 + ω2 + jΩ
(
2ζω + Rr

[
φ(0)2 + φ(l)2

])] (
Cp jΩ + 1

R

) + jΩθ̂2V

, (52)

where the mass normalized mode shape in water is
determined as

φ(s) = 28.5 [cos (738.8 × s)

− 3.1 × 10−3 sin (738.8 × s)
]
. (53)

Acoustic–structure interaction happens in UAET
systems by two-way coupling of acoustic pressure
waves in the fluid with the vibrations of the transmit-
ter and receiver. The coupling mechanism of incident
acoustic pressure on top and bottom surfaces of the
receiver (in free–free boundary conditions as proposed
by Shahab et al. [20]) for a given source strength with
receiver’s modal vibrations results in a net frequency-
dependent modal force experienced by the receiver. It
is pivotal to identify this frequency-dependent behav-
ior as it affects the electromechanical response of the
receiver.As such,wedefine the normalizedmodal force
as

Fmodal = fte− jΩtφ(0) − fbe− jΩtφ(l)

max( fte− jΩtφ(0) − fbe− jΩtφ(l))

= ptAe− jΩt
[
φ(0) − χe− jΩτφ(l)

]
max

(
ptAe− jΩt

[
φ(0) − χe− jΩτφ(l)

]) ,

(54)

where pt = jρ0Ω
Q
4π

1
dt
e j(Ωt−Ωdt/c0).

The phase difference of the vibration of top and bot-
tom surfaces corresponding to the first thickness mode
of the piezoelectric disk receiver is approximately π .
In Eq. (54), the net modal force experienced by the
receiver disk, which is placed in the far field of the
spherical source (i.e., l/dt << 1), is minimum when
e jΩτ is −1. This term can alternatively be represented
as k0l = (2n − 1)π , where n = 
 ω0l

2πc0
+ 1

2� and 
· · · �
represents the nearest integer function. This destructive
interference happens due to acoustic–structure interac-
tion wherein the acoustic pressure wave is coupled to
the receiver and the modal response of the receiver is
coupled back to the acoustic domain.

From the impedance analysis [20], the short- and
open-circuit resonance frequencies of the receiver are
identified as 521.6 kHz and 614.4 kHz, respectively.

By choosing a frequency range between 470 and 660
kHz, which covers both short- and open-circuit natural
frequencies, we present the net force experienced by

the receiver (modal force defined in Eq. (54)) in Fig. 7a
for different distances between the receiver and source.
The excitation frequency is represented in terms of k0l
which ranges between 7.87 and 11 for the chosen fre-
quency range. Figure 7a shows that a destructive inter-
ference occurswhen k0l = 3π orwhenΩ/(2π) = 562
kHz, which is between the short- and open-circuit fre-
quencies of the receiver. We note that the frequency
at which destructive interference occurs, i.e., the net
modal force is decreased, depends on the thickness of
the receiver and the speed of sound in the fluidmedium.
In addition, the results in Fig. 7a show that the net
force experienced by the receiver is subjected to greater
destructive interference as the source-to-receiver dis-
tance is increased.

To investigate the optimal conditions of the receiver,
the power output of the receiver (which is determined
using Eq. (52)) due to a spherical source of source
strength Q = 10µm3/s, located at dt = 40 mm, is
presented in Fig. 7b for a broad range of resistive elec-
trical loads, R, and excitation frequencies. In agree-
ment with typical piezoelectric energy harvesting sys-
tems, two peaks of power output are noted at the fun-
damental short- and open-circuit resonance frequen-
cies. It is seen that the global peak happens at open-
circuit condition.The correspondingoptimal load (Roc)
is identified as 8.8 kΩ . From Fig. 7b, we note that the
optimal loading at short-circuit condition (Rsc) is 586
Ω . Furthermore, the frequency corresponding to max-
imum power generated at Rsc is less than the short-
circuit frequency. This contradicts the well-known fact
that the coupled resonant frequency of a piezoelec-
tric oscillator is greater than the short-circuit resonant
frequency and that it increases with an increase in
load resistance. This anomalous behavior is due to the
decrease in the net force experienced by the receiver
for a given source strength when increasing the excita-
tion frequency near short-circuit conditions, as shown
in Fig. 7a. On the other hand, the net force experienced
by the receiver increases when increasing the excita-
tion frequency near open-circuit conditions that conse-
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Fig. 7 aModal force normalized by the maximum modal force
as defined in Eq. (54), acting on the disk as a function of excita-
tion frequency represented as k0l for different source-to-receiver
distances and b power output for the submerged piezoelec-

tric receiver versus excitation frequency and load resistance
using the analytical model for an acoustic source strength of
Q = 10µm3/s

quently increases the frequency corresponding to max-
imum power generated at 8.7 kΩ . It is relevant to point
out the net damping in the system is a combination
of structural and electrical damping and the resistive
radiation impedance.

4.2.2 Nonlinear response

We investigate next the effect of the nonlinear parame-
ters on the response and the receiver’s electrical power
output by employing the approximate solution deter-
mined using the method of multiple scales and given
by Eqs. (38a) and (38b).

We note that the receiver’s voltage output at opti-
mal electrical loading for high source strengths is
too high and hard to experimentally generate due to
thermal inertia in the piezoelectric material that can
vary material properties or degrade the disk. Heat
generation within the piezoelectric actuator due to
electrical and mechanical losses is a major concern
for high-frequency applications. The properties such
as capacitance, electromechanical coupling coefficient
will evolve with temperature increasing the risk of
unstable performance, especially near bifurcations.We
chose a load resistance R = 1 Ω which is closer
to short-circuit conditions in our numerical simula-
tions. We note that relatively low load resistances pos-

sess lower net electromechanical damping when com-
pared to the optimum load resistances. Therefore, at
short-circuit conditions, higher strains are induced at
relatively low source strengths in comparison with
the global optimum load resistance. Figure 8a shows,
respectively, the top surface’s displacement and the
strain produced in the structure at the center of the disk
(i.e., s = l/2), and Fig. 8b shows the power output as
the source strength is increased from Q = 10µm3/s
to Q = 2mm3/s over an excitation frequency range
between 470 and 540 kHz. Figure 8a, b clearly demon-
strates the manifestation of softening material nonlin-
earity when increasing the source strength. It can be
concluded that the linear behavior that is represented
by the solid lines is retained for source strengths up
to 500 µm3/s. We also note that the strain at s = l/2
induced in the receiver required to trigger the material
nonlinearity is about 500–1000 µε. The good agree-
ment of the power output determined from numerical
simulations of the governing equations (25a) and (25b),
with the predictions made by the method of multiple
scales, is noted in Fig. 8b.

Based on the results of Fig. 8a, b, it can be con-
cluded that for the receiver in consideration, the nonlin-
ear behavior is triggered at a source strength of Q = 2
mm3/s, for which the power generated at optimum load
resistanceswill be impractical to reproduce in an exper-
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Fig. 8 a Displacement of the top surface along with strain
induced in the piezoelectric disk at s = l/2, due to acoustic
excitation and b power output predicted by the method of mul-
tiple scales for a load resistance of 1 Ω as the source strength

is increased from Q = 10µm3/s to Q = 2mm3/s. The dots
represent data from numerical simulations and the solid line rep-
resents data from the analytical expression for linear response
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Fig. 9 Electrical power output as the excitation frequency is var-
ied from 470 to 660 kHz a near the short-circuit optimum load
resistance for a source strength of Q = 2.5 µm3/s and b near

the open-circuit optimum load resistance for a source strength of
Q = 7.5 µm3/s. The dashed lines represent the linear response

imental setup. But for a different material whose non-
linear material parameters are much higher than the
current receiver, the nonlinear behavior will be trig-
gered at fairly lower source strengths, thereby gener-
ating experimentally achievable voltages. As such, it
is important to understand the effects of a softening
nonlinear behavior on the optimum load resistance. In
particular, we investigated the effect of softening non-

linear behavior on the short- and open-circuit optimum
load resistances as the excitation frequency is varied
over the range between 470 and 660 kHz. Figure 9a
shows the normalized power output for source strength,
Q = 2.5 mm3/s at different load resistances near the
short-circuit optimum load resistance, Rsc = 580 Ω

ranging from 76 to 706 Ω with 30 Ω increments,
and Fig. 9b shows the normalized power for Q = 7.5
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Fig. 10 Power output normalized with modal force as the exci-
tation frequency is varied from 470 to 660 kHz a near the short-
circuit optimum load resistance for a source strength of Q = 2.5

µm3/s and b near the open-circuit optimum load resistance for
a source strength of Q = 7.5 µm3/s. The dashed lines represent
the linear response

mm3/s near the open-circuit optimum load resistance
ranging from 2.8 to 10.8 kΩ with 0.4 kΩ increments.
The reason for choosing a higher source strength for
the open-circuit configuration is because the net elec-
tromechanical damping is highest near the open-circuit
optimum load resistance (or global optimum load resis-
tance). Figure 9a shows an increase in the power output
as the load resistance is decreased from 706 to 256 Ω ,
but the power output decreases when the load resis-
tance is varied from 256 to 76 Ω , showing a shift in
the local optimum resistance from 580 to 256 Ω . By
comparing with the linear response for that load resis-
tance, denoted by dashed lines, we note a shift in peaks
as a consequence of the softening nonlinear behavior.
Figure 9a also shows a dominant nonlinear behavior
for a load resistance of R = 76 Ω , but it is interesting
to note that 76 Ω is not the local optimum load resis-
tance. Figure 9b shows a similar trend with a shift in
the optimum load resistance from 8.8 to 4.8 kΩ .

In order to clearly visualize the nonlinear behavior,
we normalize the power output with the modal force
experienced by the receiver and present themodal force
normalized power trend for short- and open-circuit
optimum load configurations, respectively, in Fig. 10a,
b. Figure 10a shows a prominent shift in the peak at
lower load resistances, suggesting a higher nonlinear
response at lower load resistances in the considered
range of short-circuit load resistances. This is because

the decrease in load resistance decreases the coupled
resonant frequency and, by following the modal forc-
ing trend presented in Fig. 7a, it experiences a higher
modal force for a given source strength, thereby gen-
erating higher strains and higher nonlinear response.
From Fig. 9a, recalling that the local optimum load
resistance is decreased from 560 to 200 Ω , we con-
clude that the softening nonlinearity in conjunction
with the current modal forcing trend near short-circuit
range results in a decrease in the local optimum load
resistance. By inspecting the modal force normalized
power output in Fig. 10b, we note more pronounced
shifts in the peak at higher load resistances 8.8 kΩ
and 10.8 kΩ compared to the lower ones, which is not
visually obvious in Fig. 9b. From Fig. 7a, the modal
force increases when increasing the frequency over a
range close to the open-circuit frequency. One would
imagine that because the modal forcing trend near the
open-circuit frequency is opposite to the trend near the
short-circuit frequency, the optimum load resistance
should increase.On the contrary, fromFig. 9b,we recall
that the optimum load resistance decreased from 8.8
to 4.8 kΩ . This is because, although a receiver with
higher open-circuit range load resistances experiences
a larger force, the softening nonlinearity shifts the peak
to a frequency corresponding to a lower modal force,
thereby generating lower power. Therefore, the soften-
ing nonlinear behavior, in this case, is not aiding the
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Fig. 11 Optimal load resistance versus source strength a near short-circuit and b near open-circuit optimum load resistances

response and thereby resistances leading to lower non-
linear behavior produce higher powers.

Figure 11a, b summarizes the change in optimum
load resistance, respectively, over the short-circuit opti-
mum load resistance range between 76 and 706Ω with
30 Ω increments as the source strength is increased
from Q = 10 µm3/s to Q = 2.5 mm3/s and in
open-circuit optimum load resistance range (2.8–10.8
kΩ with 0.4 kΩ increments) as the source strength is
decreased from Q = 10 µm3/s to Q = 7.5 mm3/s.
Figure 11a, b shows a constant optimum load resis-
tance, respectively, up to Q = 1.5 mm3/s and Q = 1
mm3/s and a gradual decrease in optimum load resis-
tance at higher strengths as a consequence of softening
material nonlinear response and modal forcing trend.
From Fig. 11a, b, it is inferred that the curve is much
steeper near the short-circuit optimum load resistance
in comparison with the open one because the modal
forcing trend causes the nonlinearity to be more pro-
nounced and shifts the optimum load resistance near
short-circuit optimum load resistance unlike near the
open-circuit conditions.

5 Conclusions

We presented a mathematical framework to analyze
the material nonlinear behavior in UAET systems. The
governing and electrical circuit equations of a piezo-
electric receiver disk, with free–free boundary condi-
tions, subjected to a spherical acoustic excitation in a

fluid medium were derived using generalized Hamil-
ton’s principle, followed by a Galerkin’s weighted
residual method. The nonlinear governing equations
were then solved using the method of multiple scales
to determine the approximate solution. To characterize
the material nonlinearity, we implemented a param-
eter identification scheme based on the approximate
solution of the actuation equation subjected to an elec-
trical excitation. The parameter identification scheme
was validated experimentally by identifying nonlinear
stiffness parameters that captured the softening-type
nonlinearity observed. From the analytical model, we
demonstrated that the net modal force experienced by
the receiver as a result of phase difference of acous-
tic waves on receiver’s surfaces and its relative modal
interaction follows a nontrivial trend by exhibiting a
destructive behavior with respect to the excitation fre-
quency, for a given source strength, and that it affects
the receiver’s response. We determined that, for a
given receiver’s dimensions, the excitation frequency
at which destructive behavior occurs depends on the
velocity of sound in themedium. By considering differ-
ent source-to-receiver distances, dt , we demonstrated
that the destructive interference is stronger at larger
dt values. By using the approximate solution to the
nonlinear governing and electrical circuit equation in
conjunctionwith the identifiedmaterial parameters, we
demonstrated the softening behavior in the receiver’s
power output by choosing water as a fluid medium.We
noted that at high source strengths, the short- and open-
circuit optimum load resistances determined from the
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linear analysiswill no longer produce the highest power
for a given source strength and that optimum load resis-
tance shifts toward lower values.We concluded that this
response is a consequence of the modal force trend and
the softening-typematerial nonlinearity of the receiver.
Finally, we determined that the shift is a function of
source strength.
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6 Appendix
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