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ABSTRACT Termites have a unique ability to effectively digest lignocellulose with
the help of mutualistic symbionts. While gut bacteria and protozoa have been rela-
tively well characterized in termites, the virome remains largely unexplored. Here,
we report two genomes of microviruses (termite-associated microvirus-1 [TaMV-1]
and termite-associated microvirus-2 [TaMV-2]) associated with the gut of Coptotermes
formosanus.

he Formosan subterranean termite Coptotermes formosanus is native to China but

is invasive in various subtropical areas around the world. It is an economically
important species that forms large colonies and causes extensive damage to a variety
of wood types (1, 2). In order to break down lignocellulose of woody plants and acquire
essential nutrients, termites rely on a diverse range of hindgut symbionts, including
bacteria and protozoa (3, 4). While the relationship between termites and their sym-
biotic gut community has been examined, the viral community remains largely un-
known. Recently, 13 novel bacteriophages associated with C. formosanus and four novel
genomoviruses with fungus-farming termites (Odontotermes spp.) were identified (5-7).
To further characterize termite viruses, 10 C. formosanus gut samples were collected,
pooled, and homogenized in 200 ul SM buffer (100 mM NaCl, 8 mM Mg,SO,, 0.01%
gelatin, 50 mM Tris-HCl; Teknova, USA). The homogenate was used for viral DNA
extraction, as previously described (8-10). Circular molecules were enriched by rolling
circle amplification using TempliPhi 100 amplification (GE Healthcare, USA), and the
resulting DNA was used to construct a 2 X 150-bp library using the Illumina TruSeq
Nano DNA library prep kit and sequenced on an lllumina HiSeq 4000 platform at
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trimmed using Trimmomatic (11) and then de novo assembled using metaSPAdes A. 2019. Genome sequences of microviruses
3.11.1 (12), with k-mer values of 33, 55, and 77. In the resulting 102,367 contigs associated with Coptotermes formosanus.
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tions similar to those of other gokushoviruses (Fig. 1A and B), and phylogenetic analysis
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A
I Replication initiator protein
TaMV-1 TaMv-2 I Major capsid protein
MH931003 MH931004 Nonstructural protein
4898 nts 4637 nts mm Internal scaffolding protein
I Hypothetical protein
Il DNA pilot protein
B  Genome Pairwise Accession
Accession Open reading frame Blast hit Virus name E-value Identity Coverage  Number
MH931003 DNA pilot protein DNA pilot protein Microviridae sp. isolate ctbh687 9x10™2 33% 83% MH617729
Internal scaffolding protein  Internal scaffolding protein  Microviridae sp. isolate ctdc182 1x102 36% 96% MH617685
Major capsid protein Major capsid protein Eel River basin pequenovirus 0 60% 100% KP087949
Nonstructural protein Nonstructural protein Microviridae sp. isolate ctba649 2x10°% 34% 100% MH616777
replication initiator protein Replication initiator protein  Microviridae sp. isolate SD_MC_61 3x101% 54% 100% MH572417
MH931004 DNA pilot protein Putative DNA pilot protein  Microviridae sp. isolate ctch897 2x10% 34% 97% MH617732
Hypothetical protein Hypothetical protein Microviridae sp. isolate ctci916 26 45% 27% MH617635
Major capsid protein Major capsid protein Wastewater_Microviridae_FL16 0 48% 99% KX259470
Hypothetical protein Hypothetical protein Microviridae sp. isolate SD_MF_12 0.016 36% 88% MH572486
Replication initiator protein  Replication initiator protein  Microviridae sp. isolate ctcd39 3x10% 28% 89% MH622932
c MH572321 o
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FIG 1 (A) Genome organization of termite-associated microvirus-1 (replication initiator protein, 882 nucleotides [nt]; nonstructural
protein, 276 nt; internal scaffolding protein, 468 nt; major capsid protein, 1,704 nt; and DNA pilot protein, 837 nt) and termite-associated
microvirus-2 (replication initiator protein, 1,017 nt; major capsid protein, 1,608 nt; hypothetical proteins, 339 and 417 nt; and DNA pilot
protein, 768 nt). (B) Summary of the best BLASTp results for each ORF of TaMV-1 and TaMV-2. (C) Maximum likelihood phylogenetic tree of the
MCP amino acid sequences and the pairwise identities of the MCP of most closely related Gokushovirinae members, those from termite reported
by Tikhe and Husseneder (5), and those from this study. Numbers in red are MCP sequences from this study, and numbers in orange are MCP
sequences identified in termites by Tikhe and Husseneder (5). The maximum likelihood phylogenetic trees were inferred with PhyML (17) with
the RtRev+F+G substitution model and with approximate likelihood ration test (aLRT) branch support.
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of the major capsid protein (MCP) confirms that both microviruses group with other
members of this subfamily (Fig. 1C). TaMV-1 MCP shares ~60% amino acid identity with
the MCP of the microvirus with accession number KP087949, whereas the TaMV-2 MCP
shares ~48% amino acid identity with the MCP of the microvirus with accession
number KX259470 (Fig. 1B). A data set of the MCPs of all published microviruses was
assembled and used to query the top 10 BLASTp hits to the MCPs of TaMV-1 and
TaMV-2 (Fig. 1B). These 20 MCPs, together with those from this study, those from
termites reported by Tikhe and Husseneder (5), and those of classified microviruses
were used to infer a maximum likelihood phylogenetic tree using PhyML (17). The MCP
amino acid sequences of TaMV-1 and TaMV-2 share 36% pairwise identity with each
other (Fig. 1C), with TaMV-1 clustering with MCPs of microviruses in the genus
Chlamydiamicrovirus, whereas TaMV-2 clusters with those of unclassified microviruses.
TaMV-1 and TaMV-2 are distinct from the microviruses identified by Tikhe and Huss-
eneder (5), sharing <41% MCP amino acid identity. This highlights that there are
diverse microviruses inhabiting the termite gut, and future work is needed to deter-
mine the role these viruses play in the complex host-symbiont interaction.

Data availability. The complete genome sequences of termite-associated microvirus-1
(TaMV-1) and termite-associated microvirus-2 (TaMV-2) isolates are deposited in
GenBank with accession numbers MH931003 and MH931004, respectively. Raw reads
have been deposited in the Sequence Read Archive (SRA) with accession number
PRINA521362.
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