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ABSTRACT Termites have a unique ability to effectively digest lignocellulose with
the help of mutualistic symbionts. While gut bacteria and protozoa have been rela-
tively well characterized in termites, the virome remains largely unexplored. Here,
we report two genomes of microviruses (termite-associated microvirus-1 [TaMV-1]
and termite-associated microvirus-2 [TaMV-2]) associated with the gut of Coptotermes
formosanus.

The Formosan subterranean termite Coptotermes formosanus is native to China but
is invasive in various subtropical areas around the world. It is an economically

important species that forms large colonies and causes extensive damage to a variety
of wood types (1, 2). In order to break down lignocellulose of woody plants and acquire
essential nutrients, termites rely on a diverse range of hindgut symbionts, including
bacteria and protozoa (3, 4). While the relationship between termites and their sym-
biotic gut community has been examined, the viral community remains largely un-
known. Recently, 13 novel bacteriophages associated with C. formosanus and four novel
genomoviruses with fungus-farming termites (Odontotermes spp.) were identified (5–7).
To further characterize termite viruses, 10 C. formosanus gut samples were collected,
pooled, and homogenized in 200 �l SM buffer (100 mM NaCl, 8 mM Mg2SO4, 0.01%
gelatin, 50 mM Tris-HCl; Teknova, USA). The homogenate was used for viral DNA
extraction, as previously described (8–10). Circular molecules were enriched by rolling
circle amplification using TempliPhi 100 amplification (GE Healthcare, USA), and the
resulting DNA was used to construct a 2 � 150-bp library using the Illumina TruSeq
Nano DNA library prep kit and sequenced on an Illumina HiSeq 4000 platform at
Macrogen, Inc. (South Korea). The raw paired-end reads (36,773,486 in total) were
trimmed using Trimmomatic (11) and then de novo assembled using metaSPAdes
3.11.1 (12), with k-mer values of 33, 55, and 77. In the resulting 102,367 contigs
(N50, 1,491 nucleotides [nt]), a 4,975-nt contig (with 176� coverage) and a 4,714-nt
contig (with 66� coverage) were identified as having similarities to microvirus se-
quences using BLASTx (13). Microviruses are prokaryote-infecting viruses with small
circular single-stranded DNA genomes (14) that are packaged in icosahedral capsids
(15). Within the family Microviridae, there are two subfamilies, Bullavirinae, whose
members infect mainly Enterobacteria, and Gokushovirinae, whose members infect
obligate intracellular parasitic bacteria (16). The genomes of termite-associated
microvirus-1 (TaMV-1; GenBank accession number MH931003) and termite-associated
microvirus-2 (TaMV-2; GenBank accession number MH931004) have genome organiza-
tions similar to those of other gokushoviruses (Fig. 1A and B), and phylogenetic analysis
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FIG 1 (A) Genome organization of termite-associated microvirus-1 (replication initiator protein, 882 nucleotides [nt]; nonstructural
protein, 276 nt; internal scaffolding protein, 468 nt; major capsid protein, 1,704 nt; and DNA pilot protein, 837 nt) and termite-associated
microvirus-2 (replication initiator protein, 1,017 nt; major capsid protein, 1,608 nt; hypothetical proteins, 339 and 417 nt; and DNA pilot
protein, 768 nt). (B) Summary of the best BLASTp results for each ORF of TaMV-1 and TaMV-2. (C) Maximum likelihood phylogenetic tree of the
MCP amino acid sequences and the pairwise identities of the MCP of most closely related Gokushovirinaemembers, those from termite reported
by Tikhe and Husseneder (5), and those from this study. Numbers in red are MCP sequences from this study, and numbers in orange are MCP
sequences identified in termites by Tikhe and Husseneder (5). The maximum likelihood phylogenetic trees were inferred with PhyML (17) with
the RtRev�F�G substitution model and with approximate likelihood ration test (aLRT) branch support.
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of the major capsid protein (MCP) confirms that both microviruses group with other
members of this subfamily (Fig. 1C). TaMV-1 MCP shares �60% amino acid identity with
the MCP of the microvirus with accession number KP087949, whereas the TaMV-2 MCP
shares �48% amino acid identity with the MCP of the microvirus with accession
number KX259470 (Fig. 1B). A data set of the MCPs of all published microviruses was
assembled and used to query the top 10 BLASTp hits to the MCPs of TaMV-1 and
TaMV-2 (Fig. 1B). These 20 MCPs, together with those from this study, those from
termites reported by Tikhe and Husseneder (5), and those of classified microviruses
were used to infer a maximum likelihood phylogenetic tree using PhyML (17). The MCP
amino acid sequences of TaMV-1 and TaMV-2 share 36% pairwise identity with each
other (Fig. 1C), with TaMV-1 clustering with MCPs of microviruses in the genus
Chlamydiamicrovirus, whereas TaMV-2 clusters with those of unclassified microviruses.
TaMV-1 and TaMV-2 are distinct from the microviruses identified by Tikhe and Huss-
eneder (5), sharing �41% MCP amino acid identity. This highlights that there are
diverse microviruses inhabiting the termite gut, and future work is needed to deter-
mine the role these viruses play in the complex host-symbiont interaction.

Data availability. The complete genome sequences of termite-associated microvirus-1
(TaMV-1) and termite-associated microvirus-2 (TaMV-2) isolates are deposited in
GenBank with accession numbers MH931003 and MH931004, respectively. Raw reads
have been deposited in the Sequence Read Archive (SRA) with accession number
PRJNA521362.
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